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NEW TYPE ENERGY ESTIMATES FOR

MULTIDIMENSIONAL OBSTACLE PROBLEMS



Abstract. Using the methods of stochastic analysis, new type energy
estimates are obtained in the theory of variational inequalities, in particu-
lar, for obstacle problems. The derivation of these estimates is essentially
based on our previously obtained stochastic a priori estimates for Snell en-
velopes and on the connection between the optimal stopping problem and
a variational inequality. Using these results, energy estimates are obtained
for the solution of an obstacle problem when only the continuity is required
of the obstacle function g = g(x).

2000 Mathematics Subject Classification. 60G40, 35J85.
Key words and phrases: Variational inequality, Snell envelope, semi-

martingale, multidimensional diffusion process, optimal stopping problem.

��� ��� ��� � 	�
 �  �����  ��� � ��� � ����� ��� � � ����� � � � ��� 
 � ��� �  �� ! ������ � "#� � � $
� � � �&% � ��� � '#� ���(�� �������� � )��*)�� ����� �  �,+ ! � ��- ��.�/0.�� � ��! ����� � � �*� � ��$
'�� 
 � �  � 12�  ���3 � �  ��4���*� 
 � ��� 5�� �6 �� 3 
 � ! � )879� �� � "#� � � � � � � �6� � � ��: % � 
 � $
� � ��; % � 
�� ��� � � � )�� .<% � : ��.�
 ��� � )<; % � 
 ��� � � �=� � ��� � ���>�  ���3 � �  ��4�(� ? $
��� �����@�( � "#� � � � � � �6� 
 � ��� ��� ��� % ��� � )�� )�% � �&.��&! � %  � ���*��?  �� � � �������
� � ; � ��� � � �A� � ��'�� 
 � � �A.��A% � ��� � '#� �@�B�4 �������� � �A ����� � 7�� ��
 �  
 ���B � .�� $
� � � 5���.�� : ��.�
 ��� � ),% ��� � �@����� ),� 
 � ��� �  �� ! �@�C � "#� � � � � � ��.�� � ��! ����� � � �
� � ��'�� 
 � ��� � ��
 � � � 
 � � � )�% � � /�����.�� � � 'D.�� � ��! ����� � � �

g = g(x)
"@��
 3 '#� � �

� ��� )�� ��% � � �A� � ������.B�4E�: % �  ���� � 7



NEW TYPE ENERGY ESTIMATES 17

1. Introduction

We consider a probability space (Ω,F , P ) and an n-dimensional Wiener
process wt = (w1

t , . . . , w
n
t ) on it. Denote by Fw = (Fw

t )t≥0 the completed
filtration of the Wiener process.

Let D be a bounded domain in R
n with a smooth boundary (∂D ∈ C2).

Denote by σ(D) = inf{t ≥ 0 : wt∈D} the first time at which the Wiener
process wt leaves the domain D.

It is assumed that g = g(x) and c = c(x) are continuous functions: g(x),
c(x) ∈ C(D), and g(x) ≤ 0 when x ∈ ∂D .

Let us pose the following optimal stopping problem of the Wiener process
wt in the domain D:

S(x) = sup
τ∈m

Ex

(
g(wτ )I(τ<σ(D)) +

τ∧σ(D)∫

0

c(wt)dt

)
, (1.1)

where Px is the probability measure corresponding to the initial condition
w0(ω) = x and m is the class of all stopping times with respect to the
filtration Fw = (Fw

t )t≥0. We call the function g = g(x) the payoff function;
−c = −c(x) has the meaning of instantaneous cost of observation, and S(x)
is the value function of the optimal stopping problem.

The optimal stopping problem consists in finding a value function S(x)
and in defining the optimal stopping time τ∗ at which the supremum of this
problem (1.1) is achieved.

In [1, Ch. VII, §4], A. Bensoussan established a connection between
the optimal stopping problem and the corresponding variational inequality.
Below we give a brief account of A. Bensoussan’s main results.

Denote by H1(D) the first order Sobolev space of functions v = v(x)
defined on D, i.e.,

v ∈ L2(D),
∂v

∂xi
∈ L2(D), i = 1, . . . , n,

where
∂v

∂xi
, i = 1, . . . , n, are first order generalized derivatives of the func-

tion v. It is well known that if we introduce the scalar product

(u, v)H1(D) =

∫

D

u(x)v(x)dx +

n∑

i=1

∫

D

∂u(x)

∂xi

∂v(x)

∂xi
dx,

then the space H1(D) becomes a Hilbert space.
Denote by H1

0 (D) the subspace of the space H1(D) consisting of the
functions v = v(x) that are “equal to zero” on the boundary ∂D of the
domain D (in the sense of H1(D)).
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On the product H1
0 (D) ×H1

0 (D), consider the symmetric bilinear form
(i.e., the scalar product in H1

0 (D))

a(u, v) =
n∑

i=1

∫

D

∂u(x)

∂xi

∂v(x)

∂xi
dx.

Let us introduce the closed convex subset of the space H1
0 (D):

K = {v : v ∈ H1
0 (D), v(x) ≥ g(x)}. (1.2)

In the sequel it will always be assumed that K 6= ∅.
The variational inequality is formulated as follows:
Find a function u(x) ∈ K such that the inequality

a(u, v − u) ≥

∫

D

c(x)(v(x) − u(x))dx (1.3)

is fulfilled for any function v(x) ∈ K.
In [1, Ch. VII, Theorem 3.2], the fundamental result obtained by A.

Bensoussan asserts the existence and uniqueness of the solution of the vari-
ational inequality (1.3). Moreover, he established the fundamental connec-
tion between the optimal stopping problem and the corresponding varia-
tional inequality (see [1, Ch. VII, Theorem 4.1]). In particular, he showed
that

u(x) = S(x), x ∈ D. (1.4)

In [1, Ch. VII, Lemma 3.4], A. Bensoussan also showed that

sup
x∈D

|u2(x) − u1(x)| ≤ sup
x∈D

|g2(x) − g1(x)| (1.5)

holds, where the functions ui(x), i = 1, 2, represent the solution of the
variational inequality (1.3) for the obstacle function gi(x), i = 1, 2.

The aim of our present work is to give an answer to the following question:
does the uniform closeness of the obstacle functions g1(x) and g2(x) imply

in a certain sense the closeness of the partial derivatives ∂u1(x)
∂xi

, ∂u2(x)
∂xi

,

i = 1, . . . , n, of the respective solutions u1(x) and u2(x) of the variational
problem (1.3)?

We use the estimates from [3] and obtain new type energy estimates
formulated as follows.

Theorem I. Let gi(x), ci(x), i = 1, 2, be two initial pairs of the varia-
tional inequality (1.3). Then for the solution ui(x), i = 1, 2, of the problem
(1.3) the global estimate

∫

D

d2(x, ∂D)| grad(u2 − u1)(x)|2dx+

∫

D

(u2(x) − u1(x))2dx ≤

≤ C
[(

sup
x∈D

|g2(x) − g1(x)|+ sup
x∈D

|c2(x)− c1(x)|
)(

sup
x∈D

|g1(x)|+
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+ sup
x∈D

|c1(x)| + sup
x∈D

|g2(x)|+ sup
x∈D

|c2(x)|
)

+ (sup
x∈D

|c2(x)− c1(x)|)2
]

is valid, where d(x, ∂D) is the distance from the point x to the boundary
∂D, C is a constant depending on the dimension of the space R

n and on
the Lebesgue measure of D, i.e. C = C(n,mes(D)).

Theorem II. Let B ⊂ D be some smooth (∂B ∈ C2) domain. If gi(x),
ci(x), i = 1, 2, are two initial pairs of the variational inequality (1.3), then
for the solution ui(x), i = 1, 2, of the problem (1.3) the local energy estimate

∫

B

d2(x, ∂B)| grad(u2 − u1)(x)|2dx+

∫

B

(u2(x) − u1(x))2dx ≤

≤ C
[(

sup
x∈B

|g2(x) − g1(x)| + sup
x∈B

|c2(x) − c1(x)|
)
×

×
(

sup
x∈B
y∈∂B

|g1(x) − g1(y)|+ sup
x∈B
y∈∂B

|c1(x) − c1(y)|+ sup
x∈B
y∈∂B

|g2(x)− g2(y)|+

+ sup
x∈B
y∈∂B

|c2(x) − c2(y)|
)

+ (sup
x∈B

|c2(x)− c1(x)|)2 + sup
y∈∂B

(u2(y)− u1(y))2
]

is valid, where d(x, ∂B) is the distance from the point x to the boundary
∂B, C is the constant depending on the dimension of the space R

n and on
the Lebesgue measure of B, i.e. C = C(n,mes(B)).

2. Auxiliary Propositions

Let [0, T ] be a finite or an infinite time interval. Consider the space S2 of
the processes X = (Xt,F

w
t )0≤t≤T which are right continuous with left-hand

limits (cadlag in French terminology). The norm of this space is defined by

‖X‖S2 =
∥∥ sup

0≤t≤T
|Xt|

∥∥
L2
.

Consider the space H2 of the semimartingales X = (Xt,F
w
t )0≤t≤T which

are right continuous with left-hand limits. The norm of this space is defined
by

‖X‖H2 =

∥∥∥∥[m]
1/2
T +

T∫

0

|dAs|

∥∥∥∥
L2

,

where mt and At are the processes from the Doob-Meyer decomposition of
the semimartingale Xt = mt +At. For a fixed process X = (Xt,F

w
t )0≤t≤T

from the space S2, we consider the closed convex subset from S2

Q = {Vt : Vt ∈ S
2, Vt ≥ Xt, 0 ≤ t ≤ T, VT = XT }. (2.1)

The stochastic variational inequality is introduced as follows:
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Find an element Ut ∈ Q ∩ H2 such that for any element Vt ∈ K the
following inequality

E

( τ2∫

τ1

(Ut − Vt)dUt | F
w
τ1

)
≥ 0 (2.2)

holds for each pair τ1, τ2, 0 ≤ τ1 ≤ τ2 ≤ T of stopping times (the stochastic
integral is understood in the Itô sense). The question of the existence and
uniqueness of a solution of a stochastic variational inequality is studied in
[3], where in particular the following theorem is formulated.

Theorem 2.1 ([3, Theorem 2.1]). The stochastic variational inequality
has a unique solution Ut and this solution is “the Snell envelope” of the
process Xt (the minimal supermartingale that majorizes the random process
Xt). The solution Ut satisfies the relation

Ut = ess sup
τt≥t

E(Xτt | F
w
t ), (2.3)

where the supremum is taken with respect to the class of all stopping times
with values from the set [t, T ].

Consider the processes X1
t and X2

t from the space S2 and the correspon-
ding closed convex sets

Q1 = {V 1
t : V 1

t ∈ S2, V 1
t ≥ X1

t , 0 ≤ t ≤ T V 1
T = X1

T }

Q2 = {V 2
t : V 2

t ∈ S2, V 2
t ≥ X2

t , 0 ≤ t ≤ T V 2
T = X2

T }.

The following a priori stochastic estimate is valid.

Theorem 2.2 ([3, Theorem 2.3]). If the processes U 1
t and U2

t are solutions
of the stochastic variational inequality (1.3) for the processes X1

t and X2
t ,

respectively, then the following stochastic a priori estimate is valid:

E([U2 − U1]τ2
− [U2 − U1]τ1

) +E(U2
τ1
− U1

τ1
)2 ≤

≤ 4‖ sup
τ1<t<τ2

|X1
t −X2

t |‖L2

[
‖ sup

τ1≤t≤τ2

|X1
t −X1

τ2
| ‖L2+

+‖ sup
τ1≤t≤τ2

|X2
t −X2

τ2
| ‖L2

]
+E(U2

τ2
− U1

τ2
)2. (2.4)

In the sequel we will frequently make use of the following lemma proved
in [2, Ch. VI, Lemma 1.2].

Lemma 2.1. Let f(x) ∈ Lp/2(D), p > n. Then the following estimate
is valid:

sup
x∈D

Ex

σ(D)∫

0

|f(ws)|ds ≤ C‖f(x)‖Lp/2(D), (2.5)

where the constant C does not depend on the choice of the function f(x).
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Proof. Note that if f(x) = 1, then from the estimate (2.5) we obtain

sup
x∈D

Exσ(D) <∞ . (2.6)

Next, we introduce the notation w
σ(D)
t ≡ wt∧σ(D), t ≥ 0. Note that there

holds the following relation:

I(s<σ(D)) = χ
D

(wσ(D)
s ), (2.7)

where χD(x) is the characteristic function of the domain D.
Taking into account (2.7), we have

t∧σ(D)∫

0

c(ws)ds =

t∫

0

I(s<σ(D))c(ws)ds =

t∫

0

c(wσ(D)
s )ds,

where c(x) = c(x) · χD(x).

It is well-known [4, Ch. X, Theorem 10.3] that the process (w
σ(D)
t ,Ft, Px),

t ≥ 0, x ∈ D, is the standard Markov process.
Rewrite the optimal stopping problem (1.1) in terms of a standard Mar-

kov process (w
σ(D)
t ,Ft, Px), t ≥ 0 :

S(x) = sup
τ∈m

Ex

[
g(wσ(D)

τ ) +

τ∫

0

c(w
σ(D)
t )dt

]
, x ∈ D, (2.8)

where g(x) = g(x) · χD(x).
Note that

|g(wσ(D)
τ )| ≤ sup

x∈D
|g(x)| <∞

and
∞∫

0

|c(w
σ(D)
t )|dt =

σ(D)∫

0

|c(wt)|dt.

By virtue of Lemma 2.1,

sup
x∈D

Ex

σ(D)∫

0

|c(ws)|ds ≤ C‖c(x)‖L∞(D) <∞ .

Therefore the optimal stopping problem is defined correctly and S(x) is
a bounded function of the variable x:

sup
x∈D

|S(x)| <∞ .

Denote by f(x) the expression

f(x) = Ex

∞∫

0

c(w
σ(D)
t )dt = Ex

σ(D)∫

0

c(wt)dt. (2.9)
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By the strong Markovian property we have

Ex

( ∞∫

τ

c(w
σ(D)
t )dt|Fw

τ

)
= f(wσ(D)

τ ),

τ∫

0

c(w
σ(D)
t )dt = Ex

( ∞∫

0

c(w
σ(D)
t )dt|Fw

τ

)
− f(wσ(D)

τ ).

This allows us to rewrite the optimal stopping problem (2.8) as

S(x) = sup
τ∈m

Ex(g(wσ(D)
τ )− f(wσ(D)

τ ) + f(x)).

Therefore

S(x)− f(x) = sup
τ∈m

Ex[g(wσ(D)
τ )− f(wσ(D)

τ )]. (2.10)

The equality (2.10) and the general theory of optimal stopping of a stan-
dard Markov process (see [5, Ch. III, §3]) imply that the stochastic process

S(w
σ(D)
t ) − f(w

σ(D)
t ) is a minimal supermartingale (on the time interval

[0,∞)) that majorizes the process g(w
σ(D)
t )− f(w

σ(D)
t ). �

Lemma 2.2 (see [10, Lemma 2]). Let v(x) ∈W 2,p(D), p > n, W 2,p(D)

be a Sobolev space. Then for the process v(w
σ(D)
t ), the Itô formula

v(wt∧σ(D)) = v(x) +

t∧σ(D)∫

0

grad v(ws)dws +

t∧σ(D)∫

0

∆v(ws)ds, t ≥ 0, (2.11)

holds true, where ∆ denotes the 1
2 multiplied by the Laplace operator.

Proof. Consider a sequence vn(x) from the space C2(D) such that

‖vn(x)− v(x)‖w2,p(D) → 0 for n→∞ .

Write the Itô formula for the process vn(wt∧σ(D)) in the form

vn(wt∧σ(D)) = vn(x) +

t∧σ(D)∫

0

∆vn(ws)ds+

t∧σ(D)∫

0

grad vn(ws)dws. (2.12)

Consider the expressions

Ex

σ(D)∫

0

|∆v(ws)|ds, Ex

σ(D)∫

0

| grad v(ws)|
2ds.

By virtue of Lemma 2.1, we have

Ex

σ(D)∫

0

|∆v(ws)|ds ≤ C‖∆v(x)‖Lp/2(D) ≤ C1‖v(x)‖W 2,p(D) <∞,
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Ex

σ(D)∫

0

| grad v(ws)|
2ds ≤ C‖ grad v(x)|2‖Lp/2(D) =

= C‖ grad v(x)‖2
Lp(D) ≤ C1‖v(x)‖

2
W 2,p(D) <∞.

Hence it follows that the process
∫ t∧σ(D)

0 grad v(ws)dws is a square in-

tegrable martingale, while the process
∫ t∧σ(D)

0 ∆v(ws)ds is a process with
integrable variation.

Analogously to the estimates obtained above, we have

Ex

t∧σ(D)∫

0

|∆vn(ws)−∆v(ws)|ds ≤ C‖∆vn(x) −∆v(x)‖Lp/2(D) ≤

≤ C1‖vn(x)− v(x)‖W 2,p/2(D).

Ex

∣∣∣∣

t∧σ(D)∫

0

(grad vn(ws)− grad v(ws))dws

∣∣∣∣
2

≤

≤ Ex

t∧σ(D)∫

0

| grad vn(ws)− grad v(ws)|
2ds ≤

≤ C‖ | grad(vn(x) − v(x))|2‖Lp/2(D) = C‖ | grad(vn(x) − v(x))| ‖2
Lp(D) ≤

≤ C1‖vn(x)− v(x)‖2
W 2,p(D).

Thus, passing to the limit in the equality (2.12) as n → ∞ and taking
into account that by virtue of the well-known Sobolev lemma (see [6, §7.7])

sup
x∈D

|vn(x) − v(x)| → 0 as n→∞,

we obtain the validity of the equality given in Lemma 2.2. �

Lemma 2.3 (see [10, Lemma 3]). The function f(x) = Ex

∫ σ(D)

0
c(ws)ds

belongs to the Sobolev space W 2,p(D), ∀p > n, and the equality

f(wt∧σ(D)) = f(x) +

t∧σ(D)∫

0

gradf(ws)dws +

t∧σ(D)∫

0

(−c(ws))ds, t ≥ 0,

is valid.

Proof. We have c(x) ∈ C(D). Therefore c(x) ∈ Lp(D), ∀p > n.
Consider the following problem: find v(x) ∈ W 2,p(D) such that

∆v(x) = −c(x), x ∈ D, a.e.,

v(x) = 0 x ∈ ∂D.
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In [6, Ch. IX, Theorem 9.15) it is shown that this problem has a unique
solution v(x) ∈ W 2,p(D). Applying Lemma 2.2 to the latter function, we
have

v(wt∧σ(D)) = v(x) +

t∧σ(D)∫

0

grad v(ws)dws +

t∧σ(D)∫

0

∆v(ws)ds, t ≥ 0.

Passing to the limit in both sides of the equality as t→∞, we obtain

0 = v(x) +

σ(D)∫

0

grad v(ws)dws +

σ(D)∫

0

∆v(ws)ds.

The formulation of the problem clearly implies that

σ(D)∫

0

∆v(ws)ds = −

σ(D)∫

0

c(ws)ds.

Taking the mathematical expectation of both sides of this equality, we
obtain

v(x) = Ex

σ(D)∫

0

c(ws)ds = f(x).

Thus we have shown that f(x) = v(x). �

3. Proof of A Priori Estimates for the Obstacle Problem

Recall thatD is a bounded domain with the smooth boundary (∂D ∈ C2)

in R
n. Consider a domain D̃ in R

n such that D ⊂ D̃. Assume that D̃ is a
bounded domain with the smooth boundary (∂D̃ ∈ C2).

In §1 we have introduced the continuous function g(x) on the set D. It is
well known (Tietze’s theorem) that there exists a continuous function g̃(x)

on the domain D̃ such that g̃(x) = g(x) when x ∈ D.
We define the averaged function g̃h(x) of the function g̃(x) by the follow-

ing rule: for the function g̃(x) and h > 0

g̃
h
(x) = h−n

∫

D̃

ρ
(x− y

h

)
g̃(y)dy, (3.1)

where ρ(x) is a non-negative function from the space C∞(Rn), equal to zero
outside the unit ball B1(0), and satisfies the condition

∫
ρ(x)dx = 1.

It is well known (see [6, Ch. VII, §2]) that the function g̃h(x) belongs
to the space C∞0 (Rn) and, moreover, on the set D there holds the uniform
convergence

sup
x∈D

|g̃
h
(x)− g(x)| → 0 as h→ 0. (3.2)
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Denote by gh(x) the restriction of the function g̃h(x) on D. It is clear
that gh(x) ∈ C2(D).

By virtue of (3.2), for every m there exists hm such that ghm(x) − 1
m ≤

g(x) ≤ ghm(x) + 1
m . Let us introduce the notation ghm(x) − 1

m ≡ gm(x).

Then gm(x) ≤ g(x) ≤ gm(x) + 2
m , i.e. sup

x∈D
|gm(x) − g(x)| ≤ 2

m → 0 as

m→∞.
For the payoff function gm(x), we formulate in the domainD the following

optimal stopping problem of the Wiener process wt:

Sm(x) = sup
τ∈m

Ex

(
gm(wτ ) · I(τ<σ(D)) +

τ∧σ(D)∫

0

c(wt)dt

)
, (3.3)

where Px is the probability measure corresponding to the initial condition
w0(ω) = x, and m is the class of all stopping times with respect to the
filtration Fw = (Fw

t )t≥0.
The optimal stopping problem (3.3) can be rewritten in terms of the

standard Markov process (w
σ(D)
t ,Fw

t , Px) as

Sm(x) = sup
τ∈m

EX

(
gm(wσ(D)

τ ) +

τ∫

0

c(wσ(D)
τ ) dt

)
, (3.4)

where gm(x) = gm(x) · χD(x) and c(x) = c(x) · χD(x).
Let us consider the following obstacle problem: given the initial data

gm(x) ∈ W 2,p(D), c(x) ∈ Lp(D), p > n, gm(x) ≤ 0 as x ∈ ∂D, find
um(x) ∈ W 2,p(D) such that

{
∆um(x) + c(x) ≤ 0 um(x) ≥ gm(x),

(∆um(x) + c(x))(um(x) − gm(x)) = 0.
(3.5)

It is known (see [1, Ch. VII, Theorem 2.2]), that the problem (3.5) has a
unique solution um(x) ∈ W 2,p(D), ∀p > n, and this solution coincides with
the solution of the corresponding variational inequality (1.3) (see [1, Ch.
VII, Remark 3.1]). It is also known (see [1, Ch. VII, Theorem 4.1]) that
the solution um(x) of the obstacle problem (3.5) coincides with the value
function

um(x) = Sm(x) (3.6)

of the optimal stopping problem (3.3).
Note that by virtue of the equality (2.10) the stochastic process

um(w
σ(D)
t ) − f(w

σ(D)
t ) is a minimal supermartingale (on the time interval

[0,∞)) that majorizes the process gm(w
σ(D)
t )− f(w

σ(D)
t ).

Now we proceed to proving the main theorems of this paper.

Theorem 3.1. Let gi(x), ci(x), i = 1, 2, be two initial pairs of the
variational inequality (1.3) such that gi(x), ci(x) ∈ C(D), gi(x) ≤ 0, x ∈
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∂D and Ki 6= ∅, i = 1, 2. Then for the solution ui(x), i = 1, 2, of the
problem (1.2), (1.3) there holds the following global energy estimate:

∫

D

d2(x, ∂D)| grad(u2 − u1)(x)|2dx+

∫

D

(u2(x) − u′(x))2dx ≤

≤ C
[(

sup
x∈D

|g2(x) − g1(x)| + sup
x∈D

|c2(x) − c1(x)|
)
×

×
(
(sup
x∈D

|g1(x)| + sup
x∈D

|c1(x)|)+

+(sup
x∈D

|g2(x)|+ sup
x∈D

|c2(x)|)
)

+ (sup
x∈D

|c2(x) − c1(x)|)2
]
,

where d(x, ∂D) is the distance from the point x to the boundary ∂D, C is a
constant depending on the dimension of the space R

n and on the Lebesgue
measure of D.

Proof. The main tool of proving the above estimate is the general semi-
martingale inequality for the “Snell envelope” used in Theorem 2.2.

Since the processes ui
m(w

σ(D)
t ) − f i(w

σ(D)
t ), i = 1, 2, are Snell enve-

lopes for the processes g i
m(w

σ(D)
t ) − f i(w

σ(D)
t ), i = 1, 2, the processes

ui
m(w

σ(D)
t )−f i(w

σ(D)
t ) are solutions of the stochastic variational inequality

(2.1), (2.2).
By virtue of Lemmas 2.2 and 2.3, we can apply the Itô formula to the

processes ui
m(w

σ(D)
t )− f i(w

σ(D)
t ). As a result, we obtain

[
(u2

m − u1
m)(wσ(D))− (f2 − f1)(wσ(D))

]
σ(D)

−

−
[
(u2

m − u1
m)(wσ(D))− (f2 − f1)(wσ(D))

]
0

=

=

σ(D)∫

0

| grad[(u2
m − u1

m)− (f2 − f1)](wt)|
2dt.

Further, we use the result obtained in Theorem 2.2. Since the stopping
times τ1(ω) and τ2(ω) in the estimate (2.4) are arbitrary, we can write
τ1(ω) = 0 and τ2(ω) = σ(D). Note that g i

m(x) = 0, x ∈ ∂D, and f i(x) = 0
when x ∈ ∂D.

Therefore, by virtue of the estimate (2.4), we obtain

Ex

σ(D)∫

0

| grad[(u2
m − u1

m)− (f2 − f1)](wt)|
2dt+

+ [(u2
m(x) − u1

m(x)) − (f2(x) − f1(x))]2 ≤

≤ 4 sup
x∈D

|(g 2
m(x)− g 1

m(x)) − (f2(x)− f1(x))|×

×
[
sup
x∈D

|g 1
m(x) − f1(x)|+ sup

x∈D
|g 2

m(x) − f2(x)|
]
. (3.7)
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As is known (see [8, Ch. II, §7]), for every continuous function ψ(x) we
have

Ex

σ(D)∫

0

ψ(ws)ds =

∫

D

GD(x, y)ψ(y)dy, (3.8)

where GD(x, y) is the Green function. As is also known (see [4, Ch. XIV,
§1]), the Green function GD(x, y) is symmetric with respect to the variables
x, y:

GD(x, y) = GD(y, x), x, y ∈ D. (3.9)

The equality (3.8) implies that if ψ(x) = 1, then

Exσ(D) =

∫

D

GD(x, y)dy =

∫

D

GD(y, x)dy. (3.10)

Consider the expression
∫

D

ψ(y)GD(x, y)dy.

Due to the symmetry of the Green function, we have
∫

D

ψ(y)GD(x, y)dy =

∫

D

ψ(y)GD(y, x)dy. (3.11)

Integrating both sides of the equality (3.11) with respect to the initial
point x and applying the Fubini theorem, we obtain

∫

D

∫

D

ψ(y)GD(x, y)dydx =

∫

D

∫

D

ψ(y)GD(y, x)dydx =

=

∫

D

ψ(y)

∫

D

GD(y, x)dxdy =

∫

D

ψ(y)Eyσ(D)dy. (3.12)

Consider the first summand on the left-hand side of (3.7):

Im ≡ Ex

σ(D)∫

0

| grad[(u2
m − u1

m)− (f2 − f1)](wt)|
2dt.

By virtue of (3.8), we obtain

Im =

∫

D

GD(x, y)| grad[(u2
m − u1

m)− (f2 − f1)](y)|2dy.

Thus the inequality (3.7) takes the form
∫

D

GD(x, y) grad[(u2
m − u1

m)− (f2 − f1)](y)|2dy+

+[(u2
m(x)−u1

m(x))− (f2(x) − f1(x))]2≤
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≤ 4 sup
x∈D

|(g 2
m(x)−g 1

m(x))−(f2(x)− f1(x))|×

×
[
sup
x∈D

|g 1
m(x) − f1(x)|+ sup

x∈D
|g 2

m(x) − f2(x)|
]
. (3.13)

If we integrate both sides of (3.13) with respect to the initial point x and
take into account (3.12), then we have

∫

D

Exσ(D) grad[(u2
m − u1

m)− (f2 − f1)](x)|2dx+

+

∫

D

[(u2
m(x) − u1

m(x))− (f2(x) − f1(x))]2dx ≤

≤ 4 mes(D) sup
x∈D

|(g 2
m(x)− g 1

m(x)) − (f2(x)− f1(x))|×

×[sup
x∈D

|g 1
m(x) − f1(x)|+ sup

x∈D
|g 2

m(x) − f2(x)|]. (3.14)

Let us consider an arbitrary point x from the domain D. We denote
by B(d(x)) the ball with center at the point x and radius r = d(x), where
d(x) denotes the distance from the point x to the boundary ∂D, d(x) =
dist(x, ∂D). Note that

σ(D) ≥ σ(B(d(x))).

Hence we have

Exσ(D) ≥ Exσ(B(d(x))). (3.15)

It is known that ([9, Ch. II, §2])

Exσ(B(x, r)) =
1

n
r2, (3.16)

where B(x, r) is the ball with center at the point x and radius r. By virtue
of (3.15) and (3.16), we have

Exσ(D) ≥
1

n
r2 =

1

n
d2(x). (3.17)

Note that according to Lemma 2.3, the function f 2(x) − f1(x) satisfies
the differential equation

∆(f2 − f1)(x) = −(c2 − c1)(x), x ∈ D. (3.18)

Multiplying both sides of (3.18) by the function (f 2 − f1)(x) and inte-
grating on the domain D, we obtain
∫

D

(f2 − f1)(x)∆(f2 − f1)(x)dx = −

∫

D

(c2 − c1)(x)(f2 − f1)(x)dx. (3.19)

By virtue of the Green formula,
∫

D

(f2 − f1)(x)∆(f2 − f1)(x)dx = −

∫

D

| grad(f2 − f1(x))|2dx. (3.20)
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Consider the first summand on the left-hand side of the inequality (3.14)

I1
m ≡

∫

D

Exσ(D)| grad[(u2
m − u1

m)− (f2 − f1)](x)|2dx.

Taking into account the inequality (3.17), we obtain

I1
m ≥

1

2n

∫

D

d2(x, ∂D)| grad(u2
m − u1

m)(x)|2dx−

−
1

n

∫

D

d2(x, ∂D)| grad(f2 − f1)(x)|2dx.

Taking into account the inequalities (3.19), (3.20), we obtain

I1
m ≥

1

2n

∫

D

d2(x, ∂D)| grad(u2
m − u1

m)(x)|2dx−

−
d2
1

n

∫

D

(c2 − c1)(x)(f2 − f1)(x)dx, (3.21)

where d1 = max
x,y∈D

ρ1(x, y) (ρ1(x, y) denotes the distance in the space R
n).

By virtue of (3.21), the inequality (3.14) implies
∫

D

d2(x, ∂D)| grad(u2
m − u1

m)(x)|2dx+

∫

D

(u2
m(x)− u1

m(x))2dx ≤

≤ C

[
sup
x∈D

|(g 2
m(x)− g 1

m(x))− (f2(x)− f1(x))|×

×[sup
x∈D

|g 1
m(x)− f1(x)| + sup

x∈D
|g 2

m(x) − f2(x)|]+

+ d2
1

∫

D

(c2 − c1)(x)(f2 − f1)(x)dx +

∫

D

(f2(x) − f1(x))2dx

]
. (3.22)

Note that

sup
x∈D

|g 2
m(x)− g 1

m(x)| = sup
x∈D

|g2
m(x)− g1

m(x)|.

By Lemma 2.1,

sup
x∈D

|g i
m(x)− f i(x)| ≤ sup

x∈D
|gm(x)| + sup

x∈D
|f i(x)| ≤

≤ sup
x∈D

|g i
m(x)|+ C1|c

i(x)|, i = 1, 2,

∫

D

(f2(x) − f1(x))2dx ≤ C2 mes(D)(sup
x∈D

|c2(x) − c1(x)|)2,

d2
1

∫

D

(c2 − c1)(x) · (f2 − f1)(x)dx ≤ d2
1 mes(D) · C3

(
sup
x∈D

|c2(x) − c1(x)|
)2
.
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Hence the inequality (3.22) implies
∫

D

d2(x, ∂D)| grad(u2
m − u1

m)(x)|2dx+

∫

D

(u2
m(x)− u1

m(x))2dx ≤

≤ C
[(

sup
x∈D

|(g 2
m(x) − g 1

m(x)| + sup
x∈D

|c2(x) − c1(x)|
)
×

×
(

sup
x∈D

|g 1
m(x)| + sup

x∈D
|c1(x)|+ sup

x∈D
|g 2

m(x)|+

+ sup
x∈D

|c2(x)|
)

+ (sup
x∈D

|c2(x) − c1(x)|)2
]
. (3.23)

Note that

sup
x∈D

|g i
m(x)− gi(x)| → 0, m→∞, i = 1, 2, (3.24)

gi
m(x) ≤ gi(x) ≤ gi

m(x) +
2

m
, i = 1, 2. (3.25)

Let us now show that functions ui
m(x) are weakly convergent to a solution

ui(x), i = 1, 2, of the variational inequality (1.3) for the obstacle functions
gi(x).

Since by virtue of (1.2) the defined sets K i, i = 1, 2, are nonempty, there
exist functions vi

0 ∈ K
i such that vi

0(x) ∈ H
1
0 (D) and vi

0(x) ≥ gi(x), i = 1, 2.
Let us consider the closed convex sets (3.26)

Ki
m = {vi(x) : vi(x) ∈ H1

0 (D), vi(x) ≥ gi
m(x) a.e.} (3.26)

for eachm, m = 1, 2, . . . , it follows from (3.25) that K i ⊆ Ki
m, m = 1, 2, . . . .

Let us consider the following problem that corresponds to the problem
(1.3): find ui

m(x) ∈ Ki
m such that for any function vi(x) ∈ Ki

m the inequal-
ity

a(ui
m, v

i − ui
m) ≥

∫

D

ci(x)(vi(x)− ui
m(x))dx, i = 1, 2, (3.27)

is valid.
We know that the problem (3.26), (3.27) has a unique solution. If instead

of the functions vi(x) we take the functions vi
0(x) ∈ Ki

m, m = 1, 2, . . . ,
i = 1, 2, we will have

a(ui
m, v

i
0 − ui

m) ≥

∫

D

ci(x)(vi
0(x) − ui

m(x))dx, i = 1, 2,

‖ui
m‖

2
H1

0
(D) = a(ui

m, u
i
m) ≤ a(ui

m, v
i
0) +

∫

D

ci(x)(vi
0(x)−u

i
m(x))dx, i = 1, 2.

From these formulas it follows that

‖ui
m‖H1

0
(D) ≤ C̃.

Let us show that the sequence ui
m(x) is weakly convergent to the solution

ui(x), i = 1, 2, of the problem (1.3). Consider some weakly convergent
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subsequences ui
mk

(x), i = 1, 2, of the sequences ui
m(x), i = 1, 2. Denote

their limit by ûi(x) ∈ H1
0 (D), i = 1, 2, respectively.

Note that ui
mk

(x) is a solution of the problem (3.26), (3.27) for the re-

spective obstacle functions gi
mk

(x).

Let us show that the functions ûi(x), i = 1, 2, are solutions of the problem
(1.3). Indeed for every function vi(x) ∈ Ki ⊆ Ki

mk
we have

a(ui
mk
, vi − ui

mk
) ≥

∫

D

ci(x)(vi(x)− ui
mk

(x))dx, i = 1, 2, (3.28)

which implies

a(ui
mk
, vi) ≥ a(ui

mk
, ui

mk
) +

∫

D

ci(x)(v(x) − umk
(x))dx, i = 1, 2.

Note that the quadratic form a(u, u) is weakly lower semicontinuous.
Passing to the limit as k →∞, we obtain

a(ûi, vi − ûi) ≥

∫

D

ci(x)(vi(x) − ûi(x))dx, i = 1, 2.

Now let us show that ûi(x) ∈ Ki, i = 1, 2.
Since ui

mk
, i = 1, 2, are the solutions of the problem (3.26), (3.27) for the

obstacle functions gi
mk

(x), i = 1, 2, respectively, we conclude that ui
mk

(x) ≥

gi
mk

(x) a. e.

From (3.25) we obtain ui
mk

(x)+ 2
mk

≥ gi(x), i = 1, 2. Therefore ui
mk

(x)+
2

mk
∈ K̃i, i = 1, 2, where

K̃i = {vi(x) : vi(x) ∈ H1(D), vi(x) ≥ gi(x) a.e.}.

Moreover, ui
mk

(x) + 2
mk

is weakly convergent to the functions ûi(x). Since
in the Hilbert space a closed convex set is weakly closed, we conclude that

ûi(x) ∈ K̃i. But ûi(x) ∈ H1
0 (D) and therefore ûi(x) ∈ Ki, i = 1, 2.

By virtue of the uniqueness of the solution of the problem (1.3), we have
ûi(x) = ui(x), i = 1, 2. We have thus shown that the entire sequence ui

m(x),
i = 1, 2, is weakly convergent to the function ui(x), i = 1, 2.

Denote by ã(u, v) the following bilinear form:

ã(u, v) =

∫

D

d2(x, ∂D) gradu(x) grad v(x)dx +

∫

D

u(x)v(x)dx. (3.29)

It is easy to verify that the quadratic form ã(u, u) is weakly lower semi-
continuous. Since ui

m(x) is weakly convergent to the function ui(x), i = 1, 2,
in H1

0 (D), we have

lim
m→∞

ã(ui
m, u

i
m) ≥ ã(ui, ui), i = 1, 2.
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Recall that sup
x∈D

|g i
m(x) − gi(x)| → 0 as m → ∞, i = 1, 2. Hence if in the

inequality (3.23) we pass to limit when m → ∞, we complete the proof of
the theorem. �

Now let us prove the theorem on local energy estimates for the domain
B ⊂ D. Assume that the boundary ∂B of the domain B is smooth (∂B ∈
C2).

Theorem 3.2. Let B ⊂ D be a smooth (∂B ∈ C2) domain. If gi(x),
ci(x), i = 1, 2, are two initial pairs of the variational inequality (1.3) such
that gi(x), ci(x) ∈ C(D), gi(x) ≤ 0, x ∈ ∂D, and Ki 6= ∅, i = 1, 2, then
for the solution ui(x), i = 1, 2, of the problem (1.2), (1.3) the following local
energy estimate is valid:

∫

B

d2(x, ∂B)| grad(u2 − u1)(x)|2dx+

∫

B

(u2(x) − u1(x))2dx ≤

≤ C

[
(sup
x∈B

|g2(x) − g1(x)|+ sup
x∈B

|c2(x)− c1(x)|)×

×( sup
x∈B
y∈∂B

|g1(x)− g1(y)|+ sup
x∈B
y∈∂B

|c1(x) − c1(y)|+ sup
x∈B
y∈∂B

|g2(x) − g2(y)|+

+ sup
x∈B
y∈∂B

|c2(x) − c2(y)|) + (sup
x∈B

|c2(x)− c1(x)|)2 + sup
y∈∂B

(u2(y)− u1(y))2
]
.

where d(x, ∂B) is the distance from the point x to the boundary ∂B of the
domain B, C is a constant depending on the dimension of the space R

n and
on the measure of the domain B.

Proof. By virtue of the estimate (2.4), analogously to the inequality (3.7),
we obtain

Ex

σ(B)∫

0

| grad[(u2
m − u1

m)− (f2 − f1)](wt)|
2dt+ [(u2

m(x) − u1
m(x))−

−(f2(x)− f1(x))]2 ≤ 4 sup
x∈B

|(g2
m(x) − g1

m(x)) − (f2(x) − f1(x))|×

×

[
sup
x∈B
y∈∂B

|(g1
m(x) − g1

m(y))− (f1(x)− f1(y))|+

+ sup
x∈B
y∈∂B

|(g2
m(x)− g2

m(y))− (f2(x)− f2(y))|

]
+

+ sup
y∈∂B

[
(u2

m(y)− u1
m(y))− (f2(y)− f1(y))

]2

. (3.30)
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Analogously to the inequality (3.23), the estimate (3.30) implies
∫

B

d2(x, ∂B)| grad(u2
m − u1

m)(x)|2dx+

∫

B

(u2
m(x)− u1

m(x))2dx ≤

≤ C

[(
sup
x∈B

|(g2
m(x)− g1

m(x)|+ sup
x∈B

|c2(x)− c1(x)|
)
×

×
(

sup
x∈B
y∈∂B

|g1
m(x)− g1

m(y)|+ sup
x∈B
y∈∂B

|c1(x)− c1(y)|+

+ sup
x∈B
y∈∂B

|g2
m(x) − g2

m(y)|+ sup
x∈B
y∈∂B

|c2(x) − c2(y)|
)
+

+(sup
x∈B

|c2(x) − c1(x)|)2 + sup
y∈∂B

(u2
m(y)− u1

m(y))2
]
. (3.31)

Since the functions gi
m(x) are uniformly convergent to the function gi(x),

i = 1, 2, on arbitrary subset of the domain D we have

sup
x∈B

|gi
m(x)− gi(x)| → 0 as m→∞, i = 1, 2.

In Theorem 3.1 it is shown that the functions ui
m(x), i = 1, 2, are re-

spectively weakly convergent to the solutions ui(x), i = 1, 2, of the problem
(1.3) and that

lim
m→∞

ã(ui
m, u

i
m) ≥ ã(ui, ui), i = 1, 2,

where the form ã(u, v) is defined by the expression (3.29).
Hence, denoting the constant C in the inequality (3.31) by the symbol

C, we complete the proof of the theorem. �

Remark 3.1. Let K be a compact set from the domain D, K ⊂ D. If
gi(x), ci(x), i = 1, 2, is an initial pair of the variational inequality (1.3) such
that gi(x), ci(x) ∈ C(D), gi(x) ≤ 0, x ∈ ∂D, and Ki 6= ∅, i = 1, 2, then for
the respective solutions ui(x), i = 1, 2, of the problem (1.3) the following
estimate is valid:

∫

K

| grad(u2 − u1)(x)|2dx+

∫

K

|(u2(x) − u1(x))2dx ≤

≤ C

[(
sup
x∈D

|g2(x)− g1(x)| + sup
x∈D

|c2(x) − c1(x)|

) (
sup
x∈D

|g1(x)|+

+ sup
x∈D

|c1(x)|+ sup
x∈D

|g2(x)| + sup
x∈D

|c2(x)|

)
+

(
sup
x∈D

|c2(x)− c1(x)|

)2
]
.

The proof immediately follows from Theorem 3.1. Note that here the
constant C becomes dependant on the distance from the compact set K to
the boundary of the domain D.
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