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Abstract. A functional differential equation
ul™ (1) + F(u)(t) = 0, (1)

is considered with continuous F': C(Ry; R) — Ljoc(R4; R).

Oscillatory properties of proper solutions of (1) are studied. In particular
sufficient conditions are given for equation (1) to have the property A or B
(X or ﬁ) which are optimal in a certain sense. Sufficient conditions for every
solution of (1) to be oscillatory are obtained as well as existence conditions
for an oscillatory solution.

Chapter 6 is dedicated to boundary value problem (16.1)-(16.2). Suf-
ficient conditions are established for the existence of a unique solution, a
unique oscillatory solution and a unique bounded oscillatory solution of this
problem.
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PREFACE

Let
1,0 € C(Ry;Ry), limg 00 7(t) = 400 and 7(t) < o(t) for t € Ry.
Denote by V(7) (V(7,0)) the set of continuous mappings F' : C(R;R) —
Lo (R4 ; R) satisfying the condition: F'(z)(t) = F(y)(t) holds for any t € Ry
and z,y € C(R;;R) provided that z(s) = y(s) for s > 7(t) (7(t) < s <
o(t)). Obviously V(r,0) C V(7).
This work is dedicated to the study of oscillatory properties of solutions
of a functional differential equation of the form

w™ (8) + F(u)(t) = 0, (0.1)

where n > 1 and F € V(1) (F € V(1,0)).

For any to € Ry we denote by Hy, - the set of all functions u € C'(R;; R)
satisfying u(t) # 0 for ¢ > t., where t. = min{to, 7 (to)}, T (t) = inf(7(s) :
s >t}

Throughout the work whenever the notation V(7r), V(r,0) and Hy, -
occurs, it will be understood unless specified otherwise that the functions 7
and o satisfy the conditions stated above.

It will always be assumed that either the condition

F(u)(t) u(t) >0 for t >ty, u€ Hy, r (0.2)
or the condition
F(u)(t) u(t) <0 for t >tg, we€ Hy, r (0.3)

is fulfilled.

Let to € Ry. A function u : [tp, +00o[— R is said to be a proper solu-
tion of equation (0.1) if it is locally absolutely continuous together with its
derivatives up to order n — 1 inclusive,

sup{|u(s)|: s € [t,4+o00[} >0 for t >t

and there exists a function @ € C(R;; R) such that @(t) = u(t) on [to, +00[
and the equality @™ (t) + F(@(t)) = 0 holds for ¢ € [tg, +00[. A proper
solution u : [tg, +00[— R of equation (0.1) is said to be oscillatory if it has
a sequence of zeros tending to +o0o. Otherwise the solution w is said to be
nonoscillatory.

We say that equation (0.1) has property if any of
its proper solutions is oscillatory when n is even and either is oscillatory or
satisfies

[u® ()10 as t 1400 (i=0,...,n—1) (0.4)
when n is odd.

LFor the notation see Subsection 0.2.



We say that equation (0.1) has property if any of
its proper solutions either is oscillatory or satisfies either (0.4) or

|u'(t)| 1 +oo for t1 400 (i=0,...,n—1) (0.5)
when n is even, and either is oscillatory or satisfies (0.5) when n is odd.

We say that equation (0.1) has property  if any of
its proper solutions is oscillatory when n is odd, and either is oscillatory or
satisfies (0.5) when n is even.

We say that equation (0.1) has property Tif any of
its proper solutions is oscillatory when n is odd, and either is oscillatory or
satisfies (0.4) when n is even.

At the close of the last centure A. Kneser [38] posed the problem of
finding conditions for an equation

u™ (t) + p(t)u(t) = 0 (0.6)

to have properties similar to either u(™ + u = 0 or u(® —u = 0. Using
the well-known comparison theorem of Strum, he proved that if n = 2 and
lim #?p(t) > 1/4, then (0.6) has property , i.e. any of its solutions is

t—+o0
oscillatory. This result for second order linear differential equations was

further improved and generalized by quite a number of authors (see the
survey of M. Rab [94]).

Sufficient conditions for an ordinary differential equation to have prop-
erty or can be found in A. Kneser [38], W.B. Fite [22], I. Mikusinski
[84], F.W. Atkinson [4], V.A. Kondratyev [39, 40], G.V. Ananyeva and V.I.
Balaganskii [2], S. Belohorec [6], I.T. Kiguradze [31 — 37], L. Licko and
M. Svec [81], D.V. Izyumova [28], T.A. Chanturia [8 — 15], M. Bartusek [5]

and in other papers. The monographs by O. Boruvka [7] and F. Neuman
[90] should also be mentioned as they deal with the problem of global (in
particular, oscillatory) behaviour of solutions of second [7] and n-th order
[90] linear differential equations.

Analogous results for differential equations with deviating arguments and
functional-differential equations are obtained in [20, 23-26, 29, 41-50, 53, 61-
64, 69, 71, 73, 79, 83, 85, 91, 92, 96-101, 103].

Ifp € Lige(Ry;Ry) (n >3 and p € Lipe(Ry ;R_)) and (0.6) has property

( ), then it has solutions of all the types mentioned in Definitions 0.1 and
0.2 [32, 40]. However for a differential equation with a delayed argument

u™ (t) + p(t)u(t — A) =0

(A = const > 0, (=1)"*'p(t) > 0 for t € Ry) properties and do
not guarantee the existence of proper solutions satisfying (0.4), while for a
differential equation with an advanced argument

u™ (t) + p(t)u(t + A) =0



(A = const > 0, p(t) <0 for t € Ry) property does not guarantee the
existence of proper solutions satisfying (0.5). As for a functional differential
equation of the form

t+A

u™(t) +p(t)/ u(s)ds =0

t—A

(A = const > 0, p(t) <0 for t € Ry) property does nor guarantee the
existence of proper solutions of forms (0.4) and (0.5).

The above examples show that the set of nonoscillatory solutions of func-
tional differential equations has a structure differing from that of the set of
solutions of ordinary differential equations.

Oscillation criteria specific of differential equations with delay were for
the first time suggested by A. Myshkis [86]. Subsequently analogous prob-
lems were studied in [3, 19, 27, 42, 43, 54, 55, 70, 78, 87, 106] for first and
second order linear and nonlinear differential equations.

Sufficient conditions for higher order differential equations with deviating
arguments to have property or can be found in [16, 17, 48, 50, 65-68,
79, 80, 89, 97, 104, 105, 107]. Sufficient (necessary and sufficient) conditions
for every proper solution of a higher order functional differential equation
to be oscillatory are given in [72].

Chapter 1 of this work is concerned with equations having property
or . Some basic definitions and auxiliary statements are formulated in §1.
Comparison theorems are proved in §2, thereby making it possible to derive
property  or  of the considered equations. Based on these theorems,
sufficient (necessary and sufficient) conditions are established in §3 (in §4)
for an essentially nonlinear functional differential equation to have property

or .

Chapter 2 deals with analogous problems for equation (0.1) with the
operator F' admitting a linear minorant. In §5 we prove some auxiliary
lemmas for linear differential inequalities with deviating arguments, which in
866 and 7 are used to derive sufficient conditions for a functional differential
equation with a linear minorant to have property or .2

Not only the results obtained in §§6 and 7 are the new ones for equation
(0.1). They also improve some of the previous well-known results for equa-
tion (0.6). Chapter 2 concludes with some sufficient conditions for equation
(0.1) not to have property  ( ), thereby illustrating to what extent the
results of §86 and 7 are precise.

Chapters 3 and 4 are concerned with solutions satisfying conditions (0.4)
and (0.5). In §8 auxiliary lemmas are formulated which enable one to es-
tablish the asymptotic behaviour near +oco of solutions satisfying (0.4) of

2 Alongside with the problem of equation (0.1) having property or , there arises a
need to study whether all solutions of (0.1) are or are not oscillatory. Interesing results
in this direction were obtained by N.V. Azbelev [1].



differential equations and inequalities with a delayed argument. These lem-
mas are used in §§9 and 11 to find the sufficient or necessary and sufficient
conditions for equation (0.1) not to have a solution satisfying (0.4) or (0.5).

In §§12 and 13 of Chapter 5 the previously obtained results are used to
find the sufficient or necessary and sufficient conditions for equation (0.1)
to have property ~or N, while in §14 the sufficient or necessary and suf-
ficient conditions are established for any solution of (0.1) to be oscillatory.
The results presented in this chapter are specific of functional differential
equations and have no analogues for ordinary differential equations.

Chapter 6 is dedicated to second order differential equations with a de-
layed argument. The question of the existence and uniqueness of a solution
of the linear problem (16.1), (16.2) is studied in §16, while in §17 we discuss
the boundedness of all oscillatory solutions of both linear and nonlinear
equations. In §18 sufficient conditions are given for the unique solution of
problem (16.1), (16.2) to be oscillatory or bounded oscillatory.

The results of this work make it possible to extend a number of the ear-
lier results concerning the oscillatory behaviour of differential equations with
deviating arguments to the case of general functional differential equations.
Some of them improve well-known results not only for differential equations
with deviating arguments but for ordinary differential equations as well.
Besides, the work presents essentially new results specific of functional dif-
ferential equations.

The following notation will be used throughout the
work:
N is the set of natural numbers;

R=]— ; =[0 i R.=]-00,0]; RF =Rx--- xR
] = 00, +00[; Ry = [0,+00[; ] = 00, 0]; XX
k times

If I Cc Ris an interval and E C R is a set, then:

C(I; E) denotes the space of all continuous functions with the topology
of uniform convergence on any finite subsegment of I. L;,.(; E) denotes
the space of all locally integrable functions u : I — E with the topology of
convergence in mean on any finite subsegment of I.

CF.(I; E) denotes the space of all functions u : I — E which are abso-
lutely continuous on any finite subsegment of I together with their deriva-
tives up to order k inclusive.

Kio.(I x R¥; E) denotes the set of functions f : I x R¥ — E satisfying
the local Carathéodory conditions, i.e. on any finite subsegment of I the
function f(-,x) is measurable for every x € RF, f(t,-) is continuous for
almost every ¢t € I and for any r > 0

sup{|f(t,z)| : |zl] < 1} € Lige(Ry5 Ry ).



CHAPTER I

§ 1. SOME AUXILIARY STATEMENTS

Let u € C~Y([to, +oo[; R) and

loc

u(t) >0, u™(t) <0 @™(t)>0) for t>to. (1.1)

Then there exist t; € [to,+oo[ and | € {0,...,n} such that | + n is odd
(even) and

uD() >0 for t >ty (i=0,...,1—1), 12)
(=)D (@) >0 for t >ty (i=1,...,n). '

The proof of this lemma can be found in [34] (Lemmas 14.1 and 14.2).

Let u € C~([to, +oo; R) and

loc
(=)D (t) >0 (i=0,...,n—=1), (=1)"u™(t) >0 for t > to.
Then
—+o0
/ 7= 0™ ()| dt < +oo, (1.3)

to

+o00
el A A T R

for t >ty (i=0,...,n—1)

()] >

and
@D (s)|(s —t
Z [ (s)l(s —1)' for s>t > to. (1.5)

Proof. Using the signs of the derivatives of u, we can readily obtain (1.3)
and (1.5) from the identity

k—1

u(l) ;E;_Z t_sj l+
1 ¢ ,
+m/ (t— & tulb) (&)de (1.6:1)

with i =0, k = n, s > t. As to (1.4), it is an immediate consequence of
(1.6;,). ™



Let u € Clrzcl([to,+oo[) and (1.2) be fulfilled for some | €
{1,...,n—1}. Then

+o0
/ #2110 (8) | dt < +oo, (1.7)

to

ut) 2w to) + (I—i- 1)!1(n —1-1)! /t o

X /:Oo(s — " u™ (5)|ds dE for t >ty (i=0,...,1—1), (1.8)

+o00
[l (t)] > ﬁ /t (s — )" Hu™(s)|ds (1.9)

for t >ty (i=1,...,n—1).

If, in addition,

+o00
/ £ (8) | dt = +oo, (1.10)
to
then
( ) 1, tl( 3 T 400 as t 7T +oo, (1.11)

tl +00 I
> n—l—1,.(n) _
u(t) > =) /t s [u'™(s)|ds for large t (1.12)

and for any nondecreasing 8 € C(Ry;Ry) satisfying
B(t) <t for t € Ry, t_lgrn B(t) = +o0 (1.13)
there exists t. € [to,+0o[ such that

ﬂll

_l'n—l

u(B(t)) / B (s)|u ™ (s)|ds for t > t.. (1.14)

Proof. By virtue of (1.2) condition (1.7) readily follows from the identity

k—1 L k1 o
(1P (@) (1P 1)
D Vh T
+%/t sk_i_lu(k)(s)ds (1.154)

with ¢ =, kK = n. The same identity also implies the inequality

n—1 5 ;
) (t 1 R,
Z (j|—l)(' ) > i 1)'/t s ™ (5)|ds for t > tg. (1.16)
= ! !



On account of (1.2) and (1.7), from (1.6;,) with s — +o00 we obtain (1.9).
Analogously (1.6;;) with s = tg gives

u(t) > u (ko) + ﬁ / (=0T e

for t >ty (i=0,...,01—1).

Hence by (1.9) we obtain (1.8).
Assume now that (1.10) is fulfilled. Using (1.2), from (1.15;_1 ;) we have

lim (=9 () — tu® (1)) = +00 (1.17)

t——+oo
and

T e @)

. t
UEDY G—1+1)

J=l

for large t. (1.18)

For any t > tp and 7 € {1,...,1} put
pilt) = il () — tu D (1) = 47 (¢TI (1))
ri(t) = w7 (@) — (i = a0 (@) = 8@ a0 @) (1.20)
Applying (1.17) and L’Hospital’s rule, we have

T (Y C_
t_l}gloot Tt =400 (i=1,...,1), (1.21)
so that in view of (1.20) there exist ¢; > --- > t; > o such that r;(¢;) > 0
(i = 1,...,0). Since by (1.17) pi(t) = o0 as t = +oo pj () = pi(t),
riy (t) = ri(t) and ri(t) = tul(t) > 0 for t > to (i =1,...,1— 1), we find
that p;(t) = +o00 as t — 400 and r;(t) > 0fort > ¢; (i =1,...,1). These
facts along with (1.19)—(1.21) prove (1.11). On the other hand, by (1.19)
we have
w9 (t) > tw =D (4) for large ¢t (i=1,...,1)
which implies
-1

u(t) > tl—_'u(l_l)(t) for large t. (1.22)

Inequalities (1.16), (1.18) and (1.22) imply (1.12).
It remains to prove (1.14). Let t. > ¢; be such that 3(t) > ¢ for ¢t > t..
From (1.15;—1 ,—1) we have

g B () [uD (B(t,))]

(1-1) (1—1) _

uV(B(1) 2 u T (B(E) > G N
B(1)

+ﬁ /B(t ) ST s, (1.23)
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On the other hand, changing the order of integration and taking into account
(1.13) and the fact that 8 is monotone, we obtain

1 /ﬁ(t) 1) (5)1d 1 /ﬁ(t) -
e E——— Sn_ “u n- S s> — Sn_ X
(n—l—l) t,) _(n—l—l)' B(t.)

/|u |d§ds> /|u(")

n -1 # n—I (n) _
X/m dsdfz(n_m/t*ﬂ (©)u™ (©)lde

D8 1) for 121

so that, applying (1.20), we arrive at

D (B() > o + / B @) ds for ¢ 1o, (1.29)

1
(n—0D!J;
where

« ()

— (j—1+1)! [ (B(t))]-

co = ul""V(B(t)) —

By (1.18) t. can be assumed to be large enough for the inequality ¢o > 0 to
hold. Therefore (1.22) and (1.24) immediately imply (1.14). H

C(Ry;R) Lioc(Ry;R)  Let
o : Ry — Ry satisfy the condions given at the begining of Subsection
0.1.

Denote by M(7) (M(r,0)) the set of all ¢ € V(1) (¢ €
V(r,0)) satisfying the condition: for any to € Ry, t € [tg, +00[ and z,y €
Hyy » such that 2(s)y(s) > 0, [a(s)] > |y(s)] for s > 7(t) (r(t) < s < o (1))
one has ¢(z)(t) signz(t) > ¢(y)(¢) sign y(t) > 0.

Denote by M; (1) (M;(7,0)) the set of all p € M (1) (¢ €

M (7,0)) satisfying the condition: for any to € Ry and m € {1,2} the
integral inequality

+o00
v0 > [ lel-)mg)o)lds (1.25)
t
has no nonincreasing positive solution y : [tg, +00[—]0, +00].

For any nondecreasing function § € C'(R;; R} ) satisfying
(1.13) denote by MP(r) (MZ(r,0)) the set of all ¢ € M(7) (¢ € M(r,0))
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satisfying the condition: for any ¢, € Ry and m € {1,2} the integral
inequality

t

y(BB) = [ le((=1)"y)(s)lds (1.26)

to
has no nondecreasing positive solution y : [to, +00[—]0, +00].
Remark 1.1. As in the case of equation (0.1), a function y € C([to, +00];
R) is said to be a solution of (1.25) ((1.26)) if there exists ¥ € C(R;R)

which satisfies (1.25) ((1.26)) for any ¢ € R}y and whose restriction to
[to, +00[ coincides with y.

Remark 1.2. As in the case of V(1) (V(r,0)), whenever in the sequel
the notations M(7), My () and MY (r) (M(r,0), Mi(r,c) and MZ(r,0))
are used, 7 and o will be assumed, unless stated otherwise, to satisfy the
conditions given at the beginning of Subsection 0.1 and 8 will be assumed
to be nondecreasing and to satisfy (1.13).

Obviously, M (r,0) C M(7), My(1,0) C M;(7) and Mg(T, o) C Mf(T)

On account of the definitions of the sets M; (7) and M (r), one can easily
ascertain that the following lemma is valid.

If p € My(7) (p € Mf(r)), then

+o00
| el = +o02

for any ¢ # 0.

If a € C(Ry4;]0, +00[) is nondecreasing and ¢ € M;(T), then
W € My (1) where

P)(t) = alt)py/a)(t) for y € C(Ry;R), teR,.

Proof. Assume the contrary: ¢ ¢ M;(7). In that case there exist to € Ry
and m € {1.2} such that the inequality

+o0
u(t) > / a(3)|p((—1)™y/a)(s)ds

has a nonincreasing solution y : [to, +00[—]0, +-00[. Since « is nondecreas-
ing, we find that the nonincreasing function z = y/a satisfies

“+o00
02 [ lel-)m)e)lds for ¢ to
¢
Therefore ¢ ¢ M;(7) which is a contradiction. W

3We usually do not distinguish between the notations of a constant and a function
identically equal to this constant.
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Let ¢ € M(1) and there exist to € Ry such that for any
m € {1,2} we have

le((=1)"y)(B)] = p(H)w(y(t)) for y € C(Ry;]0,4+00[), t > to, (1.27)

where p € Lioe([to, +oo[; Ry ), w € C(Ry;Ry) is nondecreasing, w(s) > 0
for s >0 and

1 S —+o0
/0 w(is) < 400, / p(t)dt = +o0. (1.28)

Then ¢ € My(T).
Proof. Assume the contrary: ¢ ¢ M;(r). Then there exist t; € [tg, +00[

and m € {1,2} such that (1.25) has a nonincreasing solution y : [t1, +00[—
10, +00[. According to (1.27) we have

+o00
y(t) 2/ p(s)w(y(s))ds for t > t;.
¢
Therefore, since w is nondecreasing,
+o0
p(Ouy(0) 2 p(0)s( [ po)(u(e)ds) for £ 11
t

This inequality implies

I(tl) t
/ ds >/ p(s)ds for t >t
x

0 ws) T Jy

with z(t) = ft+°° p(s)w(y(s))ds, which contradicts (1.28). W

Let p € M (1) there exists and to € Ry such that for any
m € {1,2} we have

lo((=1)"y)()] > p(t)y*(t) for y € C(Ry3]0,+00), t> to,

where X €]0,1[ and p € Lo (Ry; Ry ) satisfies the second condition of (1.28).
Then ¢ € My(T).

Let ¢ € Mg(T) and o € C(Ry;]0,+00[) be nonincreasing.
Then 1 € MY (1), where

P(y)(t) = a(B(t)e(y/a)(t) for y € C(Ry;R), teRy.

Proof. Assume the contrary: ¢ ¢ Mf (1). Then there exist to € Ry and
m € {1,2} such that the inequality

y(B(2)) 2/ a(B(s)le((=1)"y/a)(s)|ds

to
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has a nondecreasing solution y : [to, +00[—]0, +oo[. Since « is nonincreas-
ing, we find that the nondecreasing function z = y/« satisfies

t
2B) > [ lp((=1)™2)(s)lds for ¢ > to,
to
Therefore ¢ ¢ Mf () which is a contradiction. W

Let ¢ € M(7), a nondecreasing function § € C(Ry;Ry)
satisfy (1.13) and there exist to € Ry such that

le((=D)"y) (O] 2pO)w(y(B(1))) for yeC(Ry;]0,+00[), t=to, (1.29)

where p € Lioe(Ry;Ry) satisfies the second condition of (1.28), w €
C(Ry;Ry) is nondecreasing, w(s) > 0 for s > 0 and

T ds
/1 o(5) < +o0. (1.30)

Then ¢ € M (7).

Proof. Assume the contrary: ¢ & Mf(T) Then there exist t; € [tg, +o0]
and m € {1,2} such that (1.26) has a nondecreasing solution y : [t1, +0o[—
10, +oo[. By (1.29)

t
z(t) 2/ p(s)w(z(s))ds for t > tq,
t1
where z(t) = y(8(t)). Therefore, since w is nondecreasing, we have
¢
pO0e(0) 2 p0( [ po)ole(s)ds) for 120 (13D
ty
Choose ty €]t1,+o0o[ such that ﬁf p(s)w(z(s))ds > 0. Then (1.31) implies
z(t) ds t
—_— > p(s)ds for t > t,
/z(tg) w(s) /tg (=) 0

where z(t) = fttl p(s)w(z(s))ds. But this contradicts the second condition
of (1.28) and (1.30). M

Let ¢ € M(1), a nondecreasing function f € C(Ry;R;)
satisfy (1.13) and there exist to € Ry such that for any m € {1,2} we have

(=) y) (O >p()y* (B(2)) for y€C(Ry;]0,+00]), t > to,

where X €]1,400[ and p € Lioe(Ry;Ry) satisfies the second condition of
(1.28). Then o € MJ ().
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§ 2. COMPARISON THEOREMS

In this section we shall prove the comparison theorems for functional dif-
ferential equations and inequalities. The essence of the comparison principle
consists in the following: ¢, ® : C(R4;R) = Ljo.(Ry; Ry ) being somehow
related continuous operators, the fact that the equation

v (#) + p(v)(t) = 0 (2.1)
(0™ () - p(v)(t) = 0) (2.2)
has property  (property ) implies that the inequality
[u(") (t) + ®(u)(t)] signu(t) <0 (2.3)
([u™(t) — ®(u)(t)] signu(t) > 0) (2.4)

also possesses the same property.

We shall consider here relations of two types existing between ¢ and ®:
1) ¢ is a minorant of ® (2.1. Minorant Case); 2) ¢ is a superposition of the
form

p(u)(t) = D(y(uw))(t) for ue C(Ry;R), teRy, (2.5)

where {¢; : C(Ry;R) = C(Ry;R)}ier, is a family of operators of either
type (2.2. Superposition Case).
The results obtained will enable us in §§3—4 to derive the sufficient and
necessary conditions for equation (0.1) to possess property  (property ).
We begin by considering a lemma which is a special case of the Schauder-
Tikhonoff theorem (see, for example, [18, p. 227]).

Let to € R, U be a closed bounded convexr subset of
C([to,+oo;R), and let T : U — U be a continuous mapping such that the
set T(U) is equicontinuous on every finite subsegment of [to, +oo[. Then T
has a fized point.

Let ® € V(7), to € Ry, and assume that for any u,v €
Hy, - satisfying |u(t)] > |v(t)], w(t)v(t) > 0 for t > to the inequality

@ (u)(t) signu(t) > p(v)(t) signv(t) >0 for t >t (2.6)

holds, where p € V(7). Let, moreover, equation (2.1) have property . Then
inequality (2.3) also has the property

Proof. Let w : [tg, +00[— R be a proper nonoscillatory solution of (2.3). It
can be assumed without loss of generality that

u(t) >0, uD(t)#£0 for t >ty (i=1,...,n—1). (2.7)
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By (2.6) and Lemma 1.1 there exist t; € [tp,+oo[ and [ € {0,...,n — 1}
such that [ + n is odd and

u(t) >0 (i=0,...,01—1), (=1)*uD) >0 (2.8))
(i=1,...,n—1) for t > t;.

First we assume that [ € {1,...,n — 1}. In that case (2.8;) and Lemma
1.3 imply

1 ' -1
ult) 2 u(t2) + gy =y L~ 9"
400
X / (s — )" 11D (u)(s)ds d¢ for t > to, (2.9)
£

where ty € [t1,+00[ is a sufficiently large number to be chosen such that
t. = min(to, inf{r(t) : t > t2}) > 1.

Let U be the set of all v € C([t., +oo[; R) satisfying u(t1) < v(t) < u(t)
for t > to, v(t) = u(t) for t. <t < ty. Define T : u — C([t«, +o0[; R) by

u(t2) + oy Jot—gtt f§+oo(3 — " x
T(v)(t) = xp(v)(§)ds d§ for t>t;
w(t) for t, <t<ts. (2.10)

By virtue of (2.6) and (2.8;)—(2.10) we have T(U) C U.

Let v, € U (k=1,2,...) and limy_, o v = vo uniformly on every finite
subsegment of [t., +oo[. Take arbitrarily ¢ > 0 and t* > ¢2, and choose
ts €]t*, +o0o[ and ko € N such that

2(t* — to)! /+00 s" I B (u)(s)ds < e,

t3

(ts — 1)1 / " o0 (5) — 0(vo)(s)[ds < & for k = ko, ko +1,... .

to
Then since

10 - Ten)® < [ ¢ - [ -gm it x

to 13

X |io(0k)(5) — (o) (5)|ds dE +2 / (1" — &) x

2

+oo
X / (s — &) @ (u)(s)ds dE < 2 for t, <t <t

t3

we find that T'(vg)(t) — T'(vo)(t) uniformly on [t.,t*]. As t* is arbitrary,
this implies the continuity of T.
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Let v € U, t',t" € [t2,t*] and ¢" > t'. Then

t' +00
T(o)t" = T(v)(t oo e\I=1 g \I=1 Sn—l—l
T (v)(t") = T(v)(t)] S/t2 [(t" =) (" =€) ]/g X
¢ +oo
®(u)(s)ds d gt s" LB (u)(s)ds dE.
O | (1) (3)ds d

Thus the set T'(U) is equicontinuous on every finite subsegment of [t., +oo].
Since U is closed, bounded and convex, by Lemma 2.1 there exists v € U
such that v = T'(v). The function v is obviously a solution of (2.1) on
[to, +oo[, satisfying u(t1) < v(t) < u(t) for t > t5. This however contradicts
the fact that equation (2.1) possesses property . The obtained contradic-
tion proves that [ ¢ {1,...,n—1}. If n is even, then [ = 0 cannot take place
either, which proves the theorem in this case.

Let now n be odd and I = 0. Then (2.8;) implies

tilinoou( Yt)=0 (i=1,...,n—1), tilinoou(t) =co > 0.

Assume that c¢g > 0. Let U be the set of all v € C([t«, +o0[; R) satisfying
co < v(t) < u(t) for t > t.. Using the above reasoning, we can show that
the operator T : U — U defined by

( )( ) _ {;5) + (n+1)' t+°°(8 — t)nflso(v)(s)ds for ¢t > to
(v)(tz) for t. <t <ts

has a fixed point v which is a solution of (2.1) on [t2, +00], satisfying v(t) >
co for t > t5. But this contradicts property  of (2.1). Therefore (0.4) is
fulfilled when n is odd and I =0. W

Let ® € V(7), to € R and assume that for any u,v € Hy, ,
satisfying |u(t)] > |v(t)|, uw(t)v(t) > 0 for t > to inequality (2.6) hold, where
w € V(7). Let, moreover, equation (2.2) have property . Then inequality
(2.4) also has property

Proof. Let u : [tg,+0o[— R be a proper nonoscillatory solution of (2.4).
Assume that (2.7) is fulfilled. Then (2.6) and Lemma 1.1 imply that there
exist t; € [to,+oo[ and I € {0,...,n} such that | + n is even and (2.8;)
holds. Like in proving Theorem 2.1, it can be shown that [ ¢ {1,...,n —2}
and (0.4) is fulfilled when n is even and I = 0. To complete the proof it
suffices to show that (0.5) is valid when [ = n.

Thus assuming that [ = n, from (2.8,,) and (2.4) we obtain

, _ 4y )nig(n=1) t .
w1 (t) > (t—t)"'u (t1) + 1 / (t —s)" "t x
t1

(n —1)! (n —1)!
x®(u)(s)ds for t>t; (i=1,...,n), (2.11)

where t; € [tg, +00o[ is such that ¢, = min(¢y,inf{7(¢) : t > t1}) > to.
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Let U be the set of all v € C([t«, +oo[; R) satisfying

(nfl)(t )(t —t )nfl
u 1 1
t) < wu(t). 2.12
Al — <o <) (212
As in proving Theorem 1.2, by (2.6), (2.11), (2.12) and Lemma 2.1 we
find that the operator T': U — U defined by

WD (1) (b)) ‘ e
((tﬁ)—(f)!tl) + (nil)! Ji, (=) tx

T(v)(t) = xp(v)(s)ds for t >t
0 for t, <t<t.

has a fixed point v which is a solution of (2.2) satisfying

(n—1) _ n—i . .
u ((tl)(t.), " D@ < ul V(@) for £ 4 (=1,...,n).
n—t):

Since (2.2) has property , v() () + 400 ast 1t +o0o (i =0,...,n —1) and
therefore (0.5) is fulfilled. W

Remark 2.1. By Theorem 2.1 (Theorem 2.2) it is obvious that if ¢ €
M(7) and equation (2.1) (equation (2.2)) has property  (property ),
then the inequality

’ 2.13
0 (2.13)

also has property  (property ).

Remark 2.2. If ¢ € M(7) and inequality (2.13) has a solution u : [tg, +00]
— R satisfying

uDBut) >0 (i=0,...,01—1), (=) uD@u) >0 (2.14)
(i=1,...,n), for t >to,

wherel = {1,...,n—1} and [+n is odd (even), then equation (2.1) (equation
(2.2)) also has a solution of the same type.

If condition (0.2) ((0.3)) is fulfilled and u : [to,+oo[— R is a proper
solution of equation (0.1) not satisfying (0.4) (satisfying neither (0.4) nor
(0.5)), then there exists ¢ €]0, +oo[ such that 1/c < u(t) < ct" ! for t > t;
with t; € [to, +oo[ sufficiently large. Taking this fact into account and
repeating the arguments we used in proving Theorems 2.1, 2.2, we can
easily ascertain that the following result is valid.

Let F € V (1), condition (0.2) ((0.3)) be fulfilled, and for
any sufficiently large ¢ €]0, +o0] let there exist . € M (1) and t. € Ry such
that for any w € Hy_ ; satisfying

1
o< lu(t)| < ct"t, for t >t (2.15)
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we have the inequality

F(u)(t) sign u(t)
(F(u)(t) sign u(t)

Then if the equation

we(u)(t) signu(t) for t >t. (2.16)
—pe(u)(t) signu(t) for t >t.) (2.17)

>
<
o™ 4 . (v)(t) signo(t) =0 (" — . (v)(t) signo(t) =0) (2.18)

has property  (property ), equation (0.1) will also have property  (pro-
perty ).

Assume that ® € M(r), l € {1,...,n =1}, l +n is odd
w 6]07 1]7 To € C(R—F;RF)a 7_O(t) < T(t) for t e Ry,

tl}inoo Tg(t) = too

and @ is defined by (2.5), where for any t € Ry a function ¢y : C(Ry; R) —
C(R4+;R) is given by

e (0)(5) = [ro(®)] 0D fo(ro ()] signv(m(D)s " for s € Ry (2.20,)

Then if inequality (2.3) has a proper nonoscillatory solution u : [to, +oo[— R
satisfying (2.14;), then equation (2.1) also has a solution of the same type.

(2.19)

Proof. It can be assumed without loss of generality that u(t) > 0 for ¢ > ¢o.
Then either

+o0
/ s"u™ (s)|ds < +oo and u(t) > cot' ™t for t >t (2.21)
to

with ¢ € [to, +00[ and ¢y €]0, 1], or by Lemma 1.3

u(t)

a1 T 400 as tT+oo. (2.22)

Let (2.21) hold. Then by (2.3) there exists t» € [t1, 400 such that
t, = min({to,inf{r(¢) : t > t2}) > ¢; and

+o0 cl/lt
/ - laO) (0t < 0 (2.23)
to
where 8(s) = cos'™!.
Let further U be the set of all v € C([t., +oo[; R) satisfying
1/u

COTt’*1 <o(t) < "L for t> ¢, (2.24)
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Define T': U — C([t«, +oo[; R) by

C(l)/utl_l — m fttg (t — s)l_2><
T(v)(t) = x [F(e = s)nlp(v)(€)dE ds for t> t
/ML for b, <t <t

if I > 1 and by

T(v)(t) = o = Gt (s = )" () (s)ds for ¢ >t
T(v)(t2) for t, <t <t

if I/ = 1. According to (2.24) $% < [70(H)] =D [u(1o (£))]* < ¢o for t > to,
so that T(U) C U by (2.5), (2.20;), (2.23). As in proving Theorem 1.2,
we find that T has a fixed point which is a solution of (2.1) on [t2, +o0]
satisfying (2.14;).

If (2.22) is fulfilled, then for any sufficiently large ¢ we have u(™(t) +
p(u)(t) < 0. By Remark 2.2 we conclude that (2.1) has a solution satisfying

(2.14;)). m
Similar arguments can be used to prove

Assume that ® € M(r), 1 € {1,...,n — 2}, | + n, is even,
w and 1o satisfy (2.19) and ¢ is defined by (2.5), where ¢y : C(Ry;R) —
C(R+;R) is given by (2.20;) for any t € Ry. Then if inequality (2.4) has
a proper nonoscillatory solution u : [to, +oo[— R satisfying (2.14;), then
equation (2.2) also has a solution of the same type.

Assume that ® € M(r,0),1 € {1,...,n—1}, I +n is odd,

p€ 1,400, 7€ C(Ry;Ry), 7o(t) <oft)
for te Ry, lim 79(t) = +o0

li
t—+o0
and ¢ is defined by (2.5) where for any t € Ry

e(©)(s) = [ (] lo(ro ()" signv(m()s' for s € Re.  (2.26)

Then the conclusion of Lemma 2.2 is true.

(2.25)

Proof. Let u : [tg,+00[— R be a proper nonoscillatory solution of (2.3)
satisfying (2.14;). It can be assumed that w(¢) > 0 for ¢ > ty. Then either
(2.21) is fulfilled with #; € [to, +o00[ and ¢y €]0, 1] or by Lemma 1.3

u(t)
i
Let (2.21) hold. Obviously by (2.3)

ber >0 as t1 +oo. (2.27)

/+oo "L (8,) (t)dt < +o00, (2.28)

to
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where 6;(s) = cost/[o(t)]#, s € Ry, for any t > to. Using (2.8) and repeating
arguments from the proof of Lemma 2.2, we find that the equation

v (1) + @ (&, (v)(1) =0, (2.29)

where

& ()(s) = [o(O)] (o (t)" signv(o(t)s’ for s € Ry (2.30)

for any t € Ry, has a solution v : [t2, +00[—]0, +-00[ satisfying (2.14;), where
to € [t1,+oo[ is sufficiently large.

On the other hand, since 7(¢) < o(t) for t € Ry, by (2.5) and (2.26;) v
satisfies

o (1) + p(v)(t) <0 (2.31)

on [ty,+oo[. Following Remark 2.2 equation (2.1) has a solution of type
(2.14)).

Now consider the case when (2.27) is fulfilled. Assume at first that ¢; > 0.
Then there exists #; € [to, +00[ such that u(t) > ¢;#'/2 for t > t;. Therefore
by (2.1) and Lemma 1.3 we have

+o00
/ =1=18(9) (t)dt < +oo,
t1

where (s) = ¢15!/2 for s € Ry. Choose ty € [ti,+oo[ such that t, =
min(to, inf{7(t) : t > t2}) > t1 and

+o00 cl/lt
/ a0 < O (2.32)
2
Let U be the set of all v € C([t,, +0o[; R) satisfying
cl/u cl/u
thl <w(t) < thl for t > t.. (2.33)
Define T : U — C([t«, +oo[; R) by
cm t _ oo nl—
=t = oy (=) AR (RO
TO)(0) =4 xp@e(w))(€)de ds for t >t
ey (2.34)
Lt for t, <t <t

4

where for any ¢ € Ry, v, is given by (2.30).
By (2.33) it is clear that for any v € U we have
a —pul w a
R 0 RGO e e
and therefore (2.32) and (2.34) imply that T(U) C U. As we did previously
in this section, by Lemma 2.1 we ascertain that T has a fixed point v which
is a solution of (2.29) of type (2.14;) on [t2, +o0o[. Thus v satisfies (2.31) on
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[t2, +00[. Hence on account of Remark 2.2 equation (2.1) also has a solution
of type (2.14;).

Now we shall consider the last remaining case ¢; = 0. Since we have
u(t)/t! < 1 for any sufficiently large ¢, u satisfies inequality (2.31) for large
t. By Remark 2.2 equation (2.1) has a solution of type (2.14;). W

In a mannar similer to the above we can prove

Assume that ® € M(r,0),1 € {1,...,n—2},l+n is even, u
and 1o satisfy (2.25) and ¢ is defined by (2.5), where ¢y : C(Ry;R) —
C(Ry;R) is given by (2.26) for any t € Ry. Then the conclusion of
Lemma 2.3 is true.

Assume that ® € M(71), p and 1o satisfy (2.19), ¢ is de-
fined by (2.5) where 1y is given by (2.201) for any t € Ry, and equation
(2.1) has property . Then inequality (2.3) also has property

Proof. Let u : [tp,+00[— R be a proper nonoscillatory solution of (2.3).
Then by Lemma 1.1 there exists [ € {0,...,n — 1} such that I + n is odd
and (2.14;) holds. Assume that u(t) > 0 for t > t.

Let l € {1,...,n—1}. Then by Lemma 2.2 equation (2.1) with ¢ defined
by (2.5) and (2.20;) has a solution v : [t;, +00[—]0, +oo[ of type (2.14;),
where t; € [tg, +00] is sufficiently large. Since

(m)l_l >1 for s>7(t),

v satisfies (2.31) on [t1, +oo[ with ¢ defined by (2.5) and (2.20,). Following
Remark 2.2, equation (2.1) with ¢ defined by (2.5) and (2.20;) also has a
solution of type (2.14;). But this contradicts property  of this equation
stated in the conditions of the theorem. Therefore we have proved that
l¢{1,...,n—1}

Now assume that [ = 0, n is odd and u(t) | ¢ > 0 as t T +o00. By (2.3)
and Lemma 1.2 we have

/+oo t"—lcb(g) (t)dt < +oo.

Therefore by Lemma 4.1 to be proved later in §4 equation (2.1) with ¢
defined by (2.5) and (2.20;) has a solution v of type (2.14g) such that
lim; 4 v(t) # 0. But this again contradicts property  of this equation.
The obtained contradiction proves that (0.4) holds for [ =0. W

" Assume that ® € M(r,0), p and 1o satisfy (2.25) ¢ is
defined by (2.5), where 1y is given by (2.26,,—1) for any t € Ry and equation
(2.1) has property . Then inequality (2.3) also has property
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Proof. Let wu : [tg, +00[ be a proper nonoscillatory solution of (2.3). Then
by Lemma 1.1 there exists [ € {0,...,n — 1} such that [ + n is odd and
(2.14;) holds. Tt can be assumed that u(t) > 0 for ¢ > to.

Assume that [ € {1,...,n —1}. By Lemma 2.4 equation (2.1) with ¢
defined by (2.5) and (2.26;) has a solution v : [t;, +00[—]0, +00[ of type
(2.14;), where t1 € [tg, +00] is sufficiently large. Since

v satisfies (2.31) on [t1, +oo[ with ¢ defined by (2.5) and (2.26,,—1). By
Remark 2.2 equation (2.1) with ¢ defined by (2.5) and (2.26,,—;) also has
a solution of type (2.14;). But this contradicts property  of this equation
stated in the conditions of the theorem.

Assuming that | = 0 and n is odd and applying the arguments from the
proof of Theorem 2.4, we can show that condition (0.4) is fulfilled. W

Assume that ® € M (1), p and 7o satisfy (2.19), ¢ is de-
fined by (2.5) where 1, is given by (2.201) for any t € Ry, and equation
(2.2) has property . Then inequality (2.4) also has property

Proof. Let u : [tg, +00[— R be a proper nonoscillatory solution of (2.4). By
Lemma 1.1 there exists I € {0,...,n} such that [ + n is even and (2.14;)
holds. As in the proof of Theorem 2.4, we can show that I ¢ {1,...,n — 2},
and if n is even and [ = 0, then (0.4) is fulfilled.

Assume now that I = n and lim;_, ; o [u(®~")(t)| < 4+00. By (2.14,,) there
exist cg €]0, +oo[ and £ €]t;, +o0o[ such that |u(t)| > cot" ! for t > t5, and
therefore (2.4) implies

/ @)1t < oo (2.35)

with 6(s) = cosignu(ty)s™~! for s € R, .

On the other hand, by Lemma 4.1 and (2.35) equation (2.2) with ¢
defined by (2.5) and (2.201) has a solution v of type (2.14,) satisfying
limy_, o0 [0~V ()| < +00. But this contradicts property  of this equa-
tion. M

The proof of Theorem 2.4 has been a guide for us in proving Theorem
2.4". In the same way we shall be guided by the proof of Theorem 2.5 to
show that the next theorem is valid.

!

Assume that ¢ € M(7,0), p and 1o satisfy (2.25), ¢ is
defined by (2.5), where vy is given by (2.26,,—1) for any t € Ry, and equation
(2.2) has property . Then inequality (2.4) also has property
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§ 3. SUFFICIENT CONDITIONS

In this subsection we shall derive the
ineffective sufficient conditions for the equations

ul™ + p(u)(t)
ul™ — p(u)(t)
to have property and , respectively. These conditions will be stated

in terms of the classes introduced in 1.2 and be used in 3.2 to obtain the
effective sufficient conditions for (0.1).

(3.1)

=0
=0 (3.2)

Let o € M(1),1 € {1,...,n—1} and I +n be odd. Then the
condition

(,El S Ml(T) (331)

is sufficient for equation (3.1) not to have a proper solution satisfying (2.14;),
where for any u € C(Ry;R) and t € Ry

tn—l—l

oir(u)(t) = mg@(au)(t) with a(s) =s' for se Ry, (3.4)

Proof. Let, on the contrary, (3.1) have a solution w : [tg, +00[— R satisfying
(2.14;). Tt can be assumed without loss of generality that (2.8;) is fulfilled,
where t; is sufficiently large. By (3.3;), (3.4;) and Lemmas 1.4, 1.5 for any
¢ # 0 we have

+o0
/ t" o0 (t)dt = +o00, withl;0(s) =cs't for s € R,. (3.5)

(2.8;) implies that there exist ¢y €]0,+o00[ and to € [t1,+00[ such that
u(t) > cot! ! for t > t5. Therefore by (3.1), (3.5) we have

+o00
/) 2= (1) |dt = +oo. (3.6)

Hence by Lemma 1.3 u(t)/t | as t 1 +o0o and

tl
) = =

where t, € [t2,+00[ is sufficiently large, so that by (3.1), (3.4;) we obtain

“+o00
/ s" ™) (5)|ds for t > t,,
t

+o00
z(t) Z/t pi(z)(s)ds for t > t,,

where z(t) = u(t)/t' is nonincreasing. This means that @; ¢ M;(7), which
contradicts (3.3;). W



24

In a similar way we can prove

" Let e M(r),l € {1,...,n—2} and l + n be even. Then
condition (3.3;) with @ defined by (3.4;) is sufficient for equation (3.2) not
to have a proper solution satisfying (2.14;).

Let o € M(7), 1 € {1,...,n— 1} and I + n be odd. Let,
moreover, 3 € C(Ry;R}) be a nondecreasing function satisfying (1.13).
Then the condition

@1 e MP(r) (3.71)

is sufficient for equation (3.1) not to have a proper solution satisfying (2.14;),
where for any u € C(Ry;R) and t € Ry we have

n—l
~ t
or(u)(t) = l'ﬁ(ni_(l;'cp(au)(t) with a(s) =s'"1 for se Ry. (3.8)
Proof. Let, on the contrary, (3.1) have a solution w : [tg, +00[— R satisfying
(2.14;). Tt can be assumed that (2.8;) is fulfilled. Condition (3.6) is valid on

account of (3.1), (3.7;), (3.8;) and Lemma 1.4, so that Lemma 1.3 implies

[—1 t
u(B(t)) > l?(n—_(?), / 87 () [u™ (s)|ds for t >,

where t; € [tg, +o0[ is sufficiently large. Hence by (3.1) and (3.8;) we have

z(B(t)) 2/ oi(z)(s)ds for t > ty,

ty

where z(t) = u(t)/t'~! is a nondecreasing function by Lemma 1.3. But this
means that @; & Mf(r), which contradicts (3.7;). W

The next lemma can be proved similarly.

" Letp e M(r),l € {1,...,n—2} and | + n be even. Then
condition (3.7;), where @y is defined by (3.8;), is sufficient for equation (3.2)
not to have a proper solution satisfying (2.14;).

Let ¢ € M (1) and (3.3,—1) be fulfilled, where $p_1 is de-
fined by (3.4,,_1). Then equation (3.1) has property

Proof. According to Lemma 1.5 condition (3.3;) is fulfilled for any I €
{0,...,n — 1} with ¢; defined by (3.4;).

Now assume that u : [tg, +00[— R is a proper nonoscillatory solution of
(3.1). By Lemma 1.1 there exists [ € {0,...,n — 1} such that I + n is odd
and (2.14;) holds. On account of Lemma 3.1 we have [ & {1,...,n — 1}
Thus it can be assumed that [ = 0 and n is odd.

Let u(t) | co # 0 as t T 4+o00. Since @y € M;(7), by Lemma 1.4 we have

“+o00
/ |Po(c)(t)|dt = 400 for any ¢ #0. (3.9)
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Obviously there exists t1 € [to, +oo[ such that |u(t)| > ¢o/2 for ¢t > ¢; and
therefore by (3.1) and (3.9)

+o00 +o00 o
/ tn*1|u<">(t)|dt2/ B0 () (8)]dt = +o0.

tz t2
This however contradicts (1.3). The obtained contradiction proves that
(0.4) holds if n is odd and I =0. W

Let ¢ € M(7) and (3.3,—2) be satisfied, where for any
u€ C(Ry;R) and t € Ry

Pna(u)(t) = ﬁg@(au)(t) with a(s) =s""? for s€ Ry. (3.10)

Moreover, let for any ¢ # 0

—+o0
/ lo(8)(t)|dt = +oo with O(s) =cs"' for s€ Ry. (3.11)
Then equation (3.2) has property

Proof. By Lemma 1.5, (3.3,_2) and (3.10) condition (3.3;) is fulfilled for
any [ € {0,...,n — 2} with @, defined by (3.4;).

Assume now that u : [tg, +0o[— R is a proper nonoscillatory solution of
(3.2). Then by Lemma 1.1 there exists [ € {0,...,n} such that I + n is
even and (2.14;) holds. By Lemma 3.1’ [ ¢ {1,...,n—2}. As while proving
Theorem 3.1, it can be shown that (0.4) holds if n is even and [ = 0.

To complete the proof it remains to show that (0.5) is fulfilled for [ = n.
Indeed, by (2.14,,) there exists t; € [to, +0o[ and ¢g €]0,4+o00[ such that
|u(t)| > cot™ ! for t > t;. Therefore from (3.2) we have

=D (8)] > / 0(6) (5)]ds,

where 6(s) = cosignu(t;)s" ! and 2 € [t1,+00] is chosen such that inf{7(¢) :
t > t2} > t1. By (2.14,) and (3.11) the latter inequality obviously implies
(0.5). m

" Let p € M(1), 10 satisfy (2.19) and (3.3,—1) be fulfilled,
where for any u € C(Ry;R) and t € Ry

Gt (u)(2) = ﬁeo(wt(u))(t)
with Py(u)(s) = 9 (Dulm(t) for s € R,

Then equation (3.1) has property

(3.12)
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Proof. By Theorem 3.1, (3.3,,—1) and (3.12) the equation

o + o (0)(t) =0, (3.13)
where ¢;(v)(s) = v(7o(t)), for any v € C(R4+;R) and ¢ € Ry, has property
. Therefore by Theorem 2.4 (1 = 1) equation (3.1) also has property . W
" Let p € M(7), 10 satisfy (2.19), let (3.11) hold for any
¢ # 0 and (3.3,—2) be fulfilled, where for any u € C(Ry;R) and t € Ry

G (u)(t) = ﬁeo(wt(u))(t)

with i(w)(s) = 2 (Bulro(t) for s € R,
Then equation (3.2) has property
Proof. By Theorem 3.2, (3.3,,—2) and (3.11) the equation
o = (e (0)() =0, (3.15)

where 1)y is defined by (2.20;) (@ = 1) has property . Therefore according
to Theorem 2.5 equation (3.2) also has property . M

(3.14)

" Let p € M(t,0), 10 satisfy (2.25) and
Pn—1 € My(7,0), (3.16)
where for any u € C(Ry;R) and t € Ry
1
Pn—1(u)(t) = mw(iﬁt(u))(ﬂ
with iy (u)(s) = [o(H)]' " [ro(H)]" u(ro(1)s" .
Then equation (3.1) has property

Proof. By Theorem 3.1, (3.16) and (3.17) equation (3.13) with ¢, defined
by (2.26,,—1) (¢ = 1) has property . Therefore by Theorem 2.4' equation
(3.1) also has property . H

(3.17)

" Let p € M(t,0), 10 satisfy (2.25) and

Pn—2 € My(1,0), (3.18)
where for any u € C(Ry;R) and t € Ry
~ ot .
Fn-a(u)() = el 0 10

with Go(u)(s) = [ (OF " [oOF 2u(r()s" 2 for s € R,
Moreover, let (3.11) hold for any ¢ # 0. Then equation (3.2) has property
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Proof. By Theorem 3.2, (3.18) and (3.19) equation (3.15) with ¢, defined
by (2.26,,—2) (u = 1) has property . Therefore by Theorem 2.5' equation
(3.2) also has property . H

Let ¢ € M(7) and (3.71) be fulfilled with ¢, defined by
(3.81). Then equation (3.1) has property

Proof. By Lemma 1.7 and (3.7;) condition (3.7;) is fulfilled for any I €
{1,...,n — 1}, where ¢, is defined by (3.8;).

Assume that u : [tg, +oo[— R is a proper nonoscillatory solution of (3.1).
Then by Lemma 1.1 there exists [ € {0,...,n—1} such that [+n is odd and
(2.14;) is satisfied. According to Lemma 3.2 1 ¢ {1,...,n — 1}. Condition
(3.71) and Lemma 1.4 imply that

+0oo
| 1m©id =+ (3.20)

for any ¢ # 0. Therefore, as while proving Theorem 3.1, it can be shown
that (0.4) is satisfied if n is odd and { =0. W

Let ¢ € M(7) and (3.71) be fulfilled with @1 defined by
(3.81). Then equation (3.2) has property

Proof. As above, by Lemma 1.7 and (3.7;) condition (3.7;) is fulfilled for
any [ € {1,...,n}, where ¢; is defined by (3.8;).

Assume that u : [tg, +oo[— R is a proper nonoscillatory solution of (3.2).
Then by Lemma 1.1 there exists [ € {0,...,n} such that [ + n is even and
(2.14;) holds. By Lemma 3.1’ we have [ ¢ {1,...,n — 2}.

On the other hand, since @; € Mf(r) (Il =1,...,n), by Lemma 1.4
condition (3.20) holds and

+o0
/ 1Ba(Q)(B)ldt = +00

for any ¢ # 0.
As while proving Theorem 3.2, it can be shown that (0.4) ((0.5)) is sat-
isfiedif nisevenand I =0 (I=n). N

" Let ¢ € M(7), 10 satisfy (2.19) and (3.71) be fulfilled,
where

~ E10) K

=20 t

Fu(w)(0) = e () o)
with (u)(s) = u(ro(t)) for 5 € R,

for any u € C(Ry;R) and t € Ry. Then equation (3.1) has property

Proof. By Theorem 3.3, (3.71) and (3.21) the equation v (£)+p(1) (v)) (t) =

0 with ¢; defined by (2.20y) (u = 1) has property . Therefore by Theorem

2.4 equation (3.1) also has property . H
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In a similar manner one can prove

" Let ¢ € M(7), 10 satsify (2.19) and condition (3.71) be
fulfilled with ¢, defined by (3.21). Then equation (3.2) has property

Let p € M(1,0), 1o satisfy (2.25) and
P1 € My (r,0), (3.22)
where for any u € C(Ry;R) and t € Ry

e BO
B1)(t) = =y () 52

with e (u)(s) = [o(t)] "u(ro(t))s" ™" for s € Ry.
Then equation (3.1) has property

Proof. The equation v("™ (t) + @(v (u))(t) = 0 with ¢, defined by (2.26,,_1)
(1 = 1) has property by virtue of Theorem 3.3, (3.22) and (3.23). There-
fore by Theorem 2.4’ equation (3.1) also has property . B

Quite similarly one can prove

Let ¢ € M(1,0), 10 satisfy (2.25) and let (3.22) be fulfilled,
where

aiw(o = P o)

with Yy (u)(s) = [o(t)]* "u(ro(t))s" 2 for s € Ry
for any u € C(Ry;R) and t € Ry. Then equation (3.2) has property

We conclude this subsection by a general theorem concerning equation
(0.1).

Let F € V (1), condition (0.2) ((0.3)) be fulfilled, and for
any sufficiently large ¢ > 0 let there exist t. € Ry and . € M(7) such that
inequality (2.16) ((2.17)) holds for any u € Hy,  satisfying (2.15). Then
for equation (0.1) to have property () it is sufficient that @, satisfy the
conditions of anyone of Theorems 3.1, 3.1', 3.1", 3.3, 3.3', 3.5 (3.2, 3.2/,
3.27, 3.4, 3.4', 3.5).

This theorem immediately follows from Theorems 2.1 and 2.3 (2.2 and
2.3).

Let F € V(7), condition (0.2) ((0.3)) be fulfilled, and let
for any sufficiently large ¢ > 0 there exist t. € Ry and a. € Lioe(Ry;Ry)
such that for any u € Hy, ; satisfying 1/c < |u(t)] < ct™™" for t > t,

F(u)(t)] > aclt) for t>t.. (3.24)
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Then the condition
+o00
/ ac(t)dt = 400 (3.25)

is sufficient for equation (0.1) to have property ().

Proof. Assume that ¢ > 0 is sufficiently large. Then by (0.2), (3.24) ((0.3),
(3.24)) inequality (2.16) ((2.17)) holds with

a.(t)|u(t)|* sign u
pr(ue) = O g0,y

By Corollary 1.1 of Lemma 1.6 and (3.25) ¢; satisfies the conditions of
Theorem 3.1" (Theorem 3.2"). Therefore by Theorem 3.7 equation (0.1) has
property (). W

In the theorems throughout this and
next subsections the following conditions will appear:

meN, 1,0, € C(Ry;Ry), 7i(t) <oy(t) for t € Ry,

R _ , (3.26)
tilngn(t) =400 (i=1,...,m);
ric t RS — R is measurable, r;(-,t) is nondecreasing (3.27)
for teRy (i=1,...,m); '
w; € C(R+7]R+)7 wl(o) =0, wz(s) >0 (3 28)

for s >0, w; is nondecreasing(i =1,...,m).

Let F € V (1), condition (0.2) ((0.3)) be fulfilled, and let for
any sufficiently large ¢ > 0 there exist t. € Ry such that for any u € Hy, ;
satisfying 1/c < |u(t)| < ct™ ! for t > t. we have

m o eoi(t)
|F(u)(t)] > H/'(t) wie(re "M () u(s))dsric(s, t) for t>t., (3.29)

where (3.26)—(3.28) hold, 7. (t) = min{r;(¢),t (i =1,...,m)} and

! ds
—— < 400, (3.30)
/0 Hi:1 wic(s)

+oo m
| Traloi®.6) - rctrito), D)dt = 4. (3.31)

i=1
Then equation (0.1) has property ().
Proof. By (0.2), (3.29) ((0.3), (3.29)) inequality (2.16) ((2.17)) holds with

m o noi(t)
pe(u)(t) = H/_(t) wie(r T ()|u(s)]) sign u(s)dsric(s, t).
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On the other hand, by (3.30), (3.31) and Lemma 1.6 we have @, ,—1 €
M, (1), where

Gen-1(u)(t) = (n—l wa u(7x(t))) sign u(7(t)) x

m

x [[ric(oi(®),t) — ric(ri(t), )] (3.32)

i=1

Since ¢, satisfies the conditions of Theorem 3.1’ (Theorem 3.2"), equation
(0.1) has property () on account of Theorem 3.7. MW

Let F € V(7), condition (0.2) ((0.3)) be fulfilled, and let
for any sufficiently large ¢ > 0 there exist t. € Ry such that for any u €
H;_ , satisfying 1/c < |u(t)] < ct™" for t > t. we have

m oi(t)
wmmnzﬂ/' Ju(s)

i=1"Ti (t)

Med 1o (s, t) (3.33)

where (3.26) and (3.27) hold, \;i. €]0,1[ (i =1,...,m) and
= Z)\zc < ]-7

+o00 A m
/ " H%% — rie(Ti(t), 1))t =

with 7.(t) = min{r;(t),t (i =1,...,m)}. Then equation (0.1) has property

()

Proof. It suffices to note that by (3.33) and (3.34) all the conditions of
Theorem 3.8 are satisfied with w;.(s) = s*c forse R, (i=1,...,m). B

(3.34)

Let F € V (o), condition (0.2) ((0.3)) be fulfilled, and there
exist to € Ry such that for any u € H;, » we have

|F(u)(®)] > p)lu(r())]* for t € [to, +o00], (3.35)

where p € Lioe(Ry; Ry ) and X €]0,1[. Then the condition

+o0
./ N )p(t)dt =

where T, (t) = min{t,7(t)}, is sufficient for equation (0.1) to have property

()
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Let F € V (1), condition (0.2) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t, € Ry such that for any v € Hy_
satisfying 1/c < |u(t)] < ct™ ! for t > t. we have

m  roi(t)
|F(U)(t)|ZH/_(t) wie([o" O] o (O] "' " u(s)|)dsric (s, 1) (3.36)
- for t>t.,
where (3.26)—(3.28) hold, o*(t) = max{o;(t) : i = 1,...,m}, o.(t) =

min{c*(t),t} and (3.30), (3.31) are satisfied. Then equation (0.1) has prop-
erty

Proof. By (0.2) and (3.36) inequality (2.16) holds with

o; (t)

@c(u)(t):H/ © wie([o* ()] ow ()] "' =™ |u(s)|)sign u(s)dsric (s, t).

On the other hand, by (3.30), (3.31) and Lemma 1.6 we have @, ,—1 €
M (74,0%), where 7. = min{r;(¢) : i = 1,...,m} and @.,_1 is defined by
(3.32). Since . satisfies the conditions of Theorem 3.1", equation (0.1) has
property  on account of Theorem 3.7. H

Let F € V (1), condition (0.2) be satisfied, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € Hy_
satisfying 1/c < |u(t)] < ct™ ! for t > t. inequality (3.33) is fulfilled, where
(3.26) and (3.27) hold, X\; €]0,1[ (i =1,...,m) and

Ae _wa<1

400 oi(t)
O U H/ e (5, 1)t = -+00,(3:37)

with o*(t) = max{o;(t) : i = 1,...,m}, 0.(t) = min{c*(¢),t}. Then equa-
tion (0.1) has property

Proof. By (0.2) and (3.33) inequality (2.16) holds with

m ai(t)
we(u)(t) = H/ lu(s)|Me signu(s)dyric(s, t).

i=1 7i(t)
On the other hand, by (3.37) and Corollary 1.1 of Lemma 1.6 we have
Pe n—1 € My(7x,0*), where 7. = min{r;(¢t) : i =1,...,m} and
e n-1(0)(t) = [ou OV o x

m o; (t)
X H/ [u(s)| M sign v(s)dsric (s, t).

=1 7i(t)
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Thus we see that ¢, satisfies the conditions of Theorem 3.1"”. Therefore
equation (0.1) has property  on account of Theorem 3.7. H

Let F € V(1), condition (0.3) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t, € Ry such that for any v € H;_
satisfying 1/c < |u(t)] < ct™! for t > t. we have

m o’i(t)
|F(U)(t)|ZH/ " wie([o* O o (O "> " |u(s))dsric (s, t) (3.38)
i=17Ti
for t € [te,+o0],
where (3.26)—(3.28) hold and o*(t) = max{o;(t) : i = 1,...,m}, o.(t) =
min{c*(t),t}. Moreover, let conditions (3.30) and

+oo Mm
/ tH[ric(ai(t) t) — i (13 (t), £)]dt = +o0, (3.39)

+00 m crl(t)
/ / wie([o* (O 2o (N]2="8)dyrse (s, )t = 00 (3.40)

be fulfilled. Then equation (0.1) has property

Proof. By (0.3) and (3.38) inequality (2.17) holds with
H / wie( [ (O 2 [ ("2 u(s)]) sign u(s)duric (5, 1)

On the other hand, (3.30) and (3.39) imply @.pn—o € Mi(7,0*), where
To(t) = min{r;(¢) : i =1,...,m} and

Fenal0)(t) = ﬁ T es(e(o () sign (o) x

X H [Pic(0i(t),t) — ric(Ti(t), t)]-

Taking into account (3.40), we see that ¢, satisfies the conditions of Theo-
rem 3.2". Therefore by Theorem 3.7 equation (0.1) has property . B

Repeating the arguments given in Theorem 3.10 and Corollary 3.4, we
easily ascertain that the corollary below is true.

Let F € V (1), condition (0.3) be satisfied, and let for any
sufficiently large ¢ > 0 there exist t, € Ry such that for any v € Hy_
satisfying 1/c < |u(t)| < ct™ 1 for t > t. we have inequality (3.33), where



33

(3.26) and (3.27) hold and \;. €]0,1[ (i = 1,...,m). Moreover, let the
conditions

Ae = ZAM <1,
“+o00
/ t[o,*(t)]/\ (n—2) /\ (2—n H/ /\zc(n 2) d Tzc(S t)dt

+o00 M oi(t)
/ H/ shie =D g i (s, 1) dt = +oo
i=17Ti t)

be fulfilled. Then equation (0.1) has property

Let F € V(7), condition (0.2) ((0.3)) be fulfilled, and let
for any sufficiently large ¢ > 0 there exist t. € Ry such that for any u €
Hy, - satisfying 1/c < |u(t)| < et™ ! for t > t. we have

oi(t)
|F(u)(t)] > H/ wic([u(s))dsric(s, 1), (3.41)

where (3.26)—(3.28) hold. Moreover, let

+oo ds

1 H:i1 wic(s)
+oo m
/ ﬁn_l(t) H[Tic(ffi(t), t) — ric (13 (t), t)]dt = 400, (3.43)

< 400, (3.42)

where 8 € C(Ry;Ry) is a nondecreasing function satisfying
B(t) <min{r;(¢),t (i =1,...,m)}, lim B(t) = +oo. (3.44)

t—+o00

Then equation (0.1) has property ().

Proof. By (0.2) and (3.41) ((0.3) and (3.41)) inequality (2.16) ((2.17)) holds
with
moeoi(t)
(u)(t) = wic(|u(s)]) sign u(s)dsri-(s,t).
pe(u)(t) z];[lfri(t) (lu(s)]) signu(s)dsric(s, )

On the other hand, by (3.42), (3.43) and Lemma, 1.8 we have &1, € M2 (1),
where

Frefuy(t) = 2 S ITowoon sisn (s

n—l
=1

X H[""ic(ai(t)a t) - ric(Ti (t)v t)]
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Since (. satisfies all the conditions of Theorem 3.3’ (Theorem 3.4"), equation
(0.1) has property () by virtue of Theorem 3.7. W

Let F € V(7), condition (0.2) ((0.3)) be fulfilled, and let
for any sufficiently large ¢ > 0 there exist t. € Ry such that for any u €
H,. , satisfying 1/c < |u(t)| < ct™ ' for t > t. we have inequality (3.33)
where (3.26) and (3.27) hold, \;. €]0,+o0[, (i =1,...,m) and

Ac = Z )\ic > ]-7
i=1
- (3.45)
[

“+o00
/ B L(t) H Pic(0i(t),t) — ric(1i(t), t)]dt = +o0,

1=

[y

where 8 € C(R4;Ry) is a nondecreasing function satisfying (3.44). Then
equation (0.1) has property ().

Proof. By (0.2), ((0.3)), (3.33), (3.45) and Corollary 1.2 all the conditions of
Theorem 3.11 are satisfied with w;.(s) = s*c fors € Ry (i=1,...,m). N

Let F € V(1) and conditions (0.2), (3.35) ((0.3), (3.35))
be fulfilled, where p € Li,.(Ry;Ry) and X\ €]1,400[. Then the condition

+o00
/ B (B)p(t)dt = +00

is sufficient for equation (0.1) to have property (), where § € C(Ry;Ry)
is a nondecreasing function satisfying

B(t) < min{t,7(0)}, lim_5(t) = +oo.

Let F € V(1), condition (0.2) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € Hy_
satisfying 1/c < |u(t)] < ct™1 for t > t. we have

- ai(t) * —1 _1—
|F(u)(t)] > H/ wic([o" ()]s " u(s))dsric(s, 1),  (3.46)

i=1"Ti (t)

where (3.26)—(3.28) hold and o*(t) = max{o;(t) : i =1,...,m}. Moreover,
let (3.42) and (3.43) hold, where § € C(Ry; Ry ) is a nondecreasing function
satisfying

3(t) < minf{o*(6),1}, lim_B(t) = +oo, (3.47)

Then equation (0.1) has property
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Proof. By (0.2) and (3.46) inequality (2.16) holds with
SR 1.1 :
pe(u)(t) = H/ o wic([o™ (0] s " u(s)]) sign u(s)dsric(s, t)-
i=1 7/ Tilt

On the other hand, according to (3.42), (3.43) and Lemma 1.8 we have
P1e € MY (7.,0%), where 7, = min{7;(t) : i = 1,...,m} and

Fueu)(0) = £y TL o (lu(B(0) D s u(3(0)

m

X H[""ic (Ui (t)7 t) — Tic (Ti (t)v t)]

i=1

Since ¢, satisfies all the conditions of Theorem 3.5, equation (0.1) has prop-
erty by Theorem 3.7. W

Let F € V(1), condition (0.2) be fulfilled and let for any
sufficiently large ¢ > 0 let there exist t. € Ry such that for any w € Hy_;
satisfying 1/c < |u(t)| < ct™ 1 for t > t. we have inequality (3.33), where
(3.26) and (3.27) hold and \;. €]0,+o0[ (i =1,...,m). Moreover, let

:i)\zc >]-7

+00 m
/ B () [o* () H/ sMe =D i (s, t)dt =

(3.48)

(®)

where 0*(t) = max{o;(t) : i =1,...,m} and 8 € C(Ry;R}) is a nonde-
creasing function satisfying (3.47). Then equation (0.1) has property

Proof. By (0.2), (3.33), (3.48) and Corollary 1.2 of Lemma 1.8 all the
conditions of Theorem 3.12 are satisfied with w;.(s) = s for s € Ry
(i=1,...,m). |

Let F € V(7), condition (0.3) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € Hy_
satisfying 1/c < |u(t)| < ct™ ! for t > t. we have

m Ui(t)
|F(u) ()] > H/(t) wic([o* (O] 2" " u(s))dsric(s, 1), (3.49)
i=1"7Ti
where (3.26)—(3.28) hold and o*(t) = max{o;(t) : i =1,...,m}. Moreover,
let (3.42) and (3.43) be fulfilled, where § € C(Ry+;Ry) is a nondecreasing
function satisfying (3.47). Then equation (0.1) has property
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Proof. By (0.3) and (3.49) inequality (2.17) holds with
m a’i(t)
pe(u)(t) = - H/ " wic([o" ()]s " u(s)|) sign u(s)dsric(s, t).
Ti(t

On the other hand, according to (3.42), (3.43) and Lemma 1.8 we have
P1c € M (T, 0*), where 7,.(t) = min{r;(¢t) : i =1,...,m} and

n— 1

P1c(u)(t) 1) ,szc lu(B())|) sign u(B(t)) x

X H[’I‘ic(ai(t), t) — Tic(Ti (t)a t)]

Since ¢, satisfies all the conditions of Theorem 3.6, equation (0.1) has prop-
erty on account of Theorem 3.7. W

Let F € V(7), condition (0.3) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t, € Ry such that for any v € H;_
satisfying 1/c < |u(t)| < ct™ 1 for t > t. we have inequality (3.33), where
(3.26) and (3.27) hold and \;. €]0,+o00[ (i =1,...,m). Moreover, let

m

=2 e

O Ol I | / . ) (s, t)dt =

o (3.50)

where o*(t) = max{o;(t) : i = 1,...,m} and 8 € C(Ry;Ry) is a nonde-
creasing function satisfying (3.48). Then equation (0.1) has property

Proof. It suffices to note that by (0.3), (3.33), (3.50) and Corollary 1.2 all
the conditions of Theorem 3.13 are satisfied with w;.(s) = s*c. W

In Theorems 3.14-3.17 below the following condition will be imposed in F":
m o eoi(t)
F@®OI=T] [ lue)
i=1 7i(t)
where (3.26) and (3.27) hold and \; €]0, 400 (i = 1,...,m).
Let F € V(7), (0.2), (3.51), ((0.3), (3.51)) hold, n be odd

(even), and u : [tg, +oo[— R be a proper nondecreasing solution of (0.1)
satisfying (2.149). Then the condition

+o0 m
/ ! H[Ti(gi(t)at) —ri(1(t),t)]dt = +o00 (3.52)

is sufficient for (0.4) to hold.

Mdgri(s,t), for t>ty, u€ Hy, -, (3.51)
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Proof. Assuming that (0.4) is not fulfilled, according to Lemma 1.2 we ob-
tain the contradiction. W

In a similar simple way one can prove

Let F € V(1), (0.3) and (3.51) be fulfilled and

400 m oi(t)
/ / MO0 (s, £)dt = (3.53)
®

Moreover, let u : [to, +0o[— R be a proper nonoscillatory solution of (0.1)
satisfying (2.14,). Then (0.5) holds.

Let F € V(1), conditions (0.2), (3.51), (3.52) hold and
St Xi = 1. Moreover, let there exist nondecreasing functions

¥; € C(Ry;Ry) such that 1;(s) > 0 for s > 0, functions x — (L) are
nondecreasing on |0,+oo[ (i =1,...,m),

1

d

/0 e x¢,(;) < +o0, (3.54)
i=1 Yt\ g

and for any l € {1,...,n — 1} such that | + n is odd we have
oo £\ 7i(t) shildr;(s,t)
tnflfl 7'0( / sT'i\5, dt = +OO, 3.55
/ Ga) I/, womereor (3.55)

where o*(t) = max{o;(t) : i = ,m} and 19 € C(Ry;Ry) is a function
satisfying 10(t) < min{t,o*(t)} fort € Ry andlimy 4o 10(t) = +00. Then
equation (0.1) has property

Proof. Let u : [tg, +00[— R be a proper nonoscillatory solution of (0.1). By
Lemma 1.1 there is [ € {0,...,n — 1} such that I + n is odd and (2.14;)
holds. It can be assumed without loss of generality that

uD@) >0 (i=0,...,0), (D)D) >0 (3.56)
(i:l,...,n—l), tZt[).

Let I € {1,...,n — 1}. Then by (3.56) there are ¢y €]0,+oc[ and
t1 € [to, +oo[ such that

u(t) > cot' ™t for t > t;. (3.57)
Using (3.51) and (3.56), from (0.1) we obtain
ai(t)

u™ (t +H/ (s)dsri(s,t) <0,
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which on account of the nondecreasing character of functions 1;
(1 =1,...,m) implies

) 0*7
Nor +H/ ([] l‘t”; )< ))) dgri(s,t) <0 for t> t.,

where t, € [t1,+o0] is sufficiently large. Therefore u satisfies the differential
inequality

m ooty 8w, [f gt)]
s i e s

on [t,, oo with w;(z) = z*4;(L) (i = 1,...,m). Following Remark 2.2
and Lemma 2.3 (1 = 1) the equation

X le (75 L (t)v(7o(t))) = 0 (3.59)

has a solution of type (3.56).
On the other hand, by (3.54), (3.55) and Lemma 1.6 we have

gn—i-1 7_0—(75) | m ai(t) shig 7"1 s, t
l!(n—l)!(a*(t)) il;[lfﬂ'(t) ¥i ([0 (8] sz v(10(t))) € M, (7).

Therefore according to Lemma 3.1 equation (3.59) has no solution of type
(3.56). The obtained contradiction proves that [ € {1,...,n — 1}.

If n is odd and I = 0, then condition (0.4) is satisfied by (3.52) and
Lemma 3.3. A

Let F € V(1), o4(t) <t fort e Ry (i=1,...,m), (0.2)
and (3.51) hold, > X\; =1, € €]0,1[ and

+0oo m
/ / MY (s, 1) dt = 400,
Ti(t)

Then equation (0.1) has property
Similarly to Theorem 3.14 one can prove

Let F € V(7), conditions (0.3), (3.51)-(3.53) be fulfilled
and Z:ll Ai = 1. Moreover, let there exist mondereasing functions
¥; € C(Ry;Ry) such that ¢;(s) > 0 for s > 0, functions x — ™ 1p; (1)
are nondecreasing on 10,400 (i = 1,...,m), (3.55) holds and for any
I € {1,...,n — 2} such that | + n is even we have (3.55), where o*(t) =
max{o;(t) : i = 1,...,m} and 190 € C(Ry;R}) is a function satisfying
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To(t) < min{t,o*(t)} for t € Ry and lim; 4o 7To(t) = +00. Then equation
(0.1) has property

Let F € V(1), oi(t) <t fort € Ry (i =1,...,m) and
conditions (0.3), (3.51), (3.53) hold, >_;~, \i =1 and

+o0
/ tH/ N2 (s, 1) dE = 400,
()

Then equation (0.1) has property

Remark. One cannot take e = 0 in Corollaries 3.10 and 3.11 because in
that case equation (0.1) does not have, in general, property (). In this
sense the corresponding theorems are the exact ones.

Let F € V(r), conditions (0.2) and (3.51) hold,
S N > 1 and let for any l € {1,...,n — 1} such that | +n is odd

/+Oo[t”’1[ LB+ B0 ’H/ =Dy (s, t)dt = +00,(3.60)
=17 7i(t)

where € €]0,1[, 7(t) = min{t, 7 (t):i=1,...,m} and B € C(Ry;Ry) is a
nondecreasing function satisfying B(t) < T.(t) for t € Ry and

lim; 4 B(t) = +00. Then equation (0.1) has property

Proof. Let u : [ty, +00o[— R be a proper nonoscillatory solution of (0.1). B
Lemma 1.1 there exists I € {0,...,n — 1} such that I +n is odd and (2.14;)
is fulfilled. It is obvious that condition (3.52) holds by (3.60). Therefore if
n is odd and [ = 0, then (0.4) is satisfied by Lemma 3.3.

Let us now assume that [ € {1,...,n — 1} and

“+o00
/ e () H/ (=D (s, t)dt = (3.61)
(t)

By virtue of Lemma 2.2 with u = (1 — €)/A the equation

sU=DXig po(s —(1-e)(-1)
+H/(t) dori(s,6)[r ()] x

x|v(Te())|' 7 signv(7. (t)) = 0 (3.62)

has a solution of type (2.14;).
On the other hand, by (3.61) and Corollary 1.1 of Lemma 1.6 we have

A sU=DN g (s, ) ()] %
l'(n—l)' i i (t)

x|v(7 (£))|' 7 sign v(7 (1)) € My (7).
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Therefore by Lemma 3.1 equation (3.62) has no solution of type (2.14;).
This contradiction proves that | ¢ {1,...,n —1}.
If the condition

+o0 mog(t)
/ B(t) H/ sNUD d (s, t)dt = +o00
i=1 (1)

is fulfilled, then we can prove | ¢ {1,...,n — 1} using Lemmas 2.2 and
3.2. 1

Our next theorem is proved similarly.

Let F € V(7), conditions (0.3) and (3.51) hold, 3" | \; >
1, and for any I € {1,...,n — 2} such that n + 1 is even let condition
(3.60) be fulfilled, where ¢ €]0,1[, 7(t) = min{¢t,7(t) : i = 1,...,m}
and f € C(Ry;Ry) is a nondecreasing function satisfying B(t) < 7.(t)
fort € Ry and limy_, 4o B(t) = +00. Then equation (0.1) has property

§ 4. NECESSARY AND SUFFICIENT CONDITIONS

In this section we shall establish the classes of equations for which the
sufficient conditions obtained in 3.2 turn out to be the necessary ones as
well.

Let F,p € V(1), 1 € {0,...,n— 1}, c1,c €]0,+x[, 1 < ¢
and assume that for any u € C(Ry;R), satisfying cit! < |u(t)] < ct! for
t >ty we have

[F(u)(®)] < p(ul)(t) for > to. (4.1)

Moreover, let
+o00
/ 1 =1=Lp(8) (1)dt < +o0, (4.2)

where 0(s) = cs' for s € Ry and

p(@)(t) > e(y)(t) >0 for z(s) >y(s) >0, s€[r(t),+oof, (4.3)

Then for any co € R satisfying lley < |co| < lle equation (0.1) has a proper
solution u : [ti,+0o[— R such that
i M (4) =
tl}g)ou (t) = co. (4.4)

Proof. Using (4.2) we can choose t. € [tg,+0o[ such that inf{r(t) : t >
t.} > to and

e [col |co
/ "1 p(0)(t)dt < min {c — T Al (4.5)
¢ P

5
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Let U be the set of all u € C([to, +oo[; R) satisfying
ert! < wu(t)signeg < et for t > t. (4.6)

Define T': U — C([to, +oo[; R) by

co )" -t +00 n _
!+ ity (6= 9) 1 [T =)
T(u)(t) = x F(u)(s)d¢ ds for t > t, (4.7)

eth for tg <t <t

ifle{l,...,n—1}, and by

D™ pdoo L yn-t S

T(u)(t) = o+ = i (s —t)" 1F(u)(s)ds for t > t. (4.8)
T(u)(ty) for to <t <t

if I = 0. By virtue of (4.1), (4.3), (4.5)-(4.8) we have T(U) C U. It is
easy to verify that the operator T satisfies all the conditions of Lemma 2.1.
Therefore T has a fixed point w which is obviously a solution of (0.1) on
[t«, +oo[ satisfying (4.4). W

Let F € V (1), condition (0.2) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € H;_
satisfying 1/c < |u(t)| < ct™ ! for t > t. we have

m o eoi(t)
1/ s e Ddericls, ) < IF)(0)] <

i—1 7 7i(t)

m a’i(t)

<OTL [ wnlst "uls)Dderic(s, 1), (4.9)
i=1 7i(t)

where & € [1,400[, (3.26)—(3.28) hold and o;(t) < t fort € Ry (i =

1,...,m). Moreover, let (3.30) be valid. Then condition (3.31) is neces-

sary and sufficient for equation (0.1) to have property

Proof. Sufficiency. By virtue of (0.2), (3.30), (3.31) and (4.9) the conditions
of Theorem 3.9 are obviously satisfied with 0. (t) = 0*(t) = max{o;(t) : i =
1,...,m} < tfort € R;. Therefore according to the same theorem equation
(0.1) has property

Necessity. Assume that equation (0.1) has property and for some ¢

+oo M
/ TTric(os(t), ) = rie(ms(8), )t < +o0. (4.10)

i=1

Conditions (4.1) and (4.2), where I =n — 1 and

() —6H / el D (), 000 = e
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are obviously fulfilled on account of (4.9) and (4.10). Therefore, following
Lemma 4.1, there exists ¢y # 0 such that equation (0.1) has a proper solution
u : [te, +oo[— R satisfying lims oo u(”*l)(t) = ¢p. But this contradicts
the fact that equation (0.1) has property . H

Let F € V (1), condition (0.2) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € H;_
satisfying 1/c < |u(t)] < ct™™! for t > t. we have

/\icdsy-ic(s,t) < |F(U)(t)| <

f[ / " o)

i(t)
m o eoi(t)
<s]] / Ju(s)
i—1 7 Ti(t)

where 6 € [1,400[, (3.26) and (3.27) hold, X\, €]0,1[ (i = 1,...,m),
Y Xie =A< 1landoi(t) <t fort € Ry (i =1,...,m). Then the
condition

Aied 1o (s, t), (4.11)

400 M oi(t)
/ H/ s’\ic(”*l)dsri(s,t) = 400 (4.12)
i=1 7i(t)

is mecessary and sufficient for equation (0.1) to have property

Proof. Sufficiency. Since in the case under consideration o (t) = o*(¢) for
t € Ry, (4.12) coincides with (3.37) and thus the sufficiency follows from
Corollary 3.4.

Necessity. Assume that equation (0.1) has property and (4.12) is not
fulfilled for some ¢. Then by (4.1) and Lemma 4.1 there exists ¢p # 0
such that equation (0.1) has a proper solution w : [t., +oco[— R satisfying
limy_, 4 o0 u® "V (t) = co. But this contradicts the fact that equation (0.1)
has property . B

Let F € V (1), condition (0.3) be fulfilled, and let for any
sufficiently large ¢ > 0 there exist t. € Ry such that for any v € Hy_
satisfying 1/c < |u(t)| < ct™ ! for t > t. we have

m o eoi(t)
H/ri(t) Wic(s |U(5)|)ds7"ic(8,t) < |F(u)(t)| <

m - noi(t)
<OTL [ el uls)Dderic(s, 1), (413)

i—1 7 7i(t)
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where § € [1,400[, (3.26)—(3.28) hold and o;(t) < t fort € Ry (1 =

1,...,m). Moreover, let (3.30) be valid. Then the conditions
+oo M
/ tH[ric(ai(t)) i (ri(8), B)]dt = 400, (4.14)
+oo m oi(t)
/ / Wic(8)dsric(s, t)dt = 0o (4.15)
i(t)

are necessary and su]fﬁcient for equation (0.1) to have property

Proof. Sufficiency. Since in the case under consideration o.(t) = o*(¢) for
t € Ry, (4.14), (4.15) coincide with (3.39), (3.40). Therefore the sufficiency
follows from Theorem 3.10.

Necessity. Assume that equation (0.1) has property  and condition
(4.14) ((4.15)) is not fulfilled for some ¢ > 0. Then by (4.13) and Lemma 4.1
equation (0.1) has a proper solution u : [t., +oo[— R satisfying lim;_, 1 o, u(" 2 (t) =
co (imy—y 400 u("_l)(t) = ¢p) where ¢y # 0. But this contradicts the fact
that equation (0.1) has property . H

Let all the conditions of Corollary 4.1 be fulfilled except
(0.2) which is to be replaced by (0.3). Then condition (4.12) is necessary
and sufficient for equation (0.1) to have property

Proof. Since in the case under consideration o.(t) = o*(t) for t € R, the
sufficiency follows from Corollary 3.5. Assuming that equation (0.1) has
property and (4.12) is not fulfilled, we can show, as while proving Corol-
lary 4.1, that equation (0.1) has a proper solution w : [t.,+00o[— R satisfying
limg 4 oo u(”*l)(t) = ¢g, where ¢ # 0, which is the contradiction. H

Let F € V (1), condition (0.2) ((0.3)) be fulfilled, and let for
any sufficiently large ¢ > 0 there exist t. € Ry such that for any v € Hy_ ;
satisfying 1/c < |u(t)] < ct™! for t > t. we have

mo eoi(t)
1/ lusdrsn < ] <

i=177i(t)

< 5H/ wic(|u(s)])dsric(s,t) for t > t., (4.16)
i(t)
where § € [1,+o0], (3.26)—(3.28) hold and
im 8 S0 =1, m). (4.17)
t—+o00

Moreover, let (3.42) be valid. Then the condition

+o0 m
/ e H[ric(gi(t)’ —rie(7i(t),t)]dt = +o0 (4.18)
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is mecessary and sufficient for equation (0.1) to have property ().

Proof. Sufficiency. By (4.17) there exist a €]0,+o00[ and ty € Ry such that
Ti(t) > at for t>ty (i=1,...,m). (4.19)

It is obvious that condition (3.43), where 3(t) = at, is fulfilled by virtue of
(4.18) and (4.19). Therefore all the conditions of Theorem 3.11 are satisfied
by (0.2) ((0.3)) and (4.16)—(4.18), thereby implying the sufficiency of (4.18).

Necessity. Assume that equation (0.1) has property () and (4.18) is
not fulfilled for some ¢ > 0. Then it can be shown by (4.16) and Lemma
4.1 that equation (0.1) has a proper solution w : [t.,+oo[— R satisfying
lim; 4 o u(t) = co, where ¢y # 0. But this contradicts the fact that (0.1)
has property ( ). H

Let F € V (1), condition (0.2) ((0.3)) be fulfilled, and let
for any sufficiently large ¢ > 0 there exist t. € Ry such that for any u €
H;, . satisfying 1/c < |u(t)] < ct™ ™ for t > t. we have inequality (4.11),
where § € [1,4+00[, (3.26) and (3.27) hold, X\i. €]0,+o00[ (i =1,...,m) and
Z;’ll Xic > 1. Then condition (4.18) is necessary and sufficient for equation
(0.1) to have property ().

Proof. The sufficiency follows from Corollary 3.6. The necessity can be
proved similarly to Theorem 4.3. H

Let F € V (1), condition (0.2) ((0.3)) be fulfilled and let
there exist to € Ry such that for any u € Hy, ; we have

o1 (t)
pw/“)wﬂwwqmwmm

o1 (t)
<op®) [ fulo)Pds for t > to (4.20)
T1(t)

where p € LlOC(]R—F;]R—F); A > 1, d € [].,-1-00[, T1,01 € C(R—FaR—F)f Tl(t) <
o1(t) fort € Ry, limy—y 4 oo 71 (t) = +00 and

= 1) 21(t)

i <1, lim > 0. (4.21)
t=+oo 0 (1) t+oo
Then the condition
+o00
/ o1 (" I p(t)dt = +o00 (4.22)

is mecessary and sufficient for equation (0.1) to have property ().
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Proof. Sufficiency. By (4.21) there exist a €]0,+o00[ and ¢; € Ry such that
01(t) > at for t > t1. Therefore by (4.20) and (4.21) condition (3.45) holds
with m =1, r1.(s,t) = p(t)s and B(t) = at. Due to Corollary 3.6 we easily
ascertain that (4.22) is sufficient for equation (0.1) to have property ().
Necessity. Assume that equation (0.1) has property () and (4.22)
is not fulfilled. Then by Lemma 4.1 and (4.20), (4.21) we find that for
any ¢ # 0 equation (0.1) has a proper solution w : [tg, +0oo[— R satisfying
lim; o u(t) = c. But this contradicts the fact that (0.1) has property

() n
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CHAPTER II

In this chapter we derive sufficient conditions for functional differential
equations with a linear minorant to have property = or . The results
obtained are new not only for equations of form (0.1) but can be regarded
as improving to a certain extent the well-known earlier results for linear
ordinary differential equations [11, 12].

§ 5. LINEAR DIFFERENTIAL INEQUALITIES WITH A DEVIATING
ARGUMENT

Let us consider linear differential inequalities with
a deviating argument

ul™ (t) signu(r(t)) + p(t)|u(r(t))| <0 (5.1)
and

ul™ (t) signu(r(t)) — p(t)|u(r(t))] >0, (5.2)
where n > 2, p € Lipe(R;Ry), 7 € C(RE;Ry), limyyy oo 7(8) = +00.

Throughout this section it will be assumed that the following condition is
fulfilled:

“+o0
/0 2 #)p(t)dt = +o0, (5.3)
where
7o(t) = min{¢t, 7(¢)}. (5.4)

Letp € Lipe(Ry ;R ) and fjoo p(s)ds >0 fort € Ry. Then
for the equation

ut™ () = p(t)u(t) = 0 (5.5)

to have a solution satisfying (2.14,,—2) it is necessary and sufficient that the
equation

ul™ (1) — (=1)"p(t)u(t) = 0 (5.6)
have a solution satisfying (2.142).
The validity of Lemma 5.1 is proved similarly to that of Lemma 1.4 [11].

Let n > 4 and equation (5.5) have a solution satisfying
(2.14;) where l € {2,...,n — 2} and | + n is even. Then it has a solution
satisfying (2.14,,_»).
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Proof. Let equation (5.5) have a solution satisfying (2.14;), where € {2, ...,
n—2} and [+ n is even. Assume that [ € {3,...,n —4}*. Then by Lemma
1.3 and (2.14;) we have

=2 (1)) > [u2) (1)) + %)'/t (t —s) x

(-
+o00
x / (€ — )" p(€)[ull=2) (€)|d€ ds for t € [t, +oo],

where t, sufficiently large. Hence applying Lemmaa 2.1 it is easy to show
that there exists a continuous function v : [t., +oo[— R such that

—2 1 ! e n—3
o) = W)+ gy a6 tp©ute s,
=2 (t.)] < o(t) < [ut=D ()| for t € [t.,+ool.

It is clear that v is a solution of equation (5.6) satisfying (2.145). Thus by
Lemma 5.1 equation (5.5) has a solution satisfying (2.14,,_5). W

Let 7(t) <t for t € Ry. For the differential inequality (5.1)
to have property it is necessary and sufficient that it have no solution
satisfying (2.14,_1).

Proof. Since the necessity is obvious, we shall prove the sufficiency. Let
(5.1) have no property  and ug(t) be its nonoscillatory proper solution.
By Lemma 1.2 there exists [ € {0,...,n — 1} such that [ + n is odd and
(2.14;) is fulfilled. When n is odd and [ = 0, (0.4) holds by (5.3), (5.4).
Assume that [ € {1,...,n — 3}. Then by Remark 2.2 the equation

u™ () + q(t)u(t) = 0 (5.7)

has a solution satisfying (2.14;) where

q(t) = p(t)

uo(7(t))

uo(t)
Therefore by [9, Lemmas 1.3 and 1.5] equation (5.7) has a solution wi(t)
satisfying (2.14,,—1). Thus there exists . € R4 such that on the interval
[t«, +00[ u1(t) is a solution of the equation

ut™ () + @ (tu(r(t) =0,

where
_ M
On the other hand, by Lemma 1.3 we have
uo() s (1)

i J and TT as t 71 4oo.

4for I = 2 the validity of this corollary follows from Lemma 5.1.
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Thus it is clear that there exists t* € [t., +00[ such that
uo (7(t))ur (1)
uo(t)ua (7 (1))

Therefore on the interval [t*, +o00[ differential inequality (5.1) has a solution
satisfying (2.14,,—1). The obtained contradiction proves the sufficiency. W

>1 for te€[t*, +ool.

Let 7(t) < t for t € Ry. For (5.2) to have property it
is necessary and sufficient when n is even (when n is odd) that it have no
solution satisfying (2.14,_2) ((2.141) and (2.14,_2)).

Proof. The necessity is obvious. By virtue of Corollary 5.1 we shall can
prove the sufficiency likewise to Lemma 5.2. W

Similarly to Lemmas 5.2 and 5.3 one can prove

Let T(t) >t for t € Ry. Then for (5.1) to have property
it is necessary and sufficient when n is even (when n is odd) that it have no
solution saatisfying (2.141) ((2.142) and (2.14,_1)).

Let 7(t) > t fort € Ry. Then for (5.2) to have property it
is necessary and sufficient when n is even (n is odd) that it have no solution
satisfying (2.145) ((2.144)).

Denote

T« (t) = inf{ro(s) : s > t}, mi(t) = max{s: 7.(s) < t},
i) =mmi—a(t) (i=2,3,...).

Letl € {1,...,n—1}, I +n be odd (I + n be even) and u :
[to, +0o[— R be a nonoscillatory proper solution of (5.1) ((5.2)) satisfying
(2.14;). Then there exists t1 € [to, +0o[ such that for any k € N we have

W) > exp { gy [ pOE =" el x
X(plk(f,tl)df}Ul(t,S) fOT‘ t Z S Z nk(tl)v (58)

where

_N =) G _
ul(tas) - Z (7, — l)' |u (t)|7 cpll(tatl) =0,
i=l

oui(t,t1) = exp {m / (t)p(g)(g _ T*(t))n—l—l %
X (7 Opri 1 (e} for t>mi(th) (=2,...,k).
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Proof. Tt can be assumed without loss of generality that u(t) > 0 for ¢ €
[to, +00]. Since

U S — s n—Il—1
d léia ) _ ((tn — l) — 1)' |’u,(n) (t)| and Ul(s,s) — u(l) (5),

we obtain

_ FE—9)m ! u©)l
u®(s) = exp {/s i =1=1) w@.s) df}ul(t,s) for t >t (5.10)

and

t _ n——1
u® (1 (1)) :exp{/r*(t) (f(nT:(ltz)l)! m f, - d{}u (t, 7« (t)) for t>1ty,

where t; = 11 (tp). Keeping in mind that «;(, -) is a nonincreasing function,
the latter equality gives us

O s f [ E=T@) T @) )
(*“”Zep{/n@ T G ) )

for t € [t1,+o0[.

Hence by virtue of (5.10) and (5.1) ((5.2)) we immediately obtain (5.8)
where the function ¢; is defined by means of (5.9;). W

Letl € {1,...,n—1}, I +n be odd (I +n be even), and u :
[to, +0o[— R be a nonoscillatory proper solution of (5.1) ((5.2)) satisfying
(2.14;). Then there exists t1 € [to, +00[ such that for any k € N we have

WO (s [ s t)p(s)ds) [ 0] (510

(n—l—l)' k+1(t1)

for t > mey1(th),

where for | =n — 1 the function Vn_1 i is defined by
0 1 Tu () -
Yn—11(t,t1) =0, PYn_14(t,t1) = m/m(tl)(ﬂ(t) —5)"7 x
t
X exp {/ P(E)Yn—1 ifl(f,tl)df}ds (5.12)
for t>mnip1(t1) (i=2,...,k),



50

while for | <n —1 the function 1y, is defined by

e (t)

Yu(t,t) =0, u(t,t) = ﬁ /_(t )(T*(t) —5) 7 x

! +o00o
X! (& )p(&r)déy df}ds for t >nizai(t) (1=2,...,k). (5.13)

Proof. It can be assumed without loss of generality that u(¢) > 0 for ¢ €
[to, +0o[. Then the equality

uD(t) =u® () exp{ - tt %l()gﬂds}, (5.14)

where t; € [to, +oo[ is sufficiently large, implies

WD (ty) [t » 5 1y (41)
ut) 2 _(tl))! /t (t— s exp{—/tl ﬁdﬁ}ds (5.15)

for t € [t1,+o0[.

Consider the case I =n — 1. By (5.14), (5.15) and (5.1) we obtain

u(r (1)) 1
W (0) = (0

<on{ [ 02D sehas for 12

Ty ()

from which it follows
(T (t)) > ney w(t, t)u "V (@) for t > np(ty). (5.16)

On the other hand, from (1.14,,_5 ;) we obtain

t
w2 () >tV (1) +/ sp(s)u(T«(s))ds for t € [pg41(t1), +o0[.
Nk+1(t1)

Therefore (5.16) implies that inequality (5.11,,_1) is valid.
Now consider the case I € {1,...,n —2}. By (5.14), (5.15)

u(Te(t)) 1 /T* (®)

el ARG

t1
" u(g)]

20 e) df}ds for ¢ > n(tr).

xexp{
s
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Taking into account (1.9) and the fact that u(¢)/#!~! is a nondecreasing
function, from the latter inequality we have

wlr@), 1 /T*(t)m(t)—s)l—lexp{( [

uh(t) = (=1l n—1-2)), ul(e)
xri~l(g) :m(a — &)1 g (e )der d€ Jds for 1> ().
So that
u(r(t)) 2 i (t, t)u® () for > mi(ty), (5.17)

where the function ¢y (¢,1) is defined by (5.13;).
On the other hand, according to (1.14;_; ,,) and (2.14;) we have

1 t
@) 2O+ oy [ bl
u > tu s p(s)u(Ti(s))ds
(TL — l — ].)' 77k=+1(t1)
for ¢ > npia1(t1).
which by virtue of (5.17) implies that inequality (5.11;) is valid. W

For (5.1) ((5.2)) not to have a solution satisfying (2.14;)
where l € {1,...,n — 1} aand l + n is odd (I + n is even), it is sufficient
that for some kg € N

| / (5 — 7 (£) " 7L (5) Bk (5 £, 0)p(s)ds +

t—+o00 . (t)

N +o0
+hik, (1, 0)/t (s — T*(t))"_l_lrl_l(s)p(s)ds] >ln—-1-1), (5.18)

where
T (t)
ik t0) = exp { =gy [ @€ =76
T (f,tl)df}ds, (5.19,)
1

Jlko (t,t)=m(t)+ / (tl)r*(t)snil'ﬁblko (s,t1)p(s)ds, (5.20;)
Mg +1

(n—1-1)!
ik, (t, t1) is defined by (5.9;), while Yy, (t,11) is given by (5.12) and (5.13;).

Proof. Assume the contrary. Let (5.1) ((5.2)) have a solution u : [to, +00[—
R satisfying (2.14;) where [ € {1,...,n—1} and [+ n is odd (I +n is even).
Since condition (1.10) is fulfilled due to (5.3) ((5.4)), by Lemmas 1.3, 5.6
and 5.7 there exists t1 € [tg, +00[ such that

Tlfl
fu(r(e)] > 7@

> —7 [V (r(t))| for t € [t,+oo], (5.21)
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= (r ()] > [ ()] > ()P (1. (1)] for t >, (5.22)
u® (1 (5))] > SOko(S t,t)[u (. ()] for ¢ > mpgpa(h),  (5.23)
D (1 (8))] > i (8, 12)[u? (7 (1))] for ¢ > mgoaa(tr).  (5.24)

By virtue of (5.18), (5.19;) and (5.20;) it is clear that

t ~
[ [ =) 6)p(6) P 5,1, 12 + i 1)
Tu ()

t—+oo

+o0
X /t (s — 7w (t))”*lflTlfl(s)p(s)ds] >Ill(n—1-1)L (5.25)

On the other hand, by (2.14;), (5.21)—(5.24) we obtain from (5.1) ((5.2))

1 ' n—Il—1
w012 i /T*@)(S‘T*(t” 1 p(s)|u(r(s)lds +

+o0 ul T
[ = nor e )ds) > O

X (/T*(t)(s — T*(t))"_l_lTi(S)p(s)@ko(S,t,tl)ds +

- +o0
Dot [ (5= () )p(e)ds)

which contradicts (5.25). The obtained contradiction proves the validity of
the lemma. W

For (5.1) ((5.2)) not to have a proper solution satisfying
(2.14;) wherel € {1,...,n—1} and l+n is odd (I+n is even), it is sufficient
that

! 1

T 1 _ n—l—1 T N
L () Ol @) ) e { Nn—1-11 "

T (t)
X /T*(s) p(s)(€ = ()" (g)df}ds S —1—1).

For (5.1) ((5.2)) not to have a proper solution satisfying
(2.14;) wherel € {1,...,n—1} and l+n is odd (I+n is even), it is sufficient
that

— 1 0
+oo
x /t (s — 7 ()= (8)p(s)ds > 1 (n — 1 — 1)1
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Letl € {1,...,n—1}, l+n be odd (I +n be even), 7(t) <t
fort e Ry and

! I(n—1-1)!
lim p(s)(s — ()" 7l (s)ds > M
t—+o0 Jr, () €

Then (5.1) ((5.2)) has no proper solution satisfying (2.14;).

Proof. To prove the lemma it suffices to show that the conditions of Lemma,
5.8 are fulfilled. By (5.26) there exist t; € Ry and ¢ € M, +00 [ such
that

t
/ p(s)(s — ()" T rl(s)ds > ¢ for t > t;. (5.27)
T (t)

Choose kg € N such that

(ﬁ)ko >[(n—1-1)! 1!12%- (5.28)

By virtue of (5.9;), (5.27) we have

ec g .
(pli(t,tl) Z (m) for t Z ni(tl) (Z = ].,...,ko).

Therefore

U P 1w B
/T*@T*(S)S p(S)exp{“(n_l_l)!/n(s) P(E)(€ — ()" 17171 (s)

ko 1 t .
Xtk (6 11)dE s 2 [u(n—z—m] l!(n—l—l)!/n(t) ()8 x

T (t)
xp(s) / | POTOE ()" e ds for 21, (8). (329

On the other hand, by (5.27) for any ¢ > ng, (1) there is t. € [1.(t), ] such
that
t ‘
p(s)(s = ()" i (s)ds = 3,
(1) 2

7 (t)
/ p(s)(s — 7 (£)"' =17l (s)ds >
Tu (t4)

N O
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Now using (5.28) and (5.29), we obtain

! n—Il—-1 1
/T*(t) Ti(s)(s — 7 (1)) l p(s) exp {m X

T (t)
< [ BOE = o) e O (6 1) fds >

«(8)
S [ ec ]ko &
“Uln-1-1) 4l(n-1-1)!

>l(n—1-=1)! for t > ng,(t1).

Therefore (5.18) is fulfilled. M
Remark 5.1. One cannot replace (5.26) by

im [ (s (s)s — () s > o=t = D)

—e, (5.30)
t>to0 Jr, (8) 2

where ¢ is an arbitrarily small positive number.

Indeed, let € € ]0, Un=t=1)! [ Choose 3 € [l — 1,] such that

e

1B(B=1) - (B+1=D)(1=3(B=D)(B—I=1) - - (B+1=n)| > I(n—I—1)! —ee,

where

St A for [<n— L.

{0 for I=n—-1
"= n—Il—-1 1
Clearly the equation
ul™ () + p(tu(r(t)) =0 (™ (#) = p(H)u(r(t)) = 0),

where 7(t) = ot, a = e7=1, p(t) = [B(B—1)...(B— (1 —1)(B—1)... (B +
1 —n)|a=P#7", has a solution u(t) = t# and, moreover, condition (5.30) is
fulfilled.

Letl € {1,...,n—1}, 14+ n be odd (Il +n be even), o(t) <t
fort e Ry and

t

lim p(s)(s — ()" 7l (s)ds = ¢ > 0.5 (5.31)

t—+o00 J 1, (t)

5it is assumed that [ 4+ n is odd (I + n is even).
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Then for (5.1) ((5.2)) not to have a proper solution satisfying (2.14;), it is
sufficient that

t
_— 1 . n—I[—1 L
A T (t) = O e { M —1—-1)1 "

T (t)
< [ pO€ - n o)l Ode}ds > n -1 DL, (5.32
7+(8)

where xq is the smallest root of the equation exp {mx} =1z.

Proof. By (5.32) there exists € €]0, zg[ such that
t

Tm I B Lo — €

T ()
X /T*(s) p(&)(§ — T*(S))n—l—lTi(f)df}ds S U —1—1).

Therefore by virtue of Lemma 5.8 it suffices for us to show that there exists
ko € N such that

lim @k, (¢,0) > x9 — €. (5.33)

t—+oo
By (5.29) there are numbers ¢* €]0,¢] and ¢y € Ry such that
¢
/ 7L(s)(s — T ()" ip(s)ds > ¢ for t > ty, xh > xo —e, (5.34)
Te(t)
where x{ is the smallest root of the equation

*

*

c*x
According to (5.9;) and (5.34) we have ;;(¢,0) > «; for t > n;(to) (i =
1,2,...), where ay =0, a; = exp{l,cna; 11, (1=2,3,...).
x

Denote =z = limjy00 4. Slnce * is a solution of
equation (5.35), there exists kg € N such that (5.33) is fulfilled. W

Assume that

“+o00
lim 7. (t) /t =2(s)p(s)ds > B> 0, (5.36)

t—+o00

I(n—I—1)!

6it is assumed that ¢ < . Otherwise condition (5.26) is fulfilled and condition

(5.32) becomes unnecessary.
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there exists € > 0 such that

T« (1) n—>2
im A—(n—1) (T* (t) - s) /\(TL _ 2)!
ti_ﬂon (1) /m(l) 05) ds > 5 +e  (5.37)
p
for all X € [m,l]

and for some natural m

1
(n—1)!

“+o00
x /t = (s)p(s)ds > (n — 1)L, (5.38)

lim (T* (t) + /OT*(t) p(s)STI”(S)dS) X

t—+00

Then (5.1) has no proper solution satisfying (2.14,_1).

Proof. By Lemma 5.8 it suffices to show that there is a number ky € N such
that

Yn—1 ko (t,0) > 17 (t) for t>t", (5.39)

where t* is sufficiently large.

Put
n—ti(t, oo .
tim P00 [T s = s = 1,2,..0),
S () s (5.40)
i——+00

By (5.12) and (5.36) we readily find that A* > (n%l), Show that A\* > 1.
Assume the contrary, i.e. \* < 1. By (5.36), (5.37) and (5.40) there exist
to € [n(1), +o0[, €0 €]0, A*[ and k € N such that

X" =(n=1)=0 4y /T*(t) Tl S)n_2ds > A —2)! (5.41)

lim 7 -
P (1) T TE(s) B ’

+ 00
r(t) / = (s)p(s)ds > B for &3> to,
t

+oo
Yn-1i(t,0) /t T2 (s)p(s)ds > (X" — o) 2 (t)

(i=kk+1,...) for t>t.



57

Therefore

1 T (t) . t . -
datib0) 2 oy [ @ sy en { [0 -0 »
ﬁ)\*—eo

xp(§) [/:OO 73_2(51)13(51)6151] 71df}d5 > (n—2)!

s 0 0 () — s
([ emew) " ([ e
_ /’““” (ra(t) = )"

NESRE - )

X

ds) for t >ty (i=hk+1,...).

Hence by (5.41) we obtain

%472(;)0)[ ot ?;:_26)0!(7*(t)/t o)

. 7 (t) _ <\n—2 7: (to) _ \n—2
XT:‘ 7(n71+50)(t)(/ (T*(fzisou?) ds _/ (7'*(;?7505) dS) Z
m T (s m) e (s)
A —(n—1+4¢p) T () _ e\n—2
> Bri (t) (/ (1 (t) — s) ds —
n

(n—2)! A*—<o

(1 T ()
_ /m(tO) (T(t) — s)" 2

Wy TV TE(s)

ds) for t >ty (i=k,k+1,...).

Therefore by (5.41)

n—14lt, +oo _
lim ¢1772(0)/ " 2(s)p(s)ds > \*
t—+oo T,:l (t) t

which contradicts the definition of A*. The obtained contradiction proves
that A* > 1. On the other hand, since we can assume that

t—+00

+o0
lim 7, (t)/ "2 (s)p(s)ds <n —1
t

(otherwise we have (5.18) with | = n — 1), we easily find that there exists
ko € N such that (5.39) holds. W

Let

+oo ,_n—1
lim t/ T (S)p(s)ds > M, (5.42)
t

t—+o00 S

where M, = max{zx(1 —z)...(n —1—2x) : 2 €[0,1]}. Then (5.1) has no
proper solution satisfying (2.14,_1).
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Proof. Let (5.1) have a proper solution u : [to, +00[— R satisfying (2.14,,_1).
By Lemma 1.3 there is t1 € [tg, +00[ such that

[u(r@)] o Ju(n ()] [u®)]

o) T ) T

for t € [t1, +oo[.

Thus it is clear that on the interval [¢;, +oo[ the function u is a solution of
the differential inequality
u™) (t) signu(t) + q(8) u(t)] <0, (5.43)

where

On the other hand, by (5.42)

+o0
lim t/ s"2q(s)ds > 3 > M,,. (5.44)
¢

t—+o00

Thus, clearly, there exists € > 0 such that

Pt —s)n? A(n — 2)!
tli_in t’\(”l)/l( Si) ds > ("ﬂ )+s, (5.45)
for all \ ¢ [L 1].
(n—1)V"

Assume that

“+o0
lim t/ s"2q(s)ds < (n — 1)
¢

t—+o0
(otherwise (5.43) has no solution satisfying (2.14,,—1)). Then we have

. ‘ t +00
/0 s"q(s)ds > /t s7s" tq(s)ds > —t /t% s d/s " ?q(&)d¢ >

1
2

> t( - t/t+oo s"2q(s)ds + /tt /:OO £ 2q(€)de ds) >t(—nl+ % lnt).

1
p)

Therefore by (5.44), (5.45) and Lemma 5.11 (7..(t) = t) (5.43) has no solu-
tion satisfying (2.14,,—1). The obtained contradiction proves the validity of
the corollary. W

Let a €]0,1] and o(t) > at for sufficiently large t,

“+o00
lim t/ 5" 2p(s)ds > My(a),
t

t—+00

where
My(a) = max{a® " Mz(1—z)---(n—1—2z): 2 €[0,1]}. (5.46)
Then (5.1) has no solution satisfying (2.14,_1).
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To prove the corollary it suffices to note that all the conditions of Lemma
5.11 with 7.(t) = at are fulfilled.

Let
lim — =400, lim 7(f) / T (p(s)ds >0 (347)
= Ta T, .
t=t50 7, (1) "o, P

and (5.38) be fulfilled for some natural m. Then (5.1) has no proper solution
satisfying (2.14,_1).

Proof. By (5.47) there is 8 €]0, +o00[ such that

+oo
lim 7. () / 7=2(s)p(s)ds > f > 0.
t

t——+oo

Thus due to Lemma 5.11 is suffices to show that (5.37) is fulfilled. Indeed,
by (5.47) there is ty € [(1),+oo[ such that

t> (%max{/\(l—,\)---(n—l—/\):/\E [(nfl)!,l]})%n(t) (5.48)

for t Z to-

Assuming that \ € [(n%l),, 1 [, by (5.48) we obtain

A—(n—1) Tu(t) n—2
Ta (t) (1« (t) — 9) o 2
(n—2)] /mm O D)

em=1-=X): )€ [Ll)!’l] }T:‘_(’ﬂ—l)(t) /n(t) Mds N

(n— to s

max{/\(l—/\)---(n—l—/\):/\e [(n%l),,l]}
1-=M2=X):--(n—1=2X)
for t>tq,

!max{/\((l—/\)---

>

+e>A+¢g,

where t1 € [tg, +00] is sufficiently large, while ¢ is a sufficiently small positive
number. For A\ = 1 it is easy to find that (5.37) is satisfied. W

Let

+o0
lim ¢ %7(¢t) >0, lim t“/ 5= p(s)ds > 0,
t

t——+oo t—+oo

where a €]0, 1[. Then the (5.1) has no solution saatisfying (2.14,_1).

If the inequality T(t) > at is fulfilled for large t,

+o0
lim t/ s" 2p(s)ds = B > 07 (5.49)
t

t——+oo
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and

o at L “+o00 ) -1
(o [ ([ o)
+o0
xp(s)ds) / 7 2(s)p(s)ds > (n — 1)L (5.50)
t
where a €]0, 1] and zo is the smallest root of the equation
z(1—2z)---(n—1-z)a* "N =3, (5.51)
then (5.1) has no proper solution satisfying (2.14,,_1).

Proof. By (5.49)—(5.51) there exist 8* €]0, 5[, € €]0,6*[ and to € R4 such
that

+00
t/t s""2p(s)ds > B* for t € [ty, +o0], (5.52)
t_l@oo (at + (x5 —¢) /C’t Sn_l(/+oo fn_Qp(f)df)il X
too :
Xp(s)ds) /t "2 (s)p(s)ds > (n —1)!, (5.53)

where x{ is the smallest root of the equation
(gl —2)--(n—1-—2)=p"—¢. (5.54)

By Lemma 5.7 and (5.53) it suffices to show that there exists kg € N such
that

—+o0 _
Y1k (£,0) > t”_2( / gn—2p(§)d§) @t —e) for t > ta, (5.55)
t

where t, € [to, +00] is sufficiently large.
By (5.12) and (5.52) there exist £ €]0, 5*] and t; € [to, +00[ such that

+o00
wn,m(t,())t?—"/ " 2p(&)de > By for t € [ty, +o0l.
t

Taking into account (5.52), we now obtain

bas60)2 o [ o e (o [ €t

. —1
ft+ Sn_Qp(S)dS)

([ ) g U0

7it is assumed that 8 €]0, My, ()] where My, (a) is defined by equality (5.46).Otherwise
the conditions of Corollary 5.5 are fulfilled and condition (5.50) becomes unnecessary.



61

[y ([ e o) s >

t1 S

S an—1-6m (ﬂ* _ 8)51tn*1*51
T (=B (n—1-p1)

where t» € [t1,+0o] is sufficiently large. Therefore

oo —b
(/ s”*2p(s)ds) for t € [t2,+00],
t

+oo * n717B1

n—13(t,0 t27”/ s"2p(s)ds > (5" —e)a =

¢ 13( ) ] p() _(l_ﬁl)(n_l_ﬁl) ﬁ?
for t € [ta,+o00[.
In a similar manner we show that

+o00 (/6* _ 8)an—1—ﬁi_1

n—1i(t,0 t2_"/ s"2p(s)ds > =

Ynr il O | N Ay B Py
=0; for te€ti_,+oo[ (1=3,4,...), (5.56)

where t; (i = 2,3,...) is sufficiently large.
Putting

lim ﬁz = 176,
1—+00

from the equalities

(5 — yan-1 -
(1—=Bi—1) - (n—1—=0_1)

8; = (i=2,3,...)

we have
a®o = Ugr (1 k) (n—1—x3) = B —e.

Thus 2} is a solution of equation (5.54). Therefore by (5.56) there is kg € N
such that inequality (5.55) is fulfilled for ¢ € [t., +oo[, where t, is sufficiently
large. H

" Let for sufficiently large t there hold

w(t) > at, plt) > > (5.57)

and
Tim ¢ g ds > (=Lt 5.58
Jmt [ s > S (5.58)

where a €]0,1], 8 €]0, Mp(a)] (My (@) is defined by (5.46)), and xqo is the
smallest root of equation (5.51). Then (5.1) has no proper solution satisfying
(2.14,,1).
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Proof. By (5.51) and (5.58) there exist §* €]0, 8] and ¢ €]0, 3*[ such that
(n—1)!
a(l+zp)’

where z, is the smallest root of (5.54). Due to (5.59) and Lemma 5.8 it
suffices to show that there exists kg € N such that

+o0
lim t/t 7" 2(5)p(s)ds > (5.59)

t——+oo

n—1 ,.%

Y1 ko (t,0) > 3 u

for t € [t +oo, (5.60)

where ¢, € Ry is some number.
By (5.12), (5.57) there exist 3; €]0, 0] and to € R, such that

Yn-12(t,0) > Bt for t € [to,+00].
Since 861 < 1 (it is clear that (5.60) is fulfilled for 88, > 1), by (5.57) we

obtain

T (t)

b2(t0) 2 g [ - e { [ 90 Jas -

851 7 () (. (t) — S)n—Qd gn—1gn—1-8"p1

= >

(n—2)!/t S SR (n—1- FB)
for t € [t1,+00],

where t; € [tg, +o0] is sufficiently large. Therefore
at—1-8"5

(1=pB*B1)-+(n—1-p*B1)

tliniﬁn,l 3(t,0) 2 = 52 for t € [t1,+00[.

Similarly we have

- . an—l—ﬁ*ﬁi—2 B
Yn—1 z( ) ) = (1 _ 5*51;2) R (n —1-— ﬂ*ﬂi,Q) N

=fi—1 (1=3,4,...) for t € [t;—a,+00],

where t; (i = 1,2,...) is sufficiently large.
Introducing the notation

lim B*3; = wo,
11— 00
from the equalities
P 1-8"Bi1
(1=pB*Bi—1) - (n—1—B*Bi-1)
we find that z( is the root of the equation

t(l—z)---(n—1-xz)a® " H = g*

B8 = (i=2,3,...)

Hence we easily conclude that there exist numbers ¢, € Ry and ko € N for
which (5.60) is fulfilled. W
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The validity of Lemmas 5.13 and 5.14 below can be proved similarly to
that of Lemmas 5.11 and 5.12.

Letl € {1,...,n—2}, 4+ n be odd (I +n be even),
“+o00
lim () [ (= 0" @pl)ds > 60,
t—400 t
there exist € > 0 such that
T*(t) t) — -1

U e

t—+oco 71(1) 2(s)
g

A= D(n —1-1)!
g g l!(n—l—l)!’l]

+¢e for all )\6[

and

t—+o00

T 1 T n—I_m
lim (T*(t) + m/o S Ty (S)p(S)dS) X
“+o00
X / (s — ()" (s)p(s)ds > 1l(n — 1 — 1)! (5.61)
t
for some natural m. Then (5.1) ((5.2)) has no solution satisfying (2.14;).
Letl € {1,...,n =2}, l+n be odd (I + n be even), the

inequality o(t) > at with a €]0, 1] hold for sufficiently large t and

+o00
lim t/ (s — )" =L p(s)ds > My(a)(n — 1 — 1)),
t

t——+oo

where
Mi(a) = max{z(l —z)--- (I —z)a®' 2 €[0,1]}. (5.62)
Then (5.1) ((5.2)) has no solution satisfying (2.14;).

Letl € {1,...,n =2}, l4+n be odd (I + n be even) and

: t : oo n—Il—1_1[1—1
tl}g)o ey +00, til_+m007* (t)/t (s —1) 77 (s)p(s)ds > 0.

Then for (5.1) ((5.2)) not to have a solution satisfying (2.14;), it is sufficient
that (5.61) be fulfilled for some natural m.

Letl € {1,...,n—2}, 4+ n be odd (I +n be even) and

+o0
lim ¢ %7(¢t) >0, lim t"/ (s —t)" 152"V p(s)ds > 0,
t

t—+o00 t—+00

where a €]0, 1[. Then (5.1) ((5.2)) has no solution satisfying (2.14;).
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Letl e {1,...,n—2}, l4+n be odd (I +n be even), for suffi-
ciently large t inequality (5.57) be fulfilled which o €]0,1], 3 €]0, M;(a)(n —
DY which M;(«) is defined by (5.62) and
I-=Dn-1-1)

a(l+ (n—1)xo)

)

+o00
lim t/ (s — at)" =1 = (s)p(s)ds >
t

t—+o00

where xo is the smallest root of the equation

p
(n—0"

Then (5.1) ((5.2)) has no solution satisfying (2.14;).

r(l—xz)---(I—z)a" ! =

8 6. LINEAR DIFFERENTIAL INEQUALITIES WITH A DEVIATING
ARGUMENT AND PROPERTY ( )

The results obtained in §5 for the linear differential inequalities (5.1) and
(5.2) will be used in this section to derive sufficient conditions for equation
(0.1) to have property ().

Let F € V(1), condition (0.2) be fulfilled for some ty € Ry,

and
o(t)
|F(u)(t)| > /T(t) |u(s)|dsr(s,t) for t € [to,+0o[, u € Hyyr, (6.1)
where
7,0 € C(Re;Ry), 7(t) <o(t) for t € Ry, lim7(t) = 400,
r(s,:) is a measurable function, (6.2)

r(-,t) is a nondecreasing function.

Let, in addition to the above, for some ky € N the condition

t
Tim [/ ORI ks, 0)ds +
T (t

t—+o0
~ +oo
a0 [ @] > (0= 1) (6.3)
hold, where
p(t) =r(o(t),t) —r(r(t),1), (6.4)
T«(t) = inf{rp(s) : s > t}, 70(t) = min{t,7(¢)} (6.5)

and the functions @p—1k, and Qp_1k, (@Zn_l ko and Vn_1k,) are defined
by (5.19,—1) and (5.9,—1) ((5.20,—1) and (5.12)). Then equation (0.1) has
property
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Proof. First of all note that condition (5.3) with the functions p and 7y
defined by (6.4) and (6.5), respectively, is fulfilled by virtue of (6.3).

Let us assume that equation (0.1) has no property . Then by (0.2) and
(6.1) the differential inequality

a(t)
u™ (t) signu(o(t)) + /(t) |u(s)|dsr(s,t) <0 (6.6)

has no property . Following Theorem 2.3, the equation
ul™ (8) + p(t)u(ru(t)) =0 (6.7)

with p and 7. defined by (6.4) and (6.5), respectively, has no property

. Therefore (6.7) has a nonoscillatory proper solution u : [t1,+o0o[— R
satisfying (2.14;) where [ € {0,...,n—1} (I+n is odd). Assuming now that
n is odd and I = 0, by (5.3) we crearly see that (0.4) is fulfilled. Therefore
I € {1,...,n — 1} and thus by Lemma 5.1 equation (6.7) has a proper
solution satisfying (2.14,—1).

But by (6.3) and Lemma 5.8 equation (6.7) has no proper solution sat-
isfying (2.14,,—1). The obtained contradiction proves the validity of the
theorem. MW

If F € V(1) and conditions (0.2), (6.1), (6.2) are fulfilled,
then for equation (0.1) to have property it is sufficient that

t 1 s

i n—1 o n—1 N
tvo0 J, ) P e { (n—1)! /Ms) P (f)dg}dg > (=1
where p and T, are defined by (6.4) and (6.5), respectively.

If F € V(1) and conditions (0.2), (6.1), (6.2) are fulfilled,
then for equation (0.1) to have property it is sufficient that

t—+oo

T (O REE / T*(t)s " (s)p(s) ds) / A ep(s)ds> (n 1)

Tx Ty Ty - o
(n=1)!Jo t

where p and 7. are defined by (6.4) and (6.5), respectively.

" Ifp € Lioe(Ry;Ry) and

lim (t + ﬁ/ot s”p(s)ds) /t+oos”2p(s)ds> (n—1)

t—+00
then the equation
u™ () + p(t)u(t) = 0 (6.8)

has property
The particular case of Corollary 6.2" is Theorem 2.3 in [11].
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If F € V (1), conditions (0.2), (6.1), (6.2) are fulfilled, and
T(t) < t for t € Ry, then the condition
¢ —1)!
lim p(s)™" 1 (s)ds > (r=1) ) (6.9)

t—+00 Jr,(t) e

where p and 7. are defined by (6.4) and (6.5), respectively, is sufficient for
equation (0.1) to have property

Proof. By Lemma 5.9 and (6.9) there exists ko € N such that (6.3) holds.
Therefore the conditions of Theorem 6.1 are fulfilled, which proves that
Theorem 6.2 is valid. W

Remark 6.1. Remark 5.1 clearly implies that (6.9) cannot be replaced by
the condition
¢ (n—1)!

lim p(s)™" ! (s)ds >
t—+00 Jr,(t) e

where € is an arbitrarily small positive number.

Let F € V (1), conditions (0.2), (6.1), (6.2) be fulfilled,

t

lim p(s)T " (s)ds > ¢ (6.10)
t—=+o00 Jr, (t)
and
t
lim 1 (3)p(s) exp T«
t—400 T*(t) { (n — 1)!
7w ()
< [ pOm ©de}ds > (n -1, (6.11)
T (8)

where ¢ € ]0, @] , p and 7. are defined by (6.4) and (6.5)% and o is the

smallest root of the equation
¢

Then equation (0.1) has property
Proof. By (6.10)—(6.12) there exists € €]0, 1[ such that

— t n—
t*l}};’rloo Ty (t) T 1(S)p(8) 8
e
cexp { /ﬂ(s) PO ©de}ds > (-1 (6.13)

8it is obvious that for ¢ > @ the conditions of Theorem 6.2 are fulfilled and
condition (6.10) becomes unnecessary.
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On the other hand, as shown while proving Lemma 5.10, by (6.10)—(6.12)
there exists kg € N such that
li_m Pn—1 ko (tao) > o — &,
t—+oo
where @,,_1 &, is defined by (5.9,—1). On account of (6.13) it is obvious that
condition (6.3) is fulfilled where $&,,_1 g, is defined by (5.19,,_1). Therefore

the conditions of theorem 6.1 are fulfilled, which proves that Theorem 6.3
is valid. W

Let F € V(1) and conditions (0.2), (6.1), (6.2), (5.36) —
—(5.38) be fulfilled, where p and 7. are defined by (6.4) and (6.5), respec-
tely. Then equation (0.1) has property

Proof. By analogy with the reasoning used while proving Lemma 5.11, there
exists kg € N such that (5.39) holds. Therefore by (5.38) it is clear that
(6.3) is fulfilled. Thus the conditions of Theorem 6.1 are satisfied, which
proves the validity of Theorem 6.4. H

Let F € V (1), conditions (0.2), (6.1) and (6.2) be fulfilled,
and

+oo n—1
lim t/ T (S)p(s)ds > M,,
t

t—+o0 S
where

My, =max{z(l—-z)---(n—1—2): 2 €0,1]}, (6.14)

p and T« are defined by equalities (6.4) and (6.5), respectively. Then equation
(0.1) has property

Proof. The validity of the corollary follows from Corollary 5.4 and Lemma,
51. N

Let F € V (1), conditions (0.2), (6.1) and (6.2) be fulfilled,
and 7(t) > at, for t € Ry, where a €]0,1]. Then the condition

+oo
lim t/ 5" 2p(s)ds > My, (a),
t——+oo Jt

where M, (a) and p are defined by (5.46) and (6.4), respectively, is sufficient
for equation (0.1) to have property

Proof. The validity of the corollary follows from Corollary 5.5 and Lemma
51. W

"[12]. Let p € Lipe(Ry; Ry ) and

+o00
lim t/ sn_2p(s)ds > M,,
t

t——+oo

where M, is defined by (6.14). Then equation (6.7) has property
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Let F € V(1) and conditions (0.2), (6.1), (6.2) and (5.47)
hold. If besides there exists m € N such that (5.38) is fulfilled with p and 7.
defined by (6.4) and (6.5), then equation (0.1) has property

Proof. The validity of the corollary follows from Corollary 5.6 and Lemma
51. N

Let F € V (1), conditions (0.2), (6.1) and (6.2) hold and

+oo
lim ¢t~%*7(t) >0, lim to‘/ so‘("_2)p(s)ds >0,
t

t——+oo t—+oo

where «a €]0, 1] and the function p is defined by (6.4). Then equation (0.1)
has property

Proof. The validity of the corollary follows from Corollary 5.7 and Lemma
51. W

Let F € V(r), 7(t) > at for t € Ry, conditions (0.2),
(6.1), (6.2) and (5.49) be fulfilled and

f (ot o0 [ (. / e (i) o)) x

t——+oo s

(6.15)

where a €]0,1], 8 €]0, M, (a)], M, () is defined by (5.46), xq is the smallest
root of equation (5.51) and p is defined by (6.4). Then equation (0.1) has
property

Proof. By (5.49), (6.15) and the same arguments as used in proving Lemma
5.12 there exist € €]0,1[ and ko € N such that

lim (at + (z0 —€) /Oat 5”1(/+00 €n72p(£)df)_1p(s)ds) X

t—+oo s

X /t+00 s"2p(s)ds > (n= 1t (6.16)

an72 ’
—+o0 _
Yo 10(1,0) 2 173 / & *p(6)de) (o —2) for t> b, (6.17)
t

where ¢, is sufficiently large and v,,_1 , is defined by (5.12). Clearly condi-
tion (6.3), where 7 (t) = at, holds by virtue of (6.16), (6.17) and (5.20,,—1).
Therefore the conditions of Theorem 6.1 are fulfilled, which proves the va-
lidity of Theorem 6.5. W
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Using Lemmas 5.1 and 5.12, one can easily prove
" If F € V(r), conditions (0.2), (6.1) and (5.57) are fulfilled
and
Feo (n—1)!
lim t/ s" 2p(s)ds > ——— |
totoo Ji ple) a" (14 )
where a €]0,1], B €]0, My ()], My, () is defined by (5.46), xq is the small-
est root of equation (5.51) and p is given by (6.4), then equation (0.1) has
property

Let F € V(1) and conditions (0.2), (6.1)—(6.3) be fulfilled,
where

a(t)
p(t) = o' ="(1) / "V (s, 1), (6.18)

T«(t) = inf{rp(s) : s > t}, 70(t) = min{t,o(¢)} (6.19)

and $p—1 ky and ©n—1 ko (Un—1k, ond ¥p_1 ,) are defined by (5.19,_1) and
(5.90-1) ((5.20,,—1) and (5.12)). Then equation (0.1) has property

Proof. Clearly condition (5.3), where p and 7. are defined by (6.18) and
(6.19), respectively, is fulfilled by virtue of (6.3).

Assume that (0.1) has no property . Then by (0.2) and (6.1) differential
inequality (6.6) has no property . Following Theorem 2.4', equation (6.7)
with the functions p and 7, defined by (6.18) and (6.19) has no property

Let u : [tg, +00[— R be a nonoscillatory proper solution of equation (6.7).
By Lemma 1.2 there exists [ € {0,...,n — 1} such that [ + n is odd and
condition (2.14;) is fulfilled. Assuming that n is odd and I = 0, it is easy to
show that (0.4) is fulfilled. Therefore [ € {1,...,n — 1}. Thus by Lemma
5.1 equation (6.7) has a proper solution satisfying (2.14,,_1).

But by Lemmas 6.3 and 5.8 (as has been said several times, the functions
p and 7, are defined by (6.18) and (6.19), respectively) equation (6.7) has
no proper solution satisfying (2.14,,—1). The obtained contradiction proves
the validity of the theorem. W

Let F € V(7). Then for equation (0.1) to have property
it is sufficient that the conditions of Corollary 6.1 or 6.2 be fulfilled, where
the functions p and 7. are defined by (6.18) and (6.19), respectively.

Using Theorems 6.2 — 6.5, 6.5" and 6.6 one can easily prove
Let F € V(7) and the conditions of anyone of Theorems

6.2-6.5, 6.5' be fulfilled, where the functions p and 1. are defined by (6.18)
and (6.19), respectively. Then equation (0.1) has property
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Using Lemma 5.3, by a reasoning similar
to that used in proving Theorem 6.1 one can prove

Let F € V(1) and conditions (0.3), (6.1), (6.2) be fulfilled.
Moreover, let there exist ko € N such that

| / R T (D)7 2(8)Pns ko (5, £, 0)p(s)ds +

t—+00
_ o0
+1p—2 k, (£,0) /t (s = T (t))T273(s)p(s)ds| > (n—2)!, (6.20)

for even n, while for odd n (6.20) is fulfilled along with

t
Eremnd n—2 ~
i | / (8T (£, 0)p(s)s +

_ +o0
i (£,0) /t (5= m(0)" 2p(s)ds]| > (m—2),  (6.21)

where p and T, are defined by (6.4) and (6.5), respectively, while ¢y, and

ik, (Yik, and Yk, ) are defined by (5.19;) and (5.9;) ((5.20;) and (5.13;)).
Then equation (0.1) has property

Let F € V(1) and conditions (0.3), (6.1), (6.2) be fulfilled.
Then for equation (0.1) to have property  when n is even it is sufficient
that

Tin ! n—2 1
Jm, [ e m O e e { oy x
T4 (t)
<[ POE- I @de)ds > (-2l (622
while for odd n it is sufficient that (6.22) be fulfilled and
T ! n—2 1
Jm [ e n e e { gz x

7w (t)
X /T*(S) p(g)(g - T*(S))n727-*(€)d£}d3 > (TL _ 2)|’

where p and T, are defined by (6.4) and (6.5).

Let F € V(1) and conditions (0.3), (6.1), (6.2) be fulfilled.
Then for equation (0.1) to have property  when n is even it is sufficient
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that

tl@oo (T* (t) + ﬁ /OT*(t) 52Tf_2(s)p(s)ds) X

+o0
X / (s — T ()23 (8)p(s)ds > (n — 2)!, (6.23)
t
while for odd n it is sufficient that (6.23) be fulfilled and

%)!/Or*(t) Snflr*(s)p(s)ds) %

lim (n (t) + -

t—+oo

+oo
X / (5 — (1)) 2p(s)ds > (n — 2)!,
t
where p and 7. are defined by (6.4) and (6.5).

Let F € V(1) and conditions (0.3), (6.1), (6.2) be fulfilled.
Then for equation (0.1) to have property  when n is even it is sufficient
that

¢ —2)!
lim p(s)(s — T (t)) T2 (s)ds > (n—2) , (6.24)
t—+o00 Jr, (t) €
while for odd n it is sufficient that (6.24) be fulfilled and
¢ - 2)!
lim p(s)(5 — T (t))" 21u(s)ds > (n—=2) , (6.25)
t—+o00 Jr,(t) €

where the functions p and 7. are defined by (6.4) and (6.5).
Proof. The validity of the theorem follows from Lemmas 5.3 and 5.9. W
Remark 6.2. Condition (6.24) or (6.25) cannot be replaced by

t _ 9
lim p(s)(s — 7 (t))T" 2 (s)ds > (n=2)!_ g,
t—+00 Jr, (1) €
¢ -2)!
lim p(5)(s — 7o ()"2ru(s)ds > P2 o
t—+00 J 1, (t) €

where € is an arbitrarily small positive number.

Let F € V(7), conditions (0.3), (6.1), (6.2) be fulfilled,
and

t
lim p(s)(s — T ()12 (s)ds = ¢; > 0,
t—+o00 J 1 (t)
t
lim p(s)(s — T (t))" 21 (s)ds = ca > 0.
t—+oo J 7, (t)
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Then for equation (0.1) to have property  when n is even it is sufficient
that

t

Jm, [ e no)n e ew { g x
T (t)
<[ POE ) e} > (=D (626)
while for odd n it is sufficient that (6.26) be fulfilled and
t
dm [ O e ex {m x

T« (t)
X /T*(S) p(f)(f - 7’*(5))”727-*(£)d£}d3 > (TL _ 2)|,

where x; (i = 1,2) is the smallest root of the equation
¢ .
exp{mw}zw (121,2)
and p and 7, are defined by (6.4) and (6.5), respectively.

Proof. The validity of the theorem follows from Lemmas 5.3 and 5.10. H

Let F € V (1), conditions (0.3), (6.1), (6.2) be fulfilled and

. t
Sy T e
Moreover, let for even n
“+o00
lim 7. (t) / (s — )73 (s)p(s)ds > 0 (6.27)
t—-+o0 t

and for some m € N

T 0 o m
t_lg{loo (T*(t) +/0 oy (s)p(s)ds) X

+o0
X /t (s — T ()" 3 (8)p(s)ds > (n — 2)!, (6.28)

while for odd n (6.27) and (6.28) be fulfilled,

+o0
lim 7, (t)/t (s — )" *p(s)ds > 0

t—+oo
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and for some m € N

lim (7'* (t) + /OT*(t) s”flTln(s)p(s)ds) X

t—+oo

+oo
X /t (s = ()" 2p(s)ds > (n — 2)!

with p and 7. defined by (6.4) and (6.5), respectively. Then equation (0.1)
has property

Proof. The validity of the theorem follows from Lemma 5.3 and Corollary
59. N

Let F € V (1), conditions (0.3), (6.1), (6.2) be fulfilled
and

where a €]0, 1]. Besides, if for even n

+o0
lim ta/ (s — t)s*" 3 p(s)ds > 0, (6.29)
t—-+o0 t
while for odd n (6.29) is fulfilled and
+oo
liw o [ (5= 0" pls)ds >0,
t—+o0 t
where p is defined by (6.4), then equation (0.1) has property

Proof. The validity of the corollary readily follows from Lemma 5.3 and
Corollary 5.10. H

Let F € V (1), conditions (0.3), (6.1), (6.2) be fulfilled and

+oo
T 7 (t) /t =2 (s)p(s)ds > (n — 1)L, (6.30)

t—+o00

where p and 7. are defined by (6.4) and (6.5), respectively. Then equation
(0.1) has property

Proof. First of all we note that (5.3) is fulfilled by virtue of (6.30). Assume
that equation (0.1) has no property . Then by virtue of (0.3) and (6.1) the
differential inequality

a(t)
™ () sign u(r(t)) > / , Hdsr(s.D

has no property . Therefore, following Theorem 2.4, the equation
ul™ (t) = p(t)u(r.(t)) = 0 (6.31)
with p and 7, defined by (6.4) and (6.5), respectively, has no property B.
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Let u : [to, +oo[— R be a nonoscillatory solution of equation (6.31). By
Lemma 1.1 thereis ! € {0,...,n}, [ +n is even, such that (2.14;) is fulfilled.
Assuming that I = n (n is even and [ = 0), we can easily to show that (0.5)
((0.4)) is fulfilled. Therefore ! € {1,...,n —2}.

By Lemma 1.3 we have

1 +o00
lu(t)] > ﬁ/t s" I Lp(8)u(ra(s))|ds for t > t,,

where t, is sufficiently large. Since t'~!|u(t)| is a nondecreasing function,
we now obtain

Tx T it
y(t) > %/t s (s)p(s)ds for t > t.,

where y(t) = [u(r.(t))|[7. ()]
But this result contradicts (6.30). The obtained contradiction proves the
theorem. W

Using Theorem 2.4’ and the above reasoning one can easily prove

Let F € V(1) and conditions (0.3), (6.1), (6.2) be fulfilled.
If in addition to this it is assumed that the conditions of anyone of Theorems
6.8-6.12 is fulfilled, where

)
PO =0 [ s s
7(t)
and T, is defined by (6.19), then equation (0.1) has property

§ 7. EQUATIONS WITH A LINEAR MINORANT HAVING PROPERTIES
AND

Letty € Ry, o,v € C([to, +00[;]0, +0[), 3 be a nonincreas-
ing function, and

t_li+moo<p(t) = 400, (7.1)
Jm () - 5(t) =0, (7.2)

where ¢(t) = inf{p(s) : s >t > to}. Then there exists a sequence of {1}
such that ty, 1T +o00 as k T +00 and

P(tr) = o(te), v(E)p(t) > Y(te)P(te) (7.3)
for to <t<tp (k=1,2,...).
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Proof. Let t €]to, +0o[. Introduce the sets E; (i = 1,2) by:
te By & ot) =¢(t), t€Ey e @(s)y(s) = @(t)(t) for s € [to,t].

It is clear that by (7.1) and (7.2) sup E; = +o0 (i = 1,2). Show that

sup E1 N By = 400. (7.4)
Indeed, if we assume that t, € Es and t,. & Ey, by (7.1) there exists t* > t,
such that @(t) = @(t.) for t € [t.,t*] and $(t*) = (t*). On the other
hand, since ¢ is a nonincreasing function, we have ¥(t)@(t) > ¥ (t*)p(t*)
for t € [to,t*]. Therefore t* € E; N Ey. By the above reasoning we easily

ascertain that (7.4) is fulfilled. Thus there exists a sequence of points {t}
such that ¢ 1 +o0o for k£ 1 +o00 and (7.3) holds. W

Let o0 € C(R, ; R, ) and lim;_,; o, 0(t) = +00. Denote by M T (o) the set
of continuous mappings ¢ : C(Ry;Ry) — L (Ry; Ry) which satisfy the
conditions

p(@)(t) > p(y)(1) for t € R and if z(s) > y(s) > 0 for s> o(1)

plzy)(t) = x(a(t))p(y)(t) for t € Ry

if z(t) T 400 as t1 +o00 and y(s) >0 for s> o(t). (7.5)

Let F € V(1) and condition (0.2) ((0.3)) be fulfilled, | €
{1,...,n—1}, I+ n be odd (I + n be even) and for some ty € Ry

[F(u)(®)] = @(Jul)(t) for v € Hy .z, t € [to, +00], (7.6)
lim olt) | 0, (7.7)
t—+o0

where ¢ € M (). Besides, if it is assumed that for any X\ € [l — 1,1[ and
there exists € €]0,1[ such that

400 n—1
lim tl*’\/ s" 1 p(05)(s)ds > H A —il+¢ (7.8)
t—=+oo t i=0;i%l
and
+o0
/ t"Lo(c)(t)dt = +oo for all ¢ €]0, +o0], (7.9)

where 0x(t) = t*, then equation (0.1) has no proper solution satisfying
(2.14;).

Proof. Assume the contrary, i.e. that (0.1) has a proper solution satisfying
(2.14;) where l € {1,...,n— 1} and [ + n is odd (I + n is even). By virtue
of (7.5), (7.7) and (7.9) we have

+o0
/ t"Lp(ch 1) (t)dt = 400 for all ¢ €]0,+00], (7.107)
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where 6;_(t) = t!'='. By (7.6) and (7.10) we clearly obtain

+o00
/ " Hu™ ()| dt = +o0.

Therefore by Lemma 1.4 and (7.6)

. 1-1 _ : -1
t—l>lr+noot lu(t)] = +o0, t—l>lr+noot lu(t)] < 400, (7.11)
1 ! -1 e -1
> —s)- — 5
ol > G 0 €

x(|u|)(s)dE ds for ¢ > tq, (7.12)

where t; € R, is sufficiently large.
Denote by A the set of A € R, satisfying
lim ¢ Mu(t)| = +oo.
t—+o00
Let Ao = sup A. By (7.11) it is clear that A\g € [l — 1,!] and if it is assumed

that \g =1 —1, then \g € A. Therefore on account of (7.7) and (7.8;) there
exist t,. € [t1 + 0o[, g0 €]0,e[ and A* € [l — 1, Ao] N[l — 1,!] such that

M —>\* —_ M —)\*—60 —

t_l}gloot lu(t)| = 400, t_l}gloot lu(t)] = 0, (7.13)
400 -1

#=A / s" 17050 ) (s)ds > H(/\* +e9—i) X
t i=0
n—1 ay —€o

i — \* - > ta,? .
xllll(z A +50)(2) for ¢ > t., (7.14)

1=

where

a= lim t7'7(t), 7(t) = inf {min{s,o(s)}: s> t}, (1) =1*".

t—+oo
Introducing the notation
U(t) = inf{s ™ |u(s)| : s >t > t.}. (7.15)

by (7.13) we obtain

u(t) T 400 as t 1 +o0, (7.16)
lim ¢~*°u(t) = 0. (7.17)
t—+o0

n

9For [ =n — 1 we have Hl;li_l(z — A +e0)=1.
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By virtue of (7.15)—(7.17) and Lemma 7.1 there exists an increasing sequence
of points {tx} such that

Jim b= oo, (F(t)) " u(F(t) <

< (F(t)"°u(F(t) for t, <t < ty, (7.18)
WF(tr) = Ftr) ™ uFte)| (k= ko ko +1,...),  (7.19)

where ko is sufficiently large. Using (7.5), from (7.12) we obtain

()
uF ) > oy () — 9 ) x

+o0
x / (€ = 8)" (0 )(€)dE ds (k= ko, ko +1,...).  (7.20)

It can be assumed without loss of generality that @ > %a for t > t,.

We shall first consider the case l =n — 1. By (7.14), (7.18) and (7.19) it
follows from (7.20) that

Mo W +eo=D(5) ™ [ oy na

|u(7(te))| =

(n —2)! .
><5>\*+1—ng(?(-9))ds > | | (/\*(_1: io2—)!i (%) ;Z(fgk(ii)
(t) (s <0 4150 TTn=2 ()« _i
x/t (T(ty) — s)n*2s,\*+1+507n(%) s> (3) Hl(:nOE/\Q)?_ g9 — i) y

At t) .
X%/t (F(ts) —5)" 2 40" s (k= ko, ko +1,...),

*

which implies

TR e - EE)OY
D> e e Ey =

=|u(T(tr))| (k=ki, ki +1,...),

where k; > ko is a sufficiently large number. The obtained contradiction
proves the validity of the lemma for [ = n — 1.
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Now consider the case ! € {1...,n —2}. From (7.20) we obtain

~ 1 T -1
WF) 2 o=y, -9
+oo
<) [ (€= 9T x
+oo
Xd/ {L_l_lgo(t‘),\*)(fl)dfl ds (k:ko,ko-l-].,)
g

Therefore

7(tk)
WFD) 2 oy . () — o) ) x

/m/m pi e eda (S77)") de as.

n—Il—1\ 1/
Since ((ggs) ) > 0 for £ > s > t., by (7.14) the latter inequality

yields

$) IS I + 20 — il TIES ) X + 20 — i
(-Din—1-1)

<[ f(t'“)mtk) -t [ e (5 3)”‘“1)’& ds =

_(l—/\*)(%)_EOH o IX +eg —i| [T
= (Dl 11 / i) = 5)"

X

|u(7(tk))| = (

+o0
<) [ (€= o) I g ds (k= ook +1,0),
Hence due to (7.18), (7.19) we have

-1 * — n—1 * 0_7: (¢ . *
R (ARt L )
[Tico A + 20 =il TS i = A7 (8e)) ot
X[u(T(te)| 2 [u(T(tr)] (k= ki, ki + 1.0,

where k; > ko is sufficiently large. The obtained contradiction proves the
validity of the lemma. W

" Let F € V(1) and conditions (0.2), (7.6), (7.7), (7.9) ((0.3),
(7.6), (7.7), (7.9)) be fulfilled, where ¢ € M+ (7). Besides, if it is assumed
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that 1 € {1,...,n—1} I+ n is odd (I + n is even), and for any XA € [ — 1,1[
there exists € €]0,1[ such that

n—1

lim t/ s"2Ap(05)(s)ds > H A —i| + ¢, (7.21;)

t—-+o0 t i—0

where 0x(t) = t*, then equation (0.1) has no proper solution satisfying
(2.14)).
Proof. To prove the lemma it is sufficient to show that condition (7.21;)
implies the validity of (7.8;).

By (7.21) there exist top € R4 and gg €]0,¢[ such that for any A € [I —1,1[
we have

n—1

t/ $7=2 (03 )(5)ds > [ IA— | + 2o for t € [to, +o0],
t i=0

so that
[e%s} +o00
tl—)\/ s"‘1‘>‘<p(0>\)(s)ds — _tl—A/ S>‘_l+1 X
t t
+o0
xd [ e po©ds =t [ 50000 (s)ds +
s t

400 [e'e)
A+ 1D / s / €220y ) (€)dE ds >

t s
2 (:i;[:lk—ﬂ +50) (1+ A+1-0tA /:mfledf) _
n—1 ~ .
= (111)|/\—i|+60)(1+%) Zi:gﬂ|/\_i|+50

for t € [to,+o0[, Aell—1,I[.
Therefore (7.8;) is fulfilled. M

Let F € V(1) and conditions (0.2), (7.6), (7.7), (7.9) be
fulfilled, where @ € M¥(7). Besides, if condition (7.8;) holds for any | €
{1,...,n—1} and X € [l — 1,1, where | +n is odd, then equation (0.1) has
property

Proof. Let u : [to, +oo[— R be a nonoscillatory proper solution of equation
(0.1). Then by Lemma 1.1 there exists I € {0,...,n — 1} such that [ +n is
odd (2.14;) is fulfilled. By Lemma 7.2 we have [ € {1,...,n—1}. Assuming
that n is odd and I = 0 and using (7.9), we can easily show that (0.4)
holds. W
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" Let F € V(1) and conditions (0.2), (7.6), (7.7), (7.9) be
fulfilled, where ¢ € M (7). Besides, if condition (7.21;), where | +n is odd,
is fulfilled for any 1 € {1,...,n — 1} and X € [l — 1,1], then equation (0.1)
has property

Proof. Since all the conditions of Theorem 7.1 are fulfilled on account of
Lemma 7.2, this proves the validity of Theorem 7.1’. W

Let F € V(7), and conditions (0.3), (7.6), (7.7), (7.9),
where ¢ € M™T(7), be fulfilled. Besides, if condition (7.8;) holds for any
le{l,...,n—1} and X € [l — 1,1[, where l + n is even, then equation (0.1)
has property

Proof. Let u : [to, +oo[— R be a nonoscillatory proper solution of equation
(0.1). By Lemma 1.1 there exists [ € {0, ...,n} such that ! + n is even and
(2.14;) is fulfilled. By Lemma 7.2 we have [ ¢ {1,...,n — 1}. If n is even
and ! = 0, then (0.4) is fulfilled.

Let | = n. By (7.5), (7.7) and (7.8;) we obtain

“+o00
/ w(cln—1)(t)dt = +o0, for all ¢ > 0, (7.22)

where 6,,_;(t) = t" L.

On the other hand, by (2.14,,) there exist to € R4 and ¢ €]0, +00[ such
that |u(t)| > ct®! for t > to. Thus by (7.6) and (7.22) we find from (0.1)
that .

D (1)) 2/ (1) ()ds — +o00 for t — +oo.
to

By (2.14,,) it is now clear that (0.5) is fulfilled. W

'. Let F € V(1) and conditions (0.3), (7.6), (7.7), (7.9) hold,
where ¢ € M (7). Besides, if (7.21;) is fulfilled for any l € {1,...,n — 1}
and X € [l — 1,1[ where | + n is even, then equation (0.1) has property

Proof. The Theorem is valid because all the conditions of Theorem 7.2 are
fulfilled by Lemma 7.2". W

Let F € V (1), condition (0.2) be fulfilled and let for any

tg € R+
|>Z/ s)|dsri(s,t) for w € Hy, -, t > 1, (7.23)
i(t)
where
TZ,UZEC(& RF) ()<01()fOT‘tER+, 794
ri(s,t), r; is measurable, r;(-,t) 1, as sT (i=1,...,m), (7.24)
im 70 S0 (=1, m). (7.25)

t——+oo
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Besides, if for anyl € {1,...,n— 1} and X\ € [l — 1,1[, where | + n is odd,
there exists € €]0,1[ such that

n—1
H =X n—I[—1 _
Jim ¢ / ¢ Z/ (s d§>lgﬂ|x i|+e (7.26)
and
+o0 m
[ Y it - (o). ) = (7.27)
i=1

then equation (0.1) has property

Proof.  To prove the theorem it suffices to note that the conditions of
Theorem 7.1 are fulfilled by virtue of (7.23) and (7.24)

/) = Z/ #)dari(s,1), (7.28)

(®)

7(t) =min{r;(t):i=1,...,m}. N
Let F € V(1), condition (0.2) be fulfilled and let for any
tg € R+
|F()(®)] > Y pi®)u(rs(t)] for w € Hyyr, t > to, (7.29)
i=1
where

Pi € Lige(Ri;Ry), 7€ O(R;Ry),

Tl (7.30)

t—+00

>0 (i=1,...,m).

Besides, if for any l € {1,...,n—1} and X\ € [l — 1,1], where I + n is odd,
there exists € €]0,1[ such that

n—1
li_mtl_>‘/ sl IZpl s)ds > H [A—il+¢e (7.31))
t—=+oo t i=0;i#£l
and
+oo m
/ tnt Zpi(t)dt = +o00, (7.32)
i=1

then equation (0.1) has property
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If F € V(1), condition (0.2) is fulfilled and for any ty €
R, we have

at
Fu)()] > - / lu(s)[ds for uw€ Huyry t>t,  (7.33)

where 0 < a < @ and

e>max{—(A+DAA=1)---(A=n+1) x
x@™M! =M e 0,n - 1]}, (7.34)

then equation (0.1) has property

Let ¢ > 0,0 < a <@. Then for the equation

- ¢ at

n —

u™(t) + prowe] / u(s)ds =0 (7.35)
at

to have property it is necessary and sufficient that (7.34) be fulfilled.

" Let F € V(1) and conditions (0.2), (7.23)—(7.25), (7.27)
be fulfilled. Besides, if for any l € {1,...,n — 1} and X\ € [l — 1,1[, where
[+ n is odd, there exists € €]0,1[ such that the inequality

+o00 m o; (t) n—1
tw o[ ey [ s 9dex [T il +e (730)
t=too Ji i=1 7 Ti(?) i=0

holds, then equation (0.1) has property

Proof. Tt suffices to note that the conditions of Theorem 7.1" are fulfilled
with ¢ and 7 defined by (7.28). W

Let F € V(1) and conditions (0.2), (7.29), (7.30), (7.32)
be fulfilled. Besides, if for anyl € {1,...,n — 1} and X\ € [l — 1,1[, where
I+ n is odd, there exists € €]0,1] such that

+00 m n—1
lim t/ sPTEAN T pi(s)T A (s)ds > A—i|+eg, 7.37
Jm ¢ f izzlz()z() _gl | (7.37)

then equation (0.1) has property

Let F € V(1) and conditions (0.3), (7.23)—(7.25), (7.27) be
fulfilled. Besides, if (7.26;) holds for anyl € {1,...,n—1} and A € [l = 1,1]
where | + n is even, then equation (0.1) has property

Proof. 1t suffices to note that the conditions of Theorem 7.2 are fulfilled
with ¢ and 7 defined by (7.28). W
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Let F € V(1) and conditions (0.3), (7.29), (7.30), (7.32)
be fulfilled. Besides, if for any l € {1,...,n— 1} and X\ € [l — 1,1[, where
[ +n is even, there exists ¢ €]0,1] such that (7.31;) holds, then equation
(0.1) has property

Let F € V(1) and conditions (0.3), (7.33) hold for 0 <
a < @. Besides, if

c>max{ A+ DAXA=1)---A=n+ D@ —aMH7T: X e0,n - 1]},
then equation (0.1) has property

Let ¢ < 0 and 0 < a < @. Then for equation (7.35) to
have property it is necessary and sufficient that

c<—max{ A+ DIXA=1)---A—n+ D@ —aMH"t: A e 0,n—1]}.

" Let F € V(1) and conditions (0.3), (7.23)—(7.25), (7.27)
be fulfilled. Besides, if for any l € {1,...,n— 1} and X\ € [l — 1,1[, where
[4+n is even, there exists € €]0,1[ such that (7.36) holds, then equation (0.1)
has property

Proof. Tt suffices to note that the conditions of Theorem 7.2" are fulfilled
with ¢ and 7 defined by (7.28). W

Let F € V(1) and conditions (0.3), (7.29), (7.30), (7.32)
be fulfilled. Besides, if for anyl € {1,...,n — 1} and X\ € [l — 1,1[, where
I4+mn is even, there ezists € €]0,1[ such that (7.37) holds, then equation (0.1)
has property

Let F € V (1), conditions (0.2), (7.23)-(7.25), (7.27) be
fulfilled and

oi(t) <t for te Ry (i=1,...,m). (7.38)

Besides, if for any X € [n—2,n —1] there exists € €0, 1] such that (7.26,,—1)
holds, then equation (0.1) has property

Proof. Assume the contrary, that equation (0.1) has no property . In that
case by (0.2) and (7.23) the inequality

m o peoi(t)
u(™ (t) sign u(t) + Z/ |u(s)|dsr;i(s,t) <0 (7.39)
i=1 7i(t)

has no property

Let u : [tg, +00[— R be a nonoscillatory proper solution of (7.39). Then
by Lemma 1.1 there exists [ € {0,...,n—1} (I +n is odd) such that (2.14;)
is fulfilled. If it is assumed that n is odd and | = 0, then (0.4) will hold by
virtue of (7.27) because following our assumption inequality (7.39) has no
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property . Assume that [ € {1,...,n—1}. By (7.25) and (7.27) it is clear
that
+oo
/ =™ (8)]dt = +o0 for all 1€ {1,...,n—1}.
Therefore by Lemma 1.3

lu(t)|/t' | for t71.

Hence on the interval [t1, +o00[, where ¢; is sufficiently large, the function u
is a solution of the inequality

u(™ () sign u(t sldyri(s, ) 1ol
t) sig +Z/ Ldgr; t)( ) <0.

Like in the case of Lemma 5.2 we can show that on the interval [ts, +o00[
the last inequality has an oscillatory proper solution u; satisfying (2.14,,—1)
where to > t; is sufficiently large. On the other hand, by Lemma 1.3 we

have
uy(t)
tl

1t 400 for t1 +400.10

Therefore on the interval [t2, +00[ the function u, is a solution of inequality
(7.39) satisfying (2.14,,_1). But Theorem 7.3 and condition (7.26,,_;) imply
that (7.39) has no solution satisfying (2.14,,_1). The obtained contradiction
proves the theorem. W

If F € V(r), conditions (0.2), (7.29), (7.30), (7.32) are
fulfilled with X\ € [n — 2,n — 1] and there exists € €]0,1] such that condition
(7.31,,—1) holds, then equation (0.1) has property

If F € V(1) and conditions (0.2), (7.33) are fulfilled with
0 < a <@ <1, then for equation (0.1) to have property it is sufficient
that
c>max{—(A+1DAA-1)---(A—n+1) x
x@* oMl e n—2,n—1]}. (7.40)

Let ¢ > 0,0 < a < @ < 1. Then condition (7.40) is
necessary and sufficient for equation (7.35) to have property

Let F € V(71), condition (0.2) be fulfilled and for some
tg € R+

m

|F'(w)(t)] > 1 Zci|u(ait)| for t € [to,+oo[, u€ My, (7.41)

B
i=1

1074 is assumed that [ < n — 2 because otherwise [ = n — 1, i.e. (7.39) has a solution
satisfying (2.14,—1).
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where 0 < a; <1 andc¢; >0 (i=1,...,m). Then the condition
Zciaf‘ >-AA=1)---(A=n+1) for Xén—2,n—1]
i=1

is sufficient for equation (0.1) to have property
[12]. Let p € Lioe(Ry;Ry) and

lim t/+°° 5" 2p(s)ds > max{-A(A—=1)---(A=n+1): X € [n—2,n—1]}.

t—?oo
Then equation (6.8) has property

If F € V(1) and conditions (0.3), (7.23)—(7.25), (7.27),
(7.38) are fulfilled, then for equation (0.1) to have property it is sufficient
in the case of an even n (of an odd n) that for any A € [n—1,n—2[ (for any
A€ [0,1JU[n —3,n—2]) there exist € €]0, 1] such that conditions (7.26,,_2)
((7.261) and (7.26,—2)) be fulfilled.

Proof. Let us assume the contrary, i.e. that equation (0.1) has no property
. Then by (0.3) and (7.23) the inequality

u™ (t) sign u(t) > Z/

has no property . Let u € [to, +00o[— R be a nonoscillatory proper solution
of inequality (7.42). Following Lemma 1.1, there exists I € {0,...,n} (I+n
is even) such that (2.14;) is fulfilled. If we assume that [ = n (n is even
and [ = 0), then (0.5) ((0.4)) will be fulfilled by virtue of (7.25) and (7.27).
Thus, since by our assumption inequality (7.42) has no property , we
conclude that [ € {1,...,n—2}. If I € {2,...,n — 2}, then by a reasoning
similar to that used in considering Theorem 7.5 we prove that by Corollary
5.1 inequality (7.42) has an oscillatory proper solution satisfying (2.14,,_5).
This means that for an even n (for an odd n) inequality (7.42) has a solution
satisfying (2.14,,—2) ((2.144) or (2.14,_2)).

However by Theorem 7.4 and (7.261), (7.26,,—>) the differential inequality
(7.42) has no proper solution satisfying (2.141), (2.14,,_2). The obtained
contradiction proves the theorem. M

o; (t)
lu(s)|dsri(s,t) (7.42)
i ()

Let F € V(1) and conditions (0.3), (7.29), (7.30), (7.38)
be fulfilled. Besides, if in the case of an even n (in the case of an odd n) for
any A € [n —2,n — 1] (for any A € [0,1[U[n —2,n — 1]) there ezists € €]0, 1]
such that condition (7.31,_2) ((7.311) and (7.31,,_2)) holds, then equation
(0.1) has property
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Let F € V(1) and conditions (0.3), (7.33) be fulfilled,
where 0 < a <@ <1 and ¢ €]0, +o0[. Moreover, if

c>max{(A+DAA-1)---(A—n+1) x
x@*t =)7L N e [0,1]Un - 3,n — 2]},

then equation (0.1) has property

Let c <0 and 0 < a« <@ < 1. Then for equation (7.35)
to have property it is necessary and sufficient that
c<—max{A+1DAA=-1)---(A=n+1) x
x@*! —a*M) A e[0,1)Un —3,n — 2]}
" If F € V(1) and conditions (0.3), (7.23)—(7.25), (7.27),
(7.38) are fulfilled, then for equation (0.1) to have property it is sufficient

in the case of an even n (in the case of an odd n) that for any X € [n—3,n—2]
(A€ [0,1[U[n — 3,n — 2[) there exist € €]0, 1] such that (7.36) be satisfied.

Proof. This theorem is proved like Theorem 7.6, if we replace Theorem 7.4
by Theorem 7.4’. N

If F € V(1), and conditions (0.3), (7.29), (7.30), (7.32),
(7.38) are fulfilled, then for equation (0.1) to have property it is sufficient
in the case of an even n (in the case of an odd n) that for any A € [n—3,n—2]
(for any X € [0,1[U[n — 3,n — 2]) there exist € €]0,1[ such that condition
(7.37) hold.

Let p € Lipe(Ry;R_) and

lim t/t+oos"_2|p(s)|ds>max {AA=1) -+ (A=n+1) : X €]0,11Un—3,n—2]}.

t—+00

Then equation (6.8) has property

In the case of an even n Corollary 2 from [12] is a particular case of the
above corollary.

Let F € V(1) and conditions (0.3), (7.41) be fulfilled,
where ¢; >0 and 0 < a; <1 (i =1,...,m). Besides, if

Zciaf‘>)\()\—1)---(/\—n+1) for A€ [0,1]U[n —3,n—2],
i=1

then equation (0.1) has property



87

If F € V(7), conditions (0.2), (7.23), (7.24), (7.27) are
fulfilled,

Ti(t) >t for te Ry (i=1,...,m) (7.43)

and in the case of an even n (in the case of an odd n) for any A € [0,1]
(for any X € [1,2[U[n — 2,n — 1]) there exists € €]0,1] such that condition
(7.261) ((7.262) and (7.26,—1)) holds, then equation (0.1) has property

Proof. Assume the contrary, i.e. that (0.1) has no property . Then by
(0.2) and (7.23) inequality (7.39) has no property

Assuming u : [to,+00[— R to be an oscillatory proper solution of in-
equality (7.39), by Lemma 1.1 there exists [ € {0,...,n — 1} (I +n is odd)
such that (2.14;) is satisfied. If n is odd and ! = 0, then (0.4) is fulfilled.
Since (7.39) has no property , we conclude that [ € {1,...,n —1}. Sim-
ilarly to Lemma 5.4 we show that for an even n (for an odd n) inequality
(7.39) has a proper solution of form (2.14;) ((2.143) or (2.14,,_1)).

On the other hand, on account of Theorem 7.3 and (7.261) ((7.262)
and (7.26,,_1)) inequality (7.39) has no proper solution satisfying (7.14;)
((7.145), (7.14,,_1)). The obtained contradiction proves the theorem. M

Let F € V (1), conditions (0.2), (7.29) (7.32), (7.43) be
fulfilled and in the case of an even n (in the case of an odd n) for any
A € [0,1] (for any A € [1,2[U[n — 2,n — 1[) there exist € €]0,1[ such that
condition (7.311) ((7.312) and (7.31,—1)) holds. Then equation (0.1) has
property

Let F € V(1) and conditions (0.2), (7.33) be fulfilled,
where 1 < a <@ and ¢ > 0. Moreover, if for an even n (for an odd n)

e>max{—(A+DAXA—1)---(A—n+1) x
x@*t M7 e 0, 1]} (7.44)
(c> max{—(A+ DAN=1)--- (A —n+ 1) x
(@Ml — M)l e [1,2]U[n—2,n—1]}), (7.45)
then equation (0.1) has property

Let ¢ >0 and 1 < a <@. Then in the case of an even n
(in the case of an odd n) condition (7.44) ((7.45)) is necessary and sufficient
for equation (7.35) to have property

. Let F € V(7), conditions (0.2), (7.23)<(7.25), (7.27),
(7.43) be fulfilled and in the case of an even n (in the case of an odd n) for
any X € [0,1] (for any X € [1,2[U[n —2,n — 1) there exist e €]0, 1] such that
(7.36) holds. Then equation (0.1) has property
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Proof. This theorem is proved like Theorem 7.7, if we replace Theorem 7.3
by Theorem 7.3’. N

Let F € V (1), conditions (0.2), (7.29), (7.32), (7.43) be
fulfilled and in the case of an even n (in the case of an odd n) for any
A € [0,1] (for any X € [1,2[U[n — 2,n — 1) there exist € €]0,1] such that
(7.37) holds. Then equation (0.1) has property

Let F' € V (1), conditions (0.3), (7.23), (7.24), (7.27), (7.43)
be fulfilled and in the case of an even n (in the case of an odd n) for any
A € [1,2] (for any X\ € [0,1]) there exist € €]0, 1] such that (7.263) ((7.261))
holds. Then equation (0.1) has property

Proof. Assume the contrary, i.e. that (0.1) has no property B. Then by
(0.3) and (7.23) inequality (7.42) has no property

Assume u : [tp,+00o[— R to be a nonoscillatory proper solution of in-
equality (7.42). Then by Lemma 1.1 there exists [ € {0,...,n} (I +n is
even) such that (2.14;) holds. If I = n (n is even and [ = 0), then (0.5)
((0.4)) is satisfied. Therefore, since inequality (7.42) has no property by
virtue of our assumption, we conclude that [ € {1,...,n — 2}. Similarly to
Lemma 5.5 it can be shown that for an even n (for an odd n) inequality
(7.42) has a proper solution satisfying (2.142) ((2.14;)).

On the other hand, according to Theorem 7.4 and (7.265) ((7.26;)) for
an even n (for an odd n) inequality (7.42) has no solution satisfying (7.145)
((7.14;)). The obtained contradiction proves the theorem. W

Let F € V (1), conditions (0.3), (7.29), (7.32), (7.43) be
fulfilled and in the case of an even n (in the case of an odd n) for any
A € [1,2] (for any X\ € [0,1]) there exist € €]0, 1] such that (7.313) ((7.311))
holds. Then equation (0.1) has property

Let F € V(1) and conditions (0.3), (7.33) be fulfilled,
where 1 < a <@ and ¢ > 0. Moreover, if

c>max{A+ DAA=1)---(A=n+ D)@ a7 1 €]0,2]},
then equation (0.1) has property

Let ¢ < 0 and 1 < a < @. Then for equation (7.35) to
have property it is necessary and sufficient that

c<—max{ A+ DAXA =1 ---A=n+ D@ =)~ X e 0,2]}.

" Let F € V(1), conditions (0.3), (7.23), (7.24), (7.27),
(7.43) be fulfilled and in the case of an even n (in the case of an odd n) for
any X € [1,2[ (for any X € [0, 1]) there ezist € €]0, 1] such that (7.36) holds.
Then equation (0.1) has property

Proof. This theorem is proved like Theorem 7.8, if we use Theorem 7.3’
instead of Theorem 7.3. W



89

Let F € V (1), conditions (0.3), (7.29), (7.32), (7.43) be
fulfilled and in the case of an even n (in the case of an odd n) for any
A € [1,2[ (for any X € [0,1]) there exist € €]0,1[ such that condition (7.37)
holds. Then equation (0.1) has property

Let F € V(1) and conditions (0.3), (7.41) be fulfilled,
where a; > 1 and ¢; >0 (i =1,...,m). Then the condition

m
> e} >AA=1)---(A=n+1) for X€[0,2]
i=1

is sufficient for equation (0.1) to have property

The corollaries formulated in Subsection 7.2 are exact, which is testified to
by the validity of the following

Let F € V (1), condition (0.2) ((0.3)) be fulfilled and

[F(u)(t)] < @(u)(t) for t€ Ry, ueCRy;Ry), (7.46)
where p : C(Ry;Ry) = Lige(Ry;Ry) is a continuous mapping,

p()(t) 2 e(y)(t) if v,y € C(Ry;Ry) and
z(s) 2 y(s) for s 2 7(t).

Moreover, if for some to € Ry, 1 € {1,....n—1} and X € [ — 1,I[, 1!
where | +n is odd (I + n is even) we have

(7.47)

n—1

+o0
=) / s loO)(s)ds <[] IN—il for t>t0,  (743)
t i=0;il

where 0 (t) = t*, then equation (0.1) has a proper solution satisfying (2.14;).
Proof. Let U be the set of functions u € C([tg, +00[; R) satisfying the con-
dition

u(t) = ¢ for t € [to,t.], c(t —t)' "t <wu(t) <t for t >t,, (7.49)
where ¢, = max{s : 7.(8) < to}, 7(t) = min{t, 7(t)}, ¢ € [o, T2 A - z'|]

and ¢g = cfor I = 1, ¢ = 0 for [ > 1. Define the operator T : U —
C([to, +-00[; R) by

_qynHit . o
c(t _t*)lfl + Wﬁt (t . S)lfl f: (5 _ s) -1y
T(u)(t) = x F(u)(€)d¢ ds for t > t,,
¢ for t€to,t.] (7.50)

'When A\ =1 — 1 we have ¢(0y)(t) = 0 almost everywhere on the interval [to, +ool.
Since in that case the validity of the theorem is obvious, it will be assumed below that
A€l —1,1[.



90

Show that TU C U. By (0.2) ((0.3)) and (7.49) and the assumption that
[+nisodd (I +n is even) we find that if u € U, then T'(u)(t) > c(t —t,)' !
for t > t,. Show that if u € U, then T'(u)(t) < t* for t > t,.

Consider at first the case l = n—1. By virtue of (7.46)—(7.49) from (7.50)
we obtain

T(u)(t) < e(t — t.)"2 + M5 (=) /t(t _ g A =) g <

(n—2)!
[y (A=)

et =8)" = SO

M2 <A for ¢ > 1,12

Let now | < n — 1. Then by (7.46)—(7.49) from (7.50) we have

T(u)(t) < c(t —t,)' =1 = = 1)!(:_ 1) /t (t—s)!7t x

X /:OO (£ g S)nlld/:oo o (0))(61)dEr ds = et — )T +

t +o0 — g\ n— —1\7
+(z—1)!(:—1—1)!/t*(t_s)l_l/s ((gf ) | ) x
X /g - P00 ) (61)dér dE ds < et — 1) +
e e [ e () s

- C(t B t*)kl + (l —1_[12):'(()n|i;i| 1)! /t* (t - 5)171 X

e -1 .
g / e m e ds = ey — - 4 Lo Aol

s -1
' ITi=o A — ]
X / (t — )7 s*lds < e(t — 1)1 7! = 2220 ()7t x
. (1 —1)!

xt} A <A for ¢ > t,.

Therefore TU C U.

On the other hand, it is obvious that U is a closed bounded convex set.
We easily ascertain that the operator 7' is continuous and T'U is an equicon-
tinuous set on every finite segment of the interval [tg,+o0o[. Therefore by
Lemma 2.1 there exists u € U such that Tu = u. It is easy to see that the
function w is a proper solution of equation (0.1) satisfying (2.14;). W

". Let conditions (0.2), (7.46), (7.47) ((0.3), (7.46), (7.47))
be fulfilled and assume that for some to € Ry, | € {1,...,n — 1} and

12Without loss of generality it can be assumed here that t. > 1.
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A€ [l =11, where l +n is odd (I + n is even) we have

+oo n—1
[ e @< [Tl for ezt (15D
t

i=0

with 8 (t) = t*. Then equation (0.1) has a proper solution satisfying (2.14;).
Proof. To prove the theorem it suffices to show that (7.51) implies (7.48).
By (7.51) we have

+oo +o00
=\ n—I[—1 o ql=X A—Il+1
' /t €111 (0, (€)dE = —t /t P
+0o0 +oo
n—2—\ _ n—2—\
xd /ﬁ N p(03) (s)ds = ¢ / €122 (03 (€)dE +

+00 +oo
+(A+1— l)tl—*/ et / s A0y ) (s)ds dE <
t 3
pomes A+1-1y o
< H}|/\—z|(1+ﬁ) = I n-i =

i=0;i#l



92

CHAPTER 3

§ 8. SOME AUXILIARY STATEMENTS

A proper solution u : [tg,+0o[— R of equation (0.1) is
called Kneser-type if there exists t1 € [tg, +00[ such that

(-D%D(@)u(t) >0 for t>t (i=0,...,n—1). (8.1)
Let

pELloc(R‘i—;R‘i—)a 660(&7&)7 (82)

() <t for teRy, t_ligloots(t) =400 (8.3)

and § BE nondecreasing. Let, moreover, u : [tg, +0o[— R be a solution of
the equation

ut™ () + (=1)" ' p(t)u(8(t) = 0 (8.4)

satisfying (8.1). Then for any k € {0,...,n — 1} we have

D) < (0~ k- Dln— Dlu(t) for t> 4o (85)
where
te = n5(t1), n5(t) = max{s:d(s) <t}, (8.6)
_ N o)
ug(t) = 2 W, (8.7)
pr(t) = max{yg(t,s,7) : 7 € [t,ns(t)], s € [6(7),t]} (8.8)
and

t T
ity 1) = / enh=p(6)de /t k=1 p()de x

Sk+1—n s—&(r n—1 1 ° _ n—1
(=0 4 oy [ € 00)

xp(€) (€ — ()" mde). (8.9%)

X

Proof. By (8.4) and (8.1)

() > iy [ € HOUGO)dE for 1 <5<ty (5.0

where t, is defined by (8.6) and u — by (8.7).
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Let t € [t., +oo[ and (sg, 7o) be the point of maximum of the function
Yi(t, -, ) on [6(70),t] X [t,ns(t)]. Then by (8.10)

nlon) 2 oy [ s >
CETES / " hp()dsfu(8 1), (8.11)

wlt) > gy / & p(s) u(3(5))]ds >
= m / s" " p(s)dslu(8(m0))] (8.12)

On the other hand, since uy(t) is nonincreasing, from (8.2) and (1.6¢,) we
obtain

(oo > LB D gt=n (a1 +

(n—1)!
1 % n—1
+m /6(T0)(§ —6(m))" " x

xp(€)(€ — 8(6)" €517 e un(s0)

whence by (8.11) and (8.12) it follows the validity of (8.5), where py is
defined by (8.8;) and (8.9;). M

Let (8.2) and (8.3) be fulfilled and

t

lim p(s)ds > 0, (8.13)
t=+o00 J5(t)
vrai sup{p(t) : t € Ry } < 400, (8.14)

where the function ¢ is nondecreasing. Let, moreover, u : [tg, +0o[— R be a
proper solution of (8.4) satisfying (8.1). Then

— _[u(())]
tk?@m < +400. (8.15)

Proof. According to Lemma 8.1, it suffices to show that

lim p, 1(t) >0, (8.16)

t—+oo

where the function p,,_; is defined by (8.8,,—1) and (8.9,,—1).
In view of (8.13) there exist ¢ > 0 and t5 > #; such that

t
/ p(s)ds > ¢ for t > to. (8.17)
5(t)
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Let ¢ € [t2, +oo[. Then by (8.17) there exist t* €]t,ns(t)], ¢ €]t,¢*[ and
t €]6(t*), t[ such that '3

t t t
/ p(s)ds > <, / p(s)ds > <, / pe)ds> S (818)
5(t%) 4z 47 ) 4
According to (8.8,—1) and (8.9,—1) it is clear that
t T -
pnoi(t) > / p(s)ds / p(s)ds(t — 5(B)™". (8.19)
t t

On the other hand, by (8.14) from (8.17) we have t — 6(t) > t — d(t*) > £,
where 7 = vrai sup{p(t) : t € Ry }. Therefore (8.18) and (8.19) imply

3
c
no1(t) > — for t>t
P 1()_64r or t 212

whence it follows the validity of (8.16). W
Let (8.2), (8.3) be fulfilled and for some k € {0,...,n — 1}

t

lim sk 1p(s)ds > 0, (8.20%)
t—+o00 (1)
vrai sup{t" *p(t) : t € Ry } < 400, (8.21%)

where § is nondecreasing. Let, moreover, u : [tg,+oo[— R be a proper
solution of (8.4) satisfying (8.1). Then

MOl (1))]
t—too  wug(t)

where uy, is defined by (8.7).

< 400, (8.22)

Proof. According to Lemma 8.1 it suffices to show that
lim pg(t)6~*(t) > 0. (8.23)

t—+o00

By (8.20) there exist ¢ > 0 and t5 > t; such that

¢
/ " 1p(s)ds > ¢ for t > ty. (8.24)
5(t)

Let t € [t2,+00[. By (8.24) there exist t* €]t,ns(t)], t €]t,t*[ and ¢ €
16(t*), t[ such that

t C t C
/ kL p(s)ds > <, / sk Lp(s)ds > <,
5(t) 4 4 (8.25)

t
/ s" k=1 p(s)ds > <
t 4

13the function ns is defined by (8.6)
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From (8.8;) and (8.9;) it follows

pr(t) Z/t s"_k_lp(s)ds/t "R 1p(s)ds R (- 6(1)" T (8.26)

On the other hand, (8.21;) and (8.25) imply 6(¢*) < exp{—z—}t with

rr = vraisup{t"*p(t) : t € R.}. Hence, since t > §(t), by (8.26) and
(8.25) we have

02 C n—1
> 5k — - > ts.
pr(t) > 166 (t) (1 exp { I }) for t >ty
Therefore (8.23) is valid. W
Let (8.2) and (8.3) be fulfilled and for some ty € Ry

t
/ p(s)ds >0 for t>to. (8.27)
5(t)

Let, moreover, u : [tg, +00[— R be a solution of the inequality
(=1)" ™) (#) sign u(t) + p(t)|u(é(t)] <0 (8.28)
satisfying (8.1). Then there exists t. > t; such that (8.4) has a proper
solution wy : [t«, +00[—]0, +00] satisfying
(=)l (t) >0 for t>t, (i=0,...,n—1), (8.29)
W ()] < @) for t>t, (i=0,...,n—1). (8.30)
Proof. According to (8.28)
OO e [ (s 0P (631
(n—i—-1'/,
for t>t, (i=0,...,n—1),

where t,. = ns(t1) (the function 7; is defined by (8.6)).
Consider the sequence {u;}{ > of functions defined by

ur(t) = |u(t)| for ¢ >t,
ui(t) = {ﬁ 7255 = 07" pls)ui 1 (5()ds for £> ¢,
’ wi(ts) + [u(t)] — |u(ts)| for t € [t1, 6] (1 = 2,3,...).

This sequence is obviously decreasing. Its limit wu. is a solution of the
integral equation
+ —
(n+1)! (5 = )" p(s)uw(5(s))ds for t > t,,
wi(ty) + Ju(t)| — |u(ts)] for ¢ € [y, t.].

u,(t) = (8.32)

on [ty,+0o0].



96

Show that
u(t) >0 for t>t.. (8.33)
Suppose the contrary. Then there exists t* € [t., +oo[ such that
u«(t) =0 for ¢ >t*, u.(t) >0 for ¢ € [t;,t*[. (8.34)

Denote by E the set of all ¢ € [t*, +oo[ satisfying §(¢t) = t* and put t° =
inf E. By (8.27) and (8.34) there exists t9 €]t*, %] such that

/t (s = " Lp(s)ua (6(s))ds > 0.

*

Therefore (8.32) implies

1 / (5 — )" 1p(8)un (8(s))ds > 0.

2 (n—1)! /.

But this contradicts (8.34). The obtained contradiction proves that (8.33)
is fulfilled. On the other hand, according to (8.31), (8.32) and (8.33) u. is
a solution of (8.4) satisfying (8.29) and (8.30). W

Let (8.2) and (8.3) be fulfilled, the function § be nondecreas-
ing and for some k € {0,...,n—1} and to € Ry let
pr(t) >0 for t > to. (8.35;)

Let, moreover, u : [ty,+oo[— R be a proper solution of (8.28) satisfying
(8.1). Then

i w(t)exp {1y /t p()s" ™+ (pu(s)) " ds} > 0, (836)

where ug, and py are defined respectively by (8.7) and (8.8;), (8.9).

Proof. According to Lemma 8.4 equation (8.4) has a proper solution u, :
[t«, +00[—]0, +o0[ satisfying (8.29) and (8.30), where ¢, is sufficiently large.
By (8.35;) and Lemma 8.1

ux(0(2))

Uxk (t)

where to > t, is sufficiently large and

<(n—k—1Yn -1 prt)™" for t > ts,

= R (1)

ek () = i —h)

(8.37)
i=k
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Therefore from (8.4) we have

Uk (t) = sk (t2) exp{ - m/t Snklp(s)%gg)ds} >

> wlt)exp { — (n— 1)1 / "R p(s) (o)) s for £ 2

2

whence, taking into account (8.7), (8.30) and (8.37), we deduce (8.36). M

Taking into account Lemmas 8.1-8.5, we can easily ascertain the validity
of the following corollaries.

Let (8.2) and (8.3) be fulfilled, § be nondecreasing, for some
ke {0,...,n—1} (8.35;) hold and

1 rt
tliinooz /to p(s)s" * L (pr(s)) tds < o0, (8.38)
where py, is defined by (8.8;) and (8.9%). Let, moreover, u : [tg, +oo[— R
be a proper solution of (8.28) satisfying (8.1). Then there exists X > 0 such
that

lu(t)|eM — 400 for t— +oo. (8.39)

" Let (8.2), (8.3), (8.13) and (8.14) be fulfilled with 6 non-
decreasing. Let, moreover, u : [tyg, +00o[— R be a proper solution of (8.28)
satisfying (8.1). Then XA > 0 exists such that (8.39) holds.

Let (8.2) and (8.3) be fulfilled, § be nondecreasing, for some
ke {0,...,n—1} (8.35;) hold and

1 t
IH . n—k—1 —1 4
T /top(s»s (pr(s))~ds < +oo, (8.40)

where py, is defined by (8.8) and (8.9x). Let, moreover, u : [tg, +oo[— R
be a proper solution of (8.28) satisfying (8.1). Then there exists X > 0 such
that

lu(t)[t* = 400 for t — +oo. (8.41)

" Let (8.2) and (8.3) be fulfilled with 0 nondecreasing and
(8.20%) and (8.21;) hold for some k € {0,...,n — 1}. Let, moreover, u :
[to, +0o0o[— R be a proper solution of (8.28) satisfying (8.1). Then there
exists A > 0 such that (8.41) holds.

Let (8.2) and (8.3) be fulfilled, § be nondecreasing, for some
ke {0,...,n—1} (8.35;) hold and for some r € {2,3,...}

/ s" R p(s) (pr(s)) "Hds < +o0, (8.42y)
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where Iny t =Int, In;t =Inln;_1 ¢ (i =2,...,7) and py, is defined by (8.8y)
and (8.9y). Let, moreover, u : [ty, +00[— R be a proper solution of (8.28)
satisfying (8.1). Then there exists X > 0 such that

lu(t)|In} | t = +o00 for t— 4oo. (8.43)
" Let (8.2), (8.3), (8.20;) and (8.21y) hold for some k €
{0,...,n — 1} and for somer € {2,3,...}

lim
t—+ooln, t

/t "R 1p(s)67F (s)ds < 400. (8.44)

Let, moreover, u : [tyg,+0o[— R be a proper solution of (8.28) satisfying
(8.1). Then there exists A > 0 such that (8.43) holds.

§ 9. ON THE EXISTENCE OF KNESER-TYPE SOLUTIONS

Ry . Denote by H;, . the set of all functions u € C’ﬂ)c YRy R) satiI:;;ir)ig -
(1) (D (¢ ) t) >0 (i=0,...,n—1),
(=1)™u™ (Hu(t) > 0 for t > t,,

where t, = min{to, 7« (o)}, 7 (¢) = inf{7(s) : s > t}.

Let F € V(1) and for some tg € Ry

(=1)"1F (u)(t) signu(t) > o(|ul)(t) (9.1)
for we Hy ., t>to,

where p € M+ (o) and

o € C(Ry;Ry) is nondecreasing, o(t) <t 92)

for t € Ry, tilﬁ)oa(t) = +o00.
Let, moreover, u : [ty, +0o[— R be a proper solution of (0.1) satisfying (8.1)
and there exist v € Cioc([to, +o0[; Ry ), 12 > 0 and r1 € [0,72] such that
1) 1400 as £1 400, lim ((6)?[u(t)] = +oo.

v (t) oo (9.3)

Jm (@) fu®)l =0, Hm 20

Then

+oo
lim (v(t))”/t (s = )" 'p(B)(s)ds < (n — 1)l (94)

t—+oo

14The definition of the set see on the page 75
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where
00 = (), o= T 0
Proof. Denote
ii(t) = inf{(1(s))"[u(s)] : 5 > 1}. (9.5)

By (9.2), (9.3) and (9.5) we have

u(o(t)) 1 +oo for t1 +oo (9.6)
and
t_li_inooﬂ(ﬂ(t))(V(t))“*'ﬁ2 =0. (9.7)

According to (9.5), (9.7) and Lemma 7.1, there exists a sequence of numbers
{te};25 such that tj, T +oo as k 1 +oo and

u(o(tr)) = (v(o(te) " lu(o ()], (v(E)™ ™ ulo(t)) <
< (@) ulo(t) for b <t <ty (9.8)
where t, > t1 is sufficiently large.

On the other hand, taking into account (8.1) and (9.1) from (0.1) we
have

1 ! n—1
o)) 2 o=y | (&= ellue)ds +

+o00
4_él)! /t (s = a(®)" " o(|ul)(s)ds for t > t..

n =
Hence by (9.5), (9.8) and the fact that ¢ € M T (o) we obtain
1 e n—1>
|lu(o(te))] = O] /(tk)(s —o(tr)" ulo(s))e(B)(s)ds +
1

“+o00o o
+W/ (s = a(te)"tu(a(s))p(8)(s)ds >

t r1—r2 7'2 t
> O oot |/ o= olt)
(n - (tr)

(v(a () |ulo ()]

x(v(s))™ " p(8)(s)ds +

(n—1)!
+o0 - " (o
x /t (s —o(t))" ' p(8)(s)ds = (( (tk()r)L)— |1)( (tr))] y

+oo
«( - (7(t,€))“—m/ jre- “d/ —o(ta)
(tr)
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+0oo
xp@)(s)dst [ (5= o(t)" T (B)(s)ds) >

(y(o(t )))’";lu(a(t DI (o (te)) \m=m

R S ( ) )
+o0

X / (s —a(te)" tp(0)(s)ds k=2,3,..., (9.9)
o(tx)

where 68(t) = (v(t)) .
Suppose that € €]0,e0[. Then (9.9) implies

+o00

(v(a(tx)))"™ / (s = o(tr))" " 0(0) (s)ds < (n — Dl(c+e)™ "

o(tx)
for k':k'o,k'o—Fl,...,

where ky € N is sufficiently large. Since e is arbitrary, hence it follows
(9.4). 1

Let F € V(1) and (9.1) and (9.2) be fulfilled, where ¢ €

M (o) and
lim (o(t) —t) > —o0. (9.10)
t—+00
Moreover, let
e(lul)(t) = p()|u(d(t)] for we Hy ., t > to, (9.11)

for some tg € Ry (8.2), (8.3) be fulfilled with 6 nondecreasing and for some
ke {0,...,n—1} (8.35;), (8.38) hold, where py, is defined by (8.8), (8.9).
Then the condition

+o0
inf { lim e*t/t (s = )" o(O)(s)ds : X €10, o[} > (n — 1)L, (9.12)

t—+00

where (t) = e, is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00|
— R satisfying (8.1). According to (8.35;), (8.38), (9.1), (9.11) and Corol-
lary 8.1 there exists A > 0 such that (8.39) is fulfilled.

Denote by A the set of all A satisfying (8.39) and put \g = inf A. By
(9.12) there exist t, > t1 and £ > 0 such that

At /+OO( _t)nfl ] 1\
e t s p(@)(s)ds > (n—1D!+e (9.13)

for t > t., A €]Xo, Ao +¢].
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Choose 5 €]0,¢[ and €; € [0, e2[ such that

Xo—e1 >0, 2 n-1DI<(n-1)+e¢,

lim ePote2)l|u(t)| = +oo, lim e~ |u(t)| =0,
t—+00 t——+o0

(9.14)

where ¢ = hm et~ According to (9.1), (9.10) and (9.14) the conditions

——+00

of Lemma 9.1 are obviously satisfied with y(t) = ef, 7o = Ay + &2 and

r1 = Ao — €1. Therefore by (9.14) this lemma implies

“+o00
lim o(o+ee)t / (s = )" Lp(B)(s)ds < 2 (n — DI < (0 — 1)l +e,
t

t—+00

where 8(t) = e~(Aot=2)t_ But this contradicts (9.13). W

Let F € V(7) and (8.2), (8.3), (9.1), (9.2), (9.10) and
(9.11) be fulfilled, where o € M T (). Let, moreover, for somek € {0,...,n—
1} (8.35;) and (8.38) hold with a nondecreasing §. Then the condition

inf {/\*”(vrta>itinf eMp(0)(t) : A €]0, +oo[} > 1, (9.15)

where 0(t) = eM and to € Ry, is sufficient for (0.1) not to have a Kneser-
type solution.

Proof. It suffices to note that (9.15) implies (9.12). W

" Let F € V(o) and (8.2), (8.3), (8.13), (8.14), (9.1),
(9.2), (9.10) and (9.11) be fulfilled, where ¢ € M* (o) and § is nonde-
creasing. Then the condition (9.12) ((9.15)) is sufficient for (0.1) not to
have a Kneser-type solution.

Proof. The assertion of the theorem follows from Corollary 8.1" and Theo-
rem 9.1 (Corollary 9.1). W

Let F € V(1) and for some tg € Ry

—1)"HE ignu(t) > )dsri(s,t 9.16
(= 1) F () (1) sign u(?) Z/m deri(s,8)  (9.16)
for we Hy ., t>to,

where
;00 € C(Rys Ry ), 7it) <o4(t) for teRy, (i=1,...,m), (9.17)
lim ((t)—t) > -0 (i=1,...,m), (9.18)
t—+o00

ri(s,t) are measurable, r;(-,t) are nondecreasing (i =1,...,m). (9.19)
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Let, moreover, there exist ig € {1,...,m} and a nondecreasing function
d € C(Ry;Ry) such that
Tip (t) < 0(t) < min{t, o, ()} (9.20)

and for some k € {0,...,n — 1} and t. € Ry let

pe(t) >0 for t>t., (9-21%)
1 rt
tliinooz /t s" k7 1p(s) (pr(s)) tds < +oo, (9.22y)

where py, is defined by (8.8), (8.9%) and
p(t) = Ti (5(t)7 t) — Tig (Tio (t)a t)' (923)
Then the condition
inf{ lim e /+Oo(s — )t i /ai(S) e Mdg x
t—+oo t = Jris)
xri(€,8)ds : A E]O,—I-oo[} > (n—1)L (9.24)
is sufficient for the (0.1) not to have a Kneser-type solution.

Proof. 1t suffices to show that the operator defined by

m o; (t)

=Y [ uls)dri(s.) (9.25)

i=1 i(t)

satisfies the conditions of the Theorem 9.1. Indeed, taking into account
(9.20) and (9.25) we see that (9.11) holds with p defined by (9.23). On the
other hand, by (9.18) the conditions (9.10) and

p(xy)(t) > z(o(t))p(y)(?)
for all z,y € C(Ry;Ry), =(t) 1t +oo as t 1 +oo
are fulfilled with
o(t) = inf{min(r;(s) :i =1,...,m) : s > t}. (9.26)
Therefore ¢ € Mt (o), so according to (9.21;), (9.22;) and (9.24) the oper-
ator defined by (9.25) satisfies all the conditions of Theorem 9.1. W

" Let F € V(r), the conditions (9.16)-(9.19) be fulfilled and
let there ezist io € {1,...,m} and a nondecreasing function 6 € C(Ry;Ry)
such that (9.20), (8.13) and (8.14) hold, where p is defined by (9.23). Then
the condition (9.24) is sufficient for (0.1) not to have a Kneser-type solution.

Proof. The assertion of the theorem follows from Corollary 8.1' and Theo-
rem 9.2. A
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Let F € V(T), c; >0, Az,Zz € R, KZ < A (’L = 1,...,m),
A;y > 0 for some ig € {1,...,m} and for some ty € Ry
m t—A;
(=1)"" F(u)(t) signu(t) > ch/ lu(s)|ds (9.27)
i=1 Tt
for we Hy ., t>to.

Then the condition
inf {/\‘"‘1 Y (@A — ) e)o, +oo[} >1 (9.28)
i=1

is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Tt suffices to note that in view of (9.27) and (9.28) the conditions of

Theorem 9.2" are fulfilled with 7 () =t — A, 0;(t) =t — Ay, r5(s,t) = ¢
(i=1,...,m). |

" Letc; >0, A, A €R A < Ay (i =1,...,m) and

there exist ig € {1,...,m} such that A;; > 0. Then the condition (9.28) is
necessary and sufficient for the equation

m t—2A;
W (1) + (1) Y e /t_A_ u(s)ds = 0 9.29)

not to have a Kneser-type solution.

Proof. The sufficiency follows from the Corollary 9.2. If we assume that
(9.29) is violated, then (9.29) obviously has the proper solution u(t) = et
with A < 0. W

Let F € V(1) and for some tg € Ry

(=)™ F (u)(t) signu(t) > Zpi(t)|U(5i(t))| (9.30)
for we Hy ., t>to,

where
5 € OBy Ry), Jim_5i(t) = +oo,

pieLlOC(R—F;R—F) (izla"'am)a
lim (5:(t) —t) > —00 (i=1,...,m). (9.32)

t——+oo

(9.31)
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Let, moreover, ig € {1,...,m} exist such that §;,(t) <t and fort € Ry, for
some k € {0,...,n — 1} the conditions (8.351), (8.38) be fulfilled with py(t)
defined by (8.81), (8.9x), p(t) = iy (t) and 6(t) = 0;,(t). Then the condition

o0
inf{li_me"t/ n1zp o= (9) I .
t

t—+00
DY e]o,+oo[} > (n—1)! (9.33)
is sufficient for (0.1) not to have a Kneser-type solution.

Proof. According to (9.30) the condition (9.16) is fulfilled with

Ti(t) = 0i(t) — 1, oi(t) = (1),
ri(s,t) = pi(t)e(s — 6;(t)) (i=1,...,m).13
Therefore by (9.30)-(9.33) all the conditions of Theorem 9.2 are satisfied.
This proves the validity of the theorem. W

Let F € V (1), the conditions (9.30)—(9.32) be fulfilled and
io € {1,...,m} exist such that §;,(t) < t for t € Ry. Let, moreover, for
some k € {0,...,n—1} the conditions (8.35;), (8.38) hold with py(t) defined
by (8.8k), (8.9%) and p(t) = p;,(t). Then the condition

(9.34)

inf{ vral 1nf (Zpl Alt=di( ) DA E]O,+oo[} >1 (9.35)

with t. € Ry is sufficient for (0.1) not to have a Kneser-type solution.
Proof. Tt suffices to note that (9.35) implies (9.33). W

" Let F € V(r), the conditions (9.30)— (9.32) be fulfilled
and §;(t) <t fort e Ry (i =1,...,m). Let, moreover, ig € {1,...,m} exist
such that ;,(t) is nondecreasing, for some k € {0,...,n —1} the conditions
(8.35k), (8.38) hold with py defined by (8.8.x), (8.9x) and p(t) = pi,(t).
Then the condition

e NS e s ny"
vrai inf { ;pz(t)(t (D)™ - t €]t +oo[} > (e) (9.36)
with t, € Ry is sufficient for (0.1) not to have a Kneser-type solution.
Proof. Since e* > x”(%) for z > 0, (9.36) obviously implies (9.35). W

I5everywhere below by e(t) we mean

f -
e(t) = 0 for t€]— 00,0,
1 for t€]0,+o0f.
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In view of Corollary 8.1" Theorem 9.3 (Corollary 9.3) easily implies

" Let F € V(1), the conditions (9.30)—(9.32) be fulfilled and
io € {1,...,m} exist such that 0;,(t) <t fort € Ry. Let, moreover, (8.13),
(8.14) hold with 6;,(t) = 6(t) and p;,(t) = p(t). Then the condition (9.33)
((9.35)) is sufficient for (0.1) not to have a Kneser-type solution.

Let F € V(1), ¢, >0, A; € R (i = 1,...,m), ip €
{1,...,m} exists such that A;; > 0 and for some to € Ry let
(=)™ F(u)(t) sign u(t >ch|u (t—A
for we H; ., t>t.

Then the condition
inf {/\‘" 3 et E]O,+oo[} >1 (9.37)
i=1

is sufficient for (0.1) not to have a Kneser-type solution.

" Lete; >0,A; R (i=1,...,m) and A;, > 0 for some
io € {1,...,m}. Then (9.37) is necessary and sufficient for the equation

utm (¢ n+lzcz (t— Ay =0

not to have a Kneser-type solution.

Let F € V(r), conditions (9.1), (9.2), (9.11), (8.2) and
(8.3) be fulfilled with ¢ € Mt (o) and

t
im 22 5. (9.38)
t—+o0

Let, moreover, for some k € {0,...,n — 1} conditions (8.35;) and (8.40)
hold with py(t) defined by (9.8;) and (9.9x). Then the condition

+oo
inf {tli_inoot)‘/t (s — )" Lo(B)(s)ds : A E]O,+oo[} > (n—1)! (9.39)

with (t) =t is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00[
— R satisfying (8.1). According to (8.35), (8.40), (9.1), (9.11) and Corol-
lary 8.2 there exists A > 0 such that (8.41) holds. Denote by A the set of



106

all \ satisfying (8.41) and put A\g = inf A. By (9.39) there exist ¢. > #; and
€ > 0 such that

“+o00
t’\/ (s—1t)"Lp@)(s)ds > (n — 1) +¢ (9.40)
t
for t>t., AEJXo, N0 +¢]
Choose ¢ €]0,¢[ and g1 € [0, &3] such that

Xo—€12>0, ™2 -1 <(n-1)+¢,

lim $27=2|u(t)] = 400, lim #* = |u(t)] = 0,
t—+o00 t——oc0

(9.41)

where ¢ = lim (%) By (9.1), (9.38) and (9.41) all the conditions of

t—+o00
Lemma 9.1 are fulfilled with v(t) = ¢, ro = XA + &2 and 71 = Ao — &1-
Therefore, taking into account (9.41), this lemma implies

“+o00
amtw+ﬁ/‘ (s — )" o(6)(s)ds < (n— DI+ < (n— D)l 4,
t

t—+o00

where 0(t) = t~(A+=2)_ But this inequality contradicts (9.40). The obtained
contradiction proves the theorem. M

Let F € V(r) and conditions (9.1), (9.2), (9.11), (8.2),
(8.3) and (9.38) be fulfilled with o € M™T(c). Let, moreover, for some
ke {0,...,n —1} (8.35;) and (8.40) hold with pi(t) defined by (8.8;) and
(8.9%). Then the condition

1
inf { —————— vrai inf(t" T p(A)(t)) : X €]0, +o0[) } > 1 9.42
hﬁ&@+» ai inf("0(6)(1)) : X €]0, +oo]) | (9.42)
with §(t) =t and t. € Ry is sufficient for (0.1) not to have a Kneser-type
solution.

Proof. It suffices to note that (9.42) implies (9.39). W

In view of Corollary 8.2" Theorem 9.4 (Corollary 9.5) implies

" Let F € V(1) and conditions (9.1), (9.2), (9.11), (8.2),
(8.3) and (9.38) be fulfilled with o € M7T(c). Let, moreover, for some
ke {0,...,n—1} (8.20;) and (8.21}) hold. Then (9.39) ((9.42)) is sufficient
for (0.1) not to have a Kneser-type solution.

Let F € V (1), conditions (9.16), (9.17) and (9.19) be ful-
filled and

TS0 (i=1,...,m). (9.43)
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Let, moreover, there exist ig € {1,...,m} and a nondecreasing function
0 € C(Ry;Ry) such that (9.20)—(9.22;) hold with function py ( function p)
defined by (8.8) and (8.9%) ((9.23)). Then the condition

“+o00
inf{li_mtx/ s—t”lz/ Adgrzf,)
t ()

t—+00
DY e]o,+oo[} > (n—1)! (9.44)
is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Tt suffices to note that the operator defined by (9.25) satisfies all the
conditions of Theorem 9.4. W

In view of Corollary 8.2" Theorem 9.5 implies

" Let F € V(r) and conditions (9.16), (9.17), (9.19) and
(9.43) be fulfilled. Let, moreover, there exist ig € {1,...,m} and a nonde-
creasing function § € C(Ry;Ry) such that (8.20;) and (8.27;) hold with p
defined by (9.23). Then (9.44) is sufficient for (0.1) not to have a Kneser-
type solution.

Let F € V(7), ¢, a4, @; €]0,+00[, oy <@ (i =1,...,m),
a;, <1 for some ig € {1,...,m} and for some to € Ry let

(=) F(u)(t) signu(t) > Zci /C’t 57" Hu(s)|ds (9.45)

for vwe H_ t > to.

0,7T?

Then the condition

. 1 moo
1nf{m;cl(a X g /\E]O,+oo[}>1 (9.46)

is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Tt suffices to note that by (9.45) and (9.46) all the conditions of
Theorem 9.5 are fulfilled with 7;(t) = a;t, 0(t) = @;t and (s, 1) = —<2—
(i=1,...,m). |

" Let ¢;, o, @; €]0, 400, a; < @, (i =1,...,m) and for
some ig € {1,...,m} let a;, < 1. Then the condition (9.46) is necessary

and sufficient for the equation

(n) n+1 Z / P 1u(s)ds =0 (9_47)

not to have a Kneser-type solution.
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Proof. Sufficiency follows from Corollary 9.6. If we assume that (9.46) is
violated, then (9.47) has the solution u(t) =t~ with A > 0. B

Let F € V(71), ¢i, a4, @; €]0, 400, a; <@, (i =1,...,m),
there exist ig € {1,...,m} such that a;o < 1 and for some ty € Ry let

(—1)"+1F(u)(t) signu(t) > t—nt Zci /at |u(s)|ds, (9.48)

for u € H; t > tp.

0,77

Then the condition

1 m
inf{ —— i@t —al M)
{H@j (i+/\)z ( i)
L) €0, 1[U]1,+oo[} >1 (9.49)
is sufficient for (0.1) not to have a Kneser-type solution.

Proof. By (9.48) and (9.49) all the conditions of Theorem 9.5" are fulfilled
with 7;(t) = a;t, o;(t) = @;t and ry(s,t) = c;it " ts (i=1,...,m). A

" Let ¢;,ai,@; €]0,+0[, a; < @;, (i =1,...,m) and for

some ig € {1,...,m} let a;, < 1. Then (9.49) is necessary and sufficient
for the equation

m ot
n n Ci
u™(t) + (=1)"+? E W/ u(s)ds =0
i=1 ait

not to have a Kneser-type solution.

Let F € V(1), (9.30) and (9.31) be fulfilled and

0 (t )

lim L>O (i=1,...,m). (9.50)
t—+o00 t

Let, moreover, there exist ig € {1,...,m} such that §;, is nondecreasing,

diy (t) < t fort € Ry and for some k € {0,...,n — 1} (8.35), (8.40) hold
with py, defined by (8.8;), (8.9%), p(t) = pi, (t) and 6(t) = d;,(t). Then the
condition

+o00 m
inf{ lim t’\/ (s —t)n~! Zpi(s)(Si_)‘(s)ds :
t i=1

t—+o00
L) €0, +oo[} > (n—1)! (9.51)

is sufficient for (0.1) not to have a Kneser-type solution.
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Proof. By (9.30) the inequality (9.16) holds with 7 () = §;(t) — 1, 04(¢t) =
0;(t) and r;(s,t) = pi(t)e(s — §;(t)) (i = 1,...,m) (the definition of the
function e see on p.104). Therefore according to (8.35;), (8.40), (9.50)
and (9.51) all the conditions of Theorem 9.5 are satisfied. This proves the
theorem. W

According to Corollary 8.2" Theorem 9.6 easily implies

" Let F € V() and (9.30), (9.31) and (9.50) be fulfilled.
Let, moreover, there exist iog € {1,...,m} such that §;, is nondecreasing,
diy (t) < t fort € Ry and for some k € {0,...,n— 1} (8.20;), (8.21%) hold
with p(t) = pi, (t) and 6(t) = 6;,(t). Then (9.51) is sufficient for (0.1) not
to have a Kneser-type solution.

Let F € V(1) and (9.30), (9.31) and (9.50) be fulfilled.
Let, moreover, there exist ig € {1,...,m} such that §;, is nondecreasing,
di, (t) <t fort € Ry and for some k € {0,...,n — 1} (8.20;), (8.21%) hold
with p(t) = pi, (t) and 6(t) = 0;,(t). Then the condition

inf {m Vrtaéiti*nf (t"+>‘ ;pi(t)tsi/\(t)) :

0

X €J0, ool > 1, (9.52)
where t, € Ry, is sufficient for (0.1) not to have a Kneser-type solution.
Proof. Tt suffices to note that (9.52) implies (9.51). W

Let F € V(1), ¢;,a; €]0,+00[ (i = 1,...,m), there exist
i0 € {1,...,m} such that a;, < 1 and for any to € Ry let

(=1)"" F(u)(t) signu(t) > Z |u(a;t)|

for we Hy ., tZtO.
Then the condition
1
infq ————— > ;M A €]0,400[ > 1 9.53
i 1(1“2: 10, +o0[} (9.53)

is sufficient for (0.1) not to have a Kneser-type solution.

" Let ¢;,a; €]0,+00[ (i = 1,...,m) and for some ig €
{1,...,m} let a;, < 1. Then (9.53) is necessary and sufficient for the

equation
m
W™ () + (-1 Y f—;u(ait) ~0
i=1

not to have a Kneser-type solution.
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Letn > 1, F € V(7), (8.2) and (8.3) be fulfilled and for
some to € Ry let

(=)™ F (u)(t) signu(t) > p(t)|u(5(t))] (9.54)
for we Hy ., t>to,
where § is nondecreasing. Let, moreover, for some k € {1,...,n — 1} and

r € {2,3,...} (8.35;) and (8.42;) hold with py, defined by (9.8;) and (8.9;).
Then (0.1) has no Knezer-type solution.

Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00[
— R satisfying (8.1). Then according to Lemma 8.5 there exist A > 0 and
t, > to such that uy(t) > In™*t for t > t,, where uy, is defined by (8.7). The
last inequality easily implies the existence of the numbers t* > ¢, and ¢ > 0
such that |u®) ()] > ¢ In"*t for ¢ > t*. Therefore, since k € {1,...,n—1},
by (8.1) we have

*

400 400
+00 > / [u®) (t)|dt > c/ In"* ¢ dt = 4o0.
t

t*

The obtained contradiction proves the theorem. W

Let F € V(1) and (8.2), (8.3) and (9.54) be fulfilled. Let,
moreover, for some k € {1,...,n—1} and r € {2,3,...} (8.20%), (8.21})
and (8.44;) hold. Then (0.1) has no Kneser-type solution.

Let F' € V(r), conditions (8.2), (8.3), (9.1), (9.2) and
(9.11) be fulfilled with p € M* (o) and for some r € {2,3,...} let
- In —1 t
lim ———— . .
Jm = < +oo (9.55)
Let, moreover (8.359) and (8.42¢) hold with po defined by (8.80) and (8.99).
Then the condition

inf{ lim 1n¢1t/+oo(s — )" o(0)(s)ds: X e]O,k]} >(n—1)!  (9.56)

—+400

forall keN

with O(t) = (In,_; )™ is sufficient for (0.1) not to have a Kneser-type
solution.

Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00[
— R satisfying (8.1). According to (8.35¢), (8.42p), (9.1), (9.11) and Corol-
lary 8.3, there exists A > 0 such that (8.43) holds. Denote by A the set
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of all such A and put A\g = inf A. By (9.56) there exist ¢ > 0 and ¢, > t;
satisfying
+0oo
I, t/ (s — )" Lo(8)(s)ds > (n — 1)! + & (9.57)
t
for t>t., A€JXo,ro+¢]
Choose 5 €]0,¢[ and ¢; € [0, e2[ such that
1t -1 < (n—1)! +¢,

lim (In,_; £)*"2|u(t)|=+o00, lim (In, 5 #)* =*|u(t)|=0,
t—+o0 t——+o00

(9.58)

where ¢ = Tim —2=ti_ By (9.1), (9.55) and (9.58) all the conditions of

tSFoolnr—10(t)"
Lemma 9.1 are obviously fulfilled with v(¢) = Iln,._1t, 1o = Ao + &2 and
r1 = Ao — €1. Therefore, using this lemma and taking into account the first
inequality of (9.58), we obtain

—+o0
lim (In,_, £)%+< / (s— )" Lp(0)(s)ds < 2 (n—1)! < (n— 1)+,
t

t—+o0
where 8(t) = (In,_; t)~(*oF=2) But this contradicts (9.57). M

Let F € V(7), conditions (8.2), (8.3), (9.1), (9.2) and
(9.11) be fulfilled and for some r € {2,3,...} (9.55) hold with ¢ € M ™ (o).
Let, moreover, (8.350) and (8.42) hold with po defined by (8.8¢) and (8.99).
Then the condition

inf { L vrai inf(t" ny ¢ - A+ :
inf { 3 vrtazltinf(t Ingt---(In.—1 £)* () (2)) :

Y E]O,k]} >(n—1)! forall keN (9.59)
with O(t) = (In,_; t)™ is sufficient for (0.1) not to have a Kneser-type
solution.

Proof. Tt suffices to show that (9.59) implies (9.56). Let k¥ € N. By (9.59)
there exist ¢, € Ry and ¢ €]0, 1] such that

((n = 1)! + £)A
PO 2 o I

for t>ty, X€|0,k]
Therefore
Hoo (s —t)" lds

—+o00
/t (s—t)”flw(e)(s)dsZ/\((”_l)H_E)/t s"Iny s - -(n, 19> 1

for t>t5, Ad0,k].

(9.60)

Choose z €]0, +oo[ such that

( x )n—l((n_l)!+5)>(n_1)!+

€
1+z 2
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Then in view of (9.60) we obtain
+oo
(Iny_q t)’\/ (s —t)" L) (s)ds > —((n — 1)! +&)(In,_; t)* x
t

x/(+oo (1—£)n_1d(lnr,1s)_>‘2((n—1)!+6)( ad )"_lx

1+a)t s Ltz

lnr,lt A
_ > .
X (lnr_l(l n z)t) for t > t, X\ €]0,k]
So
400 €
(In,_q t))‘/ (s — )" Lp(B)(s)ds > (n — 1) + 3 for ¢t >}, X €]0, k],
t

where tj, > t;, is sufficiently large. But this means that (9.56) is true. W

According to Corollary 8.3' from Theorem 9.8 (Corollary 9.11) immedi-
ately follows

" Let F € V(7), conditions (8.2), (8.3), (9.1), (9.2) and
(9.11) be fulfilled and for some r € {2,3,...} (9.55) hold with ¢ € M T (o).
Let, moreover, (8.200), (8.21p) and (8.42¢) hold. Then (9.56), ((9.59)) is
sufficient for (0.1) not to have a Kneser-type solution.

Let F € V (1), conditions (9.16), (9.17) and (9.19) be ful-
filled and for some r € {2,3,...} let

o lnrfl t .
Let, moreover, there exist ig € {1,...,m} and a nondecreasing function

0 € C(Ry;Ry) such that (9.20), (8.359) and (8.42¢) hold with po (p) defined
by (8.80), (8.90) ((9.23)). Then the condition

+o00 m a'i(S)
inf{ lim (In, t)’\/ (s =)t Z/
t i=1"T

(In,—1 &) Aderi(€, 5)ds :
t—+oo i(S)

S ) e]O,k]} >(n—1)! foral keN (9.62)
is sufficient for (0.1) not to have a Kneser-type solution.

Proof. Tt suffices to note that the operator defined by (9.25) satisfies all the
conditions of Theorem 9.8. H

Theorem 9.8 and Corollary 8.3" imply

" Let F € V(r), conditions (9.16), (9.17) and (9.19) be
fulfilled and for some r € {2,3,...} (9.61) hold. Let, moreover, there exist
io € {1,...,m} and a nondecreasing function 6 € C(Ry;R}) such that
(9.20), (8.200), (8.21p) and (8.44¢) hold with p defined by (9.23). Then the
condition (9.62) is sufficient for (0.1) not to have a Kneser-type solution.
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Let F € V(1), ¢;,a;,@; €]0, 400, a; <@, (i =1,...,m),
a;, <1 for some ig € {1,...,m} and for some to € Ry let

(=)™ F(u)(#) sign u(t) /

for vwe H_

sln s

tZto

0,7T?

Then the condition
inf{;i cifa; =@ 1 X €, +oo[} >(n—1)! (9.63)
AA+1) P

is sufficient for (0.1) not to have a Kneser-type solution.

Remark 9.1. Condition (9.66) cannot be replaced by

inf{ﬁ ;Ci(a;)‘71 @) €lo, +oo[} >(n—1)—e¢,

however small ¢ would be.

Let F € V (1), conditions (9.30) and (9.31) be fulfilled and
for some r € {2,3,...} let

— In,_q¢ .
im ———— < + =1,...,m). 9.64
A e ST m) (9.64)
Let, moreover, there exist ig € {1,...,m} such that §;, is nondecreasing,

diy (1) < t for t € Ry and (8.200), (8.21g) hold with 6 = 6;,. Then the
condition

+o00
inf{ lim (ln,_; t)’\/ — )" 121)1 (In,—1 6;( ))*’\ds:
t

t——+oo

- ) e]O,k]} >(n—1)! foral keN (9.65)
is sufficient for (0.1) not to have a Kneser-type solution.

Proof. According to (9.30) inequality (9.16) is valid with o;(t) = d(¢),
7i(t) = 6i(t) — 1 and ri(s,t) = pi(t)e(s — 0;(t)) (i = 1,...,m). There-
fore, using (9.64) and (9.65), we can easily show that all the conditions of
Theorem 9.9 are satisfied. This proves the theorem. W

Let F € V(7), conditions (9.30) and (9.31) be fulfilled
and for some r € {2,3,...} (9.64) hold. Let, moreover, there exist iy €
{1,...,m} such that 6;, is nondecreasing, d;,(t) < 0 fort € Ry and (8.20),
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(8.21p), (8.44¢) hold with 6(t) = d;,(t). Then the condition: for any k € N
there exists tp, € Ry such that

inf {% vrai inf (t” Ing ¢ (In,_y )M sz Y(Inp—1 6;(t)) ) :

t>t,
S A e](),k]} > (n—1)! (9.66)
is sufficient for (0.1) not to have a Kneser-type solution.
Proof. It suffices to note that (9.66) implies (9.65). W

Let F € V(1), ¢i,a; €]0,400[, aj, < 1 for some iy €
{1,...,m} and for some ty tog € Ry let

m

1
(PO st 2 iy S eu(r)
for we Hy ., t>to.

Then the condition
1 m .
. 1 AL Y
inf { 3 ;:1 cia; "t A E]O,+oo[} > (n—1)!

is sufficient for (0.1) not to have a Kneser-type solution.

Let F € V(7), conditions (8.2), (8.3) and (9.54) be ful-
filled and for some i € {0,...,n—1} and k € N

t

lim p(s)(s = 8(1)"7H(8(t) — 8(s))" x

t—+00 5(t)
xgr(5(s),8(t))ds > il(n — i — 1), (9.67)

where the function § is nondecreasing and
1 s —1
nltn) =exp{—=; [ €= twop©ac), .09
1 ! n—1
60 =1, w0 = e { gy [ €00
xp(€)i-1 (g} (7 =2, ). (9.69)

Then equation (0.1) has no Kneser-type solution.
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Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00[
— R satisfying (8.1). Then by (0.1) and (9.30) we have

=) ™) I
n—1) /m) wE o) e F *
)

-1
o [ul(6()
x /5 €00 O

where t, > t; is sufficiently large and

dé <0 for t, <t<s,

uo(t,s) =Y =V o)

P
Hence we obtain
o e 1 S u(5(6))]
: wo(s,0() = (n—1)!/5(t)(f 6(t)) p(f)uo(g,a(t))df (9.70)

for ¢, <4(t) <s<t.
Since ug(t,51) < ug(t, s2) for t. < sy < s1 <t, (9.70) implies

u(5(1)] u(5(6))|
w5 2 o€ o))

whence we easily conclude that

Ty €SO0

o) 2 ex {2y [ (6= 800 1006)

Xtr(E)d€ fuo(s,(t)) for t € [mar (£.), +ol, (0.71)

where 151 = sup{s : d(s) < t}, ns; = o1 (s j—1(t)) (j = 2,...,k) and )y, is
defined by (9.69).
On the other hand, by (81) and (9.54) from (1.6;,) we have

u(® ; ’ s — ==Ly () w(8(s))|ds )
OGO 2 gy [ (=00 RIS (072
for ¢ > nsp(t.)-

Since

(5(t) — 0(s))"

T D (8(0)] for ¢ > ng (t.),

uo(6(t),0(s)) >

from (9.71) and (9.72) it follows

/M (s = ()" p(s)(8(t) — 8(5))'gr (8(s), 8(1))ds <

<il(n—i—1)! for t > nsi(ts),
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where the function g is defined by (9.68). But this inequality contradicts
(9.67). The obtained contradiction proves the theorem. W

Let F € V(1) and (9.54), (8.2) and (8.3) be fulfilled,
where ¢ is nondecreasing. Then the condition

t

tii_in p(s)(s = 8(t)" tds > (n —1)! (9.73)
o J5(t)

is sufficient for (0.1) not to have a Kneser-type solution.

Remark 9.2. Condition (9.73) cannot be replaced by

t
lim p(s)(s = 8(t)" tds > (n — )I(1 — &)™, (9.74)
t—+o00 8(t)
however small ¢ > 0 would be.
Indeed, let € €]0,1[. By the Stirling formula no € N can be found such
that

" 1
vn! < ﬂ for n > ng.
e

Choose A > 0 and ¢ > 0 such that
cA" = (1 —¢)"nl.
Then since
eAyp<n for n>mnog,
the equation
u™ () + (=1)"Meu(t —A) =0
has a Kneser-type solution. On the other hand, (9.74) holds with p(t) = ¢
and §(t) =t — A.

Let F € V(71), conditions (9.54), (8.2) and (8.3) be ful-
filled and
! (n—1)!

lim [ (s—d(t)" " p(s)ds >
t—+o00 J§(t) €

(9.75)

then equation (0.1) has no Kneser-type solution.
The proof of this theorem is analogous to that of Theorem 6.2.
Remark 9.3. Suppose that n > 2. Then (9.75) cannot be replaced by

t — |
lim (s — o(t)" I p(syds > =D (9.76)
t—+00 J4(t) €

however small ¢ > 0 would be.
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Indeed, let € € ]0, @ [ Choose X €]0, 1] such that

n—1

(/\+1)(/\+2)---(/\+n—1)(1—/\2
i=0

)>(n—DL—%.®7ﬂ

n—1

Put

a=¢e€

M=

Then the equation
ul™ (1) + (=1)" ' p(t)u(at) = 0

has the solution u(t) = t=*. On the other hand, according to (9.77) and
(9.78) condition (9.76) is fulfilled.
In the case n = 1 it holds the following

Letn=1, F € V(1) and for some tg € Ry
0 < F(u)(t) signu(t) < p(t)|u(d(t))]

fOT’ u € Hto,T7 t Z th (979)
where p € Lioe(Ry5Ry), 6 € C(Ry 3Ry ), limyy 400 8(2) = +00 and
t
1
/ p(s)ds < — for t >t (9.80)
5. (t) e

with 6,(t) < min{t,0(t)}. Then there exists t; > to such that (0.1) has a
proper solution u : [ty, +0o[—]0, +00[ satisfying

t
exp{ - e/ p(s)ds} <u(t) <1 for t>t.1° (9.81)
d(t1)

Proof. Let t; > max{s : 0.(s) < to} and U € Cioc([to, +00[; R) be the set of
all functions u : [t;, +oo[— R satisfying

t
exp{ - e/t1 p(s)ds} <u(t) <1 for t>t, (0.82)

u(t) =1 for t € [to, t1], w(d(t)) < eu(t) for ¢t > t.

Define the operator T : U — Cioc([to, +00[: R) by

exp{ —fttl %ds} for t > ty,

(9.83)
1 for te [to,tl[.

T(u)(t) = {

16For the existence of Kneser-type solutions of higher order differential equations with
deviating arguments see [77,88]
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By (9.80), (9.82) and (9.83) T satisfies all the conditions of Lemma 2.1.
Therefore it has a fixed point which, as it can be easily checked up, is a
solution of (0.1) satisfying (9.81). H

Analogously to Theorem 6.3 can be proved

Let F € V(71), conditions (8.2), (8.3) and (9.54) be ful-

filled and
t
lim [ (s—6()" " p(s)ds =,
t—+00 J§(t)
where the function § is nondecreasing and ¢ € ]0, @] 17 Then the ful-
fillement for some i € {0,...,n — 1} of the condition
T [ (5= 60" 000 — 56 ipls) exp { 22
 m ” s 5))'p(s) exp 1)
a(t)
X / (€ - 5(3))"*1p(§)d5}ds >il(n—i—1)! (9.84)
4(s)

is sufficient for (0.1) not to have a Kneser-type solution, where zq is the

least root of the equation © = exp —(ncfl)g :

Let F € V(1) and for some tg € Ry

(—1)"™ P (u)(t) signu(t) > p(u)(t) signu(®) >0 (9.85)
for we Hy ., t>to,
where p € M(7,0) and o(t) <t fort € Ry. Then the condition
Po € My (7,0) (9.86)

with

w0 = e (F2) " uw)

t
is sufficient for (0.1) not to have a Kneser-type solution.
Proof. Suppose, on the contrary, that (0.1) has a proper solution u : [to, +00|

— R satisfying (8.1). Without loss of the generality we can assume that
u(t) > 0 for t > t;. Then by (8.1) from (1.69,,) and (8.1) we have

n—1 u(z) .
w(o(t)) > Z | i!(t)| (t—o(t) >
— 0 n—1 n-t u(i) ]
. (#) z%%t for t>n.(t1),

71 ¢ > @ then (9.75) holds and (9.84) is unnecessary
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and

n—1 ,; 1
t|ul (t 1 +eo
|U. ( )| > / Sn71|u(n)(s)|ds
2= CEIA

i=0
for ¢ Z nr(tl)a

where 1, (t) = sup{s : 7(s) < t}. Hence taking onto account (0.1), (8.1) and
(9.85) we obtain

+oo
mwzﬂ’ 3(y)(s)ds for > n,(t)

with y(t) = Z?;()l Mt’ > 0 for ¢ > n,(t1). But this contradicts (9.86).
The obtained contradiction proves the theorem. W

Let F € V(1) and for some tg € Ry

o (t)

<4wwww%mwzn/ Ju(s)

i=1 7 7i(t)
for we H, t > to,

0,77

Mdri(s,t)

where 7;,0; € C(Ry;Ry), 73:(t) < 04(t) < t, lim7;(t) = 400, the functions
ri(s,t) are measurable, r;(-,t) is nondecreasing, A\; €]0,1] (i = 1,...,m)
and 7", X\; = X < 1. Then the condition

m

/+°° DO TT(E = 0s(0) N (ri(o4(t), 1) — ri(7(b), 1)) dt = 400

i=1
is sufficient for (0.1) not to have a Kneser-type solution.
Analogously to Theorem 9.15 can be proved
" Let F € V(1) and for some tg € Ry
(=)™ F (u)(t) signu(t) > (t,u(d1(t)), .., u(dm(t)))
xsignu(t) >0 for we H ., t>to,

where ¢ € Kioo(Ry x R™;R), §; € C(Ry;Ry), limyi00di(8) = +o00,
0;(t) <t forteRy (i =1,...,m) and

cp(taxla e 7xm) Signxl 2 cp(tayla e 7ym) Signyl Z 0
for t € Ry, o] > |yil, iyi >0 (i=1,...,m).
Then condition (9.86) with

Fu)(t) = %g@(t, (00 gy, (0O )

is sufficient for (0.1) not to have a Kneser-type solution.
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Let F € V(1) and for some t € Ry

i

(=1)" " F(u)(t) signu(t) > Hpi(t)IU(fSi(t))

for we H t > to,

0,77

where p; € Lipe(Ry;Ry), 6;(8) < t fort € Ry, limp1o0;(t) = +o00,
X €]0,1[ (i =1,...,m) and 37" X\; = X < 1. Then the condition

+0oo m
/ £ DN TT (k) (¢ — 6;()" ' dt = +00
i=1

is sufficient for (0.1) not to have a Kneser-type solution.
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CHAPTER 4

§ 10. AUXILIARY STATEMENTS

In chapter 4 sufficient conditions are given for equation (0.1) not to have
a solution satisfying

uD(Bu(t) >0 for t>ty (i=0,...,n—1), (10.1)
as well as necessary and sufficient ones.
Suppose that
P € Lipe(Ry;Ry), 0€ C(Ry;Ry), 61, 6(t) 21 for teRy (10.2)
and let u : [to, +oo[— R be a solution of the differential inequality
ut™ () signu(t) > p(t)|u(8(1)))| (10.3)
satisfying (10.1). Then for any k € {0,...,n — 1} we have
PE[u(@i(1)] < (n = D" Hul" D (B)] for &> 6(te), (10.4)
where
pi(t)=max{¥i(t,5,7) : s€li(0), ], TELAE)]}),  (10.5)
vittsr)= [ e k(e [ e nea o ) - ot

a(s)
bt [ 66 - 0m GO - 0" aod] 0.0

(n—1
n; (t) = min{s : 6(s) > t}. (10.7)
Proof. By (10.1) from (10.3) we have

t
t"_k_1|u("_1)(t)|2/ s"R = p(s)|u(d(s))|ds for t>ty. (10.8)

to

Let ¢t > 6(to) and (so, 7o) be a point of maximum of the function ¢} (¢, -, -)
on [n3(t),t] x [t,6(so)]. Then according to (10.8)
¢
) 2 [ Ol 1ds >
t ”
> [ €+ p@defu(S(s), (10.9)

) 2 [ e e e >

> / e k) defu(5(0). (10.10)
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On the other hand, (1.6p,) in view of (10.1) implies

ﬁ [(5(30) —7)"" +
1

§(s0) o o
o L 60 -0 nete - o ag]

[u(8(s0))] > [ul" =" (70)]

Therefore by (10.9) and (10.10) we obtain

n—k— (n—1) 1 ! n—k— ™ n—k—
W)z g [ e e [ e s

n—1 1 5(s0) n—1 n—1
X[6s0) =)+ oy, / (8(50) = )" () (8(€) €)™ de] lu(5 (1))

whence it follows the validity of (10.4). W

Let (10.2) be fulfilled and

4(t)

lim p(s)ds > 0, (10.11)
t—+4o0 Jt
vrai sup{p(t) : t € Ry } < +o0. (10.12)

Let, moreover, u : [tg, +0o[— R be a solution of (10.3) satisfying (10.1).
Then

= Ju(5(t)|

WO . 10.1
e Tyl (] < T (10.13)

Proof. According to Lemma 10.1 it suffices to prove that

lim p;_y(t) > 0 (10.14)

t—+00

with pk_,(t) defined by (10.5,,_1) and (10.6,,—1).
By (10.11) there exist ¢ > 0 and ¢, > to such that

a(t)
/ p(s)ds > ¢ for t > t;.
t

Therefore for any t > §(t1) there exist & € [nj(t),t] and & € [¢t,5(& )] such

that
t &2 ¢ 3(€1)
[ reasz G [Taedsz G [ pos
1 t 2

According to (10.5,,—1) and (10.6,,_1) we have

(10.15)

=0
=0

t &2
po(t) > / p(s)ds / p(8)ds(6(6) — &)™t (10.16)
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On the other hand, in view of (10.12) and (10.15) 6(&1) — & > ;= with

r = vrai sup{p(¢) : t € Ry }. Thus the validity of (10.14) obviously follows
from (10.15) and (10.16). M
Let (10.2) be fulfilled and for some k € {0,...,n — 1}

5(t)

lim s"F1p(s)ds > 0, (10.17%)
t—+o0 Jt
vrai sup{t" "p(t) : t € Ry } < +o0. (10.18;)

Let, moreover, u : [tg, +oo[— R be a solution of (10.3) satisfying (10.1).
Then

= R u(5(0)|

. 10.1
o T e T TR (10.19)

Proof. According to Lemma 10.1 it suffices to show that

lim pi(t)t=% >0 (10.20)

t—+o00

with p} defined by (10.5;) and (10.6).
By (10.17;) there exist ¢ > 0 and ¢; > ty such that

a(t)
/ s"k=1p(s)ds > ¢ for t > t;.
t

Therefore for any ¢ € [6(t1), +o00[ there exist & € [nj(t),t] and & € [t,5(&)]
such that

)

t ¢ I3
/k%“w@wz—tfs““w@@z
1 4 t
5(&1)
/ S Ep(s)ds >
2

In view of (10.18) and (10.21) we have (&) exp{4—cr} with r =

>
2
vrai sup{t"~*p(t) : t € Ry}, so according to (10.5;), (10.6;) and (10.21)
we obtain

=0

(10.21)

=0

2 n—1
. L c
> & S
o) > St (ep { £} 1)
whence it follows the validity of (10.20). W

The following lemma can easily be deduced from Lemma 10.1

Let (10.2) be fulfilled, q € Lioe(Ry;Ry) and for some k €
{0,...,n—1} let

pr() >0 for t >t (10.22;)



124

with pj, defined by (10.5;) let (10.65). Let, moreover u : [to, +oo[— R be a
solution of
p()[u(3(t))] < u™ (@) signu(t) < q()u(d(t))] (10.23)
satisfying (10.1). Then there exists A > 0 such that
o t
lim |u<"*1>(t)|exp{ - )\/ q(s)(p;(s))*lsn*kflds} <+00.

t——+oo to

Let (10.2), (10.11) and (10.12) be fulfilled, o € C(Ry;Ry)
and

lim (o(t) —t) < 4o0. (10.24)

t—+oo

Let, moreover, u : [tg,+00[— R be a solution of (10.3) satisfying (10.1).
Then

w— |u(a(?))]
1 — . 10.25
S @) ST (10.25)
Proof. According to (10.11), (10.12) and (10.24) there exist ¢, 2 €]0, +00[
and t; > tg such that
c1 <c, t+e <O(t), o(t) <t+co for t>t. (10.26)

Due to Lemma 10.2
— Ju(5(0)]
t——+o00 |u,(n—1) (t)|
so, taking into account the nondecreasing character of |u(t)|, by (10.26) we
have

< +00,

— Jult+ )l

tﬁ+oom < +00. (1027)

On the other hand, equality (1.6¢,) along with (10.1) implies

lu(t+ c1)| >

‘u(”*l)(t+ c—l)‘(c—l)n*1 for ¢>t. (10.28)

1
(n—1)! 2/1\2

Therefore in view of (10.27) we obtain

(n—1) c1
Tm lu (t +3 )|

. 10.2
T T TR (10.29)

Let k € N satisfy k > 2. Then by (10.26)
u(e)] _ [u(t+k$)| _ lu(t+ k)
lu@@) = ut+e)l  |utrD(t+ (k-1)F)]

D (E+ L) I (i)
ult+edl 1L a0+ G- 1)F)]
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whence according to (10.27)—(10.29) it obviously follows the validity of
(10.25). =

Let (10.2), (10.17¢) and (10.18y) be fulfilled, o € C(R4; Ry )
and

— t
im 20 ¢ oo (10.30)

t—+o0o0 ¢

Let, moreover, u : [tg,+00[— R be a solution of (10.3) satisfying (10.1).
Then (10.25) holds.

Proof. By (10.17;), (10.18p) and (10.30) there exist c1,c2 €]0, +oo[ and
t1 > tg such that

1<er <eay, it <(t), ot) <cot for t>t. (10.31)
Equality (1.69,,) along with (10.1) implies
-1

n—1
lu(c, t)] > |u<fH>(c0t)|(c1 ) "1 for ¢ >4 (10.32)

1
(n—1)!
1te  On the other hand, according to Lemma 10.3 and (10.31)

with Co =
we have

—  |u(a?)|
Therefore by (10.32) and (10.33)

Tim |u(”_1)(cot)|

Jim Sy < (10.34)

Choose k € N such that c§ > cy. Then (10.31) implies

lue®) _ Julest)] _ _ Julct
lu(6(®)] ~ IU(Clt)I Ju(n=1 (1)

|u(" b cot | H |u(" D(cht)|

u(eqt)] |u(n D (i 1t)|

whence in view of (10.32)—(10.34) it follows the validity of (10.24). W
Let F € V(1) and
F(u)(t)signu(t) < —p(Ju|)(t) for we Hy, -, t> to, (10.35)
where the mapping ¢ : C(Ry; Ry ) = Lioe(Ry;Ry) is such that
@) () >0W)(B), if 7,yCRy;R,), 2(5)>y(s) for 5>7(t) (10.36)
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and for any ¢ >0

/+00 o(c)(s)ds >0 for t € Ry. (10.37)

Let, moreover, problem (0.1), (10.1) has a solution. Then the equation
ul™) (1) = () (1) (10.38)
has a solution ug : [to, +00[—]0, +00[ satisfying
u(t)>0 for t>t, (i=0,...,n—1) (10.39)
with t, > to sufficiently large.

Proof. Let u : [to, +00[— R be a solution of (0.1) satisfying (10.1). Choose
t; > to such that to < t° = inf{r(¢) : t € [t;,+oo[} and consider the
sequence of functions {u;(t)};=>° defined by

ur(t) = u(t)| for t > to,

wit) = {|U(t*)| + ﬁ ftt* (t—s)"Lo(u;_1)(s)ds for t >t,,
l lu(t)| for teto,t] (i=2,3,...) (10.40)

with . = max{t®,#;}. By (10.35) and (10.36) this sequence is obviously
decreasing. Denote its limit by ug(#). According to (10.40) ug is a solution
of (10.38) on [t., +0o[. On the other hand, due to (10.37) condition (10.39)
is obviously fulfilled. W

Taking into acount Lemmas 10.3-10.6 one can easily verify the validity
of the following lemmas.

Let (10.2) be fulfilled, ¢ € Ljoe(Ry;Ry), for some k €
{0,...,n — 1} (10.22) hold and

— 1 [ nek—1( %(.\\—1
ti‘?ooi /to q(s)s (pr(s)) "ds < +o0 (10.41%)

with py defined by (10.5;) and (10.6). Let, moreover, u : [to, +oo[— R be
a solution of (10.23) satisfying (10.1). Then there exists A > 0 such that

lu(t)|e™t = 0 for t— 4oo0. (10.42)

Let (10.2), (10.11) and (10.12) be fulfilled, q €
Lloc(]R—F;]R—F) and
1 [t
t—lgfloof/o q(s)ds < +o0. (10.43)
Let, moreover, u : [tg, +o0o[— R be a solution of (10.23) satisfying (10.1).
Then there exists X > 0 such that (10.42) holds.
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Let (10.2) be fulfilled, for some k € {0,...,n—1} (10.17%)
and (10.18y,) hold, q € Li,c(Ry;Ry) and

1/t
lim —/ q(s)s" 2 1ds < o0.
t—+oot Jq

Let, moreover, u : [tg, +o0o[— R be a solution of (10.23) satisfying (10.1).
Then there exists X > 0 such that (10.42) holds.

Let (10.2), (10.11) and (10.12) be fulfilled,
(

q; € Lloc ]R#—;R‘%—)a oi € C(M,M),

Jim (@i(t) =) < +oo (i=1,...,m) (10.44)

and

t—+oo t

1
lim —/ > qi(s)ds < +o0. (10.45)
0 =1

Let, moreover, u : [tg, +00[— R be a solution of

p(t)[u(8(1)] < u™ signu(t) < Z‘Zi(t)|u(0'i(t))| (10.46)

satisfying (10.1). Then there exists A > 0 such that (10.42) holds.

Let (10.2) be fulfilled, for some k € {0,...,n—1} (10.22;)
hold and

Tio 1 ¢ n—k—1/ x —1
tk?ooln_t /to q(s)s (pr(s)) " ds < +o0 (10.47%)

with py(t) defined by (10.5;) and (10.6x). Let, moreover, u : [to, +oo[— R
be a solution of (10.23) satisfying (10.1). Then there exists X > 0 such that
lu(t)|t™ =0 for t— +o0. (10.48)

Let (10.2), (10.17¢) and (10.18q) be fulfilled and

t

1 n—1
A o ; s" q(s)ds < +o0. (10.49)

Let, moreover, u : [tg, +oo[— R be a solution of (10.23) satisfying (10.1).
Then there exists X > 0 such that (10.48) holds.

Let (10.2), (10.17y) and (10.18y) be fulfilled,

qi € Lioe(Ri;Ry), 0 € C(Ry;Ry),

ot 10.50
lim U()<+oo t=1,...,m) ( )

t—+oo
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and

_ 1 t m
lim —/ s"_lzqi(s)ds < 400. (10.51)
0

t—+oolnt 4
=1

Let, moreover, u : [to, +oo[— R be a solution of (10.46) satisfying (10.1).
Then there exists X > 0 such that (10.48) holds.

§ 11. ON MONOTONICALLY INCREASING SOLUTIONS
Let

0;0 € C(RysRy), o(t) <7(t) for t€ Ry,
lim o(t) =400, o1.

t—+00

(11.1)

Denote by M*(0;7) the set of all continuous maps ¢ : C(Ry;R,) —
Lioe(Ry ; Ry ) which for any ¢ € Ry satisfy

p(@)(t) > pW)(b) if 2,y € CRLRL), w(s) > y(s) for s € [o(),7(0)],
B> 2(0(t)pW)(t) if 7,y€C(R:,]0,+o0]), (t)t+400 as 1400,
B > 2(@(0)e(y)(t) if 2,y € C(R+,]0,+00]), 2() 40 as ¢ 1 +oo.

Let ¢ € Mt (0;7) and the equation
u (1) = () (1) (112)
have a solution u : [to, +0o[— R satisfying
uD@) >0 (i=0,...,n—=1) for t>t,. (11.3)

Let, moreover, there exist v € C(R4;]0,+00[), r2 > 0 and ry € [0,r2] such
that

v(#) L0 for 1 o0,  lim (y(t)"u(t) = +oo,

Jim (5(0)7"u(t) =0, (114)
— (o) e
t_li+m007(ﬁ(t)) < +00, t_1>1r+noot (v(t))™ =0. (11.5)

Then

lim (y(¢))™ /0 (t—5)""1p(B)(s)ds < 27" (n —1)! (11.6)

t—+o00

with 8(t) = (v(t))~"=.
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Proof. Put
a(t) =inf {(v(s))"" |u(s)| : s > t}. (11.7)
According to (11.1) and (11.7)
u(o(t)) T +oo for t1 +o0 (11.8)
and
tii_inooﬂ(a(t))(v(a(t)))”’“ =0. (11.9)

Taking into account (11.7)—(11.9) and Lemma 7.1 we see that there exists
a sequence {ty :g such that t; T +o00 as k 1 +00 and

u(o(tr)) = (v(o(te) " ulo(te), (v(o(te))™ "ulo(tr)) <
< (y(o@®))?""u(o(t)) for t. <t <tp, k=ko,ko+1, (11.10)

with kg € N and t, > to sufficiently large.
On the other hand, in view of (11.3) from (11.2) we obtain

o(t)
(o) > — ; / (o(t) — )" p(u)(s)ds for ¢ > b,

(n—-1

with ¢; > ¢, sufficiently large. Hence by (11.7), (11.10) and the fact that
p € M*(0;7) we have

o(tx)
wo) 2 gy [ (0t = 9" ()01 () >
o 2u(o o(te)
s Qoo [ s
x(y(o(8))) ""2(01)(s)ds (k=Fki,k+1,...) (11.11)
with 0 (t) = (y(t))~"™ and ¢, > t1.
Take any € €]0,1[ and choose t* > ¢, such that

V(o (®))
1(@(1))

Then since p € M T (0;7), from (11.11) we obtain

<c+e for t>t".

_ o(tr)
(n—1!'> lim (7(0(tk)))r2/t (a(te) = )" (7(a(5))) "2 (61)(5)ds >

T ko4

. o(te) ols ro—T1
> i Glow) [ ) o (20 oo >

= ko400 v(o(s))

_ o(te)
> (ee)n T Glo@)™ [ (o) 5" pl6)(s)as,

k—+o00
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where 0(t) = (v(t))~"2. Hence, taking onto account the second condition of
(11.5),

lim (7(75))7"2/0 (t—9)"""pO)(s)ds < Tim (y(o(tr)))™ x

t—+00 T k—+too

o(tx)
x /t (0(te) — 8)" ' 0(8)(s)ds < (¢ + &)™ " (n — 1)L.

*

Since ¢ is arbitrary, the last inequality implies (11.6). W

Let to € R;. Denote by H;' _ the set of all functions u € 6{;;1(&;]1%)
satifying

uDBu) >0 (i=0,...,n—1), u™(t)ult) >0 for t>t,,
where t, = min{to, 7« (o)}, 7 (¢) = inf{7(s) : s > t}.
Let F € V(1) and for some tg € Ry
F(u)(t)signu(t) < —p(|u|)(t) for w€ H ., t>to, (11.12)
pOIu(3®)]) < @(luD)(t) < a)u(d(t)Ifor u € Hy ., t>to, (11.13)

where € M+ (0;7),

tii__fgloo(ﬁ(t) —o(t)) < +oo, (11.14)
P a€L1c(Ry;Ry), 6€EC(Ry;Ry), 61, 6(t)>t forteR,, (11.15)
/+Oo a(t)"*p(t)dt = +oo. (11.16)

Let, moreover, for some k € {0,...,n— 1} (10.22;) and (10.41y) be fulfilled
with py(t) defined by (10.5;) and (10.6x). Then the condition

¢

inf{ lim e_At/(t—s)"_lcp(G)(s)ds A €]0, +oo[} >(n—-10! (11.17)
t—+o00 0

with 0(t) = e* is sufficient for problem (0.1), (10.1) to have no solution.

Proof. Suppose, on the contrary, that (0.1) has a solution ug : [tg, +00[— R
satisfying (10.1). According to (11.12) and Lemma 10.7 (11.2) has a solu-
tion u : [t., +00[—]0, +o00] satisfying (11.3). By (10.22;), (10.41;), (11.13),
(11.15) and Lemma 10.3 there exists A > 0 such that t_l)lg_n e Mu(t) = 0.
o0
Denote by A the set of all X satisfying tlir+n e Mu(t) = 400 and put
—+o00

Ao = supA. In view of (11.14)—(11.16) it is obvious that 0 € A and Ay <
+00. By (11.17) there exist € > 0 and #; € R} such that

e M /Ot(t —8)" (@) (s)ds > (n—1)! +¢ (11.18)

for t 2 tl, A G]Ao,AO +E]
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Choose 5 €]0,¢[ and €1 € [0,e1[ such that
Xo—€12>0, 2 n-1)<(n-1)+¢,

lim e~ (o==ty() = 400, lim e~ (ote2)ty () =0,
t—+o0 t—+o00

(11.19)

where ¢ = Tim =7 According to (11.19) u is a solution of (11.2)

t—+00
satisfying all the conditions of Lemma 11.1 with v(t) = e
and ro = Ao + 2. Therefore

—t _
,T1 = Ao — €1

¢
lim e_(>‘°+52)t/ (t—s)""tp@)(s)ds < 2t (n — 1) < (n—1)! +¢
0

t—+oo

with 0(t) = e(*o+=2)t, But this contradicts (11.18). The obtained contra-
diction proves the theorem. W

" Let F € V(1) and conditions (11.12)-(11.15), (10.11),
(10.12) and (10.43) be fulfilled, where p € M*(0;5). Then (11.17) with
8(t) = e is sufficient for problem (0.1), (10.1) to have no solution.

Proof. The validity of the theorem follows from Theorem 11.1 and Corollary
10.2. &

Let F € V (1), conditions (11.12) and (11.14) be fulfilled
with @ € M+ (0;7), for some tg € Ry

p)|u(d(®)]) < p(ul)(t) < ZQz )|u(oi(t (11.20)

for ue HtO’T, t >t

and (10.2), (10.11), (10.12), (10.44) and (10.45) hold. Then (11.1) is suffi-
cient for problem (0.1), (10.1) to have no solution.

Proof. The validity of the theorem follows from Theorem 11.1 and Lemma,
10.9. H

Let F € V(1) and for some tg € Ry

T (t)

F(u)(t) sign u(t) Z/m o)\ dri(s:1) (11.21)

for wu e HtO,T, t > to,
where

ri(s,t) are measurable, r;(-,t) are nondecreasing,

7,00 € C(Ry; Ry ), 7mi(t) < oi(t) for t €Ry, (11.22)
tilinoon():ﬂ)o (i=1,...,m),

tﬁm(ﬁ(t) —0o(t)) < +oo, tii_+moo(5(t) —t) < 400 (11.23)
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witho(t) = max{o;(t) : i =1,...,m}, o(t) = inf{min(r;(s) : i =1,...,m) :
s > t}. Let, moreover, there exist ig € {1,...,m} and a nondecreasing
function § € C(Ry;Ry) such that
0io (t) > t, max{t, 7, (t)} < I(t) < 04 (t) for te Ry, (11.24)
()
lim [Pio (3o (5), 8) — 14, (8(s), 8)]ds > 0, (11.25)

t—+oo Jt

vrai sup { (730 (030 (1), 8) — 73, (6(2), )] = t € ]R+} < 400, (11.26)
t_lg{loog/ Zl [ri(0i(s), s) — ri(1i(s), 5)]ds < +oo. (11.27)

Then the condition

t
inf{ lim e_)‘t/ (t—s)"' x
0

t—+o00
m o roi(s)
X Z/ eMderi(€,5)ds = X €]0, +oo[} > (n—1)! (11.28)
i=1 /7i(s)
is sufficient for problem (0.1), (10.1) to have no solution.

Proof. It suffices to show that the conditions of Theorem 11.2 are satisfied
with

)(t) = Z/ “ 8)dgr; (s, 1). (11.29)

It is obvious that ¢ € MT(0;7) and (11.14) holds. On the other hand,
by (11.24)—(11.27) conditions (11.20), (10.11), (10.12), (10.44) and (10.45)
are fulfilled with p(t) = 7, (04, (t),t) — 73, (6(2),t) and q;(t) = ri(o:(t),t) —
ri(m(t),t) (i =1,...,n). Moreover, (11.28) implies (11.17). Therefore the
operator defined by (11.29) satisfies all the conditions of Theorem 11.2. N

Let F € V(7), conditions (11.21)~(11.27) be fulfilled and
for some ty € Ry

inf { vral 1nf Z/
Ti(t)

Then problem (0.1), (10.1) has no solution.
Proof. It suffices to note that (11.30) implies (11.28). W

Let (11.20)—(11.27) be fulfilled , o;(t) > t for t € Ry
(i=1,...,m) and for some ty € Ry

vrai inf (i/mw(g —t)”dgri(f,t)) > (%)n (11.31)

t>to 77(s)

AEDderi(g,1)) - X €0, +oo[} > 1. (11.30)
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with 77 (t) = max{t;7;(t)} (i = 1,...,m). Then problem (0.1), (10.1) has
no solution.

Proof. Tt suffices to note that since e” > 2™(Z)" for x > 0, (11.31) implies
(11.30). m

Let F € V(1) and for some tg € Ry

m t—A;
F(u)(t)signu(t) < — ch/ lu(s)|ds for we Hf ., t>t
i=1 t=Ai

with ¢; > 0, Ay, A; € R, A; > A; (i =1,...,m). Let, moreover, A;;, <0
for some ig € {1,...,m}. Then the condition

inf {A*”*l S cie B ey x €, +oo[} >1  (11.32)
i=1
is sufficient for problem (0.1), (10.1) to have no solution.

. " Letc; >0, A, A €ER, A > A; (i =1,...,m) and
A;y < 0 for someig € {1,...,m}. Then (11.32) is necessary and sufficient
for the equation

m t—A;
u™ (t) = ch/ u(s)ds (11.33)
=1 Jt=A

to have no solution satisfying (10.1).

Proof. Sufficiency follows from Corollary 11.3. If we suppose that (10.32)
is violated, then (11.33) has the solution u(t) = e* with A > 0. H

Let F € V(1) and for some tg € Ry

m

F(u)(t)signu(t) < —Zpi(t)|u(5i(t))| for uEH;;J, t>ty (11.34)
i=1
with
pi € Lloc(R—F;RF)a 51 € C(R—F;RF)a
lim &(t) =400 (i=1,...,m), (11.35)
t—+o00

t_l)lgloo(éi(t) —t) <400 (i=1,...,m). (11.36)
Let, moreover, there exist ig € {1,...,m} such that é;,(t) is nondecreasing,

diy (t) >t fort € Ry and

51'0 (t)

lim Dio(s)ds > 0, vraisup{p;, (t) :t € Ry} < +o0. (11.37)

t——4o0 J¢
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Then the condition

t
inf{ lim e*)‘t/ (t—s)" ' x
0

t—+o00

X ipi(s)e)"ji(s)ds : A €]o, +oo[} > (n—1)! (11.38)

is sufficient for problem (0.1), (10.1) to have no solution.

Proof. It suffices to note that by (11.34)—(11.38) all the coditions of The-
orem 11.3 are satisfied with 7;(t) = 0;(t) — 1, o;(t) = 6;(t), ri(s,t) =
pi(t)e(s — 8;(t)) (1 = 1,...,m) (the definition of the function e(t) see on
page 104). W

Let (11.34)~(11.37) be fulfilled and for some ty € Ry
. s A () —1)
inf {/\ vrtaélttnf ;pl(t)e : A €]0, —l—oo[} >1.  (11.39)

Then problem (0.1), (10.1) has no solution.
Proof. Tt suffices to note that (11.39) implies (11.38). W

Let 6;(t) >t fort € Ry (i =1,...,m), (11.34)—(11.37)
be fulfilled and for some ty € Ry

n

m
. } U pn n
vrtaélttnf{izl pi(t) (8 (1) — 1) } > (e) .
Then problem (0.1), (10.1) has no solution.
Let F € V(1) and for some tg € Ry

m

F(u)(t)signu(t) < — Zci|u(t —Ay)| for ue H}

to,7?
i=1

where ¢; >0, A; e R (i =1,...,m) and A;, <0 for some ig € {1,...,m}.
Then the condition

t 2> to,

inf {/\_" icie”‘A" D E]O,—I-oo[} >1 (11.40)
i=1

is sufficient for problem (0.1), (10.1) to have no solution.

Lete; >0, A; e R (i =1,...,m) and Ay, <0 for some
io € {1,...,m}. Then (11.40) is necessary and sufficient for the equation

u™(t) = i ciu(t — Ay)

to have no solution satisfying (10.1).
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Let F € V(7), conditions (11.12), (11.13), (11.15) and
(11.16) be fulfilled with p € M*(0;7) and

. o(t)
tilinoo @ < 400. (].].4].)

Let, moreover, for some k € {0,...,n—1} (11.22), (11.474) hold with pj(t)
defined by (11.5;) and (11.6;). Then the condition

inf {t_li_Toot’\/ozt—s)”lw(ﬁ)(s)ds tAE[n—1, +oo[} >(n—1) (11.42)

with (t) = t* is sufficient for problem (0.1), (10.1) to have no solution.

Proof. Suppose, on the contrary, that (0.1) has a solution ug : [tg, +00[— R
satisfying (10.1). According to (11.12) and Lemma 10.7 (11.2) has a solution
u  [t, +0o[—]0, +oo satisfying (11.3). By (10.22;), (10.47;), (11.13)
(11.15) and Lemma 10.10 there exists A > 0 such that t_ligloo t— u(t) = 0.

Denote by A the set af all X satisfying , liin t~u(t) = 400 and put g =
—+oco

sup A. In view of (11.16) it is obvious that n —1 € A and A\g € [n — 1, +0o0].
By (11.42) there exist € > 0 and ¢; € R} such that

A /t(t 8" o(0)(s)ds > (n—1)! + ¢ (11.43)
’ for t > t1, A €]Xo, Mo +¢[.
Choose 5 €]0,¢[ and €; € [0, e2[ such that
Ao —¢e1>0, > n-1)<(n-1)!+e¢,

lim ¢~ Aoy (t) = 400,  lim ¢~ Ro+e2)y(t) =0
t—+o00 t—+4o00

with ¢ = @ % According to (11.44) u is a solution of (11.2) satisfying

(11.44)

t—
all the conditions of Lemma 11.1 with y(¢) =t~ 1y = Ao —&; and ry =
Ao + €2. Therefore we have

t
lim ¢~(ote2) / (t—s)""to@)(s)ds < 2 (n — 1) < (n—1) +¢
0

t—+00

with f(t) = t*o*=2_ But this contradicts (11.43). The obtained contradiction
proves the theorem. MW

' Let F e V(r) and (11.12), (11.13), (11.15), (11.16),
(11.41), (10.17¢) and (10.18¢) be fulfilled with p € M (0;7). Then (11.42)
is sufficient for problem (0.1), (10.1) to have no solution.

Proof. The validity of the theorem follows from Theorem 11.5 and Corollary
10.3. W
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Let F € V(r) and (11.12), (11.21), (11.41), (10.17,),
(10.18p), (10.50) and (10.51) be fulfilled with p € M*(0;7). Then (11.42)
is sufficient for problem (0.1), (10.1) to have no solution.

Proof. The validity of the theorem follows from Theorem 11.5 and Lemma
10.11. =

Let F € V (1), conditions (11.21) and (11.22) be fulfilled
and

— o(t) a(t)

tllinooa'(t) < 400, hmoo " < 400, (11.45)
where a(t) = max{o;(t) : i = 1,...,m}, o(t) = inf{min(r;(s) : i =
1,...,m):s>t},

— 1 [
t—llgloom/o s ; [ri(0i(s),s) —ri(1i(s), 5)]ds < +o0. (11.46)
Let, moreover, there exist ig € {1,...,m} and a nondecreasing function

0 € C(Ry;Ry) such that (11.24) holds,
a(t)
lim s riy (04 (5), 8) — 13, (8(s), )] ds > 0 (11.47)

t—+oo Jt

and
vrai sup {¢" [ri, (04, (t), ) — riy (6(t),8)] 1t € Ry } < +o0. (11.48)
Then the condition
ai(s)

inf{li_mt‘*/ - nlz/ ENderi(£, 5)ds

t—+o0
t A €n — 1,+oo[} > (n—1)! (11.49)

is sufficient for problem (0.1), (10.1) to have no solution.

Proof. Asin the proof of Theorem 11.3, we can easily show that the operator
defined by (11.29) satisfies all the conditions of Theorem 11.6. This proves
the theorem. W

Let F € V (1), conditions (11.22), (11.45)—(11.48) be ful-
filled, o € M*(0,7) and for some to € ]R+

=0 t
tA€En — 1,+oo[} > 1. (11.50)

Then problem (0.1), (10.1) has no solution.
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Proof. Tt suffices to note that (11.50) implies (11.49). W
Let F € V(1) and for some tg € Ry

m a;t
F(u)(t)signu(t) <—t "1 ¢ / lu(s)|ds for we Hy ., t>to
i=1 ot

with ¢; > 0, o, @; €]0,4+00[, a; < @; (i = 1,...,m). Let, moreover,
io € {1,...,m} exist such that @;, > 1. Then the condition

1 m
inf{ﬁ cif@; " —a} ™) x€ln -1, +oo[} >1 (11.51)
Hi:*ll(/\ - Z) 1:21

is sufficient for problem (0.1), (10.1) to have no solution.

" Let ¢; >0, aj,a; €]0, 400, a; <@; (i =1,...,m) and
@, > 1 for someig € {1,...,m}. Then (10.50) is necessary and sufficient
for the equation

m a;t
™ = ¢t Zci / u(s)ds (11.52)
=1 a;it

to have no solution satisfying (10.1).

Proof. Sufficiency follows from Corollary 11.9. If we suppose that (11.50)
is violated, then (11.52) has the solution u(t) = t* with A >n—1. H

Let F € V (1), conditions (11.34) and (11.35) be fulfilled
and

=t "
im o(t) < 400, lim o(t) < +00 (11.53)
t—>+oog'(t) t—+oco t

with o(t) = max{d;(t) : i =1,...,m}, o(t) = inf{min(d;(s) :i=1,...,m) :

s > t}. Let, moreover, iy € {1,...,m} exist such that §;,(t) is nondecreas-
ing,
51'0 (t)
lim 5" p;, (s)ds > 0, (11.54)
t—+oo Jt
vrai sup{t"p;, (t) : t € Ry } < +o0. (11.55)

Then the condition

inf{ lim ¢ * /Ot(t —s)nt i:pi(s)@(s)ds :

t—+o00
‘X €n — 1,+oo[} > (n—1)! (11.56)

is sufficient for problem (0.1), (10.1) to have no solution.
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Proof. Tt suffices to note that by (11.34), (11.35) and (11.53)-(11.56) all the
conditions of Theorem 11.6 are satisfied with 7;(t) = 6;(¢t) — 1, 0;(t) = d;(t)
and r;(s,t) = pi(t)e(s — 0;(t)) (the definition of the function e see on page
104). =

Let F € V(7), conditions (11.34), (11.35) and (11.53)-
(11.56) be fulfilled and for some tg € Ry

1 m
- {Hzr'lol()\ —1) Vrtathtn ( ;p ()07 ( ))

tX€n — 1,+oo[} > 1. (11.57)

Then problem (0.1), (10.1) has no solution.
Proof. Tt suffices to note that (11.57) implies (11.56). W

Let F € V (1), for some ty € Ry
m

F(u)(t)signu(t) < —t™" Z cilu(agt)| for w e H _, t>to

0,77
i=1

withe; >0, a; >0 (i =1,...,m) and let oy, > 1 for some iy € {1,...,m}.
Then the condition

1 m

inf{ﬁ cial X €ln — 1,+oo[} >1 (11.58)
Hi:ol (/\ - 'L) ;

is sufficient for problem (0.1), (10.1) to have no solution.

" Letc;>0,a; >0 (i =1,...,m) and a;, > 1 for some
io € {1,...,m}. Then (11.58) is necessary and sufficient for the equation

m

u™ () =t Z ciu(a;t)

i=1

to have no solution satisfying (10.1).

Letn> 1, F € V(1), for any tg € Ry
F(u)(t)signu(t) < —p(t)|u(d(t))| for we H ., t>ty, (11.59)

(10.2) be fulfilled and for some k € {1,...,n — 1} (10.17;), (10.18;) hold.
Then problem (0.1), (10.1) has no solution.
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Proof. Suppose that (0.1) has a solution w satisfying (10.1). Then by
(11.58), (11.17;), (10.18;) and Lemma 10.3

— e ()]

T I (11.60)
and
im 28 51, (11.61)
t—+o00
On the other hand, by (10.1) from (1.6p,,) we have
1
> _ p\n—1y, (n—1) f >
U5O)] 2 g 60 = 0" DB for £ 21,

where t; > ty is sufficiently large. Hence in view of (11.61) we obtain

1-n
o LG

e (O]
Since k > 1, the last inequality contradicts (11.60). The obtained contra-
diction proves the theorem. W

> 0.

Analogously can be proved

Let F € V (1), conditions (11.59), (10.17) and (10.18)

mm 00
t—+oo t

Then problem (0.1), (10.1) has no solution.

be fulfilled and

Let F € V (1), conditions (10.2) and (11.59) be fulfilled
and for some k € N and i € {0,...,n—1}

Jim t p(s)(8(t) — )" (8(s) — 6(1)) gk (8(s), 8(t))ds >
> il(n —i— 1), (11.62)

where

oty [ on©), e

(t) =1, o) = exp{

gr(t,s) = exp {

5(t)
ﬁ / (5(t) — O™ x

Xp(f)wjl(f)df} G=2....k). (11.64)

Then problem (0.1), (10.1) has no solution.
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Proof. Suppose that (0.1) has a solution u : [tg, +0o[— R satisfying (10.1).
From (0.1) by (11.59) we have

1 0 (5(t) — &) Lulm (¢ 1
1)'/5 (0(t) =" | ()|d€z y

o= w0(6(0), 6 (=1
</ - 9mpie eI de for 10 <5 <6(0), (1169
where
wlt,) = _ =D i )
Since -

Aol O o), uals(0). 06 = o).

in view of (11.65) we obtain

W) 1O u(b(6)]
lnum(t),s)z(n—l)!/s (60 =" O T, 5%

As up(6(8),€) > uo(6(t),&) for to <t <& < §(t), the last inequality implies

[u(5(1)) L ()
uO(a(w,s)Ze"p{(n—l)!/s 66 = 0"'PO, 557,69

for to <t <s<d(t),

whence we easily conclude that

8(t)
n%)'/ (0(#) - f)"‘lp(f)wk(f)df}u()(d(t),s)

[u(@O)] > exp { ¢

for to <t <s<d(t)

with 1 (t) defined by (11.64). Therefore according to (10.1) and (11.59)
from (0.1) we have

a(t) )
ﬁ/t (6(t) = )" Ip(€) x
x gk (0(8), 0(8))uo(0(8),6(t))d¢ (11.66)

with g (t, s) defined by (11.63). Since

[ (8(t))] >

[ (8(1))]

i!

uo(6(£),0(1)) > (6(6) = d(1))" for to <t <,
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from (11.66) we finally obtain
o L s -1
(3 > _ n—e—
WG 2 e [ (-9

X (6(6) — 6(1))"gx (8(), (1)) dé|u™ (6(1)))

which contradicts (11.62). The obtained contradiction proves the theo-
rem. W

Let F € V(7), conditions (10.2) and (11.59) be fulfilled
and for some i € {0,...,n—1}

lim p(3)(8(£) — )" 7L(8(s) — 8())ids > il(n — i — 1)L (11.67)

t—+oo t

Then problem (0.1), (10.1) has no solution.

Remark 11.1. (11.67) cannot be replaced by

i@ , ,
lim p(s)(6(t) — 8)" " H(8(s) — (1)) ds >

t—+oo t
>illn—i—1)1(1-¢)", (11.68)
however small ¢ €]0, 1] would be.

Indeed, let € €]0,1]. Choose ng € N, A > 0 and ¢ > 0 such that
1
Vn! < d+em for n >mng, cA"™ =(1—¢)"nl.
e
Then the equation
u™ () = cu(t + A)
has the solution u(t) = e with A > 0. On the other hand, (11.68) holds

wi
with p(t) = cand §(¢) =t + A.

Let F € V (1), conditions (10.2) and (11.59) be fulfilled
and

5(®) n—1)!
lim p(s)(8(t) —s)" tds > ( 1)'.

t—+oo Jt

(11.69)

Then problem (0.1), (10.1) has no solution.

This theorem can be prooved analogously to Theorem 6.2.
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Let F € V(1) and for some tg € Ry

F(u)(t) sign u(t) < —=p(u)(t) signu(t) <0 for u € H;

to,T?

where ¢ € M(o), o(t) >t for t € Ry.. Then the condition

t>to, (11.70)

Bn € M2 (0) (11.71)

with

Bty =t, Balu)(t) = — (o) =" u®)(®)  (11.72)

(n—1)
is sufficient for problem (0.1), (10.1) to have no solution.

Proof. Suppose that (0.1) has a solution u : [tg, +0o[— R satisfying (10.1).
Then from (1.6p,) we have

=1 ()]

oD OO =T for 1> to.

lu(o(t)] >

Therefore, taking into account the fact that ¢ € M (o), by (11.70) we obtain

t

#(0)> | |pa(sianulto)r)(s)lds,

where z(t) = —=|u\"" "/ (f)| > 0 for ¢t > ¢,. But this contradicts .71,
h e Y 0 f But thi dicts (11.71

which proves the validity of the theorem. W

Analogously can be proved
" Let F € V(1) and for some to € Ry

F(u)(t) signu(t) < —p(t,u(®1(8)) .., u(0m (1)) sign u(t) <0
for wu € Hj' t > to,

0,77

where §; € C(Ry;Ry), 0;(t) >t fort e Ry (i=1,...,m), ¢ € Kjoe(Ry X
R™;R) and

(,D(t,ill'l, v 7xm) Signxl Z cp(tayl s 7ym) Signyl Z 0
for t e Ry, mizq >0, 23y, >0, |z;] > || (i=1,...,m).
Then condition (11.71) with

1

P (u)(t) = mw(t, (@1(8) = )" tu(t), ..., (m(t) — )" u(t))

is sufficient for problem (0.1), (10.1) to have no solution.
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Let F € V(7), (11.70) be fulfilled with ¢ € M (o), the
function 0 € C(R4;R;) be nondecreasing and o(t) >t fort € Ry. Then
condition (11.71) with

= letu®)o) (173

is sufficient for problem (0.1), (10.1) to have no solution.

Pn(u)(t) =

Proof. Suppose that (0.1) has a solution u : [tg, +oo[— R satisfying (10.1).
Then by (10.1), (11.70) and the fact that ¢ € M (o) we obtain

a(t)
o)) 2 o2y [ (00 =" )l >
> ﬁ / (r(s) — )" oo signulto)l|u(o(s))])ds for ¢ > to.
Therefore

z(t) Z/t |g5n(signu(t0)a:)(s)|ds for t > to

with z(t) = |u(o(t))|. But this contradicts (11.71). The obtained contra-
diction proves the theorem. W
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CHAPTER 5

In chapter 5 the oscillatory properties which are specific for functional
differential equations are studied. These properties have no analogues for
ordinary differential equations.

§ 12. EQUATIONS WITH PROPERTY A

Everywhere in this section it will be assumed that the inequality
(=)™ F(u)(t)u(t) >0 for uwe Hy, ., t>to (12.1)
holds for some ty € R, .

Let F € V(1), (12.1) be fulfilled for some ty € Ry and
[F(u)(®)] = lpu)(t)| for we Hiyry t>to (12.2)

with ¢ € M(t,0), where o(t) < t for t € Ry.. Then, if n is odd, the
conditions (3.3,—1) and

%o € My(r,0) (12.3)

are sufficient for (0.1) to have property N, and if n is even, such are con-
ditions (3.11), (3.3,—2) and (12.3), where ¢n_1, Pn—2 and o are defined,
respectively, by (3.12), (3.14) and (9.86).

Proof. Suppose that u : [tg, +00o[— R is a nonoscillatory proper solution of
(0.1). According to Lemma 1.2 and (12.1) I € {0,...,n} exists such that [
is even and (2.14;) holds. By Theorems 3.1', 3.2" and 9.15 and conditions
(3.2,-1), (3.2,—2) and (12.3) we have | & {0,...,n — 1}. Therefore, n is
even and [ = n, so in view of (3.13) (0.5) is fulfilled. W

Taking into account Theorems 3.1”, 3.2" and 9.15, we can analoguosly
prove the following

" Let F € V(1) and conditions (12.1) and (12.2) be fulfilled
with ¢ € M(7,0), where o(t) <t fort € Ry.. Then, if n is odd, conditions
(3.16), (12.3) are sufficient for (0.1) to have property N, while if n is even,
such are conditions (3.11), (3.18) and (12.3), where ¢n_1, Pn_2 and Py are
defined, respectively, by (3.17), (3.18) and (9.15).

Let F € V(7), (12.1) be fulfilled for some ty and

0’1(t)
() (8)] 2/ ()P dar(s, 8) for u € Hyyry t>t0,  (12.4)

T1 (t)
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where

0<A<], 1,00 € C(R;Ry), 71(t) <o1(t) <t for t € Ry,
t_l}glooﬁ (t)=+4o00, r(s,t) is measurable, r(-,t) is nondecreasing. (12.5)

Let, moreover,

400 poi(t)
/ / A d (s, t)dt = +00
Tl(t)

and
/+Oo tn=DO=N (¢ — o ()M (r(04 (), 1) — r(71(t), 1)) dt = +o0.

Then (0.1) has the property oL

" Let F € V(7), conditions (12.1) and (12.5) be fulfilled
for some to € Ry and

o1(t) a1(t)
[ Pt < P@©1 <8 [ u(s)Pdur(s. )
Tl(t) Tl(t)

for w € Hy, -, t >ty,
with 0 <A <1 and 6 € [1,400[. Let, moreover,

1=A(p A
T o1(t) < too, lim At Ul)‘(t))
t—-+o0 71 (1) totoo  (11(2))

Then the condition

O -1 B
[ R 0600 (0,0t = 400

> 0.

is mecessary and sufficient for (0.1) to have property

The validity of Theorems 12.2 and 12.2' follows from Corollaries 4.1 and
4.2, 9.16.

Let F € V(7), conditions (12.1), (8.2) and (8.3) be ful-
filled for some ty and

|F(u) ()] > p(t)[u(d(t)| for w€ Hir, t2> to. (12.6)
Let, moreover,

/ T G p(t)dt = oo (12.7)

with ¢ > 0 and either (9.73) or (9.75) hold. Then (0.1) has property .
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Proof. The validity of the theorem follows from Corollaries 3.12 and 9.16
and Theorem 9.12. W

Let F € V (1), condition (12.1) be fulfilled for some to €
Ry and

t- A
(t)] >Zcz/ (s)|ds for we€ Hy, r, t>ty, (12.8)
where ¢; > 0, Ay, A; € R, Ay < A; (i =1,...,m) and A;; > 0 for some
io € {1,...,m}. Then (9.28) is sufficient for (0.1) to have the property

Proof. The validity of the theorem immediately follows from Corollaries 3.1
and 9.2. N

" Letc; >0, A Ay ER A < A (i =1,...,m) and
Ay > 0 for some ig € {1,...,m}. Then (9.28) is necessary and sufficient
for (9.29) to have property

Let F € V(1), condition (12.1) be fulfilled and

)| > ch|u A;)| for w € Hyy ry t>to, (12.9)
where ¢; >0, A; e R (i =1,...,m) and A;; > 0 for some ig € {1,...,m}.
Then (9.37) is sufficient for (0.1) to have property

Proof. The thoerem follows from Corollaries 3.1 and 9.4. W

Let F € V(1), condition (12.1) be fulfilled and

|F(u)(t)| >t~ ”ch/ s)|ds for w € Hyy r, t>to, (12.10)

where ¢; > 0, a;,@; €]0, 400, a; <@; (i =1,...,m) and o, <1 for some
io € {1,...,m}. Let, moreover, (9.49) hold and

m n—1
Ya@ o)™y > - [ =) for Xe[Ln—1]1%  (12.11)
i=1 i=—1

Then (0.1) has property -

Proof. The theorem follows from Corollary 9.7 and Theorems 7.4 and 7.5. W

18When n = 1,2, (12.11) is unnecessary.
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Let F € V(7) and (12.1) and (12.10) be fulfilled with
¢ >0, aj,@; €]0,1], a; < @; (i =1,...,m). Then the conditions (9.49)
and
m n—1

Za‘(a?‘“ —af“H) > — H (i—A) for Ae[n—3,n—-1] (12.12)

i
i=1 i=—1

are sufficient for (0.1) to have property .

" Letc; >0, a;,a; €]0,+o0[, a; <@; (i =1,...,m) and
a;, < 1 for some iy € {1,...,m}. Then (9.49) and (12.11) are necessary
and sufficient for the equation

m a;t
w™ (t) + (—1)"+? Zcit_"_l / u(s)ds =0 (12.13)
i=1 ait
to have property o

Proof. The sufficiency follows from Theorem 12.6. If we assume that either
(9.49) or (12.11) is violated, then equation (12.13) has the solution u(t) = #*,
where either A <Oor A €]l,n —1]. W

" Letec; >0, aj,a; €]0,1] and oy < @; (1 = 1,...,m).
Then (9.49) and (12.12) are necessary and sufficient for equation (12.13) to
have property -

Let F € V(7), condition (12.1) be fulfilled for some to €
R; and

m a;t
P (u)()] > Zci/ s~V u(s)|ds for u € Hyyr, t>to, (12.14)
i=1 ot

where ¢; > 0, oy, @; €]0,00[, a; < @; (i =1,...,m) and a;, <1 for some
io € {1,...,m}. Then conditions (9.46) and
- A—n — A—n & -
ci(og " —@ ") > H(z —A) for Xe[l,n—1] (12.15)
=1 =0

are sufficient for (0.1) to have property ol
Proof. The theorem follows from Corollary 9.6 and Theorems 7.4 and 7.5. B

Let (12.1) and (12.14) be fulfilled with ¢; > 0, a;,@; €
10,1] and a; <@; (i =1,...,m). Then conditions (9.46) and

m n

Zci(af‘_" —ar ") > H(z —A) for A\e[n—3,n—1] (12.16)

i=1 i=0

are sufficient for (0.1) to have property o



148

" Letc; > 0, a;,a; €]0,+00[, a; <@; (i =1,...,m) and
a;, < 1 for some iy € {1,...,m}. Then (9.46) and (12.15) are necessary

and sufficient for (9.47) to have property

Let ¢; > 0, aj,@; €]0,1] and oy < @; (i = 1,...,m).
Then (9.46) and (12.16) are necessary and sufficient for (9.47) to have prop-
erty .

Let F € V (1), condition (12.1) be fulfilled for some to €
Ry and

|F(u)(t)] >t Z cilu(ast)| for uw € Hy, ,, t > to, (12.17)

i=1
where ¢; >0, a; >0 (i =1,...,m) and a;, <1 for some ig € {1,...,m}.
Then conditions (9.53) and
m n—1
Zciaf‘ > H(z =) for Ae[l,n—1] (12.18)
i=1 i=0

are sufficient for (0.1) to have property o
Proof. The theorem follows from Corollaries 7.1, 7.5 and 9.9. H
Let (12.1) and (12.17) be fulfilled, where c; > 0, o; €]0, 1]

(t=1,...,m) and oz, <1 for someig € {1,....m}. Then conditions (9.53)
and

m n—1
> e} > J[i =X for A€ [n—3,n—1] (12.19)
i=1 =0

are sufficient for (0.1) to have property .

" Lete; >0,a; >0 (i=1,...,m) and a;, < 1 for some
iop € {1,...,m}. Then (9.53) and (12.18) are necessary and sufficient for
the equation

u™ (t) + (=1)" i ciu(at) =0 (12.20)

to have property o

" Lete; >0, a; €)0,1] (i = 1,...,m) and a;, < 0 for
someig € {1,...,m}. Then (9.53) and (12.19) are necessary and sufficient
for (12.20) to have property
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§ 13. EQUATIONS WITH PROPERTY B

Let F € V(1) and (0.3) and (12.2) be fulfilled, where
¢ € M(o), o is nondecreasing, o(t) >t for t € Ry. (13.1)
Let, moreover, (3.3,—2) and (11.71) hold, where ¢, is defined by either
(11.72) or (11.73) and

B (u)(t) = ﬁ P 2u(t)) (8). (13.2)

Then (0.1) has property .

Proof. Suppose that u : [tg, +00o[— R is a proper nonoscillatory solution of
(0.1). By Lemma 1.1 there exists [ € {0,...,n} such that [ + n is even and
(2.14;) holds. According to (13.2) and Theorem 3.2' I € {1,...,n—1}. On
the other hand, in view of (11.72)—(11.74) and Theorems 11.12 and 11.13
[ # n. Therefore | = 0 which is possible only if n is even, so using (3.3,-2)
we can easily show that (0.4) is fulfilled. W

Taking into account Theorems 3.2, 11.12 and 11.13, we can analogously
prove the following

" Let F € V(1) and (0.3), (12.2) and (13.1) be fulfilled with
p € M(0,7). Let, moreover, (3.18) and (11.71) hold where @y, is defined by
either (11.72) or (11.73) and

B a(u)(t) = ﬁ (1)) (8),

be(w)(s) = FOP""u(t)s"2 for s € R...
Then (0.1) has property o

Let F € V(1) and (0.3), (12.2) and (13.1) be fulfilled. Let,
moreover, (11.71) and (3.71) hold where B(t) = t, @, is defined by either
(11.72) or (11.73) and

tn—l

P1(u)(t) =  Pu(®) ().

(n—1)
Then (0.1) has property oL

" Let F € V(1) and (0.3), (12.2) and (13.1) be fulfilled

with ¢ € M(0,7). Let, moreover, (3.22) and (11.71) hold where B(t) = t,
©n, is defined by either (11.72) or (11.73) and

tnfl

$1(u)(t) = =1 e (w)(t), e(u)(s) = [FH] " u(t)s" "
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Then equation (0.1) has property -

The validity of Theorem 13.2 (Theorem 13.2') follows from Theorems
3.3/, 11.12 and 11.13 (Theorems 3.5, 11.12 and 11.13).

Let F € V() and (0.3), (10.2) and (12.6) be fulfilled.
Then (12.7) and either (11.68) or (11.70) are sufficient for (0.1) to have

property

Proof. The theorem follows from Corollaries 3.12, 11.12 and Theorem
11.11. =

_ Let F € V(1) and (0.3), (12.8) be fulfilled, wh where
ci >0, AjA; € R A <A (i =1,...,m) and A;y; < 0 for some
io € {1,...,m}. Then (11.32) is sufficient for (0.1) to have property

Proof. The theorem follows from Corollaries 3.1 and 11.3. W

. " Letc; >0, A, Ay ER A > A (i =1,...,m) and
A;y <0 for some ig € {1,...,m}. Then (11.32) is necessary and sufficient
for (11.33) to have property

Let F € V(1) and (0.3), (12.9) be fulfilled, where ¢; > 0,
A, eR(i=1,...,m) and A;y <0 for someig € {1,...,m}. Then (11.40)
is sufficient for (0.1) to have property

The validity of Theorem 13.5 follows from Corollaries 3.1 and 11.6.

Let F € V(1) and (0 3) and (12.10) be fulfilled where
ci > 0, aj,a; €]0,+00[, oy < @ (i = 1,...,m) and @;, > 1 for some
io € {1,...,m}. Then the condition

m

Zci(ai“"l art) > H ) for A€ Ry (13.3)

i=1 i=—1
is sufficient for (0.1) to have property -
The validity of Theorem 13.6 follows from Theorem 7.4 and Corollary
11.9.

" Letc; >0, a;,a; €]0,+00[, a; <@; (i =1,...,m) and
@i, > 1 for some iy € {1,....m}. Then (13.3) is necessary and sufficient
for (11.51) to have property
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Let F € V(1) and (0.3), (12.10) be fulfilled, where ¢; > 0
and 1 < a; <a; (1=1,...,m). Then the condition

ici(af‘ﬂ —a)t) > ”1:[ (A=1) for X€[0,2]U[n —1,400] (13.4)

i=1 i=—1
is sufficient for (0.1) to have property .

" Letce; >0,1< ;<@ (i=1,...,m). Then (13.4) is
necessary and sufficient for (11.51) to have property

Let F € V(7) and (0.3) and (12.17) be fulfilled where,
¢;i>0,0;,>0 (i =1,...,m) and o, > 1 for some ig € {1,...,m}. Then
the condition

m n—1
Zciaf‘ > H(/\ —1) for A€ Ry (13.5)
i=1 i=0

is sufficient for (0.1) to have property .

The validity of Theorem 13.7 follows from Corollaries 7.5 and 11.11.

" Lete; >0,a; >0 (i=1,...,m) and a;, > 1 for some
io € {1,...,m}. Then (13.5) is necessary and sufficient for the equation

m

uM(t) =t ciu(ait) (13.6)

i=1
to have property .

Let F € V(1) and (0.3), (12.17) be fulfilled, where ¢; > 0,
a; > 1 (i =1,...,m) and a;, > 1 for some ig € {1,...,m}. Then the
condition

m n—1
Zciaf‘ > H(/\ —1i) for A€[0,2]U[n —1,400[ (13.7)
i=1 =0

is sufficient for (0.1) to have property .

" Lete; >0,a; >1(i=1,...,m) and oy, > 1 for some
iop € {1,...,m}. Then (13.7) is necessary and sufficient for (13.6) to have

property
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§ 14. OSCILLATORY EQUATIONS

Sufficient conditions for oscillation of any proper solution of (0.1) in the
case of even n were given in §83,4,6,7, and in the case of odd n in §12. If n
is odd and (0.3) holds, the analogous question was studied in §13. In this
section we establish sufficient conditions for any proper solution of (0.1) to
be oscillatory in the case when n is even and (0.3) is fulfilled. Throughout
this section, without mentioning it specially, it will be assumed that n is
even.

Let F € V(1) and (0.3) and (12.8) be fulfilled, where c¢; >
0, A, Ay € R A; <Ay (i =1,...,m) and Ay, > 0, A;, < 0 for some
i0,01 € {1,...,m}. Then (9.28) and (11.32) are sufficient for every proper
solution of (0.1) to be oscillatory.

The validity of the theorem follows from Corollaries 3.1, 9.2, and 11.3.

" Letc; >0, A, A €ER A < A (i =1,...,m) and
Ajy >0, Ay, <0 for some ig, iy € {1,...,m}. Then (9.38) and (11.32) are
necessary and sufficient for every proper solution of equation (11.33) to be
oscillatory.

Proof. Sufficiency follows from Theorem 14.1. If we assume that (9.32)
((11.32)) is violated, then (11.33) has the solution u(t) = e* with A < 0
(A>0). H

Let F € V(1) and (0.3) and (12.9) be fulfilled, where m >
2,¢>0, A €R (i =1,....,m) and A;; > 0, A;;, <0 for some ig,i; €
{1,...,m}. Then (9.37) and (11.40) are sufficient for every proper solution
of (0.1) to be oscillatory.

The validity of the theorem follows from Corollaries 3.1, 9.4 and 11.6.

Let F € V(7) and (0.3) and (12.10) be fulfilled where
ci >0, a;,a@; €]0,+oof, ay <@ (i =1,...,m) and a;, < 1, @;, > 1 for
some ig,i1 € {1,...,m}. Then (9.49) and (13.3) are sufficient for every
proper solution of (0.1) to be oscillatory.

The validity if the theorem follows from Corollary 9.7 and Theorem 13.6.

" Letc; >0, a;,a; €]0,+o0[, a; <@; (i =1,...,m) and
a;, < 1, @;, > 1 for some ig,iy € {1,...,m}. Then (9.49) and (13.3) are
necessary and sufficient for every proper solution of (11.51) to be oscillatory.

Let F € V(r) and (0.3) and (12.17) be fulfillled where
m>2,¢ >0, a0 >00=1,...,m) and oy, < 1, a;;, > 1 for some
i0,i1 € {1,...,m}. Then (13.5) and (9.53) are sufficient for every proper
solution of (0.1) to be oscillatory.
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The validity of the theorem follows from Corollary 9.9 and Theorem 13.7.

" Letm>2,¢>0, ;>0 (=1,...,m) and oy, <1,
a;, > 1 for some ig,i1 € {1,...,m}. Then (13.5) and (9.53) are necessary
and sufficient for every proper solution of (13.6) to be oscillatory.

In this subsection we consider
the equation

Jl(t)
u™(t) = / lu(s)|M signu(s)dsr (s,t) +
Tl(t)

o2(t)
+/ lu(s)|*2 sign u(s)dsra(s, t), (14.1)
2(t)

where A\; > 0, 7;,0; € C(Ry;Ry), 7i(t) < o4(t) for t € Ry, 7i(s,t) are
measurable and r;(+,t) are nondecreasing (i = 1,2).

The results of the previous sections enable us to obtain sufficient condi-
tions for every proper solution of (14.1) to be oscillatory in the case when
n is even. To illustrate this fact several theorems are given below.

Let \y = 1, Ay < 1 and there exist to € Ry and nonde-
creasing functions §; € C(Ry;Ry) (i = 1,2) such that

Tl(t) S (51 (t) < t, t < (52(t) S g1 (t) fOT t Z t[), (142)
t L 52(15) L
lim $)s" " "ds >0, lim $)s" " "ds >0
[P Jm ), » (14.3)

vrai sup{t"p;(t) : t e Ry } < +00 (i =1,2),
where

pi(t)=r1(01(t),t) —ri(Ta(t),1), p2(t)=ri(ov(t),t)—r1(d2(t),t). (14.4)

Let, moreover,

400 o1(s)
inf{ lim t>‘/ (s — t)"_l/ 7 der (€, 8)ds -
t T

t—-+o0 1(3)
. X €]o, +oo[} > (n— 1), (14.5)
t 0'1(8)
inf{ lim t_>‘/ (t—s)"_l/ Erdery (&, 5)ds -
t—+o00 0 Tl(s)
‘X €ln — 1,+oo[} > (n—1)! (14.6)

and

- + 00 o'g(t)
lim 72(t) < 400, / t/ s22 (=D d o (s, 8)dt = 400, (14.7)
Tg(t)

t—4+oco ¢

Then every proper solution of (14.1) is oscillatory.



154

Let \y =1, My < 1 and (14.7) be fulfilled. Let, moreover,
there exist to € Ry and nondecreasing functions §; € C(Ry;Ry) (i =1,2)
such that (14.2) holds and

t _ !
im [ (s—80) pi(sas > L2
t—+o00 S5 (¢ e
6(2&) (n— 1) (14.8)
lim (8a(t) — 8)" L pa(s)ds > L~V
t—+4o00 Jt €

with p; (i =1,2) defined by (14.4). Then every proper solution of (14.1) is
oscillatory.

Let \y = 1, Ay > 1, either (14.2)—(14.6) or (14.8) be
fulfilled and

/m[ﬁ(t)]”l[ag(t)]@”)h /W §22 D o (s, t)dt = 400 (14.9)

Tz(t)

with B(t) = min{t,o2(t)}. Then every proper solution of (14.1) is oscilla-
tory.

Let My <1, o> 1, 01(t) <t, 72(t) >t for t € Ry and

/ M (4 oy ()M Dy (04(8),8) = ra(ra (1), D)t = oo,
+o0
/ (ra(t) = )™=V (05 (1), 1) — (72 (£), B}t = +00.

Let, moreover, (14.9) hold. Then every proper solution of (14.1) is oscilla-
tory.

§ 15. EXISTENCE OF AN OSCILLATORY SOLUTION.

Suppose that top > 0 and F € V(r;0)
with

7(t) <o(t) <t for t>tg. (15.1)
Consider the following Cauchy problem for (0.1)
u(t) = o(t) for t € [m,to], v (to)=c; (i=1,...,n—1), (15.2)

where 79 = inf{7(¢t) : t € [to,+0[}, ¥ € C([0,t0];R), and ¢; € R (i =
1,...,n—1).
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Let for any t > to
F(u)(t) #0 for uwe C(Ry;R) satisfying,
u(s) >0, u(s) Z0 (u(s) <0, u(s)Z0) for se€[r(t),o(t)].

Let, moreover, p(t) Z 0 for t € [10,t0]. Then problem (0.1), (15.2) has a
unique proper solution.

(15.3)

Proof. According to (15.1) problem (0.1), (15.2) has a unique solution ug :
[to, +00o[— R. Suppose that ug is not proper. Then we can find ¢; € [to, +00[
and to,t3 € [t1,+oo[ such that t2 < t3, up(t) =0 for t € [t1, +00[, up(s) Z 0
for s € [r(t),o(t)] for any t € [t2,t3] and either ug(t) > 0 or ug(t) < 0 for
t € [r1,t1] where 71 = min{7(¢) : t € [t2,3]}. Therefore by (15.3) from (0.1)
we get
t3
0=ul"""(ty) —ul"Vts) = | F(ug)(s)ds #0.
to
The obtained contradiction proves the lemma. W

Suppose that F €
V(r;0) where 7,0 satisfy (15.1). For (0.1) consider the following Cauchy
problem
u(t) = So(t) for t € [Tg,to], (p(t[)) =0,

' 15.4
u(’)(to) =0(i=1,...,n—2), u(n_l)(to):’% ( )

By (15.1) it is obvious that problem (0.1), (15.4) has a unique solution
u(+,y) which depends continuously on the parameter .

Define the sets I'y and I's as follows:

7 € I'; iff the inequality v > % implies

lim uw®(t;7) =400 (i=0,...,n—2), lim u™ Y (t;7) > 0.(15.5)

t——+oo t—+o00
5 € I'y iff the inequality v < 7% implies
lim v (t;7) =00 (i=0,...,n—2), lim u""Y(t;y) <0.

t—+o00 t4o00
Suppose that t1 € [to, n-(to)], where n.(t) = sup{s : 7(t) < t}. Define
the sets F;(t1) (i = 1,2,3) as follows:
Ei(t1) ={t:t € [to,t1], T(t) < to, o(t) > to},
BEy(ty) = {t: t € [to,t1], o(t) < to},
Es(ty) ={t:t € [to,t1], o(t) > to}.
Let F € V(r;0), conditions (0.3) and (15.1) be fulfilled

and for any t1 € [to,n-(to)] and u € C(Ry;R) satisfying u(t) = ¢(t) for
t € [10,10], u(t) # 0 for t €]to, t1] we have

/ Fu)(s)ds < / F(0)(s)|ds, (15.6)
Ei(t1)

E1(n-(to))
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where
)0 for t €lto,+o0],
6t) = {go(t) for t € [r0,t0][.

Then the sets T'y and T's are nonempty and
Y2 <7, M,y €T Ul

where 2 = sup 'y, 74 = inf Ty

Proof. Denote

Yo =/ |F'(p)(5)lds +/ [E(@)(s)lds. (15.7)
Ea(n-(to) Ex(n-(ta)

Show that if v > v then v € I'y. First prove that
u(t;7) >0 for t €]to, 0. (to)] (i=0,...,n—1). (15.8)
Indeed, otherwise we can find t; €]to, 0, (to)] such that
u (t;7) > 0 for t €lto, [ (i=0,...,n—1), ™V (t;;79) =0.

Then (0.3), (15.6) and (15.7) imply

ty
u" V(i) =y — | Flu)(s)ds =7 -
to

_/El(tl)F(U)(S)ds _/E'g(tl)F(U)(S)dS_ /Ea(tl)F(U)(S)dS >
=N /EQ(%”O)) [F' () (5)lds — / |F(6)(s)|ds > 0.

E1 (15 (to))
The obtained contradiction shows that (15.8) is true. Therefore by (0.3)
u(t;y) satisfies (15.5), hence v € T';.
Analogously it can be shown that if v < —~g, then v € I';. The nonempti-
ness of I'y and T’y and the fact that 75 < 1 are thus proved.
Now prove that y; ¢ I';. Indeed, otherwise we can find ¢,, € Ry such
that
uD(t;y1) > 0 for t € [ty,, +oo[ (i =0,...,n—1).
Therefore there exists € > 0 exists such that if v € [y, — €,71], then
u® (t;9) >0 for t € [ty,,n:(t,)] (=0,...,n—1).

By (0.3) this means that u(¢; ) satisfies (15.5) whence it follows that v, —¢ €
I';. But this contradicts the definition of v1, so 71 € T'y. Analogously we
can show that v1,7, €Ty Ul B
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Let n be even, F € V(r1,0), conditions (0.2), (15.1) and
(15.3) be fulfilled and (0.1) have property . Then (0.1) has an oscillatory
solution.

Proof. By Lemma 15.1 (0.1) has a proper solution. Since n is even and the
equation has the property , this solution has to be oscillatory. W

Let n be odd,conditions (0.3), (15.1) and (15.3) be fulfilled
and suppose that for some to > 0 and ¢ € C([10,t0]; R), satisfying o(t) Z 0
for t € [10,t0] and ¢(to) = 0 inequality (15.6) holds. Let, moreover, (0.1)
have property . Then it has an oscillatory solution as well as solutions
satisfying (0.5).

Proof. The existence of proper solutions satisfying (0.5) follows from Lemma
15.2 and the definition of property . Besides, Lemmas 15.1 and 15.2 imply
the existence of a proper solution not satisfying (0.5). Since n is odd and
(0.1) has property , this solution has to be oscillatory. W

Let F € V(7;0), conditions (12.1), (15.1) and (15.3) be
fulfilled and suppose that for some to > 0 and ¢ € C([10,t0]; R), satisfying
o(t) Z0 fort € [10,t0] and p(to) = 0 inequality (15.6) holds. Let, moreover,
equation (0.1) have property ", Then (0.1) has an oscillatory solution.
Moreover, if n is even, along with the oscillatory solution it has a proper

solutions satisfying (0.5).

Proof. By Lemma, 15.1 (0.1) has a proper solution. Since (0.1) has property
N, this solution has to be oscillatory when n is odd. Suppose now that n is
even. Then according to Lemma 15.2 (0.1) has proper solutions satisfying
(0.5). Besides, by Lemmas 15.1 and 15.2 this equation has a proper solution
not satisfying (0.5). Since (0.1) has property  and n is even, this solution
has to be oscillatory. W
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CHAPTER 6

§ 16. ON A SINGULAR BOUNDARY VALUE PROBLEM

In this section we shall establish the sufficient conditions for the unique
solvability and oscillation of solutions of the following boundary value prob-
lem:

u'(t) =D pi(tyu(8i(t), (16.1)
u(t) = @(t) for t 677%0,0], tl}_Too|u(t)| < +00, (16.2)
where
pi € Lioc(Ry s Ry ), 6; € C(Ry,R), 6;(¢) <t
for t e Ry, t_li+m005i(t) =400 (i=1,...,m), (16.3)
v € C([10,0; R), 70 = min{(infd;(#) :t € Ry):i=1,...,m}.
If
@ m
Jm [ (s =) ;pi(S)ds < +00, (16.4)
where

n(t) = max{n;,(t) : i =1,...,m},

ns, (1) = sup{s : 8;(s) <t} (i=1,...,m), (16.5)

then problem (16.1), (16.2) has a unique solution.

To the theorem we need some auxiliary assertions.
For any v € R denote by u(-;) the solution of (16.1) satisfying

u(t) = (t) for t € [r,0], u'(0)=1.
Define the sets I'y,I's C R as follows:

yeTi & lim u(t;y) = +oo, (t;v) >0,

lim o
t—4o00
. N : Iy,
yeTl, & tkinoou(t,y) = —o0, lim u/(t;7) <0.

t—+o0
Let conditions (16.3) be fulfilled. Then Ty and Ts are non-
empty and
Y2 <7, YE[v.n]=v¢liUTy,
where y1 = inf 'y, v9 = sup 2. Moreover, if v2 < 1, then problem (16.1),

(16.2) has an infinite set of solutions and each of them is oscillatory and
unbounded.
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Proof. The nonemptiness of I'y and I's, as well as the inequality v» < 7
can be proved similarly to Lemma 15.2. If 75 < 1, then for any v € [y2, 71]
we readily find that u(-;~) is oscillatory and unbounded and R =T, UTy U

[’72771]' u

Let conditions (16.3) be fulfilled, v2 < v1 and v € [y2, 7]
Then there exists v* €]y1,+o0o[ such that

u(t;y") > lu(t; )], w'(G97) > [W'(t9)], for t>1. (16.6)
Proof. Introduce the notation
co = max{|p(t)] : t € [r0,0]} + max{|u(t; y)| + |u'(t;7)] : £ € [0,n(1)]},
n(1) m
v = 2¢p + co/o z;pl(s)ds
In the first place show that
u' (t;9%) > 2¢o for 0 <t < n(l). (16.7)
Assume the contrary. Then for some ¢y € [0,1(1)] we have
u'(t;4*) >0 for 0 <t <t,
u(t;y*) > —cg for 0 <t <ty, and u'(to;7*) < 2c

which is impossible because (16.1) implies

m

n(1) m
S pi(suldi(s)i")ds > "o [ 3 pils)ds = 2
0 i=1

i=1

to
u'(to;y*) = 7*+/
0

Therefore (16.7) is valid.
By (16.7) we have

u'(n(1);7%) > Ju' (n(1); )], wlt;v) > 2cot +p(0) > Ju(t;v)|
for 1<t<n(l).

Keeping in mind that p;(t) > 0 for t € Ry (i = 1,...,m), from the latter
inequality we obtain (16.6). W

Proof of Theorem 16.1. Due to Lemma 16.1 it suffices to show that v2 = ;.
Assume on the contrary that v2 < 7, and take v €]y2,v1[. By Lemma 16.2
there exists v* €]v1, +oo[ such that (16.6) holds. We have to show that for
any sufficiently large ¢

u(tin) > (143 )lutti)l, (16.8)

where p €]0, +00[ satisfies

n(t) m
p> /t (s —1) ;pi(S)dS for t e Ry. (16.9)
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u(+;y) is oscillatory by Lemma 16.1. Let ¢ty € [(1),4+o00[ be a zero of u(-;7)
and s €]to, +oo[ be any point which is not a zero of u(-;y). For the sake
of definiteness assume that u(sp;7y) > 0. Then we can choose s1 € [to, Sol,
Sz €]s0, +00[ and § €]s1, s2[ such that

u(s1;7y) = u(sz;y) =u'(5;7) =0,

~ 16.10
u(F7) > u(s;y) > 0 for s <5< 5. (16.10)

It is easy to see that § < n(s1). Moreover, using (16.6) and (16.9), from the
equality

un=- [ (5= 50) Y pils (i) 7)ds

we obtain

_(i /E,(S — s1)pi(s)u(d;(s);v)ds +
+Z/ s — s1)pi(s (5i(s);7)dS) <- i/ ','(S — 51)pi(8)u(8;(s);7)ds <

77(81) m
< u(si;7) / (5—51) S pils)ds < pulss;7),

S1 i=1

where E] = {s € [s1,5] : §i(s) > s1}, E = {s € [51,5] : di(s) < s1}
(t=1,...,m). Now by (16.6) and (16.10) we have

u(s0i7") = (o3 7") + /o137 oo — 1) + | " (50 = 5) x

S1

1
X sz 8i(s); v )ds > pu(s ;Y) +

i (s17) (50 — 1) + / (50— ) Y pils)u(si(s)i)ds =

S1

= %U(E, ) + u(s0;7) 2 (1 + %)U(SOW)'

Since sp has been chosen arbitrarily we hence conclude that (16.8) is valid
on [tg, +00l.
Let t; € [n(to), +oo[ and u'(t1;v) = 0. By (16.6) and (16.8)

1
uw'(t ") = (tr;y /t sz 0;(8);v")ds > (1+ ;) X

1 i=1

X Zpl(s)|u(5( ); )|ds>(1+ )|u (t;y)] for t>t1. (16.11)



161

Using (16.8) and (16.1) we can show by induction that there exists a se-
quence of points t; € Ry (1 =1,2,...) such that for any ¢ € N we have the
equalities
1\¢ 1y¢
ultsr?) > (1) uti )l o97) > (14+2) W)
for t>t;, (i=1,2,...).

Therefore

im GV (16.12)
t=-+oo u(t;v*)

Put 7o = (v +12)/2 and ¢ = —(v = )/(7" — 7). Clearly, u(t; ) =
(1 = c)u(t;y) + cu(t;v.). Hence by (16.12) we have

u(t;70)

im =c<0
t=Fo0 u(t; 7*)

which is impossible since v9 €]y2,71[ and by Lemma 16.1 u(-;70) is an
oscillatory solution. The obtained contradiction proves the theorem. B

Letp € Lioe(Ry; Ry ), 6 € C(Ry;R), 0(t) <t fort € Ry,

lim; o 0(t) = 400,
vrai sup{p(t) : t € Ry } < 400, sup{t—4d(¢t):t € Ry} < +o0
and
+o0
/ p(t)dt = +o0.
Then the boundary value problem

u"(t) = p(t)u(d(t)), u(t) =(t) for t€[n,0], lim |u(t)] < +oo,

t—+4o0
where 1o = inf{d(t) : t € Ry} and ¢ € C([10,0];R), has a unique solution.

Corollary 16.1 was proved in [102] under the additional restriction
f+°° p(t)dt = +oo which, as Theorem 16.1 shows, is quite unnecessary.

In addition to (16.3) and (16.4), let the condtion

/+Oot§:pi(t)dt = +o00. (16.13)

be also fulfilled. Then problem (16.1), (16.2) has a unique solution u : Ry —
R satisfying

lim [u(t)| = 0. (16.14)

t—+00



162

Proof. The existence and uniqueness of a solution are provided by Theorem
16.1. Show that (16.14) is fulfilled. Assume the contrary. Then there exist
€]0, +o0[ and tg € R} such that

[u(t)| > ¢, u(t)u'(t) <0 for t>to.

Multiplying both sides of (16.1) by (¢t — ¢1) signu(t1), where t; = n(to), and
integrating, we obtain

lu(t)] = (¢ —t1)|u'(t1)| + |u(®) |+ /S—tl sz s))|ds
for t>1t;

whence it follows that

/ (s—t) sz (21)|

t1

which contradicts (16.13). The obtained contradiction proves the validity
of (16.14). M

Let
Pi € Lioe(Ry5]0,4+00]) (i =1,...,m), o(t) £0
for t € [19,0], ()<tf0rt€]R+
(Z - ]-7 teey )7 h_m (5l(t) - t) > —0oQ, (1615)
t—+o0

vrai sup{p;(t) :t e R} < 400 (i=1,...,m).

Then problem (16.1), (16.2) has a unique proper solution. Moreover, if §;
(i=1,...,m) are nondecreasing and

t

lim pi(s)ds >0 (i=1,...,m), (16.16)
t—=+400 J§;(t)
+
. . At _ _A(S
mf{tll—inme /t (s—t sz PN €)0,+o0[}>1, (16.17)

then this solution is oscillatory.

Proof. By virtue of (16.15), Lemma 15.1 and Theorem 16.1 problem (16.1),
(16.2) has a unique proper solution u : Ry — R. Thus to complete the
proof it suffices to show that w is oscillatory. Assume the contrary. Then
there exists to € Ry such that

(=1)%u® (t)u(t) > 0 for t >ty (i =0,1). (16.18)

On the other hand, by Theorem 9.3' and (16.15)—(16.17) equation (16.1)
has no solution satisfying (16.18). The obtained contradiction proves the
theorem. H
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Let (16.15) be fulfilled. Then problem (16.1), (16.2) has
a unique proper solution. Moreover, if (16.16) holds and for some ty € Ry
we have

2

vrai inf { ipi(t)(t —6i(1)?:t € [t0,+oo[} > (g) . (16.19)

then this solution is ocillatory.

Proof. Tt suffices to note that (16.19) implies (16.17). W

" Let piaAi 6]07 -|-OO[ (Z = ]-7---7m)’ (NS C([—A,O],]R)
i =1,

and p(t) Z 0 on [—A,0], where A = max{A; : ...,m}. Then the
problem
u(t) = pault — Ay), (16.20)
i=1
u(t) = @(t) for —A<t<0, lim |u(t)| < 400, (16.21)
t—+o00

has a unique proper solution. Moreover, if
1 m
inf {ﬁ ZpieAA" : A €]0, +oo[} > 1,
i=1

then this solution is oscillatory.
Let
pi € LlOC(]R—F;]Oa'i_OOD (Z = ]-7 cen 7m)7 (,D(t) ¢ 0 fOT‘ To S t S 07
Si(t) <t for t€ R, vraisup{t’p;i(t):t€ R} < +o0
lim d;i(t)

t—+o00

>0 (i=1,...,m). (16.22)

Then problem (16.1), (16.2) has a unique proper solution. Moreover, if §;
(i =1,...,m) are nondecreasing and

t

lim spi(s)ds >0 (i=1,...,m), (16.23)
t—+oo 8 (t)
+0oo m
inf{ lim t)‘/ (s —1) Zpi(s)(S;)‘(s)ds : A €]0, +oo[} >1, (16.24)
t—+o00 t i—1

then this solution is oscillatory.

Proof. Following Lemma, 15.1, Theorem 16.1 and (16.22), problem (16.1),
(16.22) has a unique proper solution v : Ry — R. If we assume that u
is nonoscillatory, then there exists ¢ € Ry such that (16.18) is fulfilled.
But by Corollary 9.9 and (16.22)—(16.24) equation (16.1) has no solution
satisfying (16.18). The obtained contradiction proves the theorem. M
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Let (16.22) be fulfilled. Then problem (16.1), (16.2) has
a unique proper solution. Moreover, if §; (i = 1,...,m) are nondecreasing,
(16.23) holds and for some to € Ry we have

. 1 e AN s Al
inf { O+ D) vrtazlttnft ;pl(t)éi () : A E]O,+oo[} >1, (16.25)

then this solution is oscillatory.

" Let p; €]0,+00[ and a; €]0,1[ (i =1,...,m). Then the
problem

- P .
u'(t) =3 rprulet), u@=co#0 lim [u(®)] < -+oo,
i=1

has a unique proper solution. Moreover, if

. 1 m _
inf {m ;piai A €]0, +OO[} > 1,

then this solution is oscillatory.

Let
Di € Lioe(Ry310,+00]), i(t) <t for te€R,;,
Ind; .
im 2% S0 o1, m),
t—+o00 Int (1626)

o(t) Z0 for m <t <0,
vrai sup{t?Int p;(t) : t € [1,400[} < +00 (i=1,...,m).

Then problem (16.1), (16.2) has a unique proper solution. Moreover, if §;
(i =1,...,m) are nondecreasing, (16.23) is fulfilled and for any k € N we
have

+oo

inf{ lim (lnt)A/ (s —t) x
t——o0 t

m

X Zpi(s)(ln 6i(s) ™A E]O,k]} > 1, (16.27)

i=1

then this solution is oscillatory.

Proof. By Lemma 15.1, Theorem 16.1 and (16.26) problem (16.1), (16.2) has
a unique proper solution. If we assume that u is nonoscillatory, then there
exists tp € Ry such that (16.18) is valid which is impossible by Theorem
9.10', (61.23), (16.26) and (16.27). W
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Let (16.26) be fulfilled. Then problem (16.1), (16.2) has
a unigque proper solution. Moreover, if §; (1 = 1,...,m) are nondecreasing
functions, (16.23) holds and for any k € N there exists t;, € [1,+00[ such
that

inf {%vral inf #2(In t)M! Zp (In6; ()™ = A E]O,k]} >1, (16.28)

t>1g

then this solution is oscillatory.
Proof. It suffices to note that (6.28) implies (6.27). W
" Let p; €]0,400[ and a; €]0,1[ (i =1,...,m). Then the

problem

u" (1) :;mu(tm), u(0)=co#£0, lim [u(t)] <-+o0

has a unique proper solution. Moreover, if

inf{ sz —A : A €J0 [}>1,

then this solution is oscillatory.

§ 17. EXISTENCE OF BOUNDED SOLUTIONS

In this section we shall establish the sufficient conditions for the existence
of bounded solutions of the equation

u'(t) = f(t,u(r(t), -, u(dm(t))) (17.1)
where f € Kjo.(Ry x R™;R) and
di(t) <t for t e Ry, t_li+m005i(t) =400 (1=1,...,m). (17.2)

Let

0< f(t,m1,..., @) sl (17.3)

i=0
for teRy, (z1,...,7m) € R,
where \; €]0,1[ (i =1,...,m), >i" X\ <1 and p € Lioe(Ry; Ry ). More-
over, if
- n1(t)

tkgloo t (s —t)p(s)ds < 400, (17.4)

where 11 (t) = supq{s : 61(s) < t}, then every oscillatory solution of (17.1) is
bounded.
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Proof. Let u : [tg, +oo[— R be an oscillatory solution of (17.1). By (17.3)

u" (t) signu(dy(t)) >0 for t >t (17.5)
and
0] <o) [T )P for > 1. (176)

where t, € [to,+00[ is sufficiently large.
There are two possibilities: either . ligl lu(t)| < |u(t*)| for some t* €
—+00

[ts, +o00[ or t@ |u(t)| > |u(t)| for t > t,. In the first case the validity of
—400

the theorem is obvious.

Consider the second case. We find that there exist the increasing se-

quences {t}>5 and {4} tending to 400 and satisfying

te < tr, u(ty) =u'(tr) =0, u(t) #0, (17.7)
for tp<t<tp (k=1,2,...)
and
lu(t)| < u(ty)| for t, <t <t (k=1,2,...). (17.8)
Show that
mty) >t (k=1,2,...). (17.9)

Indeed, assuming that 7; (¢) < tx for some k € N, by (17.5) and (17.7) we
obtain
W (tu(t) > 0, fu(t)] > Ju(E)] for ¢ >
which is impossible because u is oscillatory.
Inequalities (17.6), (17.8) and (17.9) together with the equality

tr

u(ly) = —/ (5 — t)u" (s)ds
tr

imply

()| < / (s = () [T 1u(6:()

tr

>"'ds§|u(t~k)|>‘/ (s — t)p(s)ds <

tr

N M (tx)
< Ju(te)* (s —tr)p(s)ds (k =ko,ko +1,...),
ty

where ty, > n(t.). Therefore

- n1(tx)
(@)1= g/ (s — t)p(s)ds (k= ko ko +1,...)

tr
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with A = 377" \; < 1. Hence by (17.4) and (17.8) we conclude that u is
bounded. W

For equation (17.1) consider the initial value problem
u(t) = @(t) for 0 <t <0, u'(0) =7 (17.10)
and the boundary value problem

u(t) = p(t) for 0 <t <0, Tim [u(t)] < +oo, (17.11)
t—+o0

where ¢ € C([1,0];R]), ¢(0) =0, v € R, 790 = min{inf;>0;(t) : i =
1,...,m}.

By (17.2) it is clear that for any v € R problem (17.1), (17.10) has a
unique solution u(+;7) : Ry — R depending continuously on the parameter
v. By Lemma 15.2 there exists v € R such that u(-;) either is oscillatory
or satisfies

u(t,y)u'(t,y) <0 for t > t,,
where t, € R is sufficiently large.

Let (17.3) and (17.4) be fulfilled. Then problem (17.1),
(17.11) is solvable. Moreover, if p(t) Z 0 on [1p,0] and

ft,x1,...,xy)signzy >0 for x #0,
teRy, (x1,...,2,) € R,

then every solution of this problem is proper.

(17.12)

Proof. The first part of the asserion of the theorem follows from Theorem
17.1. As to the second part, its proof can be obtained from Lemma 15.1
due to (17.2) and (17.12). W

Let (17.2)<(17.4) and (17.12) be fulfilled, X\; €]0,1] (i =
]-7---7m)’ 221 Ai < 1, pe LlOC(]R—F;]Oa"'OODf (p(t) $—é 0 on [7-070] and
©(0) = 0. Then problem (17.1), (17.11) has a proper solution. Moreover, if

ftm,. o wm)signay > q() [[ 1w for te Ry, (17.13)

i=1

(Z1,...,Zm) ER™

and

/+OO " q(t) ﬁ[t —0; ()M dt = +o00, (17.14)
0 y

i=1

where q¢ € Lioe(Ry;]0, +00][), then every solution of this problem is oscilla-
tory.
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Proof. The fact that problem (17.1), (17.11) has a proper solution u : Ry —
R follows from theorem 17.2. To complete the proof it suffices to show that u
is oscillatory. Indeed, otherwise there would exist o € Ry such that (16.18)
be satisfied which would be impossible by (17.13), (17.14) and Theorem
9.15. N

Let p, A €]0,4+00][, A €]0,1[. Then the equation
u"(t) = plu(t — A)|*signu(t — A)

has a proper bounded solution. Moreover, every oscillatory solution of this
equation is bounded.

Letd € C(Ry;R), 6(t) <t forte Ry, A €]0,1], « €]0,1],
a(t)

i W1 WDy

t—=+too ¢ t—+o00

p €]0, +o0[ and

Then the equation
" _ p .
u"(t) = mlu(é(ﬂ)l* signu(6(t))

has a proper bounded solution. Moreover, every oscillatory solution of this
equation s bounded.

Similarly to Theorem 17.1 one can prove

Let conditions (16.3) be fulfilled and for any sufficiently
large t there hold

/N(t) (s —1) ipi(s)ds <1, (17.15)

i=1

where n is defined by (16.5). Then every oscillatory solution of (16.1) is
bounded.

Let (16.15) and (17.15) be fulfilled. Then problem (16.1),
(17.11) has a unique proper solution. Moreover, if 0; (i = 1,...,m) are
nondereasing, (16.16) and (16.17) hold and

lim (;(t) —t) > —oo, vraisup{p;(t):t € Ry} < +oo (17.16)
t—+oo

(i=1,...,m),
then this solution is oscillatory.

Proof. The fact that problem (16.1), (17.1) has a unique proper solution
u: Ry — R follows from Lemma 16.1 and Theorems 16.3 and 17.4. As to
the second part of the assertion of the theorem, as while proving Theorem
16.3, the oscillation of u is obtained by Theorem 9.3', (16.16), (16.17) and
(17.6). =
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Let conditions (16.15) and (17.15) be fulfilled. Then prob-
lem (16.1), (17.11) has a unique proper solution. Moreover, if §; (i =
1,...,m) are nondereasing and (16.16), (16.19) and (17.16) hold, then this
solution is oscillatory.

Let A, p €]0,4+00] and

2 A2 19+ 2v/34
- < P < .
e 2 18

Then the problem

u'(t) = pu(t — A), u(t) =p(t) for t € [-A,0], lim u(t)=0

li
t——+o00
where ¢ € C([—A,0;R) and o(t) Z 0 on [—A,0], has a unique solution
and this solution is oscillatory.

Proof. The uniqueness and oscillation of a solution satisfying tl@ lu(t)] <
[ee]

+00 are obtained by Theorem 17.5. The fact that this solution tends to
zero as t — +oo follows from Theorem 77 in [86]. W

Let (16.15) and (17.15) be fulfilled. Then problem (16.1),
(17.11) has a unique solution. Moreover, if 0; (i = 1,...,m) are nonde-
creasing and (16.22)—(16.24) hold, then this solution is oscillatory.

Proof. The first part of the above assertion follows from Theorem 17.5. The
second part is proved by Corollary 9.9. using (16.22)—(16.24). H

Let (16.15) and (17.15) be fulfilled so that problem (16.1),
(17.11) has a unique solution. Moreover, if 0; (i = 1,...,m) are nondecreas-
ing and (16.22), (16.23), (16.25) hold, then this solution is oscillatory.

Let p €]0,4+00[, @ €]0, 1] and

p(|lna|l+a—-1) <1, (17.17)
VitimZa—|ina 1
p(V4+In%a —2)e s > - (17.18)
Then the problem
p —
Mg\ _ —
w1) = et uw0)=co £0, T jult)] < +oc

has a unique solution and this solution is oscillatory.

Remark 17.1. One can easily verify that there really exist p €]0, +oo[ and
a €]0, 1] satisfying both (17.17) and (17.18).

Let (16.15) and (17.15) be fulfilled. Then problem (16.1),
(17.11) has a unique proper solution. Moreover, if 6; (i =1,...,m) are non-
decreasing functions and (16.23), (16.26) and 16.27 hold, then this solition
s oscillatory.
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Proof. The existence and uniqueness follow from Theorem 17.5. As to
the oscillation, it is proved by Theorem 9.10" using (16.23), (6.26) and
(16.27). W

Let (16.15), (17.15) be fulfilled. Then problem (16.1),
(17.11) has a unique proper solution. Moreover, this solution is oscillatory
provided that (16.23), (16.26) and (16.28) hold.

Let p €]0,+o0[, a €]0, 1] and
1
- <p/lhea| < 1.
e
Then the problem

n _ V4 w(t®
0= e )

w(0) = o £0, T Ju(t)| < +o0

has a unique solution and this solution is oscillatory.
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