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In the present note we consider the linear system of difference equations

∆y(k− 1) = G1(k− 1)y(k− 1) + G2(k)y(k) + G3(k)y(k + 1) + g(k) (k = 1, 2, . . . ), (1)

where Gj(k) ∈ R
n×n and g(k) ∈ R

n (j = 1, 2, 3; k = 0, 1, . . . ).
We give effective necessary and sufficient conditions guaranteeing the stability of the

system (1) in Lyapunov sense with respect to small perturbations. They are the analogues
of the well-know conditions for the stability of linear ordinary differential systems with
constant coefficients (see, e.g., [1], [2]).

The following notation and definitions will be used in the paper.
N = {1, 2, . . . } is the set of all natural numbers, N0 = {0} ∪ N; R =] − ∞,+∞[,

R+ = [0, +∞[. [t] is the integral part of t ∈ R.
Rn×m is the space of all real n×m-matrices X = (xij)

n,m
i,j=1 with the norm

‖X‖ =
n∑

i=1

m∑

j=1

|xij |;

On×m (or O) is the zero n×m-matrix.
If X ∈ R

n×n, then X−1, det X and r(X) are, respectively, the matrix inverse to X,
the determinant and the spectral radius of X; In is the identity n× n-matrix; δij is the
Kronecker symbol, i.e., δii = 1 and δij = 0 for i 6= j (i, j = 1, 2, . . . ).

Rn = Rn×1 is the space of all real column n-vectors x = (xi)n
i=1.

If J ⊂ N0 and Q ⊂ Rn×m, then E(J ;Q) is the set of all matrix-functions Y : I → Q.
∆ is the first order difference operator, i.e.,

∆y(k − 1) = y(k)− y(k − 1) (k = 1, 2, . . . ) for y ∈ E(N0; R
n).

Let y0 ∈ E(N0; R
n) be a solution of the difference system (1) and let G ∈ E(N0; R

n×n)
be an arbitrary matrix-function.

Definition 1. A solution y0 ∈ E(N0; R
n) of the system (1) is called G-stable if for

every ε > 0 and k0 ∈ N0 there exists δ(ε, k0) > 0 such that for every solution y of the
system (1) for which

‖(In + G(k0))(y(k0)− y0(k0))‖ + ‖y(k0 + 1) − y0(k0 + 1)‖ < δ

the estimate

‖(In + G(k))(y(k) − y0(k))‖+ ‖y(k + 1)− y0(k + 1)‖ < ε for k ≥ k0

holds.
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Definition 2. A solution y0 ∈ E(N0; Rn) of the system (1) is called G-asymptotically
stable if it is G-stable and for every k0 ∈ N0 there exists ∆ = ∆(k0) > 0 such that for
every solution y of the system (1) for which

‖(In + G(k0))(y(k0)− y0(k0))‖ + ‖y(k0 + 1)− y0(k0 + 1)‖ < ∆

the condition

lim
k→∞

(
‖(In + G(k))(y(k) − y0(k))‖ + ‖y(k + 1)− y0(k + 1)‖

)
= 0

holds.

We say that y0 is stable (asymptotically stable) if it is On×n-stable (On×n-asym-
ptotically stable).

Definition 3. The system (1) is called G-stable (G-asymptotically stable) if every its
solution is G-stable (G-asymtotically stable).

It is evident that the system (1) is G-stable (G-asymptotically stable ) if and only if
its corresponding homogeneous system

∆y(k − 1) = G1(k − 1)y(k − 1) + G2(k)y(k) + G3(k)y(k + 1) (k = 1, 2, . . . ) (10)

is G-stable (G-asymptotically stable). On the other hand, the system (10) is G-stable
(G-asymptotically stable) if and only if its zero solution is G-stable (G-asymptotically
stable). Thus the G-stability (G-asymptotic stability) of the system (1) is the common
property of all solutions of this system and the vector-function g0 does not affect this
property. Therefore, it is the property of the triple (G1,G2,G3). Hence the following
definition is natural.

Definition 4. The triple (G1,G2,G3) is G-stable (G-asymptotically stable) if the
system (10) is G-stable (G-asymptotically stable).

Remark 1. It is evident that the triple (G1, G2,G3) is G-stable if and only if every
solution of the system (10) is G-bounded, i.e., there exists M > 0 such that

‖(In + G(k))y(k)‖ + ‖y(k + 1)‖ ≤ M (k = 0, 1, . . . ).

Analogously, the triple (G1, G2, G3) is G-asymptotically stable if and only if every
solution y of the system (10) is G-convergent to zero, i.e.,

lim
k→∞

(
‖(In + G(k))y(k)‖ + ‖y(k + 1)‖

)
= 0.

Remark 2. If the matrix-function G is such that

det(In + G(k)) 6= 0 (k = 0, 1, . . . )

and

‖G(k)‖ + ‖(In + G(k))−1‖ < M (k = 0, 1, . . . )

for some M > 0, then the triple (G1, G2, G3) is G-stable (G-asymptotically stable) if and
only if it is stable (asymptotically stable).

Theorem 1. Let the matrix-functions G1,G2,G3 ∈ E(N0; R
n×n) be such that

det(In + G1(k)) 6= 0 (k = 1, 2, . . . )

and

G(k) = I2n − exp

(
−

m∑

l=1

∆βl(k − 1)Bl

)
(k = 1, 2, . . . ),

where G(k) = (Gij (k))2i,j=1,

G11(k) ≡ (G1(k) + G2(k))(In + G1(k))−1, G12(k) ≡ G3(k),

G21(k) ≡ −(In + G1(k))−1, G22(k) ≡ On×n,
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Bl ∈ R2n×2n (l = 1, . . . , m) are pairwise permutable constant matrices, and βl ∈

E(Ñ; R+) (l = 1, . . . ,m) are such that

lim
k→+∞

βl(k) = +∞ (l = 1, . . . , m).

Then:

a) the triple (G1, G2, G3) is G1-stable of and only if every eigenvalue of the matrices

Bl (l = 1, . . . , m) has the nonpositive real part and, in addition, every elementary divisor

corresponding to the eigenvalue with the zero real part is simple;

b) the triple (G1,G2,G3) is G1-asymptotically stable if and only if every eigenvalue

of the matrices Bl (l = 1, . . . ,m) has the negative real part.

Corollary 1. Let Gj(k) ≡ G0j (j = 1, 2, 3) be constant matrix-functions and

det(In + G01) 6= 0, det G03 6= 0,

where G0j ∈ R
n×n (j = 1, 2, 3) are constant matrices. Let, moreover, λi (i = 1, . . . ,m)

be pairwise different eigenvalues of the 2n× 2n-matrix G0 = (G0ij )2i,j=1, where

G011 = (G01 + G02)(In + G01)−1, G012 = G03,

G021 = −(In + G01)−1, G022 = In

Then:

a) the triple (G01 ,G02,G03) is stable if and only if |1 − λi| ≥ 1 (i = 1, . . . ,m)
and, in addition, if |1 − λi| = 1 for some i ∈ {1, . . . ,m}, then the elementary divisor

corresponding to λi is simple;

b) the triple (G01,G02, G03) is asymptotically stable if and only if |1− λi| > 1 (i =
1, . . . , m).

Theorem 2. Let Gj(k) ≡ G0j (j = 1, 2, 3) be constant matrix-functions such that

G01 = (A1 −A3)(In − A1 + A3)
−1,

G02 = In + (A1 + A2 − 2In)(In + G01), G03 = (In −A2),

where Aj = (αjil)
n
i,l=1 (j = 1, 2), are constant n× n-matrices such that

det(In −A1 + A3) 6= 0, det((In − A2)) 6= 0.

Let, moreover,

αjii < 0 (j = 1, 2; i = 1, . . . , n) and r(H) < 1, (2)

where H = (Hmj )2m,j=1,

Hjj = ((1 − δil)|αjil||αjii|
−1)n

i,l=1 (j = 1, 2),

H21 = (|α3il ||α2ii|
−1)n

i,l=1, H12 = (|α2ilµ2i − δil||α1ii|
−1µ−1

1i )n
i,l=1.

Then the triple (G01 ,G02, G03) is asymptotically stable. Conversely, if this triple is

asymptotically stable,

αjil ≥ 0, α2ii ≥ 1 (j = 1, 2, 3; i 6= l; i, l = 1, . . . , n)

and

αj+1ii − δ2j +
n∑

l=1,l6=i

(αjil + αj+1il) <

< min{1− αjii, |1 + αjii |} (j = 1, 2; i = 1, . . . , n),

then the condition (2) holds as well.
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To prove of these results we use the following concept.
Consider the system of the so-called generalized linear ordinary differential equations

dx(t) = dA(t) · x(t) + df(t) for t ∈ R+, (3)

where A : R+ → Rn×n and f : R+ → Rn are, respectively, the matrix and vector-
functions with the components having bounded variation on every closed interval from
R+ (see, i.e. [3]).

Under a solution of the system (2) we understand a vector-function x : R+ → Rn

with the components having bounded variations on every closed interval from R+ and
such that

x(t) = x(s) +

t∫

s

dA(τ) · x(τ) + f(t) − f(s) for 0 ≤ t ≤ s,

where the integral is understood in Lebesgue–Stiltjes sense.
The difference system (1) is a particular case of the system (2). Namely, y ∈ E(N0; Rn)

is a solution of the system (1) if and only if the vector-function x(t) = (zi([t]))2i=1 for
t ∈ R+, where z1([t]) ≡ (In + G1([t]))y([t]), z2([t]) = y([t] + 1),is a solution of the
2n× 2n-system (2), where

A(t) = O2n×2n for 0 ≤ t ≤ 1, A(t) =

[t]∑

k=1

G(k) for t ≥ 1,

f(t) = O2n for 0 ≤ t ≤ 1, f(t) =

[t]∑

k=1

G(k) for t ≥ 1.

Thus Theorem 1 and its corollaries immediately follow from the corresponding results
contained in [4] for the system (1).

As to the proof of Theorem 2, we use a system of the form (2) different from the one
constructed above, in order to apply the analogous result from [4].
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