
Mem. Differential Equations Math. Phys. 31(2004), 139–144

M. Ashordia

ON LYAPUNOV STABILITY OF A CLASS OF LINEAR SYSTEMS OF
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS AND

LINEAR IMPULSIVE SYSTEMS

(Reported on September 29, 2003)

In this paper necessary and sufficient conditions are given for the stability in Lyapunov
sense of solutions of a linear system of generalized ordinary differential equations

dx(t) = dA(t) · x(t) + df(t) for t ∈ R+ , (1)

where A : R+ → Rn×n and f : R+ → Rn (R+ = [0,+∞)) are, respectively, matrix and
vector-functions with bounded total variation components on every closed interval from
R+, having defined properties analogously to the case of constant coefficients.

The results are realized for the linear impulsive system

dx

dt
= Q(t)x + q(t) for t ∈ R+ , (2)

x(tk+)− x(tk−) = Gk x(tk−) + g
k

(k = 1, 2, . . . ), (3)

where Q : R+ → Rn×n and q : R+ → Rn are, respectively, matrix - and vector-functions
with Lebesgue integrable components on every closed interval from R+, Gk ∈ Rn×n

(k = 1, 2, . . . ), g
k
∈ Rn (k = 1, 2, . . . ), 0 < t1 < t2 < · · · , lim

k→+∞
tk = +∞.

Analogous results are given, for example, in [1], [2] for systems of linear ordinary
differential equations.

We use the following notation and definitions.
R =]−∞,+∞[, [a, b] (a, b ∈ R) is a closed interval from R, [t] is the integral part of

t ∈ R.
C is the space of all complex numbers.
Rn×m (Cn×m) is the set of all real (complex) n×m matrices X = (xij )n,m

i,j=1.

If X ∈ Cn×n, then X−1, ln X, det X and r(X) are, respectively, the matrix, inverse
to X, the logarithm (the principle value), the determinant and the spectral radius of X.

diag(X1, . . . , Xm), where Xi ∈ C
n

i
×n

i (i = 1, . . . , m), n
1

+ · · · + nm = n, is a quasi-
diagonal n× n-matrix; In is the identity n× n-matrix; δij is the Kronecker symbol, i.e.,
δii = 1 and δij = 0 for i 6= j (i, j = 1, 2, . . . ); Zn = (δi+1 j )

n
i,j=1.

Rn = Rn×1 is the space of all real column n-vectors x = (x
i
)n
i=1.

If X : R+ → Rn×m is a matrix-function, then
b

V
a
(X) is the sum of total variations on

[a, b] ⊂ R+ of its components x
ij

(i = 1, . . . , n; j = 1, . . . ,m).

X(t−) and X(t+) are the left and the right limits at the point t ∈ R+ (X(0−) = X(0));
d1X(t) = X(t) − X(t−), d2X(t) = X(t+) − X(t); S0(X)(t) = X(t) −

∑
0<τ≤t

d1x(t) −

∑
0≤τ<t

d2X(t) is the continuous part of the matrix-function X : R+ → Rn×m.
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BVloc(R+; Rn×m) is the set of all matrix-functions X : R+ → Rn×m for which
b

V
a
(X) < ∞ for a, b ∈ R+ .

Lloc(R+; Rn×m) is the set of all matrix-functions X : R+ → Rn×m the components
of which are the functions measurable and integrable in Lebesgue sense on every closed
interval from R+ .

C̃loc(R+; Rn×m) is the set of all matrix-functions X : R+ → Rn×m the components
of which are the functions absolutely continuous on every closed interval from R+;

C̃loc(R+\{tk}
∞
k=1; Rn×m), where 0 < t1 < t2 < . . . , is the set of all matrix-functions

X : R+ → Rn×m the restrictions of which on the arbitrary closed interval from
R+\{tk}

∞
k=1 are absolutely continuous functions.

If g : R+ → R+ is a nondecreasing function, x : R+ → R and 0 ≤ s < t < ∞, then

t∫

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ) d1 g(τ) +
∑

s≤τ<t

x(τ) d2 g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue-Stiltjes integral over the open interval ]s, t[ with

respect to the measure corresponding to the function s0(g)
(
if s = t, then

t∫
s

x(τ) dg(τ) =

0
)
; if g(t) ≡ g

1
(t) − g

2
(t), where g

1
and g

2
are nondecreasing functions, then

t∫

s

x(τ) dg(τ) =

t∫

s

x(τ) dg
1
(τ) −

t∫

s

x(τ) dg
2
(τ).

If G = (g
ik

)l,n

i,k=1 ∈ BVloc(R+; Rl×n) and X = (x
kj

)n,m

k,j=1 : R+ → Rn×m, then

t∫

s

dG(τ) ·X(τ) =

( n∑

k=1

t∫

s

x
kj

(τ) dg
ik

(τ)

)l.m

i,j=1

for 0 ≤ s ≤ t < ∞.

Under a solution of the system (1) we understand a vector-function x ∈ BVloc(R+; Rn)
such that

x(t) − x(s) =

t∫

s

dA(τ) · x(τ) + f(t) − f(s) for 0 ≤ s ≤ t < ∞.

We assume that A ∈ BVloc(R+; Rn×n), A(0) = On×n, f ∈ BVloc(R+; Rn) and

det
(
In + (−1)jdjA(t)

)
6= 0 for t ∈ R+ (j = 1, 2). (4)

The stability in this or another sense of the solution of the system (1) is defined just in
the same way as for systems of ordinary differential equations (see [1], [2]).

Definition 1. The system (1) is called stable in this or another sense if every its
solution is stable in the same sense.

It is evident that the system (1) is stable if and only if the zero solution of its corre-
sponding homogeneous system

dx(t) = dA(t) · x(t) for t ∈ R+ (10)

is stable in the same sense.
Therefore, the stability is not the property of some solution of the system (1). It is the

common property of all solutions and the vector-function f does not affect this property.
Hence it is the property only of the matrix-function A. Thus the following definition is
natural.

Definition 2. The matrix-function A is called stable in this or another sense if the
system (10) is stable in the same sense.



141

Theorem 1. Let the matrix-function A ∈ BVloc(R+; Rn×n) be such that

S0(A)(t) =
m∑

l=1

s0(αl
)(t) ·Bl for t ∈ R+

and

In + (−1)jdjA(t) = exp

(
(−1)j

m∑

l=1

djα
l
(t) ·Bl

)
for t ∈ R+ (j = 1, 2),

where Bl ∈ Rn×n (l = 1, . . . , m) are pairwise permutable constant matrices, and α
l
∈

BVloc(R+; R+) (l = 1, . . . , m) are such that

lim
t→+∞

α
l
(t) = +∞ (l = 1, . . . ,m). (5)

Then: a) the matrix-function A is stable if and only if every eigenvalue of the matrices

Bl (l = 1, . . . , m) has the nonpositive real part and, in addition, every elementary divisor

corresponding to the eigenvalue with the zero real part is simple; b) the matrix-function A

is asymptotically stable if and only if every eigenvalue of the matrices Bl (l = 1, . . . ,m)
has the negative real part.

If the matrix-function A ∈ BVloc(R+; Rn×n) has at most a finite number of disconti-
nuity points in [0, t] for every t > 0, then by ν

1
(t) and ν

2
(t) we denote, respectively, the

number of points τ ∈]0, t] for which ‖d1A(t)‖ 6= 0 and the number of points τ ∈ [0, t[ for
which ‖d2A(t)‖ 6= 0.

Corollary 1. Let A ∈ BVloc(R+; Rn×n) be such that S0(A)(t) ≡ α(t)A0 and djA(t) =
Aj if ‖djA(t)‖ 6= 0 (t ∈ R+; j = 1, 2), where α ∈ BVloc(R+; R+) is a continuous

function such that

lim
t→+∞

α(t) = +∞,

and A0, A1, A2 ∈ Rn×n are pairwise permutable constant matrices. Let, moreover, there

exist numbers β1, β2 ∈ R+ such that

lim
t→+∞

sup
∣∣ν

j
(t) − βj α(t)

∣∣ < +∞ (j = 1, 2).

Then: a) the matrix-function A is stable if and only if every eigenvalue of the matrix

P = A0 − β1 ln(In −A1) + β2 ln(In + A2) has the nonpositive real part and, in addition,

every elementary divisor corresponding to the eigenvalue with the zero real part is simple;

b) the matrix-function A is asymptotically stable if and only if every eigenvalue of the

matrix P has the negative real part.

Corollary 2. Let the matrix-function A ∈ BVloc(R+; Rn×n) be such that

S0(A)(t) = C diag
(
S0(G1)(t), . . . , S0(Gm)(t)

)
C−1 for t ∈ R+

and

In + (−1)jdjA(t) = C diag
(
exp((−1)jdjG1(t)), . . . , exp((−1)jdjGm(t))

)
C−1

for t ∈ R+ (j = 1, 2),

where C ∈ Cn×n is a nonsingular constant matrix, Gl(t) ≡
n

l
−1∑

i=0
α

li
(t)Zi

n
l

(l = 1, . . . , m),

m∑
l=1

n
l

= n, α
li
∈ BVloc(R+; R+) (l = 1, . . . ,m; i = 1, . . . , n

l
− 1), and α

l0
is a complex-

valued function such that Re α
l0

and Im α
l0

∈ BVloc(R+; R). Then: a) the matrix-

function A is stable if and only if

sup

{
exp(Re α

l0
(t))

n
l
−1∏

i=1

(1 + α
li

(t))

[ n
l
−1

i

]
: t ∈ R+

}
< +∞ (l = 1, . . . , m);
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b) the matrix-function A is asymptotically stable if and only if

lim
t→+∞

exp(Re α
l0

(t))

n
l
−1∏

i=1

(1 + αli(t))

[ n
l
−1

i

]
= 0 (l = 1, . . . ,m).

Theorem 2. Let α
il
∈ R (i, l = 1, . . . , n), and µ

i
: R+ → R (i = 1, . . . , n) be

nondecreasing functions such that s0(µi
) ∈ C̃loc(R+; R) (i = 1, . . . , n),

lim
t→+∞

a0(t) = +∞, σ
i

= lim
t→+∞

inf(α
ii

d2 µ
i
(t)) > −1 (i = 1, . . . , n)

and

α
ii

< 0 (i = 1, . . . , n), r(H) < 1, (6)

where a0(t) ≡
t∫
0

η
0
(s) ds +

∑
0<s≤t

ln |1 − η
1
(s)| −

∑
0≤s<t

ln |1 + η
2
(s)|, η

0
(t) ≡

min
{
|αii |(s0(µi )(t))

′ : i = 1, . . . , n
}
, ηj (t) ≡ max

{
αii djµi (t) : i = 1, . . . , n

}

(j = 1, 2), H = ((1 − δil)(1 + |σ
i
|)−1|α

il
| |α

ii
|−1)n

i,l=1. Then the matrix-function

A(t) = (α
il

µ
i
(t))n

i,l=1 is asymptotically stable. Conversely, if this matrix-function is

asymptotically stable,

α
il
≥ 0 (i 6= l; i, l = 1, . . . , n) (7)

and
n∑

l=1, l6=i

α
il

d1µ
i
(t) < min

{
1− α

ii
d1µ

i
(t), |1 + α

ii
d1µ

i
(t)|

}
for t ∈ R+ (i = 1, . . . , n),

then the condition (6) holds.

Impulsive systems. Under a solution of the impulsive system (2), (3) we understand

a continuous from the left vector-function x ∈ C̃loc(R+\{tk}
+∞
k=1; Rn) satisfying both the

system (2) almost everywhere on ]tk, tk+1[ and the relation (3) at the point tk for every
k = {1, 2, . . . }.

The stability in this or another sense of the solutions of the system (2), (3) is defined
as above as well as to the stability of this system.

Besides, the homogeneous system, corresponding to the impulsive system (2), (3), is
defined by the pair (Q, {Gk}

∞
k=1). Therefore, here we speak on the stability of this pair.

We assume that

det(In + Gk) 6= 0 (k = 1, 2, . . . ). (8)

By ν(t) (t > 0) we denote the number of the points tk (k = 1, 2, . . . ) belonging to
[0, t[.

It is easy to show that the vector-function x is a solution of the impulsive system (2),
(3) if and only if it is a solution of the system (1), where

A(t) ≡

t∫

0

Q(τ)dτ +
∑

0≤tk<t

Gk, f(t) ≡

t∫

0

q(τ)dτ +
∑

0≤tk<t

g
k
.

In addition, the condition (4) is equivalent to the condition (8). Thus the impulsive
system (2), (3) is a particular case of the system (1) and the following results immediately
follow from the analogous results given above for the system (1).

Theorem 3. Let Q ∈ Lloc(R+; Rn×n) and Gk ∈ Rn×n (k = 1, 2, . . . ) be such that

t∫

0

Q(τ)dτ =
m∑

l=1

α
0l

(t)Bl for t ∈ R+

and

Gk = exp

( m∑

l=1

α
kl

Bl

)
− In (k = 1, 2, . . . ),
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where Bl ∈ Rn×n (l = 1, . . . ,m) are pairwise permutable constant matrices, α
0l

∈
BVloc(R+; R) (l = 1, . . . ,m) are continuous functions, and α

kl
∈ R (l = 1, . . . , m;

k = 1, 2, . . . ) are numbers such that the functions

α
l
(t) = α

0l
(t) +

∑

0≤tk<t

α
kl

(l = 1, . . . ,m)

are nonnegative and satisfy the condition (5). Then: a) the pair (Q, {Gk}
∞
k=1) is stable

if and only if every eigenvalue of the matrices Bl (l = 1, . . . ,m) has the nonpositive

real part and, in addition, every eigenvalue with the zero real part is simple; b) the pair

(Q, {Gk}
∞
k=1) is asymptotically stable if and only if every eigenvalue of the matrices Bl

(l = 1, . . . ,m) has the negative real part.

Corollary 3. Let

Q(t) ≡ α(t)Q0, Gk = G0 (k = 1, 2, . . . )

and there exist β ∈ R+ such that

lim
t→+∞

sup |ν(t)− βt| < +∞,

where Q0 and G0 are permutable constant n× n-matrices, and α ∈ Lloc(R+; R) is such

that
+∞∫

0

α(t) dt = +∞.

Then: a) the pair (Q, {Gk}
∞
k=1) is stable if and only if every eigenvalue of the matrix

P = Q0 + β ln(I + G0) has the nonpositive real part and, in addition, every elementary

divisor corresponding to the eigenvalue with the zero real part is simple; b) the pair

(Q, {Gk}
∞
k=1) is asymptotically stable if and only if every eigenvalue of the matrix P has

the negative real part.

Corollary 4 ([3]). Let Q(t) ≡ Q0, Gk = G0 (k = 1, 2, . . . ) and tk+1− tk = η = const
(k = 1, 2, . . . ), where Q0 and G0 are permutable constant n × n-matrices. Then the

conclusion of Corollary 3 is true, where P = Q0 + η−1 ln(I + G0).

Theorem 4. Let α
il
∈ R, ν

ik
∈ R+ (i, l = 1, . . . , n; k = 1, 2, . . . ) and the functions

νi ∈ Lloc(R+ : R+) (i = 1, . . . , n) be such that the conditions (6),

∞∫

0

η(s)ds +
∑

0≤tk<∞

ln |1 + η
k
| = −∞

and

σ
i

= lim
k=+∞

inf(α
ii

ν
ki

) > −1 (i = 1, . . . , n)

hold, where η(t) ≡ min{|αii |νi(t) : i = 1, . . . , n}, η
k

= max{αii νki
: i = 1, . . . , n}

(k = 1, 2, . . . ), H = ((1− δil)(1 + |σ
i
|)−1|α

il
||α

ii
|−1)n

i,l=1. Then the pair (Q, {Gk}
∞
k=1),

where Q(t) ≡ (α
il

ν
i
(t))n

i,l=1 and Gk = (α
il

ν
ki

)n
i,l=1 (k = 1, 2, . . . ), is asymptotically

stable. Conversely, if this pair is asymptotically stable and the condition (7) holds, then

the condition (6) holds as well.

Remark 1. Some results on the stability and the asymptotic stability of the linear
system of ordinary differential equations

dx

dt
= Q(t)x + q(t)

follow from Theorems 1, 2 and Corollaries 2–4 if there we assume Gk = On×n, αkl = 0,
ν

ki
= 0 (l = 1, . . . ,m; i = 1, . . . , n; k = 1, 2, . . . ) and β = 0.
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