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ABOUT A SIMPLE ANALYTIC PROOF
OF PONTRYAGIN’S MAXIMUM PRINCIPLE



Abstract. Using compact expressions for optimal and varied trajectories
based on the representation of the Cauchy problem solution as evolution
system of functions of initial values, a simple analytic proof of Pontryagin’s
Maximum Principle for fixed endpoints is obtained. Some non-standard
problems of optimal control theory are considered shortly, too.
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Statement of the problem. Pontryagin’s Maximum Principle. Usu-

ally, by Ry, we denote the set of collections of k real numbers (z?,...,z"%),
endowed with natural algebraic operations and Euclidean norm. For g =
(g1,---,9m) : Ry — R,,, Jacobi’s matrix at the point z = (z!,...,2%) is
denoted by
991(x) .. Oq(x)
ozt oxk
9gm () .. 9gm (x)
Ozl oxk
and for a vector function g = (g1,. .., gm) : Rk x R; — R,,, Jacobi’s matrix

with respect to x = (z!,...,2") at the point (z,y) € Ry x R; is denoted by

89(19(9?11) . 891(924;)
]
og(x,y) | 7 N
B) . .
* dgm(ey) ... Ogm(ry)
Ox! oxk

For a vector or matrix function z(t), t € R, #(t) denotes the component-
wise derivative of z(t); for example, if x(t) = (x(t),...,2"(t)), then

i) = (@ (8), .., 2 (1)):

Let us formulate the main problem of the optimal control theory.

Let U C Ry be the control area, the functions f;(x!,... 2™ ug,...,ug)
and gﬁ continuously map R, x U into R, ¢ =0,1,...,n, 7 =1,...,n;
[to, t1] be a fixed non-trivial segment (i.e., to < t1); 2 be the set of admissible
controls consisting the functions w(t) = (u1(¢),...,ux(t)) such that wu(-) :
[to, t1] — U is continuous from the left, continuous at the points tg, t1, and
u(+) can have but a finite number of points of discontinuity, and all these
points must be of the first kind.

Let (x},...,28) and (x1,...,27) be given points in R,. Denote by []
a line, which passes trough the point (0,21,...,2%) in R,y and is par-

allel to the axis zV. In the sequel, the elements of R, ; are denoted by
(20,21, ... an).
Define the map f : R,11 x U — R4 by the rule:
f(:c’u) = (fo(x:l?" "xn)u:l?" '7uk)" "’fn(xlﬂ' "7xn7u17" "uk))'

Obviously, f does not depend on the values of the component x°.

Definition 1. We say that the admissible control u(t), to < t < ty,
moves the point xg = (0,z},...,2%) into some point of the line [], if the
trajectory ¢(-) corresponding to wu(-), which is a solution of the Cauchy
problem

@(t) = fx(t), u(t), x(to) = wo, (1)
is defined on the entire [to, 1] and p(¢1) € [].
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Definition 2. The extremal problem

2°(t,) — min, (2)

x(t) = f(x(t)7u(t>>v x(tO) = Zo, I(tl) € Ha u() €, (3)

is said to be the main problem of the optimal control theory. The admis-
sible control u(-), which is the solution of (2)—(3), and the trajectory z(-)
corresponding to u(-), are said to be optimal.

For any (¢, z,u) € Ry41 X Ryq1 X U suppose as in [1]:
H(?/}, z, u) = Z wzfz(xv u)a
i=0

uelU

Theorem 1 (Pontryagin’s Maximum Primciple). Let u(t), to < t <
t1, be an admissible control, which moves xq into some point of the line .
For optimality of the admissible control u(-) and its corresponding trajectory
©(+) it is necessary the existence of a mon-zero continuous vector function

P(t) = (Yo (t),Y1(t), ..., Yn(t)) such that
1) () corresponds to u(-) and x(-) by the following rule:

, " O fal(p(t), u(t
DR PhallAu LU O] (@
a=0
0<i<mn; to<t<tg
2) For each t € [to,t1] there holds the maximum condition:
H((), x(t), u(t)) = M(P(1), 2(1)).
3) vo(t) is constant with respect to t and 1Po(t1) < 0.

Auxiliary lemmas. By R we denote the set of m - dimensional vector
columns

Yy
Y= :(yla" ’ym)T
ym
If v = (2%, ,2™) € Ry, and y = (y!,--- ,y™)T € R™, then we use the

notation zy for the inner product:

m
TY = Z 'yt
i=1
Lemma 1. Let Y C R™ be a convex set, yo € R™, yg #0 €Y and the
system of inequalities

()

ngyOa
0>vy, Vyey,
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have only the null-solution with respect to ¥ € Ry, .
Then there exists a subset {y1,...,ym} CY such that:
1) {y1,.-.,Ym} is a basis of R™.

m
2) There exist numbers a; > 0, i =1,...,m, such that yo = > a;y".
i=1
Proof. Devide the proof into 3 parts.

A) Let us show that the set of interior points of Y is not empty, i.e.,
interY # @.

Y contains a basis of R™. In the contrary case, Y will turn out to be
in the space having dimension less then m and there will exist 1) # 0 such
that £¢y =0, Vy € Y. Obviously, either ¢ or -1 satisfies (5).

Y contains some basis of R™, say {z1,...,2m}, and 0 € Y, so the simplex
S spanned on {0, z1,..., 2y, } is such that S C Y (as Y is convex) and S
have interior points. Hence, interY # @.

B) Prove the existence of Ao > 0 such that Agyo € inter Y.

In the contrary case, 3¢ # 0 which separates the convex, open and
nonempty sets inter Y and {Ayo}a>o0, and separates their closures as well,
ie.,

Y(Ayo) >y, VyeY, YA>0. (6)

From (6) it follows 0 > vy, Vy € Y. Also from (6) it follows vy, >
0, since in the contrary case it would be ¥(Ayg) — —o0 as A — +oo,
which contradicts to (6). Finally, (6) means that the system (5) has a
non-vanishing solution, which contradicts to the condition of Lemma 1.
C) Construct a basis {y1,. .., ym} satisfying the conclusions of Lemma 1.
As A\oyo € inter Y, for some € > 0 we have:

|y — Xotoll <e =yeY.

Let L be an (m — 1)-dimensional subspace in R™ which does not contain
Aolo; S be a simplex in L with the set of vertices {z1,..., 2y} such that

0 € inter S (i.e., {zm — 21,...,22 — 21} is a basis of L). Obviously, we can
m

take ||zl < e, ¢ =1,...,m. Then 0 = ) B;z; for some numbers 3; > 0
i=1

m
with 3 8 =1, ie.,

i=1

AoYo = Zﬁz(zz + AoYo) = Zﬂiyia (7)
i=1

=1

where y; = zi+XAoYo, @ =1,...,m. As ||yi— ool < &, we havey; € Y, Vi.
As y; —y1 = z; — 21, every element of L is a linear combination of the set
{y1,..-,Ym} , which together with A,yo ¢ L and (7) gives that {y1,...,ym}

is a basis of R™. Finally, we can assume «; = S O
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Lemma 2. Let 0 € Y CR™, 0 # yo € R™ and the system of inequalities

<
{g - Yyo, (8)
>y, Vyey,
have only the null-solution with respect to ¥ € R,,.
Then there exist: vectors y;; € Y and numbers o; and v;5, 1 =1,...,m,
j=1,...,m+1, such that:
m—+1

1) for every index i we have: a; >0, v;; € [0,1], and Y, ~vi; = 1;
j=1

m+1 m—+1 . )
2) { V1iYLgs ey D ’ymjymj} is a basis of R™;
=1 =1

J
m m+1

3) Yo = Z o7 Z YijYis -
i=1  j=1

2

Proof. Tt is easy to see that (8) is equivalent to the following system:

ngym
02>y, VyecoY,

where co Y, as usually, denotes the convex hull of Y. Now, using of Lemma 1
m

gives the existence of vectors y; € Y and numbers «; such that yo = > a;y;.
i=1

By virtue of a well - known theorem (see [2], p. 9), every point of coY is

representable as a convex combination of no more than (m+ 1) points of Y

m—+1
Yi = Z YijYij
j=1
m+1
Yij €Y, 27¢j=170§7ij§1~ 0
]:

The proof of the theorem.

Proof. We prove Theorem 1 in several steps.

1. Variations of optimal control. Everywhere in the proof, u(t), tg <t <
t; denotes the optimal control, and ¢(-) denotes the optimal trajectory.
Consider the set:

var = {(si, 0i,vi) }jZ1 C (to, ] x Ry x U.

If {(s; — 04,8;)}, is a subset of pairwise disjoint intervals in [to, t1], then
var is said to be the variation of the control u(-). Besides, the admissible
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€ontrol Uyay(+), which is defined by formula:

v, t€(s1—o1,81),

uvar(t) = ’
Um, t € (Sm — Om, Sm)s

u(t), t¢ Uiy (si — oisil,
is said to be a varied control. When m=1, i.e., var = {(s,0,v)}, then var is

said to be a simple variation and for the sake of simplicity is identified with
its element: var = (s, 0,v).

2. Varied trajectories. Denote by @, ¢(x) the value of the solution of the
Cauchy problem:

#(t) = f(2(t), u(t)), a(s) =z, (9)
at the point ¢, Vs € [to, t1], Va € R,,4+1. Note that under the term “solution”
we mean non-extendable (maximal) solution. Obviously,

o(t) = Py (20), to <t <ty

For every fixed parameter v € U, denote by ®}_ () the value of the solution
of the Cauchy problem:

o(t) = f(x(t),v), x(s) ==z, (10)

at the point t. ®7__(z) depends on ¢ — s only, as (10) is autonomous.
For a given variation var = {(s;, 04, v;)}7, denote by ., (t) the value
of the solution of the Cauchy problem:

x(t) = f(x(t)7 uvar(t)); 33(750) = Zo,

at the point t.

Determine the form of the trajectory ¢yar(+).

For each simple variation (s, o, v), when o is small enough, the following
representation

B0 ) = (B0 @ 0@y, (@), s<t<h, (1)

is valid.
In particular, for every s € [tg, ¢1] there holds

p(t1) = Piy,5(p(s)) = 11

(to show this, it is enough to take ¢ = 0), and by the theorem on continuous
dependence on initial data for every € > 0 there exists a neighborhood A of
@(s) such that for Vo € A and V¢t € [to, t1], Pi,s(z) is correctly defined and
there holds

[e,5(z) = ()| <& (p(t) = Pr,5(¢(5)))-
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Now, let us take arbitrarily a variation var = {(s;,04,v;)}",, for which

> o0y is small enough. Then
i=1

@var(t) = ((I)t,max{si}-; o H [(I)Z'i © ¢Si_0'7,187,_A57:|)(I0))

Si

(12)
max{s; }; <t <t.

In (12), As; = s; — s, where s = max{sy | s < $;} is the moment of time
in the variation previous to s;; Amin{s;}; = min{s;}; — to; H; means that
the multipliers are ordered chronologically with respect to s;: min{s;}; is
placed at the right, then s; monotonically increases and finally max{s;}; is
placed at the left.
Note, that the right-hand side of (12) is defined for o; of arbitrary sign,
m
when > o; is small enough and max{s;}; <t < ;.
i=1
3. Influence of duration of variation on the position of the end of the
trajectory. Let var = (s,0,v) be a simple variation. For sufficiently small
o > 0 we can consider a curve o — ., (t), defined for every t € [tg, t1].
For this curve, t presents itself as a parameter. When ¢ > s, for this curve
the representation (11) is valid, which allows us to calculate &P(%&”)(t)b:o.
Using (11), ¢(s,0,0)(t) can be represented in the form:

¢(s,071,)(t) = g(h(a)),
where ¢ : R,11 — R,41 acts by the rule g(z) = @ 4(x), h(o) is defined

in the small neighborhood of ¢ = 0 and h(o) = ®L(Ps—_st,(20)) € Rya-
Since h(0) = ¢(s), we have:

8('0(5570,”) (t) B _ g/(h(O)) . h/(o) _ aq)tg(j(s)) h/(O).

Now, represent h(c) in the form:

h(o) = G(&(0),0),
where G : R,41 X R — R, 11 acts by the rule G(z,0) = ®%(z), and (o) =
¢S—O',t() (IO)

d . .

h'(0) = 75 (G 0 (& idg))(0)|o=0 = G'(£(0),0) - (& idr)'(0) =
8G°(£(0),0 8G°(£(0),0 8G°(£(0),0 .
e R Ch

ac"*l.g 0),0 . 8G"*1.§ 0),0 8G"*1.§ 0,0) | |- : =
63(50( .00 . aén( ),0) 8(0( ),0) én(0)
0G™(£(0),0) L 9G"(£(0),0) 9G"(£(0),0) 1
920 dx™ do
9G(£(0),0) ,, 9G(£(0),0)
= —— el — 7 7 13
ox &)+ bl =0 (13)
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here (idr)a = o, Vo € R. Since G(x,0) = x, we have that w =F
is the identity matrix,

— 8¢S—0’,t0 (mo)
do

- 8q>s—a,t0 (xo)
o=0 8(5 — O')

=~ (F@ oo lm0), uls — Nlomo) =~ (Fl(5),u(s))
(note that & = ()T, by definition), and

9G(£(0),0) _ 0%5(0(s))
do o=0 oo

- (f(q)g(ga(s)),v)‘gzo)T = (f(cp(S))w))T

Finally, for every pair (s,v) € [to, t1] x U we have

£'(0)

o=0
T

o=0

(s, () —
oo o=0
= OBl [, ) — (o) uts)] "

Define the set Y € R**+! as follows:

v = {22 D [0 0) — (o), u(sn)] [ (s, € o] x U},

4. The main fact and its proof. Suppose:
yo = (—1,0,...,007 e R* 1,
Let us prove the existence of a non-zero ¢ € R, 41 such that

yo>0 and py<0, VyeyY.

yo has a special simple form, consequently the above condition is the same
as

Yo <0 and $y<0, Vyev. (15)
(15) is the main fact in the proof of Maximum Principle.

Suppose the contrary, that only ¢ = 0 satisfies (15), so we can use Lemma
2 with m = n + 1. Thus there exist: vectors

aq)th 7,(()0(57;)) T
Yij = MTJ fle(siz),vig) — fle(sij), ulsij))
and numbers oy, v;;, ¢ = 1,...,n+1, j =1,...,n+ 2, such that for every

n+2
it a; > 0,95 €[0,1], X v =15
i=1

n+2 n+l

{ Z%]’yij}izl (16)
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is a basis of R*+!;

n+1 n+2
yO: (_1707~-~70)T:Zaizfﬂjyij- (17)
i=1 Jj=1

By virtue of continuity of the corresponding functions we can assume that
all s;; are pairwise different and belong to (¢o, t1). Without loss of generality

we can assume that for each i € {1,...,n+ 1}
Si1 < S0 < -0 < Si(n+2) (18)
(in the contrary case, we can number the indices over again).
If 01,...,004+1 are small enough and non-negative numbers, then the
variation

var, = {(Sij,Ui’Wj,’Uij) ‘ t1=1,....,n+1, j: 1,...,7’L+2}
depending on the vector o = (01,...,0,41) is correctly defined. When

the norm of the vector o is small enough, the corresponding to wvar, (*)
trajectory is defined on [to, ¢1] and a representation similar to (12) holds:

Pvar, (tl) =

= (@t mantonyes © [T [ @55, © oainiyss-asn, | ) @) (19)
Sij
The right - hand side of (19) is defined for every o € R,,11, if its norm is
small enough, regardless of the sign of o.
Let V be a small enough neighborhood of 0 in R, ;1. Define map F :
V — Ry, 41 as follows:

F(01702 .. ~7Un+1) -
- (®t17max{31j}i,j ° H [‘I’Z’fv” °© (I)Sij*UiViijij*ASij} ) (xo) (20)
By construction, if 0 = (61,02...,0,41) > 0 componentwise, then
F(0) =¢(t1), F(o1,02...,0n+1) = Pvar, (t1)- (21)

F has partial derivatives, as it is a composition of continuously differentiable
mappings.
Let us calculate %ﬁ‘ s k=1,....n+1.
o=0
Let us fix k € {1,...,n+ 1}. By virtue of (20) and (18),
F(0,...,0,0%,0,...,0) =

«—

Ve
- (Qtlisk}(n«}»Q) © H |:q)0kJ'ij © ¢5kj*0'k7kjg5kj*A5kj:|)(xo) =
J

= (q)tl,sxc(wrm o GZ:2 00 thfk) (:CO)a (22)
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where, since by virtue of (18) sp(j_1) = sxj — Asgy,

j — Vkj
Gak - ((I)Uk’wcj © q)skj_o'k’}’kjask(j—l)>7 (23)

and G7, () is differentiable, at least in some small neighborhood of (o, ) =
(0,(GH " o---0GY)(x0)). Exactly the same method which was used in the
proof of (13) gives:

9 2 _ 9G3(Gj(20)) 9Gs, (x0)
8o, Cor(Go(@))| = 5 or loizot
9G3, (Gj(20))
Ok OV . 24
+ aak o,=0 ( )

Using estimations of the type (24) n-times and taking into consideration
that (G} o -+ 0 G§)(x0) = P, 1, (T0) = @(sk;), We obtain:

0

5 (GatP o0 GL ) (w0)

or=0

_ f OGP ((GgH o0 Gh)(w0)) DG ((Gho--- 0 Gh)(x0))
ox ox
0

'@Gﬂk((Géfl o 0G)(x0))

O’;CZO

n+2 8Gn+2

3k(n+1))) 5Gj+1(90(8k‘)) 9
_Z . 0 o 5 '%Gék((p(sk(jfl))):

2
— ”ZJF: aq)ék(wrz) ék(n+1)( ) . 6¢sk(j+1)7skj ($)

T=p(Sk(n+1)) Oz T=p(5k;))

0

80 G ( (Sk(j—l))) ; (25)

‘o’k:O

in (25) we assume sy = to and Gy' o G§ = id — identity.
By virtue of (25), the formula (22) gives:

A a¢tlask(n+2) (I)

=P (Sk(n+2))

. a¢5k(]‘+1) sSkj (l‘)

=@ (Sk(n+1)) oz

or=0 - a,f

0o

Sk(n+2)sSk(n+1) (l‘)

ox

I:ﬂp(skj).

0

il G EL NSRRI [CIEAPRNY)) (26)

0k=0.
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In (26), we must take into account the following two facts. First, the deriva-
tives of both sides of the following equality

(I)h,Skj (l‘) = (q)tl,Sk(n,+2) o ¢5k(n+2)75k(n+1) 0+ 0 @Sk(j+1)75kj) (l‘)

exist at = (¢(sk;j)) and are equal. Secondly, reasoning as in point 3, it is
easy to see that

0

Vi
a ((I)U]ZJ%J‘ © q)skj_Ukajask(j—l)) (@(Sk(jfl)))‘akzo =

= 5 [ (), vks) — T o) ulse)]

Indeed, in the non-trivial case where ~;; # 0, we have

9
aﬁ%q’olxﬁm(@(skj)) im0
-

= [ lsg) i)

= Vkj mq’amj (@(Skj))

ok
Besides, ®,* (z) = =, therefore for vx; # 0 we have:
P(skj — Ok Vk5)

0
= — —  V(S1:— O .
Vkj sy — Uk’ij)SD( kj kVkj )

O’;CZO

doy,

O'kZO

T
= i [ £ (L) ulsi)|

obviously, the same result remains true when ~; = 0. Finally, we obtain:

é)F(O) n+2
ao_k - ;’Yk‘]yk]

n+2
Since { Y %jyij}::rll is a basis, F’(0) is an invertible matrix. Thus, in
j=1

some neighborhood W of the point F'(0) = ¢(t1) there exists the inverse to
the mapping F'.

For sufficiently small 7 € R we have: ¢(t1) — 7(1,0,...,0) € W. For 7
of such type denote: o(7) = F~(¢(t1) — 7(1,0,...,0)). Obviously, o(7) =
(01(7),...,0n4+1(7)) is continuously differentiable, ¢(0) = 0 and

o(t1) = 7(1,0,...,0) = F(o1(7), ..., 0nt1(7)). (27)

Differentiating both sides of (27) with respect to 7, we obtain:

n+1 n+2

Yo = Z i(0) Z YijYij - (28)

i=1
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The expansion of the vector yo with respect to the basis (16) is unique,
therefore (17) and (28) give

O'Z(O) =q; >0, Vi

Thus, for sufficiently small and positive numbers 7 we have:

oi(T) >0, Vi (29)
Now, for sufficiently small and positive numbers 7, (21) and (29) give
cp(tl) - T(17 Oa ce. 70) = (Pvar(,(,.) (tl) (30)

(30) means that u(-) is not optimal.

5. Necessary conditions of optimality. As we have proved in 4, there
exists ¥ # 0 such that

There exists a continuous and continuously differentiable at the points of
continuity of u(-) function ¢(t), to <t < t1, such that the first conclusion
of the maximum principle holds:

¢(t) = —(t) 3f(<ﬂ(£;59)£,u(t)) ,
Y(t) = .

From (32) it is easily seen that 1o (t) = const, i.e., ¥(t) = ¥y and the third
conclusion holds, too.
For arbitrarily given (s,v) € [to,t1] x U denote:
0Py (x)

v —_— .
¢ ox z=p(s)

(32)

It is well - known from the standard course of ordinary differential equations
that U, satisfies the variational equation:

01 (p(t). u(t))

i, - POy, (33)
and W, is the unit matrix. Obviously, from (32) and (33) it follows:
& (v £(els).v) — Flels) uis)] ) =
= (S0 (els). ) ~ Flpls)uls))] )+
([ Fe(s). ) — Flots)u(s)] ) =0, (34

T
i.e., the function ¢ — 9 (t)U, [f((p(s),v) - f(gz)(s),u(s))} is constant. In
particular, when t = s and t = t1, we have:

Wb aq)hg;iw [f(sﬁ(SL v) — f(@(s)’“(s))r B
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T
= %(s) | £((s),v) = F((s), uls)
The last identity, (31) and (34) together give that

T
9(6)[£6(5),0) = F@(),u(s)] <0, Vis,0) € [to, 1] X U,
i.e., the second conclusion of the maximum principle holds, too. O

Features of the applied method. As we have seen above, using of evo-
lution systems considerably simplifies the proof of the maximum principle
as compared with other proofs. Applying this method, the same success
can be achieved in other standard problems of the optimal control theory,
but now we consider some non-standard problems.

1. The optimal problem with variable control area. Consider the case
where the control area depends on time by the following rule:

if s1 <sy then U(se) C U(sy). (35)

To deal with this case, first modify some definitions. Let U = U(tg), the
functions
ofi

Oxd

continuously map R, x U in R, ¢ =0,1,...,n, j=1,...,n; [to,t1] be a
fixed non-trivial segment (i.e., tg < t1); Qo be the set of admissible controls,
consisting of the functions u(t) = (uy(t),...,ux(t)) such that u(t) € U(t) C
Ry, Vt € [to,t1], the function ¢ — U(t) has the property (35), u(-) is
continuous from the left, continuous at the points ¢o, ¢1, and u(-) can have
but a finite number of points of discontinuity, and all these points must be
of the first kind. For any (¢, z,u) € Rp41 X R0 x U put

fi(xlw' '7xn7u15' . auk)7

H(p,z,u) =Y ¢ifi(z,u),
1=0

and for any (¢, z) € Ry41 X Ryq1, t € [to.l1]:

Mi(,x) = sup H,x,u).
ueU(t)

Pontryagin’s Maximum Principle takes the following natural form.
Theorem 2. Let u(t), to <t <t1, be an admissible control, which
moves xq into some point of the line [[. For optimality of the control u(-)

and its corresponding trajectory ¢(-) it is necessary the existence of a non-
zero continuous vector function ¥(t) = (Yo(t), ¥1(t), ..., ¥n(t)) such that

1) ¥(-) corresponds to u(-) and x(-) by the following rule:

wz(t) — Z afa(cp(t)a U(t)) wa(t)a
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2) For each t € [to,t1] there holds the mazimum condition:

HW(t), z(t), u(t)) = Me(¥(t), 2(1)).
3) vo(t) is constant with respect to t and o(t1) < 0.

In the proof, we have to change the definition of the variation of the
control u(-). Consider the set var = {(s;,04,v;)}!",, where for every i:
(si,00) € (to,t1] x Ry, vy € U(s;). If {(si — 04,8:) %, is a subset of
pairwise disjoint intervals in [tg, t1], then var is said to be the variation of
the control u(-). Varied controls uya.(-) can be defined usually and after
this the proof of Theorem 2 can be repeated without other changes.

If instead of (35) there holds:
if s; <s9, then U(sy) C U(sz), (36)

then we have to take U = U(¢1) and change the definition of varied controls,

too. Consider the set: var = {(s;,04,v;)}™,, where for every i: (s;,0;) €

[to,t1) x Ry, v; € U(s;). If {(s4, 8 +04)}2, is a subset of pairwise disjoint

intervals in [tg, 1], then var is said to be the variation of the control u(-).
An admissible control wy,, () defined by the formula:

U1, t6[51,51+0'1),

uvar(t) =
Um, t € [Sm,Sm + Om),

u(t), t¢Ulilsi si +09),
is said to be a varied control. Now it is easy to see that Theorem 2 is valid,
too.

Of course, choosing definitions of varied controls properly, we can cover
more complicated cases where U(t) depends on ¢. Unfortunately, we can
not develop this theme now, since it is far from purposes of the present
paper. Note only that even simple cases considered above have important
applications in the theory of economic growth (see [3] and [4]).

2. An optimal problem in the class of controls having uniformly limited
number of points of discontinuity. The optimization of many real economic
controllable processes takes place in the class of admissible controls, which
consists of piecewise continuous functions, whose number of points of dis-
continuity is less than some preliminary given natural number. Such class
of admissible controls has “good mathematical properties”. In applications,
such class appears naturally and frequently, as in many real processes dis-
continuity of an admissible control means to spend some fixed dose of an
exhaustible resource. Thus, in such problems, setting of the upper limit for
the number of discontinuities is a natural thing.

For every | € {1,2,...,4+00} denote by €, the set of admissible controls
consisting of the functions u(t) = (u1(t), ..., ux(t)) such that u(-) : [to,t1] —
U is continuous from the left, continuous at the points tg, t1, and u(-) can
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have points of discontinuity, but the number of points of discontinuity is
less or equal to [ and all these points must be of the first kind.
Consider the optimal problem:

2%(t1) — min, (37)
(t) = fla(t),u(t)), =x(to) =x0, x(t1) € H, u(-) € . (38)

It is easy to see that the above - given proof of Theorem 1 is valid also for
the following modification of Pontryagin’s Maximum Principle, since in our
method we use only varied controls having no more than 2(n + 1)(n + 2)
“new” points of discontinuity as compared with the optimal control.

Theorem 3. Let u(t), to <t < t1, be an admissible control, which moves
xo into some point of the line [[, and number of points of discontinuity
is less than or equal to | — 2(n + 1)(n + 2). In the problem (37)—(38),
for optimality of the control u(-) and its corresponding trajectory o(-) it
is mecessary the existence of a non-zero continuous vector function p(t) =

(Wo(t), 1 (t), ..., 1¥n(t)) such that
1). ¥(-) corresponds to u(-) and z(-) by the following rule:

n
- Ofalp(t), ult))
() = — S b B (1),
0 = = 30 R
O0<i<mn to<t<tly
2). For each t € [to,t1] there holds the mazimum condition:

H@(t), x(t), u(t)) = M((t), x(t)).
3). 1o(t) is constant with respect to t and 1o(t1) < 0.

As far as we know, other methods used to prove Pontryagin’s Maximum
Principle in its standard formalization are not applicable to Theorem 3.
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