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Let B be a Banach space with a norm ‖·‖
B

and h : B → B be a completely continuous

nonlinear operator. In this paper, we give theorems on the existence of a solution of the
operator equation

x = h(x), (1)

which generalize the results of [1]–[4] concerning the solvability of boundary value prob-
lems for systems of nonlinear functional differential equations.

The use will be made of the following notation.
Θ is the zero element of the space B.
D is the closure of the set D ⊂ B.
B × B = {(x, y) : x ∈ B, y ∈ B} is the Banach space with the norm

‖(x, y)‖
B×B

= ‖x‖
B

+ ‖y‖
B

.

Λ(B × B) is the set of completely continuous operators g : B × B → B such that:
(i) g(x, ·) : B → B is a linear operator for every x ∈ B;
(ii) for any x and y ∈ B the equation

z = g(x, z) + y

has a unique solution z and

‖z‖
B
≤ γ‖y‖,

where γ is a positive constant, independent of x and y.
Λ0(B × B) is the set of completely continuous operators g : B × B → B such that:
(i) g(x, ·) : B → B is a linear operator for any x ∈ B;
(ii) the set

{

g(x, y) : x ∈ B, ‖y‖
B
≤ 1

}

is relatively compact;

(iii) y 6∈ {g(x, y) : x ∈ B} for y ∈ B and y 6= Θ.
Let g0 ∈ Λ0(B ×B). We say that a linear bounded operator g : B → B belongs to the

set Lg if there exists a sequence xk ∈ B (k = 1, 2, . . . ) such that

lim
k→∞

g(xk, y) = g(y) for y ∈ B.

Along with B, we consider a partially ordered Banach space B0 in which the partial
order is generated by a cone K, i.e., for any u and v ∈ B0, it is said that u does not
exceed v, and is written u ≤ v if v − u ∈ K.

A linear operator η : B0 → B0 is said to be positive if it transforms the cone K into
itself.

An operator ν : B → B0 is said to be positively homogeneous if ν(λx) = λν(x) for
λ ≥ 0, x ∈ B.

By r(η) we denote the spectral radius of the operator η.
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Lemma 1. Λ0(B × B) ⊂ Λ(B × B).

Theorem 1 (A priori boundedness principle). Let there exist an operator

g ∈ Λ(B × B) and a positive constant ρ0 such that for any λ ∈ ]0, 1[ an arbitrary so-

lution of the equation

x = (1− λ)g(x, x) + λh(x)

admits the estimate

‖x‖
B
≤ ρ0. (2)

Then the equation (1) is solvable.

Corollary 1. Let there exist a linear completely continuous operator g : B → B and

a positive constant ρ0 such that the equation

y = g(y)

has only a trivial solution, and for any λ ∈ ]0, 1[ an arbitrary solution of the equation

x = (1 − λ)g(x) + λh(x)

admits the estimate (2). Then the equation (1) is solvable.

On the basis of Lemma 1 and Theorem 1 we prove the following theorem.

Theorem 2. Let there exist an operator g ∈ Λ0(B × B), a partially ordered Banach

space B0 with a cone K and positively homogeneous continuous operators µ and ν : B→K
such that

µ(y) − ν(y − z) 6∈ K for y 6= Θ, z ∈ {g(x, y) : x ∈ B}

and

ν
(

h(x)− g(x, x)− h0(x)
)

≤ µ(x) + µ0(x) for x ∈ B, (3)

where h0 : B → B and µ0 : B → K satisfy the conditions

lim
‖x‖B→∞

‖h0(x)‖
B

‖x‖
B

= 0, lim
‖x‖

B
→∞

‖µ0(x)‖
B0

‖x‖
B

= 0. (4)

Then the equation (1) is solvable.

Corollary 2. Let there exist an operator g ∈ Λ0(B × B), a partially ordered Banach

space B0 with a cone K, a positively homogeneous operator ν : B → K and a linear

bounded positive operator η : B0 → K such that

r(η) < 1,

‖ν(x)‖
B0

> 0 for x 6= Θ and

ν
(

h(x)− g(x, x)− h0(x)
)

≤ η(ν(x)) + µ0(x) for x ∈ B,

where h0 : B → B and µ0 : B → K are operators satisfying (4). Then the equation (1) is

solvable.

Corollary 3. Let there exist an operator g ∈ Λ0(B × B) such that

lim
‖x‖

B
→0

‖h(x)− g(x, x)‖
B

‖x‖
B

= 0. (5)

Then the equation (1) is solvable.

Theorem 3. Let the space B be separable. Let, moreover, there exist an operator

g ∈ Λ0(B × B), a partially ordered Banach space B0 with a cone K, and positively

homogeneous continuous operators µ and ν : B → K such that for every g ∈ Lg the

inequality

ν(y − g(y)) ≤ µ(y)

has only a trivial solution and the condition (3) is fulfilled, where h0 : B → B and

µ0 : B → K are operators satisfying (4). Then the equation (1) is solvable.
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Corollary 4. Let the space B be separable, let there exist an operator g ∈ Λ0(B ×B)
such that the condition (5) hold, and let for every g ∈ Lg the equation

y = g(y)

have only a trivial solution. Then the equation (1) is solvable.

Theorem 1 implies a priori boundedness principles proved in [1] and [4], while Theo-
rems 2 and 3 imply the Conti–Opial type theorems proved in [2] and [3].

We give one more application of Theorem 1 concerning the existence of an ω-periodic
solution of the functional differential equation

u(n)(t) = f(u)(t) + f0(t). (6)

Here n ≥ 1, ω > 0, f0 ∈ Lω, f : Cω → Lω is a continuous operator, Cω is the space of
continuous ω-periodic functions u : R → R with the norm

‖u‖
Cω

= max
{

|u(t)| : 0 ≤ t ≤ ω
}

and Lω is the space of integrable on [0, ω] ω-periodic functions v : R → R with the norm

‖v‖
Lω

=

ω
∫

0

|v(t)| dt.

By an ω-periodic solution of the equation (6) we understand an ω-periodic function

u : R → R which is absolutely continuous together with u(i) (i = 1, . . . , n−1) and almost
everywhere on R satisfies the equation (6).

On the basis of Corollary 1 we prove the following theorem.

Theorem 4. Let there exist q ∈ Lω, σ ∈ {−1, 1} and a positive constant ρ such that

0 ≤ σf(x)(t) sgn x(t) ≤ q(t) for x ∈ Cω , t ∈ R,

and for any x ∈ Cω, satisfying the inequality

|x(t)| > ρ for t ∈ R,

the condition
ω

∫

0

f(x)(t) dt 6= 0

is fulfilled. Let, moreover,
ω

∫

0

f0(t) dt = 0. (7)

Then the equation (6) has at least one solution.

As an example, consider the differential equation

u(n)(t) =
m

∑

k=1

fk(t)
|u(τk(t))|λk sgn u(τk(t))

1 + |u(τk(t))|µk

+ f0(t), (8)

where

fk ∈ Lω (k = 0, . . . , n), µk ≥ λk > 0 (k = 1, . . . , n),

and τk : R → R (k = 1, . . . , n) are measurable functions such that the fraction

τk(t + ω) − τk(t)

ω

is an integral number for any t ∈ R and k ∈ {1, . . . , n}.
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Corollary 5. Let there exist a number σ ∈ {−1, 1} such that

σfk(t) ≥ 0 for t ∈ R (k = 1, . . . , n)

and

σ

n
∑

k=1

ω
∫

0

fk(t) dt > 0.

Let, moreover, the condition (7) hold. Then the equation (8) has at least one ω-periodic

solution.
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