## E. Krupchik

## THE CONSTRUCTION OF THE LINEAR PFAFF SYSTEM WITH THE ARBITRARY GIVEN DEGREE SETS AND TRIVIAL CHARACTERISTIC SETS

(Reported on May 24, 2004)
Consider the linear Pfaff system

$$
\begin{equation*}
\partial x / \partial t_{i}=A_{i}(t) x, \quad x \in R^{n}, \quad t=\left(t_{1}, t_{2}\right) \in R_{>1}^{2}, \quad i=1,2 \tag{1}
\end{equation*}
$$

with bounded continuously differentiable matrices $A_{i}(t)$ satisfying the complete integrability condition [1, pp. 43-44; 2. pp. 21-24]

$$
\partial A_{1}(t) / \partial t_{2}+A_{1}(t) A_{2}(t)=\partial A_{2}(t) / \partial t_{1}+A_{2}(t) A_{1}(t), \quad t \in R_{>1}^{2}
$$

Suppose that the lower characteristic [3] $P_{x}$ and the characteristic [4] $\Lambda_{x}$ sets of a nontrivial solution $x: R_{>1}^{2} \rightarrow R^{n} \backslash\{0\}$ of the system (1) are trivial, i.e., $P_{x}=\left\{p^{0}\right\}$ and $\Lambda_{x}=\left\{\lambda^{0}\right\}$.

On the basis of Demidovich's definition of the characteristic degree [5] of a solution of the ordinary differential system, the lower [6] $\underline{d}=\underline{d}_{x}\left(p^{0}\right) \in R^{2}$ and upper [7] $\bar{d}=$ $\bar{d}_{x}\left(\lambda^{0}\right) \in R^{2}$ characteristic degrees of the solution $x \neq 0$ of the system (1) are defined by the conditions

$$
\begin{aligned}
& \underline{\ln }_{x}\left(p^{0}, \underline{d}\right) \equiv \underline{\lim }_{t \rightarrow \infty} \frac{\ln \|x(t)\|-\left(p^{0}, t\right)-(\underline{d}, \ln t)}{\|\ln t\|}=0, \quad \underline{\ln }_{x}\left(p^{0}, \underline{d}+\varepsilon e_{i}\right)<0, \quad \forall \varepsilon>0 \\
& \overline{\ln }_{x}\left(\lambda^{0}, \bar{d}\right) \equiv \varlimsup_{t \rightarrow \infty} \frac{\ln \|x(t)\|-\left(\lambda^{0}, t\right)-(\bar{d}, \ln t)}{\|\ln t\|}=0, \quad \overline{\ln }_{x}\left(\lambda^{0}, \bar{d}-\varepsilon e_{i}\right)>0, \quad \forall \varepsilon>0
\end{aligned}
$$

$i=1,2$. The sets $\underline{D}_{x} \equiv\left\{\underline{d}_{x}\left(p^{0}\right)\right\}$ and $\bar{D}_{x} \equiv\left\{\bar{d}_{x}\left(\lambda^{0}\right)\right\}$ are called the lower and upper degree sets.

Necessary properties of the lower degree set $\underline{D}_{x}$ and the upper degree set $\bar{D}_{x}$ of a solution $x$ of the system (1) were obtained in paper [8]. More precisely, it was shown that the nonempty lower $\underline{D}_{x}$ (upper $\bar{D}_{x}$ ) degree set of $x$ is a continuous closed decreasing concave (convex) curve on the two-dimensional plane. In the present paper we prove the sufficiency of these properties.

Theorem 1. Let $n$ be a positive integer, $D \in R^{2}$ be a continuous closed decreasing concave curve on the two-dimensional plane and $p^{0} \in R^{2}$ be a point. Then there exists a completely integrable Pfaff system (1) with infinitely differentiable bounded coefficients such that its arbitrary nontrivial solution $x: R_{>1}^{2} \rightarrow R^{n} \backslash\{0\}$ has the trivial lower characteristic set $P_{x}=\left\{p^{0}\right\}$ and the lower degree set $\underline{D}_{x}=D$.

Construction of the Pfaff system. First, we note that it suffices to construct a completely integrable linear Pfaff equation

$$
\begin{equation*}
\partial x / \partial t_{i}=a_{i}(t) x, \quad x \in R, \quad t \in R_{>1}^{2}, \quad i=1,2 \tag{1}
\end{equation*}
$$

with infinitely differentiable bounded coefficients and with the desired lower characteristic set and the desired lower degree set.

We construct the desired equation $\left(1_{1}\right)$ by constructing a nontrivial solution.
2000 Mathematics Subject Classification. 35B33, 35K35.
Key words and phrases. Linear Pfaff system, characteristic degree function.

We define the solution $x$ of equation $\left(1_{1}\right)$ by $x=\phi \psi$, where $\ln \phi(t)=\left(p^{0}, t\right), t \in R_{>1}^{2}$.
We define the function $\psi$ so as to ensure that the lower characteristic set of the resulting solution $x$ coincides with the corresponding set $P_{\phi}=\left\{p^{0}\right\}$ of the function $\phi$ and the solution $x$ has the lower degree set $\underline{D}_{x}=D$.

It follows from the properties of the curve $D$ that it necessarily has one of the following ten forms: 1) unbounded from below, left and right, bounded from above; 2) unbounded from below, above, left and right; 3) bounded from above and left, unbounded from below and right; 4) unbounded from below, above and left, bounded from right; 5) bounded from below and right, unbounded from above and left; 6) bounded from below, above and right, unbounded from left; 7) bounded from above, left and right, unbounded from below; 8) bounded from above and right, unbounded from below and left; 9) bounded from above, below, left and right; 10) coinciding with a point.

1. We first suppose that the curve $D$ has one of the forms 1)-9). Then to construct a function $\psi$ realizing the lower degree set $\underline{D}_{x}=D$, we perform the following partition of the curve $D$.
1.1. Partition of the curve $D$. If the curve $D$ has the form 1) or 2), then its $l$ th partition $D_{l}, l \in N$, consists of the points $\Delta(i, l) \in D$ with first components $\Delta_{1}(i, l)=$ $\left(i \cdot 2^{1-l}-l\right) \gamma, i \in\left\{1,2, \ldots, l \cdot 2^{l}\right\} \equiv I_{l}$; in case 3 ) of the curve $D$ with the left boundary point $\Delta^{\prime} \in D$, we construct its $l$ th partition $D_{l}$ using the points $\Delta(i, l) \in D$ with first components $\Delta_{1}(i, l)=\Delta_{1}^{\prime}+i \gamma \cdot 2^{-l}, i \in I_{l}$.

If the curve $D$ has the form 4), then its $l$ th partition $D_{l}=\cup_{i \in I_{l}}\{\Delta(i, l)\} \subset D$ consists of the points $\Delta(i, l) \in D$ with second components $\Delta_{2}(i, l)=\left(i \cdot 2^{1-l}-l\right) \gamma, i \in I_{l}$.

In cases 5) and 6) of the curve $D$ with the right boundary point $\Delta^{\prime \prime} \in D$, and also in the case 8) of the curve $D$ with the vertical asymptote $d_{1}=\Delta_{1}^{\prime \prime}$, we construct its $l$ th partition $D_{l}$ using the points $\Delta(i, l) \in D$ with first components $\Delta_{1}(i, l)=\Delta_{1}^{\prime \prime}-i \gamma \cdot 2^{-l}$, $i \in I_{l}$.

In case 7) of the curve $D$ with the left boundary point $\Delta^{\prime} \in D$, its $l$ th partition $D_{l}$ consists of the points $\Delta(i, l) \in D$ with second components $\Delta_{2}(i, l)=\Delta_{2}^{\prime}-i \gamma \cdot 2^{-l}, i \in I_{l}$.

If the curve $D$ has one of the forms 1)-8), then we denote by $i_{l} \equiv l \cdot 2^{l}$ the last element of the set $I_{l}$.

In case 9) of the curve $D$ with the left $\Delta^{\prime} \in D$ and right $\Delta^{\prime \prime} \in D$ boundary points, we construct its $l$ th partition $D_{l}$ using the points $\Delta(i, l) \in D$ with first components $\Delta_{1}(i, l)=\Delta_{1}^{\prime}+\left(\Delta_{1}^{\prime \prime}-\Delta_{1}^{\prime}\right) i \cdot 2^{-(l+1)}, i=1,2, \ldots, 2^{l+1}-1$. We denote by $I_{l}$ the set $\left\{1,2, \ldots, 2^{l+1}-1\right\}$ in this case and set $i_{l} \equiv 2^{l+1}-1$.

By continuing the partition of the curve $D$ infinitely, we obtain a countable set $D_{\infty}=$ $\cup_{l \in N} \cup_{i \in I_{l}}\{\Delta(i, l)\} \subset D$, which is everywhere dense in $D$.

We note that $D_{l} \subset D_{l+1}, l \in N$.
1.2. Construction of a solution. At the $i$ th point $\Delta(i, l) \in D, i \in I_{l}$, of the $l$ th partition, $l \in N$, we draw some straight line of support

$$
d_{2}-\Delta_{2}(i, l)=k(i, l)\left(d_{1}-\Delta_{1}(i, l)\right), \quad k(i, l) \in(-\infty, 0), \quad\left(d_{1}, d_{2}\right) \in R^{2}
$$

to $D$, which does not lie below this curve. The existence of such a straight line of support follows from the concavity of $D$, its decreasing character and from the fact that by construction all points $\Delta(i, l)$ of each $l$ th partition $D_{l}$ are interior points of $D$. Moreover, if a point has been used in the partition, then for all subsequent partitions, we draw the same straight line of support at this point. This will ensure the existence of a sequence realizing the limit $\underline{l n}_{x}\left(p^{0}, d\right)$ in the definition of lower characteristic degree.

We set

$$
\begin{aligned}
& \Theta_{i, l} \equiv 1 /|k(i, l)|, \quad i \in I_{l}, \quad \Theta_{l} \\
& \equiv \max _{i \in I_{l}}\left\{\Theta_{i, l}\right\}, \quad \Omega_{l} \equiv \min _{i \in I_{l}}\left\{\Theta_{i, l}\right\} \\
& \Delta_{1}(l) \equiv \max _{i \in I_{l}}\{\|\Delta(i, l)\|\}, \quad \Delta_{2}(l) \equiv 2^{-l}\left\|\Delta\left(i_{l}, l\right)-\Delta(1, l)\right\|^{-1}, \quad l \in N .
\end{aligned}
$$

To sew the different infinitely differentiable functions together into a single infinitely differentiable function, we introduce the infinitely differentiable functions

$$
e_{101}\left(\tau ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=e_{01}\left(\tau ; \alpha_{2}, \alpha_{3}\right)+\left[1-e_{01}\left(\tau ; \alpha_{1}, \alpha_{2}\right)\right]
$$

$e_{0110}\left(\tau ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=e_{01}\left(\tau ; \alpha_{1}, \alpha_{2}\right) \cdot\left(1-e_{01}\left(\tau ; \alpha_{3}, \alpha_{4}\right)\right), \alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}, \tau \in R$, defined on the basis of the infinitely differentiable function [9]

$$
e_{01}\left(\tau ; \tau_{1}, \tau_{2}\right)= \begin{cases}\exp \left\{-\left(\tau-\tau_{1}\right)^{-2} \exp \left[-\left(\tau-\tau_{2}\right)^{-2}\right]\right\}, & \tau \in\left(\tau_{1}, \tau_{2}\right) \\ \left(1+\operatorname{sgn}\left(\tau-2^{-1}\left(\tau_{1}+\tau_{2}\right)\right)\right) / 2, & \tau \notin\left(\tau_{1}, \tau_{2}\right)\end{cases}
$$

$-\infty<\tau_{1}<\tau_{2}<+\infty$.
We define the functions $\psi_{i, l}$ by

$$
\begin{gathered}
\ln \psi_{i, l}(t) \equiv(\Delta(i, l), \ln t) e_{0110}\left(\frac{\ln t_{2}}{\ln t_{1}} ; \Theta_{i, l}-\frac{5 \tau_{l}}{4}, \Theta_{i, l}-\tau_{l}, \Theta_{i, l}+\tau_{l}, \Theta_{i, l}+\frac{5 \tau_{l}}{4}\right)+ \\
\quad+\|\ln t\|^{2} e_{101}\left(\frac{\ln t_{2}}{\ln t_{1}} ; \Theta_{i, l}-\tau_{l}, \Theta_{i, l}, \Theta_{i, l}+\tau_{l}\right), \quad t \in R_{>1}^{2}, \quad i \in I_{l}, \quad l \in N
\end{gathered}
$$

$\tau_{l} \equiv \min \left\{1 / 2 ; \Omega_{l} / 2, \Delta_{2}(l)\right\}$.
It follows from the definition of the function $\psi_{i, l}$ that there exists a number $T_{l} \geq 1$ such that

$$
\ln \psi_{i, l}(t)-(d, \ln t) \geq 0, \quad t \in R_{>1}^{2} \backslash S(i, l), S(i, l) \equiv\left\{t \in R_{>1}^{2}:\left|\frac{\ln t_{2}}{\ln t_{1}}-\Theta_{i, l}\right| \leq \tau_{l}\right\}
$$

$$
\|t\| \geq T_{l}, d \in D_{l}, \quad i \in I_{l}
$$

We split the domain of the solution $x: R_{>1}^{2} \rightarrow R \backslash\{0\}$ by lines of the forms $\zeta(t) \equiv$ $t_{1}+t_{2}=$ const into disjoint strips. By using some values $\eta_{1} \geq T_{1}$ and $c \geq \exp (100)$, we introduce the numbers

$$
\begin{gathered}
\nu_{l}=c\left(\Theta_{l}^{6}+\Omega_{l}^{-2}\right)\left(\Delta_{1}^{2}(l)+1\right) \exp \left(c \tau_{l}^{-2}\right), \quad \alpha_{i, l}=\left(\eta_{l}+\nu_{l}^{4\left(\Theta_{l}+\Omega_{l}^{-1}\right)}\right) \exp (\exp i), \\
\beta_{i, l}=e^{2} \alpha_{i, l}, i \in I_{l}, \quad \eta_{l+1}=\beta_{i_{l}, l}+T_{l+1}+2^{l}, l \in N
\end{gathered}
$$

We introduce the "basic" strips

$$
\begin{gathered}
\Pi(i, l)=\left\{t \in R_{>1}^{2}: \beta_{i, l} \leq \zeta(t) \equiv t_{1}+t_{2} \leq \alpha_{i+1, l}\right\}, i \in I_{l} \backslash\left\{i_{l}\right\} \equiv I_{l}^{1} \\
\Pi\left(i_{l}, l\right)=\left\{t \in R_{>1}^{2}: \beta_{i_{l}, l} \leq \zeta(t) \leq \alpha_{1, l+1}\right\}, l \in N
\end{gathered}
$$

the "transition" strips

$$
P(i, l)=\left\{t \in R_{>1}^{2}: \alpha_{i, l}<\zeta(t)<\beta_{i, l}\right\}, i \in I_{l}, l \in N
$$

and the triangle $T=\left\{t \in R_{>1}^{2}: \zeta(t) \leq \alpha_{1,1}\right\}$.
Let us proceed to the construction of the function $\psi$ used in the realization of the desired lower degree set $\underline{D}_{x}=D$ of $x$. First we introduce the auxiliary function $\tilde{\psi}$ by

$$
\begin{gathered}
\ln \tilde{\psi}(t)=\ln \psi_{i, l}(t)+\left[\ln \psi_{i+1, l}(t)-\ln \psi_{i, l}(t)\right] e_{01}\left(\ln \zeta(t) ; \ln \alpha_{i+1, l}, \ln \beta_{i+1, l}\right) \\
t \in \Pi(i, l) \cup P(i+1, l) \cup \Pi(i+1, l), \quad i \in I_{l}^{1}, \quad l \in N, \\
\ln \tilde{\psi}(t)=\ln \psi_{i_{l}, l}(t)+\left[\ln \psi_{1, l+1}(t)-\ln \psi_{i_{l}, l}(t)\right] e_{01}\left(\ln \zeta(t) ; \ln \alpha_{1, l+1}, \ln \beta_{1, l+1}\right), \\
t \in P(1, l+1), \quad l \in N, \\
\ln \tilde{\psi}(t)=\ln \psi_{1,1}(t) e_{01}\left(\ln \zeta(t) ; \ln \alpha_{1,1}, \ln \beta_{1,1}\right), \quad t \in T \cup P(1,1) .
\end{gathered}
$$

We set $\psi(t)=\tilde{\psi(t)}, t \in R_{>1}^{2}$ in case of the curve $D$ of one of the forms 1), 2), 4) or 8).
We define the function $\psi$ by

$$
\ln \psi(t)=\ln \tilde{\psi}(t)+\left[\left(\Delta^{\prime}, \ln t\right)-\ln \tilde{\psi}(t)\right] e_{01}\left(\frac{\ln t_{2}}{\sqrt[3]{t_{1}} \ln t_{1}} ; 1,3\right), \quad t \in R_{>1}^{2}
$$

in case of the curve $D$ of the forms 3) or 7) with the left boundary point $\Delta^{\prime} \in D$.
We set

$$
\ln \psi(t)=\ln \tilde{\psi}(t)+\left[\left(\Delta^{\prime \prime}, \ln t\right)-\ln \tilde{\psi}(t)\right] e_{01}\left(\frac{\ln t_{1}}{\sqrt[3]{t_{2}} \ln t_{2}} ; 1,3\right), \quad t \in R_{>1}^{2}
$$

in case of the curve $D$ of the form 5) or 6 ) with the right boundary point $\Delta^{\prime \prime} \in D$.
Finally, we define the function $\psi$ by

$$
\begin{aligned}
& \ln \psi(t)=\ln \tilde{\psi}(t)+\left[\left(\Delta^{\prime}, \ln t\right)-\ln \tilde{\psi}(t)\right] e_{01}\left(\frac{\ln t_{2}}{\sqrt[3]{t_{1}} \ln t_{1}} ; 1,3\right)+ \\
& \quad+\left[\left(\Delta^{\prime \prime}, \ln t\right)-\ln \tilde{\psi}(t)\right] e_{01}\left(\frac{\ln t_{1}}{\sqrt[3]{t_{2}} \ln t_{2}} ; 1,3\right), \quad t \in R_{>1}^{2}
\end{aligned}
$$

in case of the curve $D$ of the form 9) with the left $\Delta^{\prime} \in D$ and right $\Delta^{\prime \prime} \in D$ boundary points.
2. In case 10) of the curve $D$ consisting of one point $\Delta \in R^{2}$, we set $\ln \psi(t)=$ $(\Delta, \ln t), \quad t \in R_{>1}^{2}$.

Construction of the equation. The above-constructed function $x>0$ is a solution of the Pfaff equation $\left(1_{1}\right)$ with infinitely differentiable bounded coefficients $a_{k}(t)=$ $x^{-1}(t) \partial x(t) / \partial t_{k}=\partial \ln x(t) / \partial t_{k}, t \in R_{>1}^{2}, k=1,2$, satisfying the complete integrability condition in $R_{>1}^{2}$ and this solution has the trivial characteristic set $P_{x}=\left\{p^{0}\right\}$ and the lower degree set $\underline{D}_{x}=D$.

Theorem 2. Let $n$ be a positive integer, $D \in R^{2}$ be a continuous closed decreasing convex curve on a two-dimensional plane and $\lambda^{0} \in R^{2}$ be a point. Then there exists a completely integrable Pfaff system (1) with infinitely differentiable bounded coefficients such that its arbitrary nontrivial solution $x: R_{>1}^{2} \rightarrow R^{n} \backslash\{0\}$ has the trivial characteristic set $\Lambda_{x}=\left\{\lambda^{0}\right\}$ and the upper degree set $\bar{D}_{x}=D$.

## References

1. I. V. Gaishun, Completely integrable multidimensional differential equations. (Russian) Nauka i Tekhnika, Minsk, 1983.
2. I. V. Gaishun, Linear total differential equations. (Russian) Nauka i Tekhnika, Minsk, 1989.
3. N. A. Izobov, On the existence of linear Pfaffian systems whose set of lower characteristic vectors has a positive plane measure. (Russian) Differentsial'nye Uravneniya 33(1997), No. 12, 1623-1630; English transl.: Differential Equations 33(1997), No. 12, 1626-1632 (1998).
4. È. I. Grudo, Characteristic vectors and sets of functions of two variables and their fundamental properties. (Russian) Differentsial'nye Uravneniya 12(1976), No. 12, 2115-2128.
5. B. P. Demidovich, A generalization of the Ljapunov stability criterion for regular systems. (Russian) Mat. Sb. (N.S.) 66 (108)(1965), 344-353.
6. E. N. Krupchik, Lower characteristic exponents of nontrivial solutions of Pfaffian systems. (Russian) Differentsial'nye Uravneniya 35(1999), No. 7, 899-908; English transl.: Differential Equations 35(1999), No. 7, 905-914 (2000).
7. P. G. Lasyi, A remark to the theory of characteristic vector degrees of solutions of Pfaff linear systems. (Russian) Preprint IM AS BSSR: 14, Minsk, 1982.
8. N. A. Izobov and E. N. Krupchik, On necessary properties of boundary degree sets of solutions of linear Pfaffian systems. (Russian) Differentsial'nye Uravneniya $\mathbf{3 7}(2001)$, No. 5, 616-627; English transl.: Differential Equations $\mathbf{3 7}(2001)$, No. 5, 647-658.
9. B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in analysis. HoldenDay, Inc., San Francisco, Calif.-London-Amsterdam, 1964.

## Author's address:

Belarusian State University
Skariny Avenue 4, Minsk 220050
Belarus

