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Abstract. Fuchsian systems on a complex manifold with nontrivial
topology are investigated and Hamiltonians, whose dynamic equations re-
duce to a Fuchs type differential equation, are given. These Hamiltonians
and equations correspond to realistic physical models encountered in the
literature.
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1. Solution Spaces of Regular and Fuchsian Systems

Let X be an m-dimensional complex analytic manifold and suppose D =
∪n

i=1Di is a divisor such thatDj are generic 1-codimensional submanifolds of
X . It means that for any point x ∈ X and for any holomorphic functions spi

which are local equations in a neighborhood Ux of x for those submanifolds
Dpi of D which contain x, the forms dspi are linearly independents at x.
Let

df = ωf (1)

be a completely integrable Pfaffian system on X , where ω is an d×d-matrix-
valued holomorphic 1-form on X \D. The complete integrability condition
means that ω satisfies dω − ω ∧ ω = 0. From the complete integrability of
ω it follows that the solution space of (1) is an d-dimensinal vector space.
In this section we describe this space following the papers [1], [2], [3].

Let D ⊂ C be the unit disk with center 0. Denote Dm =
n∏

i=1

Di and

Dm
n = Dm \

n⋃
i=1

{xi = 0}. Let p : D̃m
n → Dm

n be the universal covering.

Let y = (y1, . . . , ym) and x = (x1, . . . , xm) be points from D̃m
n and Dm

n ,
respectively.

Denote by Ld×s(D̃
m
n ) the space of holomorphic maps from D̃m

n to the
space of constant d× s-rectangular complex matrices Md×s.

Let f ∈ Ld×s(D̃
m
n ). We will say that f has polynomial growth at 0 if there

exist integers k1, . . . , km ∈ Z, such that limp(y)∈U,p(y)→0 f(y1, . . . , ym) ×
n∏

i=1

yki

i = 0, where U ⊂ D̃m
n . Denote by L0

d×s(D̃
m
n ) the subspace of Ld×s(D̃

m
n )

which consists of the functions of polynomial growth at 0.

The fundamental group π1(D̃
m
n ) = Z⊕· · ·⊕Z acts on the space Ld×s(D̃

m
n )

as γ∗(f(y)) = f(γ−1y), where γ ∈ π1(D̃
m
n ) and f(y) ∈ Ld×s(D̃

m
n ).

Let F be a subspace of L0
d×1(D̃

m
n ) with properties:

1. dimF = d
and

2. the space F is invariant under the action of the fundamental group

π1(D̃
m
n ).

Proposition 1 ([1]). Let f ∈ F . Then any coordinate functions f (i)(y)
of f(y) are the following logarithmic sums:

f (i)(y) =
∑

j,l∈σ

f
(i)

jl
(x)yρj logb

l y,

where j = (j1, . . . , jn) and l = (l1, . . . , ln) are multiindices; f
(i)

ji
(x) are

convergent Laurent series with finitely many principal parts; 0 ≤ Re ρji < 1;
bli are nonnegative integers; the sum is finite and similar terms are collected.
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Denote by ϕk(f
(i)

jl
) the order of zero (or of pole, with the minus sign)

of the series f
(i)

jl
with respect to the k-th coordinate, where k = 1, . . . , n.

We introduce the norm of the element of f ∈ F with respect to the k-th

coordinate as ϕk(f) = minjl∈σ;i=1,...,d ϕk(f
(i)

jl
).

Let γi denote the generator of π1(D̃) corresponding to going around the

hypersurface xi = 0. The fundamental group π1(D̃) is abelian and from
this it follows that F splits into a sum F = ⊕q

i=1Fi, where every Fi is
the eigenspace for the operators γ1, . . . , γn with eigenvalues (vi

1, . . . , v
i
n) 6=

(vj
1, . . . , v

j
n) if i 6= j.

The functions ϕk have finite many values on every Fl, which we denote by
lϕ1

k, . . . ,
l ϕlk

k , with multiplicities d1, . . . , dlk equal to the dimensions of those

subspaces of Fk on which the ϕk are constant. Denote ρr
k = 1

2πi log vr
k,

0 ≤ Re ρr
k < 1. The numbers rβl

k =r ϕl
k + ρr

k, k = 1, . . . , n, l = 1, . . . , q,
l = 1, . . . , lk are called the exponents of the space F at zero. A matrix
function Ψ whose columns are elements of some basis of the space F is called
a fundamental matrix of F . Let Ψ be a fundamental matrix of the space

F . Then det Ψ(y) =
n∏

i=1

yβi+αi

i ϕ(x), where βi is a sum of the i-exponents of

F with multiplicities, the αi are nonnegative integers and ϕ(x) 6= 0.

The space F is called weakly singular at zero, if det Ψ(y) =
n∏

i=1

yβi

i ϕ(x)

and ϕ(x) 6= 0.
The space F is the space of solutions of a Fuchs type Pfaffian system on

(Dε)m, where ε is the radius of the polydisc, iff F is weakly singular. In this
case the exponents rβl

k are eigenvalues ωk(0) at zero of the matrix function

ω(x) =

n∑

i=1

ωi(x)
dxi

xi
+

m∑

j=n+1

ωj(x)dxj .

We consider the particular case n = 2. Then the vector space F is the
space of solutions of a Fuchs type Pfaffian system on (Dε)m, iff for F there
exists a fundamental matrix Ψ(y) of the form

Φ(y) = U(x)yÃ1

1 yÃ2

2 yE1

1 yE2

2 ,

where Ã1, Ã2, are diagonal matrices with integer entries and their columns
are ϕ1 and ϕ2, Ei = 1

2πi log γ∗i and U(x) is holomorphic and invertible in
(Dε)m.

Let the Fuchs system (1) be completely integrable in Dm. Then there
exist diagonal matrices Ei, i = 1, . . . , n, with integer entries and a holo-
morphic invertible matrix function U(x) such that under the substitution
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f = U(x)
n∏

i=1

xEi

i g, the system (1) acquires the form

dg =

( m∑

i=1

Bi
dxi

xi

)
g,

where Bi are constant matrices.
A space F is called weakly singular in D, if it is weakly singular at

every point x ∈ D. The space F is called weakly singular in the manifold

Xm = X \D if det Φ(y) 6= 0 for every y ∈ X̃m \ D̃.
The space F is the space of solutions of a Fuchs type Pfaffian system in

X iff F is weakly singular in X. In this case the form ω = d log det Φ(y) in
the neighborhood Ux, x ∈ D has the form

ω =
∑

i

βji
dsji

sji
+ φx,

where βi is the sum of i-exponents of F , and φx is a holomorphic function
in Ux.

Theorem 1 ([1]). 1. The space F is the space of solutions of a Fuchs

type Pfaffian system in X iff the cocycle
n∑

i=1

βiDi is homological to zero.

2. Let D =
n⋃

i=1

Di be a generic divisor and suppose that equations for Di

are given by homogeneous polynomials fi(x1, . . . , xm). Let the space F be

weakly singular in CP
m \D and suppose that the sum of i-exponents of F

satisfies the conditions
n∑

i=1

βi deg(fi) ≤ 0. The space F is the solution space

of a Fuchs type Pfaffian system on CP
m iff

n∑
i=1

βi deg fi = 0.

From the results of this section it follows that a Fuchs type Pfaffian sys-
tem defines a finite n-dimensional functional vector space F whose elements
have polynomial growth on the branched submanifolds D of X and define
a monodromy representation

ρ : π1(X \D, zo) → GLn(C).

Monodromy matrices act on F as linear operators. The integer valued
function ϕ has finitely many values ∞ > n1 > · · · > nl on F and defines a
filtration

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F l = F ,

where F j = {fF|ϕi(f) ≥ nj}. The monodromy operators preserve this
filtration.
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2. Hamiltonians of Quantum Systems and the Hypergeometric

equation

Theorem 2. The hypergeometric equation

z(z − 1)
d2g1
dz2

+ (γ − (1 + α+ β))
dg1
dz

− αβg1(z) = 0 (2)

is a Schrödinger type equation

i
∂f(t)

∂t
= H(t)f(t), (3)

where f(t) = (f1(t), f2(t)) and the time dependent Hamiltonian H(t) has

the form

H(t) =

(
ε(t) V (t)
V (t) −ε(t)

)
, (4)

where ε(t) = E0 sech(t/T ) +E1 tanh(t/T ), V (t) = V0 and E0, E1, T, V0 are

constants.

Proof. First we consider a very well known procedure. Rewrite (3) in the
form:

if ′1(t) = ε(t)f1(t) + V (t)f2(t), (5)

if ′2(t) = V (t)f1(t)− ε(t)f2(t). (6)

Suppose

f1(t) = g1(t)e
−i

∫
t

0
ε(τ)dτ , (7)

f2(t) = g2(t)e
i
∫

t

0
ε(τ)dτ , (8)

then

g′1(t) = f ′1(t)e
i
∫

t

0
ε(τ)dτ + if1(t)ε(t)e

i
∫

t

0
ε(τ)dτ , (9)

g′2(t) = f ′2(t)e
−i

∫
t

0
ε(τ)dτ − if2(t)ε(t)e

i
∫

t

0
ε(τ)dτ . (10)

Substituting in the expression (9) f ′1(t) from (5), one obtains

g′1(t) = −if1(t)ε(t)e
i
∫

t

0
ε(τ)dτ − iV (t)f2(t)e

i
∫

t

0
ε(τ)dτ+

+ if1(t)ε(t)e
i
∫

t

0
ε(τ)dτ ⇒ g′1(t) = −iV (t)f2(t)e

i
∫

t

0
ε(τ)dτ .

Changing f2(t) by (8) one obtains

g′1 = −iV (t)g2(t)e
2i

∫
t

0
ε(τ)dτ . (11)

In a similar way we obtain

g′2 = −iV (t)g1(t)e
−2i

∫
t

0
ε(τ)dτ . (12)

From (11) we find the second derivative of g1(t) with respect to t :

g′′1 (t) = −iV ′(t)g2(t)e
2i

∫
t

0
ε(τ)dτ − iV (t)g′2(t)e

2i
∫

t

0
ε(τ)dτ+

+2V (t)g2(t)ε(t)e
2i

∫
t

0
ε(τ)dτ .
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Substituting in this expression g2(t) from (12), we obtain

g′′1 (t) = −iV (t)g2(t)e
2i

∫
t

0
ε(τ)dτ − V 2(t)g1(t) + 2V (t)2(t)ε(t)e

2i
∫

t

0
ε(τ)dτ .

In order to eliminate g2(t) from the latter, we will use (11). Finally we obtain
the following second order differential equation with respect to g1(t) :

g′′1 (t)−
(
2iε(t) +

V ′(t)

V (t)

)
g′1(t) + V 2(t)g1(t) = 0. (13)

In a similar way we obtain a second order equation for g2(t):

g′′2 (t)−
(V ′(t)
V (t)

− 2iε(t)
)
g′2(t) + V 2(t)g2(t) = 0. (14)

Now we use the specification of matrix entries of H(t). By substituting ε
and V (t) into (13) and adopting the change of variable as

z(t) =
sinh(t/T ) + i

2i
,

the equation (13) can be reduced to the hypergeometric equation (2), where

α = iT

(
−E1 +

√
E2

1 + V 2
0

)
,

β = iT

(
−E1 −

√
E2

1 + V 2
0

)
,

γ =
1

2
+E0T − iE1T.

Analogously from (14) we obtain the hypergeometric equation with respect
to g2(z):

z(z − 1)
d2g2
dz2

+ (γ′ − (1 + α′ + β′))
dg2
dz

− α′β′g2(z) = 0,

where

α′ = iT

(
E1 +

√
E2

1 + V 2
0

)
,

β′ = iT

(
E1 −

√
E2

1 + V 2
0

)
,

γ′ =
1

2
−E0T + iE1T. �

Remark 1. This theorem is true in more general cases. We consider one
from the so called analytical solvable model of quantum dynamics. First
to consider such approach were Landau, Rosen and Zener which has been
subsequently generalized by several authors (see [5] and references there
in). Using the methods of analytic differential equations, in [6] an analytic
calculation of nonadiabatic transition probabilities for a two level quantum
system is given.
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Theorem 3. The Fuchs type Pfaffian system

(zI− C)
dΦ(z)

dz
= AΦ(z), (15)

where I is the identity matrix, C and A are respectively a diagonal and

arbitrary matrix, is a Schrödinger type equation

i
∂Ψ(t)

∂t
= H(t)Ψ(t) (16)

with time depending Hamiltonian H(t) = (Hij(t)), i, j = 1, . . . , N , where

H11 = ε(t), H12 = V2, H13 = V3, . . . , H1N = VN ,

H21 = V2, H31 = V3, . . . , H2N = VN and Hij = 0 otherwise,

and Ψ(t) = (ψ1(t), . . . , ψN (t)) is a wave function. Here the time dependent

part ε is given as ε(t) = E1 tanh(t/T ) and Vj are constant.

Proof. Consider the following transformation of the vector function Ψ(t) =
(ψ1(t), . . . , ψN (t)):

g1(t) = ψ1(t)e
i
∫

t

0
ε(τ)dτ , gj(t) = ψj(t), j = 2, . . . , N.

From this and the identity i
t∫
0

ε(τ)dτ = iE1T log(cosh(t/T )) follows the

following system of equations:

g′1(t) = T−1
N∑

j=2

vj(cosht/T )2ε1)gj ,

g′j(t) = (T )−1vj(cosht/T )−2ε1g1, if 2 ≤ j ≤ N,

where ε1 = iE1T/2, vj = −iVjT . After the change of the time variable
z(t) = sinh(t/T ), the above system becomes





dg1(z)

dz
=

N∑

j=2

vj(1 + z2)ε1−1/2gj(z),

dgj(z)

dz
= vj(1 + z2)−ε1−1/2g1(z), 2 ≤ j ≤ N.

Let us take arbitrary numbers λ2, . . . , λN satisfying the equality
N∑

j=2

λj = 1

and change the variable once more:





φ1(z) = (1 + z2)−ε1−1/2g1(z),

φj(z) =
vjgj

z + i
− λ

(
ε1 +

1

2

)z − i

z + i
φ1(z), 2 ≤ j ≤ N.
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Finally we obtain the following system:





(z − i)
dφ1(z)

dz
= −

(
ε1 +

1

2

)
φ1(z) +

N∑

j=2

φj(z),

(z + i)
dφj(z)

dz
= λj

(
ε21 + v2

i −
1

4

)
φ1(z)− φj(z)− λj

(
ε1 +

1

2

) N∑

k=2

φk(z),

2 ≤ j ≤ N,

which after writing in a matrix form will give (15). �

Remark. The Fuchsian system (15) is known as the Okubo equation [7].

Theorem 4. Let F be a four-dimensional weakly singular vector space in

CP 1\{s1, s2,∞} with exponents at these points (a11, a22, 0, 0), (0, 0, a33, a44),
(β1, β1, β3, β4). Then F is a solution space of a fourth order Fuchsian dif-

ferential equation of Okubo type.

Remark. This theorem is a modification of the main result from [8] in
spirit of Section 1 of this paper.

Sketch of proof. Take the matrix C from (15) as C = diag(s1, s1, s2, s2),
and let A be diagonalizable and have nonresonant nonnegative eigenvalues
β1 = β2, β3, β4. From this it follows that A has a block form

A =

(
A11 A12

A21 A22

)
,

where A11, A22 are diagonalizable 2 × 2-matrices with nonresonant eigen-
values. This system is Fuchsian and has three singular points at s1, s2, ∞
with exponents prescribed by the theorem. �

Remark. In [8] the monodromy group of the so obtained fourth order
Fuchsian system is calculated in terms of exponents. In that paper also nec-
essary and sufficient conditions of irreducibility for the monodromy group in
terms of the exponents are obtained. From this and a result of A. Bolobruch
(see [4]) it follows that in this case a condition of solvability of Riemann-
Hilbert monodromy problem [9], [10] in terms of the exponents can be ob-
tained. Moreover, the obtained system of equations will be an equation of
Okubo type and therefore has interpretation as an equation describing dy-
namics of a quantum system (for example, quantum manipulation of qubits
[11], [12]).

3. Other Hamiltonians

A deformation of a Fuchsian system is a family of Fuchsian systems
depending on parameters:

dΦ(z)

dz
=

( n∑

j

Aj(s)

z − sj

)
Φ(z). (17)
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This means that the coefficients Aj , j = 1, . . . , n, depend on the parameters
s = (s1, . . . , sn). Let s belong to some open set of the space Cn and suppose
that the coefficients Aj(s1, . . . , sn) depend on s1, . . . , sn holomorphically.
Such a deformation is said to be a holomorphic deformation of the Fuchsian
system.

The Schlesinger system (see [13]) is an overdetermined Pfaffian system
of differential equations of the form

∂Ai

∂sj
=

[Ai, Aj ]

si − sj
, 1 ≤ i, j ≤ n, i 6= j, (18)

∂Ai

∂si
= −

∑

1≤j≤n,i6=j

[Ai, Aj ]

si − sj
, 1 ≤ i, j ≤ n, i 6= j, 1 ≤ i ≤ n, (19)

where A1, . . . , An are k × k-matrix functions of s = (s1, . . . , sn) ∈ C
n
∗ =

Cn \ diagonals. The system of equations (18)–(19) can be rewritten as

dAi =

n∑

j=1,j 6=i

[Aj , Ai]d log(sj − si), i = 1, . . . , n. (20)

Here d is the exterior differential. The integrability condition for the Schle-
singer system is

d(

n∑

j=1,j 6=i

[Aj , Ai]d log(sj − si)) = 0, i = 1, . . . , n. (21)

This condition must be fulfilled if A1(s), . . . , An(s) satisfy the equations
(20).

Denote by gln(C)N = gln(C) ⊕ · · · ⊕ gln(C) the direct sum of N copies
of gln(C). This is the space of N -tuples A1, . . . , AN of n× n-matrices. The
group GLn(C) acts on this space by the diagonal coadjoint action: Aj 7→
gAjg

−1. Each coadjoint orbit Oi is left invariant under the t-flows. Thus
the Schlesinger equation is actually a family of non-autonomous dynamical
systems on a direct product O1 × · · ·ON of coadjoint orbits in gln(C). The
coadjoint structure leads to a Hamiltonian formalism of the Schlesinger
equation (see [14], [15], [16]). Let us introduce a Poisson structure on the
vector space gln(C)N by defining the Poisson bracket of the matrix elements
of Ai = (Apq

i ) as:

{Apq
i , A

rs
j } = δij(−δqrA

ps
i + δspA

rq
i ).

In each component of the direct sum gln(C) ⊕ · · · ⊕ gln(C) this Pois-
son bracket is just the ordinary Kostant-Kirrilov Poisson bracket. The
Schlesinger equation can be written in the Hamiltonian form

∂Aj

∂ti
= {Aj , Hi}, (22)



ON THE HAMILTONIANS INDUCED FROM A FUCHSIAN SYSTEM 79

where the Hamiltonians are given by

Hi =
∑

j 6=i

Tr
( AiAj

si − sj

)
, (23)

and the involution

{Hi, Hj} = 0. (24)

Theorem 5 (see [13]). Let A1(s), . . . , An(s) be holomorphic with respect

to s1, . . . , sn ∈ U ⊂ Cn
∗ k × k-matrix functions. Assume the square k × k-

matrix function Ψ(z, s), which is a) holomorphic for z ∈ C and for s ∈
U , z 6= s1, . . . , sn, b) is nondegenerate: det Ψ(z, s) 6= 0, for s ∈ U , z 6=
s1, . . . , sn and c) satisfies the following system of differential equations

∂Ψ(z, s)

∂z
=

( ∑

1≤j≤n

Aj

z − sj

)
Ψ(z, s),

∂Ψ(z, s)

∂sk
=

Ak

z − sk
Ψ(z, s), k = 1, . . . , n.

Then the matrix functions A1(s), . . . , An(s) satisfy the Schlesinger system

for s ∈ U .

From the results of Section 1 it follows that the fundamental matrices
of a Fuchsian system in the neighborhood of a nonsingular point have the
form:

Ψ(z) = U(z)zDi

1 zEi

1 ,

where U(z) are holomorphic matrix function on the considered neighbor-
hood, D = diag(ϕ1

i , . . . , ϕ
n
i ), and Ei a logarithm of the monodromy matrix.

Every isomonodromic deformation preserves the eigenvalues of the coeffi-
cient matrices Aj(s) and entries of the matrices Dj .

Consider a particular case of the Schlesinger theorem. Let n = 2 and
let the corresponding Fuchsian system have four regular singular points:
fixed singular points 0, 1,∞ and one removable singular point. Then the
entries of the matrices Aj can be expressed as functions of this removable
singularity.

Theorem 6. The Painlevé transcendents

I. f ′′(z) = 6f2(z) + z;
II. f ′′(z) = 2f3(z) + zf(z) + a;

III. f ′′(z) = 2f ′2(z)
f(z) − f ′(z)

z + 1
z (af2 + b) + cf3(z) + d

f(z) ;

IV. f ′′(z) = f ′2

2f(z) + 3
2f

3(z) + 4zf2(z) + 2(z2 − a)f(z) + b
f(z) ;

V. f ′′(z) = 3f(z)−1
2f(z)(f(z)−1)f

′2(z)− 1
zf

′(z)+

+ 1
z2 (f(z)− 1)2

(
af(z) + b

f(z)

)
+ c

z + df(z)(f(z)+1)
f(z)−1 ;
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VI. f ′′(z) = 1
2

(
1

f(z) + 1
f(z)−1 + 1

f(z)−1f
′2 − ( 1

z + 1
z−1 + 1

f(z)−z

)
f ′+

+ f(z)(f(z)−1)(f(z)−z)
z2(z−1)2

(
z + bz

f2(z) + c(z−1)
(f(z)−1)2 + dz(z−1)

(f(z)−z)2

)
,

where a, b, c, d are complex numbers, are Hamilton type equations that de-

scribe the dynamics of the removable singular point.

Proof of this theorem follows from the following results: 1) these are
isomonodromic deformations of second order Fuchsian differential equations
and therefore are Schlesinger equations and 2) Schlesinger equations are
Hamilton equations.

Remark. The Hamiltonian structure of Painlevé equations has been stud-
ied by many authors. For the first time this problem has been posed, in the
our opinion, in the papers [18], [19]. In the papers [15], [16] the methods
of moment maps are applied to loop algebras to give explicit construction
of Painlevé equations, including analytic expression of Hamiltonian, from
regular linear systems.

Let V1, . . . , Vm be sl2-modules. Put V = V1 ⊗ · · · ⊗ Vm. The linear
operators Ωij : V → V , i < j, act as Ω⊗ 1 + 1⊗ Ω on Vi ⊗ Vj and trivially
on all of the other factors, where Ω ∈ sl2 ⊗ sl2 is the tensor corresponding
to an invariant scalar product. The Fuchs type Pfaff system

∂Ψ(z1, . . . , zn)

∂zi
=

1

λ

n∑

j=1,i6=j

Ωij

zi − zj
Ψ, i = 1, . . . , n, (25)

where Ψ(z1, . . . , zn) is a V -valued function on Xn = CP
N \

m⋃
i,j=1,i6=j

{zi−zj =

0}, is called the Knizhnik–Zamolodchikov equation (see [17]). Here λ is a
complex parameter. Solutions of (25) are covariant constant sections of the
trivial bundle Xn × V → Xn with the flat connection

n∑

j=1,i6=j

Ωij

zi − zj
d(zi − zj).

The solution space has the form described in Section 1. Monodromy
representation of this system is a representation of the Artin braid group.

The Hamiltonian connected to this system has the form (see [20]):

H =

N∑

i,j=1,i6=j

Ωij

(z − zi)(zi − zj)
+

N∑

i=1

Ci

(z − zi)2
.

This Hamiltonian describes a chain ofN metal atoms with each atom having
just one electron. The first term in H describes a jump from position i to
position j. The second term is an internal energy that depends on the
element of the chain.
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