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OPTIMAL PROCESSES IN THE SPECIFIC CONTROL SYSTEMS

(Reported on September 15, 2003)

The well-known methods from [1], [2] allow receiving of necessary conditions of opti-
mality in Pontryagin’s maximum principle form for major problems of optimal control.
Below the specific case of smooth-convex problem of optimization is considered, in which
using these methods is difficult in principle. The smooth-convex problem of minimization
(see [2]) has the form:

f0(x,w) → inf | F (x,w) = 0, fi(x,w) ≤ 0 (i = 1, n), w ∈W,

where fi : X ×W → R, i = 0, n, F : X ×W → Y are given mappings,X, Y are Banach
spaces, R is the set of all real numbers, W is an arbitrary set. In the case where fi and
F are independent of x, the extremal principle from [2] is not valid. Just in this case we
consider the problem

f0(w) → inf | F (w) = 0, fi(w) ≤ 0 (i = 1, n), w ∈W, (1)

where W is a Banach space.

Theorem 1. Let for the problem (1) the following assumptions be fulfilled:

I) for ∀w1 ∈W,w2 ∈W and α ∈ [0, 1],∃w ∈W such that

F (w) = αF (w1) + (1− α)F (w2),

fi(w) ≤ αfi(w1) + (1− α)fi(w2), i = 0, n;

II) the functions fi, i = 0, n are Fréchet differentiable at ŵ when F (ŵ) = 0, and the

mapping F is continuously differentiable and regular at ŵ.

Then for any solution ŵ of the problem (1), there exist numbers λi ≥ 0, i = 0, n, and

an element y∗ of the conjugate space Y ∗ such that the conditions

a) (λ0, λ1, . . . , λn, y
∗) 6= (0, . . . , 0);

b) λifi(ŵ) = 0, i = 1, n;
c) L(ŵ, λ0, λ1, . . . , λn, y

∗) = min
w∈ W

L(w,λ0, λ1, . . . , λn, y
∗), where L(w,λ0, λ1,

. . . , λn, y
∗) =

n∑
i=0

λifi(w) + 〈y∗, F (w)〉;

d)
n∑

i=0
λi

∂fi(ŵ)
∂w

+ (F ′(ŵ))∗y∗ = 0;

e) If there exists w0 ∈ W such that F (w0) = 0 is fulfilled and fi(w0) < 0 for all

i = 1, n for which fi(ŵ) = 0, then λ0 6= 0 and the conditions a)–d) are sufficient for

optimality of the admissible element ŵ;

f) If among the Lagrange multipliers satisfying condition d) there are no multipliers

of the form (0, λ1, . . . , λn, y
∗), then the system of normal multipliers (1, λ1, . . . , λn, y

∗)
is uniquely defined,

are fulfilled.
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Proof. First of all we note that the condition d) is a corollary of condition c). Indeed,
from the condition c) it follows Lw(ŵ, λ1, . . . , λn, y

∗) = 0, from which we have:

Lw(ŵ, λ1, . . . , λn, y
∗) =

n∑

i=0

λi
∂fi(ŵ)

∂w
+ 〈y∗, F (w)〉 ◦ F ′(ŵ) =

=
n∑

i=0

λi
∂fi(ŵ)

∂w
+ 〈y∗, F ′(ŵ)〉 =

n∑

i=0

λi
∂fi(ŵ)

∂w
+ (F ′(ŵ))∗y∗ = 0.

Further, since the mapping F is continuously differentiable and regular at ŵ, then
(see [3], p.314) for any neighborhood U(ŵ) of the point ŵ the set F (U(ŵ)) contains a
neighborhood of zero of the space Y . But then using the Lagrange principle of taking
restrictions off (see [4], p.107), we have conditions a),b) and c).

Let λ0 = 0. Then in case where w = w0, from c) we have

n∑

i=1

λifi(w0) ≥
n∑

i=1

λifi(ŵ). (2)

Since λi ≥ 0 (i = 1, n), using the condition b), from (2) we have λi = 0, i = 1, n. If in
this case y∗ 6= 0, then in any neighborhood of zero of the space Y there exists a point
y for which 〈y∗, y〉 < 0. Hence ∃w ∈ W | 〈y∗, F (w)〉 < 0 and this contradicts c). So, if
λ0 = 0, then (λ0 , λ1, . . . , λn, y

∗) = (0, . . . , 0), and this contradicts a); i.e., λ0 6= 0, and
λ0 = 1. In this case we have

f0(ŵ) = f0(ŵ) +
n∑

i=0

λifi(ŵ) + 〈y∗, F (ŵ)〉) ≤

≤ f0(w) +
n∑

i=0

λifi(w) + 〈y∗, F (w)〉) ≤ f0(w),

∀w ∈W | F (w) = 0, fi(w) ≤ 0, i = 1, n, i.e., ŵ is e solution of the problem (1).

Let now (1, λ1, . . . , λn, y∗) 6= (1, λ1, . . . , λn, y
∗) be two normal systems of Lagrange

multipliers. Then

∂f0(ŵ)

∂w
+

n∑

i=1

λi
∂fi(ŵ)

∂w
+ (F ′(ŵ))∗y∗ = 0,

∂f0(ŵ)

∂w
+

n∑

i=1

λi
∂fi(ŵ)

∂w
+ (F ′(ŵ))∗y∗ = 0,

and we have
n∑

i=1

µi
∂fi(ŵ)

∂w
+ (F ′(ŵ))∗z∗ = 0,

where

µi = λi − λi, z∗ = y∗ − y∗.

From this equation we have µ0 = 0, µ1, . . . , µn, z∗ is a nontrivial system of Lagrange
multipliers and this contradicts the normality of the problem. �

In the case where the mapping F has the form

F (w) =

{
ẋ− f (x, u) ,

y2 + g (x, u) ,

where w = (x, y, u), x ∈Wn
1,1[t0, t1], y ∈ L2[t0, t1], u ∈ L1[t0, t1],

y2 =




y21
...
y2m


 , f =




f1

...
fn


 , g =




g1

...
gm
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and

f0 =

t1∫

t0

f0(x(t), u(t))dt, fi(w) = qi(x(t0), x(t1)), i = 1, s (s ≤ 2n),

we consider the problem

I =

t1∫

t0

f0(x(t), u(t))dt → inf (3)

under the restrictions:

ẋ = f(x(t), u(t)), (4)

g(x(t), u(t)) ≤ 0, (5)

q(x(t0), x(t1)) ≤ 0. (6)

If the vector functions f, g, q are linear with respect to all their arguments, the restric-

tions (4),(5) are fulfilled almost everywhere on [t0, t1 ] and the restriction (4) satisfies the
conditions: for any (x, u) satisfying (4), the system of vectors gradug

j(x, u), j ∈ J(x, u),
is linearly independent (here by J(x, u) we denote the set of such indices j ∈ {1, 2, . . . ,m}
for which gj(x, u) = 0), then the assumptions I), II) theorem 1 are fulfilled and using
this theorem we have the following necessary conditions of optimality for the problem
(3)–(6):

Theorem 2 (necessary conditions of optimality). Let (x(t), u(t)) be a solution of

the problem (3)–(6). Then there exist multipliers ψ0 ≥ 0, λ ∈ Rs, ψ(t) ∈ Wn
1,1[t0, t1 ]

and µ(t) ∈ Lm
∞[t0, t1] such that almost everywhere on [t0, t1] the following conditions are

fulfilled

µj (t) ≥ 0, (7)

µj (t) gj (x (t) , u (t)) = 0, j = 1,m, (8)

H (x (t) , u (t) , ψ0, ψ (t)) = min
u∈{u|g(x(t),u)≤0 }

H (x (t) , u, ψ0, ψ (t)) , (9)

dψ

dt
=
∂R (x (t) , u(t), ψ0, ψ (t) , µ (t))

∂x
, (10)

∂R (x (t) , u(t), ψ0, ψ (t) , µ (t))

∂u
= 0, (11)

where

H (x (t) , u (t) , ψ0, ψ (t)) = ψ0f0(x (t) , u (t))−
n∑

i=1

ψi (t) f i (x (t) , u (t)) ,

R (x (t) , u(t), ψ0, ψ (t) , µ (t)) = H (x (t) , u (t) , ψ0, ψ (t)) +
m∑

i=1

µi (t) gi (x (t) , u (t))

and

(ψ0, ψ(t)) 6= (0, 0), ψ(t0) =
s∑

i=1

λi
∂qi

∂x (t0)
, ψ (t1) = −

s∑

i=1

λi
∂qi

∂x (t1)
. (12)

The conditions (7)–(12) allow to solve some linear control problems, in particular, the
problem

I =

T∫

0

−u(t)dt → inf
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under the restrictions

ẋ = ax(t) − u(t),

0 ≤ u(t) ≤ ax(t),

x(0) = x0, x(T ) = x1,

where a = const > 0, x1 > x0 > 0. Using the conditions (7)–(12), we have the following
optimal solution

(x(t), u(t)) =

{
(eat, 0), t ∈ [0, t∗],

(eat∗ , aeat∗), t ∈ [t∗, T ],

where t∗ is defined from the condition x(t∗) = x1.
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