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Abstract. Formulas of variation of solution for controlled differential
equations with variable delays are proved. The continuous initial condition
means that at the initial moment the values of the initial function and the
trajectory coincide.

2000 Mathematics Subject Classification. 34K99.
Key words and phrases: Delay differential equation, variation formu-
las of solution.

631‘)0-333. (330000 ;Qo&googai’)ol) ‘333(333;:20 aotv/)mgoggo LQO‘BJ"/’JEGOOQ‘U'
&o 605(")00;:3363601)000301) Qoaﬁ)&ogabngoo 30600(3001) thtv/)a-U;:QJZ')o. “JV}J&:]'
(8)0 Lov’gol)o Jo6emdo 50‘35031), &ed Bov’ﬂol) 30')335(8)‘30 Lov’gol)o 13‘355(3001)0 o
@)tv/)oajls)mv/)ool) 350‘3353;:3006360 360’)30530’)1) 330’)})3330.



THE FORMULAS OF VARIATION OF SOLUTION 85

INTRODUCTION

In the present work the formulas of variation of solution for controlled
differential equations with variable delays are proved. These formulas play
an important role in proving necessary conditions of optimality for optimal
problems. The formulas of variation of solution for various classes of delay
differential equations are given in [1]-[4].

1. FORMULATION OF MAIN RESULTS

Let J = [a,b] be a finite interval; O C R", G C R" be open sets. Let
the function f : J x O° x G — R"™ satisfy the following conditions: for
almost all ¢ € 7, the function f(t,-) : O% x G — R™ is continuously differ-
entiable; for any (x1,...,xs,u) € O° x G, the functions f(t,z1,...,zs,u),
fo(ty1, .. xs,u), @ = 1,...,8, fu(t,z1,...,2s,u) are measurable on J;
for arbitrary compacts K C O, M C G there exists a function m, () €
L(J,R4+), Ry = [0,+0), such that for any (z1,...,25,u) € K* x M and
for almost all t € 7, the following inequality is fulfilled

|f(t,l‘1, s 7x87u)| + Z |flq()| + |fu()| < mK,M(t)'
=1

Let the scalar functions 7;(¢), i = 1,..., s, t € R, be absolutely continuous
and satisfy the conditions: 7;(¢t) <t¢, 7;(¢t) > 0,7 =1,...,s. Let ® be the
set of piecewise continuous functions ¢ : J; = [r,b] — O with a finite

number of discontinuity points of the first kind, satisfying the conditions
de(i) C O, 7 = minf{ri(a),...,7(@)}, ¢l = sup{le®l, ¢ € T} Q
be the set of measurable functions u : J — G satisfying the condition:
c{u(t): t € J} is a compact lying in G, ||u|| = sup{|u(t)| : t € T}.

To every element p = (to, o, u) € A =T x ® x Q, let us correspond the
differential equation

z(t) = f(t, x(m1(2)),. .., x(1s (1)), u(t)) (1.1)
with the continuous initial condition

:L'(t) - @(t)v le [7_’ tO]' (12)
Definition 1.1. Let p = (to,p,u) € A, to < b. A function z(t) =
z(t;p) € O, t € [1,t1], t1 € (Lo, b], is said to be a solution of the equation
(1.1) with the initial condition (1.2), or a solution corresponding to the
element p € A, defined on the interval [r,¢1], if on the interval [r,to] the
function x(t) satisfies the condition (1.2), while on the interval [to, t1] it is

absolutely continuous and almost everywhere satisfies the equation (1.1).

Let us introduce the set of variation
k
V ={dp = (dto,dp,0u) : |dtg| < a = const, dp = Aidw;,
{00 = (5to, 8, 0u) : |dto| < w;so 13
ANl <o, i=1,...0k Jou|| <a, oue—u},
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where 0p; € ®— @, i=1,...,k, ¢ € ®, ueQ are fixed functions, a > 0
is a fixed number.

Let z(t) be a solution corresponding to the element o = (to,d, ) € A,
defined on the interval [T,tl], t: € (a,b), i = 0,1. There exist numbers
€1 > 0, 61 > 0 such that for an arbitrary (¢,dp) € [0,e1] x V, to the
element g+ edp € A there corresponds a solution x(t; ¢ + edp) defined on
[7,t1 4 61] C Ji(see Lemma 2.2).

Due to uniqueness, the solution z(t, ) is a continuation of the solution
Z(t) on the interval [r,7; + 6;]. Therefore the solution Z(t) in the sequel is
assumed to be defined on the interval [r, t + 01].

Let us define the increment of the solution Z(t) = z(t; p)

Az(t) = Ax(t;edp) = z(t; o + edp) — Z(t),
~ 14
(t,e,0p) € [1,t1 + 1] x [0,e1] x V. L4

Theorem 1.1. Let the function $(t) be absolutely continuous in some
left semi-neighborhood of the point to and let there exist the finite limits

C)b_ :6(%7)3
lim f[w]:f77 w:(t,xl,...,Is)e(a,ZQ]XOS,

w—wy

flwl = f(w,@(t)), wy = (o, 3(ri(to=)), - -, B(7s (F0—))).

Then there exist numbers e > 0, 02 > 0 such that for an arbitrary
(t,e,0p) € [to,t1+02] X [0,e0] xV—, V™ ={dp €V : ity < 0}, the formula

Ax(t;edp) = ebx(t; 5p) + o(t; edp)* (1.5)
is valid, where

Gt 9) = Y (s (67 — S)olo +b000)] +Bltsde),  (16)

Bt 60) Z / Y (1(6):6) o ()€ 0 €)dér

7—7 (tO)

+ / Y (€:1) Fulelbu(€)de,
WZ(t) = Ti_l(t)a };1 [t] = };1 (ta 5(7—1 (t)a sy %(TS (t))a

Y (&;t) is the matriz-function satisfying the equation

aY& ZY% £) fa % (©)13:(€), € € [fo, 1), (1.7)

Here and in the sequel, the values (scalar or vector) which have the corresponding
order of smallness uniformly for (¢, dp), will be denoted by O(t;dp), o(t; edp).
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and the condition
I, &=t
vien =450 ¢
0, >t

Here I is the identity matrixz, © is the zero matriz.

(1.8)

Theorem 1.2. Let the function $(t) be absolutely continuous in some
right semi-neighborhood of the point to and let there exist the finite limits

¢t = @ltot),

1im+ flwl=f", w=(t,x1,...,25) € [to,b) x OF,
LA}‘)(A}O

wi = (to, §(r1to+)), - -, @7 (fo+))).

Then for any sg € (tNO,t~1) there exist numbers ea > 0, 62 > 0 such that for
an arbitrary (t,e,0p) € [so,t1+02] x [0,e2) x VT, VT ={dp € V : 5ty > 0},
the formula (1.5) is valid, where §z(t; 0p) has the form

Sz (t; 6p) = Y (bo; 1) (&7 — fT)dto + Sp(to+)] + B(t; 6). (1.9)

The following theorem follows from Theorems 1.1 and 1.2.

Theorem 1.3. Let the conditions of Theorems 1.1 and 1.2 be fulfilled.
Moreover, let

Qb__f_:()b+_f+:f07

and the functions dp;(t), i = 1,...,k be continuous at the point to (see
(1.3)). Then for any so € (to,t1) there exist numbers eo > 0, 53 > 0 such
that for an arbitrary (t,e,89) € [so,t1 + 02] x [0,e2] X V' the formula (1.5)
is valid, where 0x(t;edp) has the form

5x(t;5p) =Y (to, t)[ fodto + S(to)] + B(t; dp).

2. AUXILIARY LEMMAS

To every element p = (to,¢,u) € A, let us correspond the functional-
differential equation

y(t) = f(th P, U, y)(t) =
= f(t, h(to, 0, y)(11(1)), - -, hlto, . y) (75(1)), u(t)) (2.1)
with the initial condition

y(to) = p(to), (2.2)
where the operator h(-) is defined by the formula

h(to, p,y)(t) = {y (2.3)
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Definition 2.1. Let p = (tg,pp,u) € A. An absolutely continuous
function y(t) = y(t;p) € O, t € [r1,12] C T, is said to be a solution of the
equation (2) with the initial condition (2.2), or a solution corresponding to
the element o € A, defined on the interval [r1,rs], if to € [r1,72], y(to) =
©(to) and the function y(t) satisfies the equation (2) almost everywhere on
[r1,72].

Remark 2.1. Let y(t; ), t € [r1,72], p € A, be a solution of the equation
(2) with the initial condition (2.2). Then the function

z(t; ) = h(to, o, y(:9))(1), t € [r1,72], (2.4)

is a solution of the equation (1.1) with the initial condition (1.2) (see Defi-
nition 1.1, (2.3)).

Lemma 2.1. Let y(t), t € [r1,72] C (a,b), be a solution corresponding
to the element @ € A; let K1 C O be a compact which contains some neigh-
borhood of the set cl @(J1) Uy([r1,72]) and let My C G be a compact which
contains some neighborhood of the set clu(J). Then there exist numbers
g1 > 0, 61 > 0 such that for an arbitrary (g,0p) € [0,e1] X V, to the el-
ement © + edp € A there corresponds a solution y(t; @ + edp) defined on
[r1 — 61,72+ 01] C J. Moreover,

p(t) = o(t) +edp(t) € K1, teT,
u(t) =u(t) +edu(t) e My, teJ,
y(t; o +edp) € K1, t€[r—0d1,r2+ 41, (2.5)
lim y(t; 0 + edp) = y(t; 9)
uniformly for (t,6p) € [r1 — 1,72 + 01] x V.

This lemma is analogous to Lemma 2.1 in [1, p. 21] and it is proved
analogously.

Lemma 2.2. Let Z(t), t € [r,t1] be a solution corresponding to the
element § € A, t; € (a,b), i = 0,1; let K1 C O be a compact which
contains some neighborhood of the set cl3(J1) UZ([to,t1]) and let My, C G
be a compact which contains some neighborhood of the set clu(J). Then
there exist numbers e1 > 0, 61 > 0 such that for any (e,dp) € [0,e1] X V,
to the element { + edp € A there corresponds the solution x(t; @ + €dp),
t e r, t + 01] C Ji. Moreover,

ZC(t;@Jr&?(sp)GKl, tG[T,Zl‘F(Sl],

u(t) = u(t) + edu(t) € My, teJ. (2.6)

It is easy to see that if in Lemma 2.1 r; = to, 7o = t1, then y(t) = Z(t),
te [t07 t1]7 I(t7 ﬁ"_ 86@) = h(t07 2 y(7 ﬁ—i_ 56@))“)7 (t? & 6@) € [Ta l1 + 61] x
[0,e1] x V (see (2.4)).

Thus Lemma 2.2 is a simple corollary (see (2.5)) of Lemma 2.1.
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Due to uniqueness, the solution y(¢; ) on the interval [rqy — 01,72 + d1] is
a continuation of the solution 7(t); therefore the solution %(¢) in the sequel
is assumed to be defined on the whole interval [r1 — 01,72 + d1].

Let us define the increment of the solution y(t) = y(t; p),

Ay(t) = Ay(t;edp) = y(t; o + dp) — y(b), @)
(t,e,0p) € [r1 — 01,72 + 1] x [0,e1] x V. ’
It is obvious (see Lemma 2.1) that

lim0 Ay(t;edp) = 0 uniformly for (¢,dp) € [r1 —d1,m2 +01] x V. (2.8)

Lemma 2.3 ([1, p. 35]). For arbitrary compacts K C O, M C G there
exists a function L p(-) € L(J, R+) such that for an arbitrary x},z € K,
i1=1,...,s, u',u” € M and for almost all t € J, the inequality

|f(t, @, alu) = ft e, el )] <

< LK,M<t>(Z @ — ] + ' — u"|) (2.9)
1=1

is valid.

Lemma 2.4. Let the conditions of Theorem 1.1 be fulfilled. Then there
exist numbers €3 > 0,02 > 0 such that for any (g,0p) € [0,e2] x V™~ the
inequality

max | Ay(1)] < O(ed) (2.10)
te(to,ra+02]

is valid. Moreover,
Ay(Fo) = e [plio—) + (¢~ — f7)dto] + o(ebp). (2.11)
Proof. Let us define the following sets
I = {z e{l,...,s}: Ti(tNO) < tNO,'yi(fo) > 7’2},
L={ie{l,....,s} : i(to) < to,7i(to) < 2},
I3 = {z e{l,...,s}:mi(to) = fo}.

Let e € (0,21], 62 € (0,01] be so small that for any (g,0p) € [0,e2] x V—
the following relations are fulfilled:

~i(to) > 1o + 02, i€ I,
7i(to) < to, i € L.
The function Ay(t) on the interval [ty, 7 + 6,] satisfies the equation
Ay(t) = a(t; edp), (2.12)

where
a(t;e6p) = f(to, o, u, § + Ay)(t) — f(to, 3,4, §)(1). (2.13)
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Now let us rewrite the equation (2.13) in the integral form
t
By(t) = By(@) + [ al€co0)ds, v e lo,ra+ il
to

Hence

Ay(t)] < |[Ay(o)] + / la(€:250) dE = Ay(To) + ar(dp).  (2.14)

Now let us prove the equality (2.11). It is easy to see that
Ay(to) = y(to; § + edp) — J(to) = @(to)+

? - - (2.15)
+ [ fogou 5+ By)le) de - B(E),
to
Next,
1ir% Sp(to) = dp(to—), uniformly for dp € V.
So,
to
plto) — 3(E) = [ Blt)dt + ebplfs) + 6 (t0) — Bolf-) =
y (2.16)
= e[ 6t + dp(to—)] + o(edp).
It is clear that
hm~ h(to, ®, g+ Ay)(Ti(t)) = @(Ti(goi))v 1= 17 cees S,
(e,t)—(0,t0—)
(see (2.3),(2.8)). Consequently,
lim sup [F(to, ¢, 7+ Ay)(t) — f7| =0 (2.17)
eY4elto o)
From (2.17) it follows that
tq
[ Ftoe.u.+ Bupte) dt = —<f 6o+
to
to
+ /[f(tm P, u, y+ Ay)(t) — fT]dt = —ef~ 6to + o(edp).  (2.18)
to

From (2.15), by virtue of (2.16), (2.18), we obtain (2.11). Now, to prove the
inequality (2.10), let us estimate the function a;(t,edp),t € [to, re + Ja]. We
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have

r(t:260) = 3 [ Lieuan(©)(nlto, 0.7+ 80) (1) = 1l 5. () )

to
r2+02
Telu©)de < Y / Licy o, (€)50(r:(€)) dé+
i€l z()

Y / Licya, (C(€) (o, .5 + Ay)(€) — h(Fo, B T)(E)5(€) de-+

i€ly -(fg)

£y LKI 21 (©)1AY(E) 44 (€) d€ + O(e8p) < O(ed0)+

16I3~

Y / Licy v, (1(0) lto, 0,5 + Ag)(£) — FO)5a(t) di+

i€ly -~

7i(to)

t

+ / L(©)|Ay(€)] de,

to

where
L(¢) = ZX(%(E))LKl,MI (7 (€)% (£,

and x(t) is the characteristic function of the interval J.
If I, = @, we assume that Zz‘elk a; =0. Let I # @, and i € I,

8 — / Licy oty (35(8) [ to, 0,5 + Ag) (8) — B(1) 4:(0) dt =
T.L-(fo)
. / Lic, an (3:(8))[60(8) 54 (1) di-+
7 (to)

n / Licy o (i) ly (8, 5+ 60) — F(0)3at) de

to
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It is obvious that when ¢ € [to, to],

ly(t, 9 +edp) — @(1)] = [e(to) + /f(tm%%%r Ay)(&) d€ — o(t)] <

7o 7o
<00+ [150ar+ [t pug+an®a.  (@19)
to to
For sufficiently small e2 the integrands are bounded, hence 8; = O(edp)
(see (2.18)). Thus,

t

ar(t:250) < O(e8p) + / L(©)| Ay(©)) de. (2.20)

to

From (2.14), on account of (2.11),(2.20), on the interval ¢ € [to, s + d2]

we have
t

Ay(1)] < O(e5p) + / L(©)| Ay(©)] de.

to
From which, by virtue of Gronwall’s lemma, we obtain (2.10). O
Lemma 2.5. Let the conditions of Theorem 2 be fulfilled. Then there

exist numbers o > 0, o > 0 such that for any (g,5p) € [0,e2] x VT the
inequality

max |Ay(t)| < O(edp) (2.21)
te€(to,r2+02]
is valid. Moreover,
Ay(to) = e |dp(to+) + (o7 — fH)dto| + o(edp). (2.22)

This lemma is proved analogously to lemma 2.4.

3. ProOF oF THEOREM 1.1
Let r; :tNO, Ty = t~1, p € A, then
g(t) =T(t), tE€ [to,t1+ 0],
y(t; © +edp) = x(t; §+e6p), t € [to,t1+ 01], (0p) € [0,61] x V™~
(see Lemmas 2.1 and 2.2). Thus

edp(t), t € [1,to),
Ay(t), t e [to,tl + (51]

(see (1.4),(2.7)).
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By virtue of Lemma 2.4 and (2.19), there exist numbers 2 € (0,e1],
d2 € (0,61] such that

|Az(t)| < O(edp) Y(t,e,09) € [1,t1 + 2] X [0,62) X V7, (3.1)
Aw(i) = e{w@)) e f)5to} T ofebp). (3.2)

The function Az(t) on the interval [fo,t, + d2] satisfies the following
equation

Z Jz; ] Az(7; (1)) + efu[ 10u(t) + R(t;edp), (3.3)

where

R(t;edp)=f(t,2(m1 (1)) +Ax(T1(1)),...,2(7s(t)) + Ax(rs(t)), u(t) +edu(t))—

s

Fa [)AZ(7i (1)) — e fult]ou(t). (3.4)

i=1

By means of the Cauchy formula, the solution of the equation (3.3) can
be represented in the form

Ax(t) = Y (Fos ) e (Fo) + / Y (& 0) Fulelou(e) de+

1

+ Z hi(t;to,e6p), t € [to, t1 + 1], (3.5)
i=0

where

ot o, €6) = Z / Y (€ ) o, [ (€)1 () A(€) e,

: 7i(to) (3.6)

ha (t; to, e0gp) = /Y(f;t)R(ﬁ;eép) d€.

to

The matrix function Y (£;¢) satisfies the equation (1.7) and the condition
(1.8).

By virtue of Lemma 3.4 [1, p. 37], the function Y (¢;¢) is continuous on
the set IT={(£,t) : a <E<t,t € J}. Hence

Y (to;t)Ax(to) = €Y (to; ){549(50—) + (¢ — f_)5to} +o(t;edp)  (3.7)

(see (3.3)).
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Now we transform ho(t; to, 0p). We have

to

et o) = X |e [ YO0 0F b 0(6) det
i€l Ul 7_7’(20)

+ [ YOO F OO a0 & = 3 Jeastt) +500)]
to i€l Ul
It is easy to see that

to

ai(t) = /Y(%—(é);t)ﬁi[%(ﬁ)]%(ﬁ)&ﬁ(ﬁ)d&*

- / Y (3 (6): 1) Fo b (€) 3 (€)60(€) de

Bi(t) = o(t; edp)
(see (2.19). Thus,
ho(t;ZO, 85@) =

s to

==Y [ YOO 0RO de +olticde).  (35)
)
Finally we estimate hi(t; to,edp). We have:
1402 1 4
(8570, 200)| < [V \ | ST () + datn (1) ...
A

F(ra(1)) + EAx(ra (1)), u(t) + Edult))—
=3 Fulatn(0) - eﬁmauu)} ds‘dt <

1462 1

<] / {/[g Fur (6,571 (8)) + EAa(r (1)), ...) — oAl

x| Az(ri(t))]+

el fu(b (0 + EDa(m(D)....) — Full]- |5u<t>|] de}dt <

<|I¥ <O(s§p) Z oi(edp) + saao(sép)> , (3.9)
i=1
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where

Y[ = sup [Y(&¢)],
(1€

Zl +d2 1

nieto) = [ { / |fmi<t,f<n<t>>+5Ax<n<t>>,...>fzi[tnds}dt,
Iy 0

to
t1+d2 1
oo(edp) = / { ‘fu(t,i(ﬁ () + EAx(T1(t)),...) — fu[t]| d{} dt.
to 0
By Lebesgue’s theorem
1ir% oi(edp) =0, i=0,...,s, uniformly for dpe V™.
Thus
|h1(t;to,£09)| < o(t; £dp). (3.10)

From (3.5), taking into account (3.7), (3), (3.10), we obtain (1.5), where
dx(t; dp) has the form (1.6).

4. PROOF OF THEOREM 1.2

Analogously to the proof of Theorem 1.1, by virtue of Lemma 2.5 we
obtain

|Az(t)] < O(edp) V(t,edp) € [1,t1 + 2] x (0,89] x VT, (4.1)
Ax(ty) = e[dp(to+) + (o7 — fH)dto] + o(edp). (4.2)

Let so € (tNO,t~1) be the fixed point and let a number €5 € (0,¢1] be so
small that for an arbitrary(e, dp) € [0,e2] x V' the inequalities
to < So, Ti(to) < ZO, 1€ 1 Ul

are valid. The function Ax(¢) satisfies the equation (3.3) on the interval
[to, t1 + d2], which by means of the Cauchy formula can be represented in
the form

Ax(t) = Y (to; ) Ax(to) + £ / Y (€ O Fule]ou(€) det

1
+ ) hiltito, e0p),  t € [to,f1 + 52, (4.3)
i=0
where the functions h;(t;tg,e0p), i = 0,1, have the form (3.6)
By virtue of Lemma 3.4 [1, p. 37], the function Y (§;t) is continuous on
the set [to, so] X [S0,t1 + d2]. Hence

Y (to;t)Ax(ty) = €Y (to; t)[dp(to+) + (¢ — fT)dto] + o(t;edp).  (4.4)
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Now we transform ho(t; to, £dp):

to

ho(tsto,edp) = Y e / Y (i) 1) F, [1i (€145 (€) 040 (&) d+

i€l1Ul2 ri(to)

+ [ Y GO e (@) 2(6) ds] +
> / ) F 3 (€)3:() Aa(€) dg =
i€ls, i(to)
= Z (8041 + ﬂz + Z Uz
i€l1 Ul i€l

It is obvious that 3;(t) = o(t;edp), oi(t) = o(t;€dp).

Next,
ailt) = / Y (1 (): ) o b (€) 34 ()60 (€) dE—
Ti(?g)
7i(to)
~ [ YOO E b Ou(©)50(6) e
'ri(fo)
Consequently
ho(t;t0,€5p) =
Z / O Fo O (€)00(€) de + ot e8p).  (45)

to)
The following estimation is proved analogously
|ha(t; to, €6p)| < o(t; £dp) (4.6)

(see (3.9)). Finally we note that

t t

E/Y(é;t)fu[§]5U(€)d£ :€/Y(£;t)fu[£]5U(€)d£+0(t;65@) (4.7)

to %o

From (4.3), taking into account (4.4)—(4.7), we obtain (1.5), where dx(t; dp)
has the form (1.9).
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