## T. Kiguradze

## ON BOUNDED SOLUTIONS OF THIRD ORDER NONLINEAR HYPERBOLIC EQUATIONS

(Reported on June 7, 2004)

Let $I \subset \mathbb{R}$ be a compact interval containing zero. For the nonlinear hyperbolic equation

$$
\begin{equation*}
u^{(2,1)}=f\left(x, t, u, u^{(1,0)}, u^{(2,0)}, u^{(0,1)}, u^{(1,1)}\right) \tag{1}
\end{equation*}
$$

consider the following problems on bounded in the half strip $\mathbb{R}_{+} \times I$ and in the strip $\mathbb{R} \times I$ solutions

$$
\begin{gather*}
u(x, 0)=\varphi(x) \text { for } x \in \mathbb{R}_{+}, \\
u^{(0,1)}(0, t)=\psi(t), \quad \sup \left\{|u(x, t)|: x \in \mathbb{R}_{+}\right\}<+\infty \text { for } t \in I  \tag{1}\\
u(x, 0)=\varphi(x) \text { for } x \in \mathbb{R}_{+}, \\
u^{(1,0)}(0, t)=\psi(t), \quad \sup \left\{|u(x, t)|: x \in \mathbb{R}_{+}\right\}<+\infty \text { for } t \in I  \tag{2}\\
u(x, 0)=\varphi(x) \text { for } x \in \mathbb{R}, \quad \sup \{|u(x, t)|: x \in \mathbb{R}\}<+\infty \text { for } t \in I \tag{3}
\end{gather*}
$$

Here

$$
u^{(j, k)}(x, y)=\frac{\partial^{j+k} u(x, y)}{\partial x^{j} \partial y^{k}}
$$

$f: \mathbb{R} \times I \times \mathbb{R}^{5} \rightarrow \mathbb{R}$ and $\psi: I \rightarrow \mathbb{R}$ are continuous functions, and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a twice continuously differentiable function such that

$$
\sup \left\{|\varphi(x)|+\left|\varphi^{\prime}(x)\right|+\left|\varphi^{\prime \prime}(x)\right|: x \in \mathbb{R}\right\}<+\infty
$$

By a solution of the equation (1) we understand a classical solution, i.e., a function $u$ having the continuous partial derivatives $u^{(j, k)}(j=0,1,2 ; k=0,1)$ and satisfying the equation (1) at every point of the domain under consideration.

Such problems arise in the theory of seepage of homogeneous fluids through fissured rocks [1]. In [2] problems $(1),\left(2_{k}\right)(k=1,2,3)$ are studied in the case where

$$
f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right) \equiv f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}\right)
$$

To our best knowledge in general case these problems were not studied.
We consider the case, where in the set $\mathbb{R} \times I \times \mathbb{R}^{5}$ the function $f$ satisfies the following conditions:
$\left(E_{1}\right)$ there exists a positive constant $l$ such that

$$
\left|f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)\right| \leq l\left(1+\left|u_{0}\right|+\left|u_{1}\right|+\left|u_{2}\right|+\left|v_{0}\right|+\left|v_{1}\right|\right)
$$

$\left(E_{2}\right)$ there exists a positive constant $\delta$ such that

$$
\left(f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)-f\left(x, t, u_{0}, u_{1}, u_{2}, \bar{v}_{0}, v_{1}\right)\right) \operatorname{sgn}\left(v_{0}-\bar{v}_{0}\right) \geq \delta\left|v_{0}-\bar{v}_{0}\right|
$$

2000 Mathematics Subject Classification. 35L35, 35L55, 35L80.
Key words and phrases. Third order nonlinear hyperbolic equation, bounded solution.
$\left(E_{3}\right) f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)$ is locally Lipschitz continuous with respect to $u_{2}$ and $v_{1}$, i.e., there exists a continuous function $\gamma: \mathbb{R}^{7} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{aligned}
& \left|f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)-f\left(x, t, u_{0}, u_{1}, \bar{u}_{2}, v_{0}, \bar{v}_{1}\right)\right| \leq \\
& \quad \leq \gamma\left(u_{0}, u_{1}, u_{2}, \bar{u}_{2}, z_{0}, z_{1}, \bar{z}_{1}\right)\left(\left|u_{2}-\bar{u}_{2}\right|+\left|v_{1}-\bar{v}_{1}\right|\right)
\end{aligned}
$$

$\left(E_{4}\right) f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)$ is locally Lipschitz continuous with respect to $u_{0}$ and $u_{1}$, i.e., there exists a continuous function $\eta: \times \mathbb{R}^{7} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{aligned}
& \left|f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)-f\left(x, t, \bar{u}_{0}, \bar{u}_{1}, u_{2}, v_{0}, v_{1}\right)\right| \leq \\
& \quad \leq \eta\left(u_{0}, \bar{u}_{0}, u_{1}, \bar{u}_{1}, u_{2}, v_{0}, v_{1}\right)\left(\left|u_{0}-\bar{u}_{0}\right|+\left|u_{1}-\bar{u}_{1}\right|\right)
\end{aligned}
$$

Theorem 1. Let the conditions $\left(E_{1}\right)-\left(E_{3}\right)$ hold. Then for any $k \in\{1,2,3\}$ the problem (1), $\left(2_{k}\right)$ is solvable. Moreover, if in addition the condition $\left(E_{4}\right)$ holds, then problem (1), $\left(2_{k}\right)$ is uniquely solvable.

A particular case of the equation (1) is the linear equation

$$
\begin{equation*}
u^{(2,1)}=\sum_{j=0}^{2} \sum_{k=0}^{1} p_{j k}(x, t) u^{(j, k)}+q(x, t) \tag{3}
\end{equation*}
$$

where $p_{j k}: \mathbb{R} \times I \rightarrow \mathbb{R}(j=0,1,2 ; k=0,1)$ and $q: \mathbb{R} \times I \rightarrow \mathbb{R}$ are continuous functions. For this equation from Theorem 1 we get

Corollary 1. Let there exist positive constants $l$ and $\delta$ such that

$$
\begin{gathered}
\left|p_{j k}(x, t)\right| \leq l \quad(j=0,1,2 ; k=0,1), \quad|q(x, t)| \leq l \quad \text { for } \quad(x, t) \in \mathbb{R} \times I \\
p_{01}(x, t) \geq \delta \quad \text { for } \quad(x, t) \in \mathbb{R} \times I
\end{gathered}
$$

Then for any $k \in\{1,2,3\}$ the problem $(3),\left(2_{k}\right)$ is uniquely solvable.
Now consider the case where $f\left(x, t, u_{0}, u_{1}, u_{2}, v_{0}, v_{1}\right)$ is independent of $u_{2}$, i.e., the equation (1) has the form

$$
u^{(2,1)}=f\left(x, t, u, u^{(1,0)}, u^{(0,1)}, u^{(1,1)}\right)
$$

and the function $f$ on the set $\mathbb{R} \times I \times \mathbb{R}^{4}$ satisfies the following conditions:
$\left(E_{1}^{\prime}\right)$ there exist a positive constant $l$ such that

$$
\left|f\left(x, t, u_{0}, u_{1}, 0, v_{1}\right)\right| \leq l\left(1+\left|u_{0}\right|+\left|u_{1}\right|+\left|v_{1}\right|\right)
$$

$\left(E_{2}^{\prime}\right)$ there exists a positive constant $\delta$ such that

$$
\left(f\left(x, t, u_{0}, u_{1}, v_{0}, v_{1}\right)-f\left(x, t, u_{0}, u_{1}, \bar{v}_{0}, v_{1}\right)\right) \operatorname{sgn}\left(v_{0}-\bar{v}_{0}\right) \geq \delta\left|v_{0}-\bar{v}_{0}\right|
$$

$\left(E_{3}^{\prime}\right) f\left(x, t, u_{0}, u_{1}, v_{0}, v_{1}\right)$ is locally Lipschitz continuous with respect to $v_{1}$; $\left(E_{4}^{\prime}\right) f\left(x, t, u_{0}, u_{1}, v_{0}, v_{1}\right)$ is locally Lipschitz continuous with respect to $u_{0}$ and $u_{1}$.

Theorem 2. Let the conditions $\left(E_{1}^{\prime}\right)-\left(E_{3}^{\prime}\right)$ hold. Then for any $k \in\{1,2,3\}$ the problem $\left(1^{\prime}\right),\left(2_{k}\right)$ is solvable. Moreover, if in addition the condition $\left(E_{4}^{\prime}\right)$ holds, then the problem ( $\left.1^{\prime}\right),\left(2_{k}\right)$ is uniquely solvable.

Unlike to Theorem, 1 Theorem 2 covers the case where $f\left(x, t, u_{0}, u_{1}, v_{0}, v_{1}\right)$ is a rapidly growing function with respect to $v_{0}$. For the equation

$$
\begin{equation*}
u^{(2,1)}=f_{0}(x, t, u)+f_{1}\left(x, t, u^{(1,0)}\right)+f_{2}\left(x, t, u^{(0,1)}\right)+f_{3}\left(x, t, u^{(1,1)}\right) \tag{4}
\end{equation*}
$$

Theorem 2 implies
Corollary 2. Let $f_{j}: \mathbb{R} \times I \times \mathbb{R} \rightarrow \mathbb{R}(j=0,1,2,3)$ be continuous functions having continuous partial derivative with respect to the third argument. Moreover, let there exist positive constants $\delta$ and l such that on the set $\mathbb{R} \times I \times \mathbb{R}$ the inequalities

$$
\begin{gathered}
\left|\frac{\partial f_{j}(x, t, z)}{\partial z}\right| \leq l \quad(j=0,1,3), \quad \frac{\partial f_{2}(x, t, z)}{\partial z} \geq \delta \\
\left|f_{j}(x, t, 0)\right| \leq l \quad(j=0,1,2,3)
\end{gathered}
$$

hold. Then for any $k \in\{1,2,3\}$ the problem (4), $\left(2_{k}\right)$ is uniquely solvable.
As an example consider the equation

$$
\begin{gather*}
u^{(2,1)}=p_{0}(x, t) \frac{u^{k_{0}}}{1+|u|^{m_{0}}}+p_{1}(x, t) \frac{\left(u^{(1,0)}\right)^{k_{1}}}{1+\left|u^{(1,0)}\right|^{m_{1}}}+p_{2}(x, t) \frac{\left(u^{(1,1)}\right)^{k_{2}}}{1+\left|u^{(1,1)}\right|^{m_{2}}}+ \\
+p(x, t) \sinh \left(u^{(0,1)}\right)+q(x, t) \tag{5}
\end{gather*}
$$

Here $p_{i}: \mathbb{R} \times I \rightarrow \mathbb{R}(i=0,1,2,3), p$ and $q: \mathbb{R} \times I \rightarrow \mathbb{R}$ are continuous functions, $k_{i}$ $(i=0,1,2)$ are natural numbers, $m_{i}$ are nonnegative integers and $m_{i} \geq k_{i}-1(i=0,1,2)$. Moreover there exist positive constants $\delta$ and $l$ such that the inequalities

$$
\begin{gathered}
\left|p_{i}(x, t)\right| \leq l ;(i=0,1,2), \quad|q(x, t)| \leq l \\
\\
\delta \leq p(x, t) \leq l
\end{gathered}
$$

hold on the set $\mathbb{R} \times I$. Then by Corollary 2 , for any $k \in\{1,2,3\}$ the problem (5), (2k $)$ is uniquely solvable.

This work was supported by GRDF (Grant No. 3318).

## References

1. G. Barenblat, I. Zheltov and I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks.(Russian) J. Appl. Math. Mech., 24 (1960), 1286-1303.
2. T. Kiguradze and V. Lakshmikantham, On initial-boundary value problems in bounded and unbounded domains for a class of nonlinear hyperbolic equations of the third order (submitted).

Author's address:
Florida Institute of Technology
Department of Mathematical Sciences
150 W. University Blvd.
Melbourne, Fl 32901
USA
E-mail: tkigurad@fit.edu

