
Mem. Differential Equations Math. Phys. 31(2004), 117–122

T. Kiguradze

ON SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR
DEGENERATE HYPERBOLIC EQUATIONS OF HIGHER ORDER

(Reported on June 23, 2003)

The Dirichlet problem and other nonclassical boundary value problems for linear
hyperbolic equations with two independent variables have been the subject of various
studies (see, e.g., [1]–[8], [10]–[16] and the references therein). However such problems
for higher order nonlinear hyperbolic equations still remain unstudied. The present paper
is an attempt to fulfill the existing gap.

Let m and n be natural numbers, 0 < a, b < +∞, Ω = (0, a)×(0, b) and f : Ω×R
mn →

R be a continuous function. Consider the nonlinear hyperbolic equation

u(2m,2n) = f
(

x, y, u, . . . , u(0,n−1), . . . , u(m−1,0), . . . , u(m−1,n−1)
)

(1)

either with the boundary conditions

u(i,0)(0, y) = u(i,0)(a, y) = 0 (i = 0, . . . ,m− 1) for 0 < y < b,

u(0,k)(x, 0) = u(0,k)(x, b) = 0 (k = 0, . . . , n− 1) for 0 < x < a,
(21)

or with the boundary conditions

u(i,0)(0, y) = u(m+i,0)(a, y) = 0 (i = 0, . . . , m− 1) for 0 < y < b,

u(0,k)(x, 0) = u(0,n+k)(x, b) = 0 (k = 0, . . . , n− 1) for 0 < x < a,
(22)

where u(j,k)(x, y) = ∂j+ku(x,y)

∂xj∂yk . Mainly we are interested in the case, where for arbitrar-

ily fixed zik ∈ R (i = 0, . . . , m− 1; k = 0, . . . , n− 1) the function

f(·, ·, z00, . . . , z0 n−1, . . . , zm−1 0, . . . , zm−1 n−1) : Ω → R

is nonintegrable in the rectangle Ω having singularities on its boundary, i.e., the case
where equation (1) is degenerated on the boundary of Ω.

Below we state theorems on existence and uniqueness of solutions to problems (1), (21)
and (1), (22) and theorems on stability of those solutions with respect to small perturba-
tion of the right-hand member of equation (1). Analogous results for ordinary differential
equations are obtained in [9].

We make use of the following notation.

µin = 22n−i
(

n
∏

j=1

(4j − 3)
)

−
1
2
(

n−i
∏

j=1

(4j − 3)
)

−
1
2

(i = 0, . . . , n− 1),

νin = 22n−i
(

n
∏

j=1

(2j − 1)
)

−1(

n−i
∏

j=1

(2j − 1)
)

−1
(i = 0, . . . , n− 1),

ϕ1jk(x, y) = [x(a− x)]m−j−1/2[y(b − y)]n−k−1/2 (j = 0, . . . ,m − 1; k = 0, . . . , n− 1),

ϕ2jk(x, y) = xm−j−1/2yn−k−1/2 (j = 0, . . . , m− 1; k = 0, . . . , n− 1),
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f∗iρ(x, y) = max
{

|f(x, y, z00, . . . , z0 n−1, . . . , zm−1 0, . . . , zm−1 n−1)| : |zjk| ≤ ρϕijk(x, y)

(j = 0, . . . ,m− 1; k = 0, . . . , n− 1)
}

(i = 1, 2).

Ck,l(Ω) is the space of functions z : Ω → R, having the continuous partial derivatives

z(i,j) (i = 0, . . . , k; j = 0, . . . , l).
Hk,l(Ω) is the space of functions z ∈ L2(Ω), having the generalized partial derivatives

z(i,j) ∈ L2(Ω) (i = 0, . . . , k; j = 0, . . . , l).
A solution of problem (1), (21) will be sought in the class

M1(Ω)
def
= C2m,2n(Ω) ∩Hm,n(Ω),

while a solution of problem (1), (22) will be sought in the class

M2(Ω)
def
= C2m,2n(Ω) ∩Hm,n(Ω) ∩ C2m−1,2n−1((0, a]× (0, b]).

Along with equation (1) consider the perturbed equation

u(2m,2n) = f
(

x, y, u, . . . , u(0,n−1), . . . , u(m−1,0) , . . . , u(m−1,n−1)
)

+ h(x, y), (3)

wher h : Ω → R is a continuous function.
Introduce the following definitions.

Definition 11. A solution u of problem (1), (21) is called stable with respect to small
perturbation of the right-hand member of equation (1) if there exists a positive constant
ρ0 such that for an arbitrary continuous function h : Ω → R satisfying the condition

a
∫

0

b
∫

0

[x(a− x)]2m[y(b− y)]2nh2(x, y) dx dy < +∞,

problem (3), (21) is uniquely solvable in the class M1(Ω) and its solution u satisfies the
inequality

a
∫

0

b
∫

0

∣

∣u(m,n)(x, y)− u(m,n)(x, y)
∣

∣

2
dxdy ≤

≤ ρ0

a
∫

0

b
∫

0

[x(a− x)]2m[y(b− y)]2nh2(x, y)dxdy.

Definition 12. A solution u of problem (1), (22) is called stable with respect to small
perturbation of the right-hand member of equation (1), if there exists a positive constant
ρ0 such that for an arbitrary continuous function h : Ω → R satisfying the condition

a
∫

0

b
∫

0

x2my2nh2(x, y) dxdy < +∞,

problem (3), (22) is uniquely solvable in the class M2(Ω) and its solution u satisfies the
inequality

a
∫

0

b
∫

0

∣

∣u(m,n)(x, y)− u(m,n)(x, y)
∣

∣

2
dxdy ≤ ρ0

a
∫

0

b
∫

0

x2my2nh2(x, y) dx dy.

Theorem 11. Let

b
∫

0

[x(a− x)]m[y(b− y)]nf∗1ρ(x, y) dxdy < +∞ for 0 < ρ < +∞ (41)
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and the inequality

(−1)m+nf(x, y, z00, . . . , z0 n−1, . . . , zm−1 0, . . . , zm−1 n−1) sgn z00 ≤

≤

n−1
∑

k=0

m−1
∑

i=0

lik |zik|

[x(a− x)]2m−i[y(b − y)]2n−k
+ l(x, y)

hold in Ω×R
mn, where lij (i = 0, . . . , m−1; k = 0, . . . , n−1) are nonnegative constants

and l : Ω → [0, +∞) is a continuous function such that

m−1
∑

i=0

n−1
∑

k=0

µimµknlik

a2m−ib2n−k
< 1, (51)

a
∫

0

b
∫

0

[x(a− x)]2m[y(b− y)]2nl2(x, y) dx dy < +∞. (61)

Then problem (1), (21) has at least one solution in the class M1(Ω).

Theorem 12. Let

b
∫

0

xmynf∗2ρ(x, y) dx dy < +∞ for 0 < ρ < +∞ (42)

and the inequality

(−1)m+nf(x, y, z00, . . . , z0 n−1, . . . , zm−1 0, . . . , zm−1 n−1) sgn z00 ≤

≤

n−1
∑

k=0

m−1
∑

i=0

lik |zik|

x2m−iy2n−k
+ l(x, y)

hold in Ω×R
mn, where lij (i = 0, . . . , m−1; k = 0, . . . , n−1) are nonnegative constants

and l : Ω → [0, +∞) is a continuous function such that

m−1
∑

i=0

n−1
∑

k=0

νimνknlik < 1, (52)

a
∫

0

b
∫

0

x2my2nl2(x, y) dx dy < +∞. (62)

Then problem (1), (22) has at least one solution in the class M2(Ω).

Theorem 21. Let the condition

(−1)m+n
(

f(x, y, z00, . . . , zm−1 n−1)− f(x, y, z00, . . . , zm−1 n−1)
)

sgn(z00 − z00) ≤

≤

n−1
∑

k=0

m−1
∑

i=0

lik|zik − zik|

[x(a− x)]2m−i[y(b− y)]2n−k

hold in Ω×R
mn, where lij (i = 0, . . . , m−1; k = 0, . . . , n−1) are nonnegative constants

satisfying inequality (51). Then problem (1), (21) has at most one solution in the class

M1(Ω).

Theorem 22. Let the condition

(−1)m+n
(

f(x, y, z00, . . . , zm−1 n−1)− f(x, y, z00, . . . , zm−1 n−1)
)

sgn(z00 − z00) ≤

≤

n−1
∑

k=0

m−1
∑

i=0

lik|zik − zik|

x2m−iy2n−k
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hold in Ω×R
mn, where lij (i = 0, . . . , m−1; k = 0, . . . , n−1) are nonnegative constants

satisfying inequality (52). Then problem (1), (22) has at most one solution in the class

M2(Ω).

Theorem 3. Let along with the conditions of Theorem 21 (Theorem 22) conditions

(41) and (61) (conditions (42) and (62)) hold, where l(x, y) = |f(x, y, 0, . . . , 0)|. Then

problem (1), (21) (problem (1), (22)) is uniquely solvable in the class M1(Ω) (in the class

M2(Ω)) and its solution is stable with respect to small perturbation of the right-hand

member of equation (1).

As an example consider the nonlinear hyperbolic equation

u(2m,2n) =

k0
∑

k=1

pk(x, y)|u|λk sgn u + q(x, y), (7)

where λk (k = 1, . . . , k0) are positive constants, and pk : Ω → R (k = 1, . . . , k0) and
q : Ω → R are continuous functions with singularities on the boundary of the rectangle
Ω. Moreover, let

(−1)m+npk(x, y) ≤ 0 (k = 1, . . . , k0) for (x, y) ∈ Ω (8)

and either the inequalities

a
∫

0

b
∫

0

[x(a− x)]m+
(

m− 1
2

)

λk [y(b− y)]n+
(

n− 1
2

)

λk |pk(x, y)| dx dy < +∞ (91)

(k = 1, . . . , k0),

a
∫

0

b
∫

0

[x(a− x)]2m[y(b − y)]2nq2(x, y) dx dy < +∞, (101)

or the inequalities

a
∫

0

b
∫

0

xm+
(

m− 1
2

)

λk yn+
(

n− 1
2

)

λk |pk(x, y)| dx dy < +∞ (k = 1, . . . , k0), (92)

a
∫

0

b
∫

0

x2my2nq2(x, y) dx dy < +∞ (102)

hold.

Corollary 1. Let along with (8) conditions (91) and (101) (conditions (92) and

(102)) hold. Then problem (7), (21) (problem (7), (22)) is uniquely solvable in the class

M1(Ω) (in the class M2(Ω)) and its solution is stable with respect to small perturbation

of right-hand member of equation (7).

Finally let us state a corollary of Theorem 3 concerning the linear hyperbolic equation

u(2m,2n) =

m−1
∑

i=0

n−1
∑

k=0

pik(x, y)u(i,k) + q(x, y) (11)

with the continuous coefficients pik : Ω → R (i = 0, . . . ,m − 1; k = 0, . . . , n − 1) and
q : Ω → R having singularities on the boundary of the rectangle Ω.
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We are interested in the case, where the functions pik (i=0, . . . , m−1; k=0, . . . , n−1)
satisfy either the conditions

a
∫

0

b
∫

0

[x(a− x)]2m− 1
2 [y(b− y)]2n− 1

2 |p00(x, y)| dx dy < +∞, (121)

(−1)m+n [x(a− x)]2m[y(b − y)]2np00(x, y) ≤ l00 for (x, y) ∈ Ω, (131)

[x(a− x)]2m−i[y(b− y)]2n−k |pik(x, y)| ≤ lik (141)

(i = 0, . . . ,m − 1; k = 0, . . . , n− 1; i + k 6= 0) for (x, y) ∈ Ω,

or the conditions

a
∫

0

b
∫

0

x2m− 1
2 y2n− 1

2 |p00(x, y)| dx dy < +∞, (122)

(−1)m+nx2my2np00(x, y) ≤ l00 for (x, y) ∈ Ω, (132)

x2m−iy2n−k |pik(x, y)| ≤ lik

(i = 0, . . . ,m − 1; k = 0, . . . , n− 1; i + k 6= 0) for (x, y) ∈ Ω, (142)

where lik (i = 0, . . . ,m− 1; k = 0, . . . , n− 1) are nonnegative constants.

Corollary 2. If along with (121), (131), (141) (along with (122), (132), (142)) condi-

tions (51) and (101) (conditions (52) and (102)) hold, then problem (11), (21) (problem
(11), (22)) is uniquely solvable in the class M1(Ω) (in the class M2(Ω)) and its solution

is stable with respect to small perturbation of the right-hand member of equation (11).
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