M. Ashordia

ON THE FREDHOLM PROPERTY OF LINEAR BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS WITH SINGULARITIES

(Reported on February 16, 2004)

Let n_{1} and n_{2} be natural numbers, $-\infty<a<a_{0}<b_{0}<b<\infty, A_{i k} \in B V_{\text {loc }}(] a, b[$; $\left.\mathbb{R}^{n_{i} \times n_{k}}\right), f_{i} \in B V_{\mathrm{loc}}(] a, b\left[; \mathbb{R}^{n_{i}}\right), c_{i} \in \mathbb{R}^{n_{i}}(i, k=1,2)$, and $\ell_{i}: B V\left([a, b] ; \mathbb{R}^{n_{1}}\right) \times$ $B V\left(\left[a_{0}, b_{0}\right] ; \mathbb{R}^{n_{2}}\right) \rightarrow \mathbb{R}^{n_{i}}(i=1,2)$ be linear bounded operators.

Consider the linear generalized ordinary differential system

$$
\begin{equation*}
d x_{i}(t)=d A_{i 1}(t) \cdot x_{1}(t)+d A_{i 2}(t) \cdot x_{2}(t)+d f_{i}(t) \quad(i=1,2) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\ell_{i}\left(x_{1}, x_{2}\right)=c_{i} \quad(i=1,2) \tag{2}
\end{equation*}
$$

It is known (see, e.g., [1], [4]) that if $A_{i k} \in B V\left([a, b] ; \mathbb{R}^{n_{i} \times n_{k}}\right), f_{i} \in B V\left([a, b] ; \mathbb{R}^{n_{i}}\right)$ $(i=1,2)$, then the problem (1), (2) has the Fredholm property, i.e. this problem is uniquely solvable if and only if its corresponding homogeneous problem

$$
\begin{gather*}
d x_{i}(t)=d A_{i 1}(t) \cdot x_{1}(t)+d A_{i 2} \cdot x_{2}(t) \quad(i=1,2) \tag{0}\\
\ell_{i}\left(x_{1}, x_{2}\right)=0 \quad(i=1,2) \tag{0}
\end{gather*}
$$

has only the trivial solution. In the case where the system (1) has singularities at the points a and b, i.e. $A_{i k} \notin B V\left([a, b] ; \mathbb{R}^{n_{i} \times n_{k}}\right), f_{i} \notin B V\left([a, b] ; \mathbb{R}^{n_{i}}\right)$ for some $i, k \in$ $\{1,2\}$, the question on the Fredholm property of the problem (1), (2) needs additional investigation. Such is the case we consider in the present paper. The similar problem has been studied in [3] for systems of linear ordinary differential equations with singularities. Throughout the paper we use the following notation and definitions.
$\mathbb{R}=]-\infty, \infty[;[a, b]$ and $] a, b[$ are, respectively, closed and open intervals from \mathbb{R}.
$\mathbb{R}^{n \times m}$ is the space of all real $n \times m$-matrices $X=\left(x_{i j}\right)_{i, j=1}^{n, m}$ with the norm

$$
\|X\|=\sum_{i=1}^{n} \sum_{j=1}^{m}\left|x_{i j}\right|
$$

$O_{n \times m}$ is the zero $n \times m$-matrix.
If $X \in \mathbb{R}^{n \times n}$, then X^{-1} is the matrix inverse to X; $\operatorname{det} X$ is the determinant of X; I_{n} is the identity $n \times n$-matrix.
$\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$.
If $X:[a, b] \rightarrow \mathbb{R}^{n \times m}$ is a matrix function, then $\underset{a}{\stackrel{b}{\vee}}(X)$ is the sum of total variations on $[a, b]$ of its components $x_{i j}(i=1, \ldots, n ; j=1, \ldots, m) ; V(X)(t)=\left(v\left(x_{i j}\right)(t)\right)_{i, j=1}^{n . m}$, where $v\left(x_{i j}\right)\left(a_{0}\right)=0, v\left(x_{i j}\right)(t)=\underset{a_{0}}{\stackrel{t}{\vee}}\left(x_{i j}\right)$ for $a_{0}<t \leq b, v\left(x_{i j}\right)(t)=-\stackrel{a_{0}}{v}\left(x_{i j}\right)$ for $a \leq t<a_{0}$;
$X(t-)$ and $X(t+)$ are, respectively, the left and the right limits at the point $t \in$ $[a, b](X(a-)=X(a), X(b+)=X(b)) ; d_{1} X(t)=X(t)-X(t-), d_{2} X(t)=X(t+)-X(t)$.

[^0]$B V\left([a, b] ; \mathbb{R}^{n \times m}\right)$ is the Banach space of all matrix functions $X:[a, b] \rightarrow \mathbb{R}^{n \times m}$ such that ${\underset{a}{b}}_{b}^{V}(X)<\infty$ with the norm
$$
\|X\|_{V}=\left\|X\left(a_{0}\right)\right\|+\underset{a}{\stackrel{b}{v}}(X) ;
$$
$B V_{\text {loc }}(] a, b\left[; \mathbb{R}^{n \times m}\right)$ is the set of all matrix functions $\left.X:\right] a, b\left[\rightarrow \mathbb{R}^{n \times m}\right.$ such that $\underset{c}{\underset{v}{v}}(X)<\infty$ for $a<c<d<b$.
$s_{j}: B V_{\text {loc }}(] a, b[; \mathbb{R}) \rightarrow B V_{\text {loc }}(] a, b[; \mathbb{R})(j=0,1,2)$ are the operators defined, respectively, by
\[

$$
\begin{gathered}
s_{1}(g)\left(a_{0}\right)=s_{2}(g)\left(a_{0}\right)=0 ; \\
s_{1}(g)(t)= \begin{cases}-\sum_{t<\tau \leq a_{0}} d_{1} g(\tau) & \text { for } a<t<a_{0}, \\
\sum_{a_{0}<\tau \leq t} d_{1} g(\tau) & \text { for } a_{0}<t<b ;\end{cases} \\
s_{2}(g)(t)= \begin{cases}-\sum_{t<\tau \leq a_{0}} d_{2} g(\tau) & \text { for } a<t<a_{0}, \\
\sum_{a_{0}<\tau \leq t} d_{2} g(\tau) & \text { for } a_{0}<t<b ;\end{cases} \\
s_{0}(g)(t)=g(t)-s_{1}(g)(t)-s_{2}(g)(t) \text { for } a<t<b .
\end{gathered}
$$
\]

If $g:[a, b] \rightarrow \mathbb{R}$ is a nondecreasing function, $x:[a, b] \rightarrow \mathbb{R}$ and $a \leq s<t \leq b$, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{] s, t[} x(\tau) d s_{0}(g)(\tau)+\sum_{s<\tau \leq t} x(\tau) d_{1} g(\tau)+\sum_{s \leq \tau<t} x(\tau) d_{2} g(\tau)
$$

where $\int_{] s, t[} x(\tau) d s_{0}(g)(\tau)$ is the Lebesgue-Stiltjes integral over the open interval]s,t[with respect to the measure corresponding to the function $s_{0}(g)$ (if $s=t$, then $\int_{s}^{t} x(\tau) d g(\tau)=$ $0)$.

If $g(t) \equiv g_{1}(t)-g_{2}(t)$, where g_{1} and g_{2} are nondecreasing functions, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{s}^{t} x(\tau) d s_{1}(g)(\tau)-\int_{s}^{t} x(\tau) d s_{2}(g)(\tau) \quad \text { for } \quad a \leq s \leq t \leq b
$$

If $G=\left(g_{i k}\right)_{i, k=1}^{l, n} \in B V\left([a, b] ; \mathbb{R}^{l \times n}\right)$ and $X=\left(x_{k j}\right)_{k, j=1}^{n, m}:[a, b] \rightarrow \mathbb{R}^{n \times m}$, then

$$
\int_{s}^{t} d G(\tau) \cdot X(\tau)=\left(\sum_{k=1}^{n} \int_{s}^{t} x_{k j}(\tau) d g_{i k}(\tau)\right)_{i, j=1}^{l, m} \quad \text { for } \quad a \leq s \leq t \leq b
$$

$\mathcal{A}: B V_{\mathrm{loc}}(] a, b\left[; \mathbb{R}^{n \times n}\right) \times B V_{\mathrm{loc}}(] a, b\left[; \mathbb{R}^{n \times m}\right) \rightarrow B V_{\mathrm{loc}}(] a, b\left[; \mathbb{R}^{n \times m}\right)$ is the operator defined by

$$
\begin{gathered}
\mathcal{A}(X, Y)(c)=O_{n \times m}, \\
\mathcal{A}(X, Y)(t)=Y(t)-Y(c)+\sum_{c<\tau \leq t} d_{1} X(\tau) \cdot\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau)- \\
-\sum_{c \leq \tau<t} d_{2} X(\tau) \cdot\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau) \text { for } c<t<b, \\
\mathcal{A}(X, Y)(t)=Y(c)-Y(t)+\sum_{t<\tau \leq c} d_{1} X(\tau) \cdot\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau)-
\end{gathered}
$$

$$
-\sum_{t \leq \tau<c} d_{2} X(\tau) \cdot\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau) \quad \text { for } \quad a<t<c
$$

where $c=(a+b) / 2$.
$\mathcal{F}_{0}: B V([a, b] ; \mathbb{R}) \times B V_{\mathrm{loc}}(] a, b[; \mathbb{R}) \rightarrow B V_{\mathrm{loc}}(] a, b[; \mathbb{R})$ is the operator defined by

$$
\begin{aligned}
& \mathcal{F}_{0}(f, g)(t)=\int_{a_{0}}^{t}(v(f)(\tau)-v(f)(a))(v(f)(b)-v(f)(\tau)) d s_{0}(v(g))(\tau)+ \\
& \quad+\int_{a_{0}}^{t}(v(f)(\tau-)-v(f)(a))(v(f)(b)-v(f)(\tau-)) d s_{1}(v(g))(\tau)+ \\
& +\int_{a_{0}}^{t}(v(f)(\tau+)-v(f)(a))(v(f)(b)-v(f)(\tau+)) d s_{2}(v(g))(\tau) \quad \text { for } \quad a<t<b
\end{aligned}
$$

By a solution of the system (1) we understand a vector function $x=\left(x_{i}\right)_{i=1}^{2}$, $x_{i} \in B V_{\text {loc }}(] a, b\left[; \mathbb{R}^{n_{i}}\right)(i=1,2)$ such that

$$
\begin{gathered}
x_{i}(t)-x_{i}(s)=\int_{s}^{t} d A_{i 1}(\tau) \cdot x_{1}(\tau)+\int_{s}^{t} d A_{i 2}(\tau) \cdot x_{2}(\tau)+f_{i}(t)-f_{i}(s) \\
\text { for } a<s \leq t<b \quad(i=1,2)
\end{gathered}
$$

A solution $x=\left(x_{i}\right)_{i=1}^{2}$ of the system (1) is said to be a solution of the problem (1), (2) if $x_{1} \in B V\left([a, b] ; \mathbb{R}^{n_{1}}\right), x_{2} \in B V\left(\left[a_{0}, b_{0}\right] ; \mathbb{R}^{n_{2}}\right)$ and the equalities (2) are fulfilled. It will be assumed that

$$
\left.\operatorname{det}\left(I_{n_{i}}+(-1)^{j} d_{j} A_{i i}(t)\right) \neq 0 \quad \text { for } \quad t \in\right] a, b[\quad(i, j=1,2)
$$

For every $i \in\{1,2\}$, by X_{i} we denote the fundamental matrix of the system

$$
d x_{i}(t)=d A_{i i}(t) \cdot x_{i}(t)
$$

satisfying the condition

$$
X_{i}(c)=I_{n_{i}}
$$

By means of the mapping

$$
x_{i}(t)=X_{i}(t) y_{i}(t) \quad(i=1,2)
$$

the problems $(1),(2)$ and $\left(1_{0}\right),\left(2_{0}\right)$ are reduced, respectively, to the problems

$$
\begin{gather*}
d y_{i}(t)=d A_{i}(t) \cdot y_{3-i}(t)+d \tilde{f}_{i}(t) \quad(i=1,2) \tag{3}\\
\widetilde{l}_{i}\left(y_{1}, y_{2}\right)=c_{i} \quad(i=1,2) \tag{4}
\end{gather*}
$$

and

$$
\begin{gather*}
d y_{i}(t)=d A_{i}(t) \cdot y_{3-i}(t) \quad(i=1,2) \tag{0}\\
\widetilde{l}_{i}\left(y_{1}, y_{2}\right)=c_{i} \quad(i=1,2) \tag{0}
\end{gather*}
$$

where

$$
\begin{gathered}
\left.A_{i}(t)=\int_{c}^{t} X_{i}^{-1}(\tau) d \mathcal{A}\left(A_{i i}, A_{i 3-i}\right)(\tau) \cdot X_{3-i}(\tau) \quad \text { for } \quad t \in\right] a, b[\quad(i=1,2) \\
\left.\tilde{f}_{i}(t)=\int_{c}^{t} X_{i}^{-1}(\tau) d \mathcal{A}\left(A_{i i}, A_{i}\right)(\tau) \quad \text { for } \quad t \in\right] a, b[\quad(i=1,2)
\end{gathered}
$$

and

$$
\tilde{l}_{i}\left(y_{1}, y_{2}\right)=\ell_{i}\left(X_{1} y_{1}, X_{2} y_{2}\right) \quad(i=1,2)
$$

Let $A_{i}(t) \equiv\left(a_{i j k}(t)\right)_{j, k=1}^{n_{i}, n_{3-i}}(i=1,2)$ and $\widetilde{f}_{i}(t) \equiv\left(\tilde{f}_{i k}(t)\right)_{k=1}^{n_{i}}(i=1,2)$.
Theorem. Let $\ell_{i}: B V\left([a, b] ; \mathbb{R}^{n_{1}}\right) \times B V\left(\left[a_{0}, b_{0}\right] ; \mathbb{R}^{n_{2}}\right) \rightarrow \mathbb{R}^{n_{i}}(i=1,2)$ be the linear bounded operators and

$$
\begin{equation*}
\underset{a}{\stackrel{b}{\vee}}\left(A_{11}\right)+\stackrel{b}{\vee}\left(A_{1}\right)+\stackrel{b}{\underset{a}{V}}\left(f_{1}\right)<\infty \tag{5}
\end{equation*}
$$

Let, moreover,

$$
\begin{align*}
& 1+(-1)^{m} \sum_{i=1}^{n_{2}} \sum_{j, k=1}^{n_{1}} v\left(a_{2 i j}\right)(t)\left|d_{m} a_{1 k i}(t)\right| \neq 0 \quad \text { for } \quad(-1)^{m}\left(t-a_{0}\right)<0 \quad(m=1,2), \tag{6}\\
& \quad \mathcal{F}_{0}\left(a_{1 k i}, a_{2 i j}\right)(b-)-\mathcal{F}_{0}\left(a_{1 k i}, a_{2 i j}\right)(a+)<\infty \quad\left(i=1, \ldots, n_{2} ; \quad k, j=1, \ldots, n_{1}\right) \tag{7}\\
& \text { and } \\
& \qquad \mathcal{F}_{0}\left(a_{1 k i}, \tilde{f}_{2 i},\right)(b-)-\mathcal{F}_{0}\left(a_{1 k i}, \tilde{f}_{2 i}\right)(a+)<\infty \quad\left(i=1, \ldots, n_{2} ; \quad k=1, \ldots, n_{1}\right) . \tag{8}
\end{align*}
$$

Then the boundary value problem (1), (2) has a unique solution if and only if its corresponding homogeneous problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution. On the other hand, the problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution if and only if the problem $\left(3_{0}\right)$, $\left(4_{0}\right)$ has only the trivial solution.

The proof of this theorem is based on the Fredholm alternative theorem for the operator equations belonging to S. M. Nikol'skǐ̆ (see, e.g., [2], Ch. XIII, §5).

Consider now the case where the boundary value conditions (2) are of the form

$$
\begin{equation*}
\sum_{k=1}^{m}\left[B_{1 i k} x_{1}\left(t_{1 i k}\right)+B_{2 i k} x_{2}\left(t_{2 i k}\right)\right]=c_{i} \quad(i=1,2) \tag{9}
\end{equation*}
$$

where $B_{j i k} \in \mathbb{R}^{n_{i} \times n_{k}}(i, j=1,2 ; k=1, \ldots, m)$.
Corollary. Let $\left.t_{1 i k} \in[a, b], t_{2 i k} \in\right] a, b[(i=1,2 ; k=1, \ldots, m)$ and the conditions (5)-(8) be fulfilled. Then the boundary value problem (1), (9) has a unique solution if and only if the system $\left(1_{0}\right)$ has only the trivial solution satisfying the boundary value condition

$$
\begin{equation*}
\sum_{k=1}^{m}\left[B_{1 i k} x_{1}\left(t_{1 i k}\right)+B_{2 i k} x_{2}\left(t_{2 i k}\right)\right]=0 \quad(i=1,2) \tag{0}
\end{equation*}
$$

On the other hand, the problem $\left(1_{0}\right),\left(9_{0}\right)$ has only the trivial solution if and only if the system $\left(3_{0}\right)$ has only the trivial solution satisfying the condition

$$
\sum_{k=1}^{m}\left[B_{1 i k} X_{1}\left(t_{1 i k}\right) y_{1}\left(t_{1 i k}\right)+B_{2 i k} X_{2}\left(t_{2 i k}\right) y_{2}\left(t_{2 i k}\right)\right]=0 \quad(i=1,2)
$$

It is evident that if the conditions of Theorem are fulfilled, then the Fredholm property is true for the problem (3), (4) as well.

Finally, we note that the interest in the theory of generalized ordinary differential equations has, to a considerable extent, been stimulated by the fact that this theory enables one to investigate ordinary differential, impulsive and difference equations from the unified viewpoint.

Acknowledgment

This work was supported by the grant CRDF (Grant No. 3318).

References

1. M. Ashordia, On the solvability of linear boundary value problems for systems of generalized ordinary differential equations. Funct. Differ. Equ. 7 (2000), No. 1-2, 39-64.
2. L. V. Kantorovich and G. P. Akilov, Functional analysis. (Russian) Nauka, Moscow, 1977.
3. I. T. Kiguradze, On the boundary value problems for linear differential systems with singularities. (Russian) Differentsial'nye Uravneniya 39(2003), No. 2, 198-209.
4. Š. Schwabik and M. Tvrdy, Boundary value problems for systems of generalized linear differential equations. Czechoslovak Math. J. 29(104)(1979), 451-477.

Author's address:
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0143
Georgia
E-mail: ashordia@viam.hepi.edu.ge

[^0]: 2000 Mathematics Subject Classification. 34K06, 34K10.
 Key words and phrases. Generalized ordinary differential equation, linear boundary value problem, singularity, Fredholm property.

