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Consider the linear Pfaff system

∂x/∂ti = Ai(t)x, x ∈ Rn, t = (t1, t2) ∈ R2
>1, i = 1, 2, (1)

with bounded continuously differentiable matrices Ai(t) satisfying the complete integra-
bility condition [1, pp. 43–44; 2. pp. 21–24]

∂A1(t)/∂t2 + A1(t)A2(t) = ∂A2(t)/∂t1 + A2(t)A1(t), t ∈ R2
>1.

Suppose that the lower characteristic [3] Px and the characteristic [4] Λx sets of a
nontrivial solution x : R2

>1 → Rn \ {0} of the system (1) are trivial, i.e., Px = {p0} and

Λx = {λ0}.
On the basis of Demidovich’s definition of the characteristic degree [5] of a solution

of the ordinary differential system, the lower [6] d = dx(p0) ∈ R2 and upper [7] d =

dx(λ0) ∈ R2 characteristic degrees of the solution x 6= 0 of the system (1) are defined by
the conditions

lnx(p0, d) ≡ lim
t→∞

ln ‖x(t)‖ − (p0, t)− (d, ln t)

‖ ln t‖
= 0, lnx(p0, d+ εei) < 0, ∀ε > 0,

lnx(λ0, d) ≡ lim
t→∞

ln ‖x(t)‖ − (λ0, t) − (d, ln t)

‖ ln t‖
= 0, lnx(λ0, d− εei) > 0, ∀ε > 0,

i = 1, 2. The sets Dx ≡ {dx(p0)} and Dx ≡ {dx(λ0)} are called the lower and upper
degree sets.

Necessary properties of the lower degree set Dx and the upper degree set Dx of a
solution x of the system (1) were obtained in paper [8]. More precisely, it was shown

that the nonempty lower Dx (upper Dx) degree set of x is a continuous closed decreasing
concave (convex) curve on the two-dimensional plane. In the present paper we prove the
sufficiency of these properties.

Theorem 1. Let n be a positive integer, D ∈ R2 be a continuous closed decreasing

concave curve on the two-dimensional plane and p0 ∈ R2 be a point. Then there exists

a completely integrable Pfaff system (1) with infinitely differentiable bounded coefficients

such that its arbitrary nontrivial solution x : R2
>1 → Rn \ {0} has the trivial lower

characteristic set Px = {p0} and the lower degree set Dx = D.

Construction of the Pfaff system. First, we note that it suffices to construct a
completely integrable linear Pfaff equation

∂x/∂ti = ai(t)x, x ∈ R, t ∈ R2
>1, i = 1, 2, (11)

with infinitely differentiable bounded coefficients and with the desired lower characteristic
set and the desired lower degree set.

We construct the desired equation (11) by constructing a nontrivial solution.

2000 Mathematics Subject Classification. 35B33, 35K35.
Key words and phrases. Linear Pfaff system, characteristic degree function.



148

We define the solution x of equation (11) by x = φψ, where lnφ(t) = (p0, t), t ∈ R2
>1.

We define the function ψ so as to ensure that the lower characteristic set of the
resulting solution x coincides with the corresponding set Pφ = {p0} of the function φ
and the solution x has the lower degree set Dx = D.

It follows from the properties of the curve D that it necessarily has one of the following
ten forms: 1) unbounded from below, left and right, bounded from above; 2) unbounded
from below, above, left and right; 3) bounded from above and left, unbounded from below
and right; 4) unbounded from below, above and left, bounded from right; 5) bounded
from below and right, unbounded from above and left; 6) bounded from below, above
and right, unbounded from left; 7) bounded from above, left and right, unbounded from
below; 8) bounded from above and right, unbounded from below and left; 9) bounded
from above, below, left and right; 10) coinciding with a point.

1. We first suppose that the curve D has one of the forms 1) – 9). Then to
construct a function ψ realizing the lower degree set Dx = D, we perform the following
partition of the curve D.

1.1. Partition of the curve D. If the curve D has the form 1) or 2), then its lth
partition Dl, l ∈ N, consists of the points ∆(i, l) ∈ D with first components ∆1(i, l) =
(i · 21−l − l)γ, i ∈ {1, 2, . . . , l · 2l} ≡ Il; in case 3) of the curve D with the left boundary
point ∆′ ∈ D, we construct its lth partition Dl using the points ∆(i, l) ∈ D with first
components ∆1(i, l) = ∆′1 + iγ · 2−l, i ∈ Il.

If the curve D has the form 4), then its lth partition Dl = ∪i∈Il
{∆(i, l)} ⊂ D consists

of the points ∆(i, l) ∈ D with second components ∆2(i, l) = (i · 21−l − l)γ, i ∈ Il.
In cases 5) and 6) of the curve D with the right boundary point ∆′′ ∈ D, and also

in the case 8) of the curve D with the vertical asymptote d1 = ∆′′1 , we construct its lth

partition Dl using the points ∆(i, l) ∈ D with first components ∆1(i, l) = ∆′′1 − iγ · 2−l,
i ∈ Il.

In case 7) of the curve D with the left boundary point ∆′ ∈ D, its lth partition Dl

consists of the points ∆(i, l) ∈ D with second components ∆2(i, l) = ∆′2− iγ ·2−l, i ∈ Il.
If the curve D has one of the forms 1) – 8), then we denote by il ≡ l · 2l the last

element of the set Il.
In case 9) of the curve D with the left ∆′ ∈ D and right ∆′′ ∈ D boundary points,

we construct its lth partition Dl using the points ∆(i, l) ∈ D with first components

∆1(i, l) = ∆′1 + (∆′′1 − ∆′1)i · 2−(l+1), i = 1, 2, . . . , 2l+1 − 1. We denote by Il the set

{1, 2, . . . , 2l+1 − 1} in this case and set il ≡ 2l+1 − 1.
By continuing the partition of the curve D infinitely, we obtain a countable set D∞ =

∪l∈N ∪i∈Il
{∆(i, l)} ⊂ D, which is everywhere dense in D.

We note that Dl ⊂ Dl+1, l ∈ N.
1.2. Construction of a solution. At the ith point ∆(i, l) ∈ D, i ∈ Il, of the lth

partition, l ∈ N, we draw some straight line of support

d2 −∆2(i, l) = k(i, l)(d1 −∆1(i, l)), k(i, l) ∈ (−∞, 0), (d1, d2) ∈ R2

to D, which does not lie below this curve. The existence of such a straight line of support
follows from the concavity of D, its decreasing character and from the fact that by
construction all points ∆(i, l) of each lth partition Dl are interior points of D. Moreover,
if a point has been used in the partition, then for all subsequent partitions, we draw the
same straight line of support at this point. This will ensure the existence of a sequence
realizing the limit lnx(p0, d) in the definition of lower characteristic degree.

We set

Θi,l ≡ 1/|k(i, l)|, i ∈ Il, Θl ≡ max
i∈Il

{Θi,l}, Ωl ≡ min
i∈Il

{Θi,l},

∆1(l) ≡ max
i∈Il

{‖∆(i, l)‖}, ∆2(l) ≡ 2−l‖∆(il, l)−∆(1, l)‖−1, l ∈ N.
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To sew the different infinitely differentiable functions together into a single infinitely
differentiable function, we introduce the infinitely differentiable functions

e101(τ ;α1, α2, α3) = e01(τ ;α2, α3) + [1− e01(τ ;α1, α2)],

e0110(τ ;α1, α2, α3, α4) = e01(τ ;α1, α2) · (1− e01(τ ;α3, α4)), α1 < α2 < α3 < α4, τ ∈ R,
defined on the basis of the infinitely differentiable function [9]

e01(τ ; τ1, τ2) =

{

exp{−(τ − τ1)−2 exp[−(τ − τ2)−2]}, τ ∈ (τ1 , τ2),

(1 + sgn (τ − 2−1(τ1 + τ2)))/2, τ /∈ (τ1 , τ2),

−∞ < τ1 < τ2 < +∞.
We define the functions ψi,l by

lnψi,l(t) ≡ (∆(i, l), ln t)e0110

(

ln t2

ln t1
; Θi,l −

5τl

4
,Θi,l − τl,Θi,l + τl,Θi,l +

5τl

4

)

+

+‖ ln t‖2e101
(

ln t2

ln t1
;Θi,l − τl,Θi,l,Θi,l + τl

)

, t ∈ R2
>1, i ∈ Il, l ∈ N,

τl ≡ min{1/2; Ωl/2,∆2(l)}.
It follows from the definition of the function ψi,l that there exists a number Tl ≥ 1

such that

lnψi,l(t) − (d, ln t) ≥ 0, t ∈ R2
>1 \ S(i, l), S(i, l) ≡

{

t ∈ R2
>1 :

∣

∣

∣

∣

ln t2

ln t1
−Θi,l

∣

∣

∣

∣

≤ τl

}

,

‖t‖ ≥ Tl, d ∈ Dl, i ∈ Il.
We split the domain of the solution x : R2

>1 → R \ {0} by lines of the forms ζ(t) ≡
t1 + t2 = const into disjoint strips. By using some values η1 ≥ T1 and c ≥ exp(100), we
introduce the numbers

νl = c(Θ6
l + Ω−2

l
)(∆2

1(l) + 1) exp(cτ−2
l

), αi,l =

(

ηl + ν
4(Θl+Ω−1

l
)

l

)

exp(exp i),

βi,l = e2αi,l, i ∈ Il, ηl+1 = βil,l
+ Tl+1 + 2l, l ∈ N.

We introduce the “basic” strips

Π(i, l) = {t ∈ R2
>1 : βi,l ≤ ζ(t) ≡ t1 + t2 ≤ αi+1,l}, i ∈ Il \ {il} ≡ I1l ,

Π(il, l) = {t ∈ R2
>1 : βil,l

≤ ζ(t) ≤ α1,l+1}, l ∈ N,
the “transition” strips

P (i, l) = {t ∈ R2
>1 : αi,l < ζ(t) < βi,l}, i ∈ Il, l ∈ N,

and the triangle T = {t ∈ R2
>1 : ζ(t) ≤ α1,1}.

Let us proceed to the construction of the function ψ used in the realization of the
desired lower degree set Dx = D of x. First we introduce the auxiliary function ψ̃ by

ln ψ̃(t) = lnψi,l(t) + [lnψi+1,l(t) − lnψi,l(t)]e01(ln ζ(t); lnαi+1,l, ln βi+1,l),

t ∈ Π(i, l) ∪ P (i+ 1, l) ∪ Π(i+ 1, l), i ∈ I1l , l ∈ N,
ln ψ̃(t) = lnψil,l

(t) + [lnψ1,l+1(t) − lnψil,l
(t)]e01(ln ζ(t); lnα1,l+1, ln β1,l+1),

t ∈ P (1, l + 1), l ∈ N,
ln ψ̃(t) = lnψ1,1(t)e01(ln ζ(t); lnα1,1, lnβ1,1), t ∈ T ∪ P (1, 1).

We set ψ(t) = ˜ψ(t), t ∈ R2
>1 in case of the curve D of one of the forms 1), 2), 4) or 8).

We define the function ψ by

lnψ(t) = ln ψ̃(t) + [(∆′, ln t)− ln ψ̃(t)]e01

(

ln t2
3
√
t1 ln t1

; 1, 3

)

, t ∈ R2
>1,

in case of the curve D of the forms 3) or 7) with the left boundary point ∆′ ∈ D.
We set

lnψ(t) = ln ψ̃(t) + [(∆′′, ln t)− ln ψ̃(t)]e01

(

ln t1
3
√
t2 ln t2

; 1, 3

)

, t ∈ R2
>1,
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in case of the curve D of the form 5) or 6) with the right boundary point ∆′′ ∈ D.
Finally, we define the function ψ by

lnψ(t) = ln ψ̃(t) + [(∆′, ln t)− ln ψ̃(t)]e01

(

ln t2
3
√
t1 ln t1

; 1, 3

)

+

+[(∆′′, ln t) − ln ψ̃(t)]e01

(

ln t1
3
√
t2 ln t2

; 1, 3

)

, t ∈ R2
>1,

in case of the curve D of the form 9) with the left ∆′ ∈ D and right ∆′′ ∈ D boundary
points.

2. In case 10) of the curve D consisting of one point ∆ ∈ R2, we set lnψ(t) =
(∆, ln t), t ∈ R2

>1.

Construction of the equation. The above-constructed function x > 0 is a solu-
tion of the Pfaff equation (11) with infinitely differentiable bounded coefficients ak(t) =
x−1(t)∂x(t)/∂tk = ∂ lnx(t)/∂tk , t ∈ R2

>1, k = 1, 2, satisfying the complete integrability

condition in R2
>1 and this solution has the trivial characteristic set Px = {p0} and the

lower degree set Dx = D.

Theorem 2. Let n be a positive integer, D ∈ R2 be a continuous closed decreasing

convex curve on a two-dimensional plane and λ0 ∈ R2 be a point. Then there exists a

completely integrable Pfaff system (1) with infinitely differentiable bounded coefficients

such that its arbitrary nontrivial solution x : R2
>1 → Rn\{0} has the trivial characteristic

set Λx = {λ0} and the upper degree set Dx = D.
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