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CONNECTION BETWEEN SOLUTIONS OF

THE SCHWARZ NONLINEAR

DIFFERENTIAL EQUATION AND THOSE OF

THE PLANE PROBLEMS FILTRATION



Abstract. In the present paper, using linearly independent solutions
of the Fuchs class linear differential equation which contains a term with
the first order derivative of the unknown function, we propose effective
methods for solving both the Schwarz nonlinear equation, whose right-hand
side is a doubled invariant of the Fuchs class linear differential equation,
and the plane problems of filtration with partially unknown boundaries.
The modulus of the difference of the characteristic numbers of the Fuchs
class linear differential equation for every singular point is equal to the
corresponding (divided by π) angle at the vertex of a circular polygon. For
the first time it is shown that the coefficients at the poles of second order
of the doubled invariant of the Fuchs class linear differential equation and
those on the right-hand side of the Schwarz equation coincide completely.

Relying on the property mentioned above, we suggest simpler methods
of solving the problems of the theory of stationary motion of incompressible
liquid in a porous medium with partially unknown boundaries than those
described by us earlier for the solution of the same problems.
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1. On the Connection Between Solutions of the Fuchs Class
Linear Differential Equation of General Type and the

Nonlinear Schwarz Differential Equation

The filtration theory uses analytic function w(z) = u − iv, z = x + iy,
where w(z) the is complex velocity, and u and (−v) are its components
satisfying the Cauchy-Riemann conditions [1–6].

Let on the plane w = u − iv a simply connected domain s(w) be given
with the boundary l(w) consisting, in the general case, of circular arcs of
different radii. Such a domain is called a circular polygon. By Ak, k = 1,m,
we denote the angular points of the boundary l(w) and by πνk, k = 1,m,
the interior angles, respectively. In the general case it can be assumed that
−2 ≤ νi ≤ 2, [1–31].

We seek for an analytic function w(ζ) which maps conformally the half-
plane Im(ζ) ≥ 0 of the plane ζ = t + iτ onto the domain s(w) with the
boundary l(w). Denote by t = ak, k = 1,m, the points of the axes t = ak,
k = 1,m, of the plane ζ = t + iτ which are mapped respectively into the
points Ak, k = 1,m, where −∞ < a1 < a2 < · · · < am < +∞. The point
t = ∞ is assumed to be mapped into a nonangular point of the boundary
l(w) of s(w), which may lie between the points Am and A1, although one
can consider as well the case in which t = ∞ is mapped into an angular
point Ak.

Using the linear-fractional transformation, we can map AmA1, the arc of
the circumference of the boundary l(w) of s(w), onto a straight line or onto
a part of a straight line parallel to or coinciding with the real axis v = 0.

For the sake of brevity, without restriction of generality, from the very
beginning we assume that the side AmA1 of l(w) is parallel to or coincides
with the axis v = 0. Therefore the function w(ζ) can always be extended
analytically through the intervals −∞ < t < a1, am < t < +∞ to the
lower half-plane Im(ζ) < 0. Throughout the paper it will be assumed that
if ζ ∈ Re ζ, then ζ = t.

The unknown function w(ζ) must satisfy the well-known Schwarz equa-
tion [12–17],

{w, ζ} ≡ w′′′(ζ)/w′(ζ) − 1, 5[w′′(ζ)/w′(ζ)]2 = R(ζ), (1.1)

R(ζ) =

m∑

k=1

{0, 5(1− ν2
k)(ζ − ak)−2 + ck(ζ − ak)−1}, (1.2)

where ak and ck, k = 1,m, are unknown real parameters to be defined later
on.

The expansion of the function R(ζ) in the neighborhood of the point
t = ∞ in terms of the powers of 1/ζ yields

R(ζ) =

∞∑

n=1

Nnζ
−n.
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The coefficients Nk, k = 1, 2, 3, must satisfy the conditions

N1 =

m∑

k=1

ck = 0, N2 =

m∑

k=1

[akck + 0, 5(1− ν2
k)] = 0,

N3 =
m∑

k=1

[a2
kck + ak(1− ν2

k)] = 0,

(1.3)

because the point ζ = ∞ is the image of a nonangular point of the boundary
l(w) [12–16].

According to the Riemann theorem, three of the parameters t = ak,
k = 1,m, can be chosen arbitrarily and fixed. From the system of equations
(1.3) the parameters c1, c2 and c3 in the system of equations (1.3) can be
expressed in terms of the remaining ak and ck. Consequently, the number
of unknown parameters ak and ck is equal to 2(m− 3).

By substitution w′(ζ) = 1/[u(ζ)]2, the equation (1.1) can be reduced to
the linear Fuchs class equation

u′′(ζ) + 0, 5R(ζ)u(ζ) = 0. (1.4)

By means of linearly independent particular solutions of (1.4) u1(ζ) and
u2(ζ) with the Wronskian u1(ζ)u

′
2(ζ) − u2(ζ)u

′
1(ζ) = 1, we can construct

the general solution of (1.1) as follows:

w(ζ) = [Au1(ζ) +Bu2(ζ)]/[Cu1(ζ) +Du2(ζ)], (1.5)

where A, B, C, D with AD −BC = 1 are the integration constants of the
equation (1.1).

The general solution (1.5) of the equation (1.1), along with the 2(m− 3)
essential parameters ak, ck, k = 1,m, depends in the general case on three
unknown complex parameters A, B, C, D with AD − BC = 1, i.e. on six
real parameters. Thus the number of unknown parameters is equal to 2m.

The equation of the boundary l(w) of s(w) can be written as

w(ζ) = [w(ζ)B0 + iD0]/[−iA0w(ζ) +B0], ζ ∈ l(w), (1.6)

where w = u− iv, w = u+ iv, B0 = (C∗0 + iB∗0)/2, B0 = (C∗0 − iB
∗
0)/2, A0,

B∗0 , C∗0 , and D0 are given real piecewise constant functions which, without
restriction of generality, satisfy the condition B0B0 −A0D0 = 1.

The coordinates of the centers (u0, v0) and the radii of the circumferences
(1.6) can be determined as follows:

u0 = −B∗0/[2A0], V0 = −C∗0/[2A0],

R0 =
√

[(B∗0)2 + (C∗0 )2 − 4A0D0]/A2
0.

(1.7)

Suppose that we have constructed linearly independent solutions u∗1 and
u∗2(ζ) with the Wronskian u∗1(ζ)(u

∗
2(ζ))

′ − (u∗1(ζ))
′u∗2(ζ) = 1. Then w(ζ) =

u∗1(ζ)/u
∗
2(ζ),

u∗1(ζ)/u
∗
2(ζ) = [B0u∗1(ζ) + iD0u∗2(ζ)]/[−iA0u∗1(ζ) +B0u∗2(ζ)]. (1.8)
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The methods of constructing w(ζ) in the general case have been described
in our works [25–31].

The differentiation of (1.8) yields

1/[u∗2(ζ)]
2 = 1/[−iA0u∗1(ζ) +B0u∗2(ζ)]

2. (1.9)

The equalities (1.6)–(1.9) imply that

u∗1(ζ) = ±[B0u∗1(ζ) + iD0u∗2(ζ)], u∗2(ζ) = ±[−iA0u∗1(ζ) +B0u∗2(ζ)]. (1.10)

In [24], we have proved the equality (1.10) in somewhat different way.
The signs + and − are fixed uniquely by means of the boundary conditions.

Let us consider the Fuchs class second order differential equation [14–16]

v′′(ζ) + p(ζ)v′(ζ) + q(ζ)v(ζ) = 0, (1.11)

where

p(ζ) =

m∑

j=1

[1− (α1j + α2i)](ζ − ai)
−1,

q(ζ) =

m∑

j=1

[α1jα2i(ζ − aj)
−2 + c∗j (ζ − aj)

−1].

(1.12)

For the points t = aj , j = 1,m, t = ∞ to be regular singular points, it
is necessary and sufficient that p(ζ) and q(ζ) have the form (1.12) and the
parameters c∗j , j = 1,m, satisfy the condition [11–20]

M1 =

m∑

k=1

c∗k = 0. (1.13)

Suppose that the parameters aj , αkj , c
∗
j , k = 1, 2, j = 1,m, are real and

t = aj , j = 1,m, are the same as in (1.2). Using the linearly independent
particular solutions (1.1) v1(ζ) and v2(ζ), we construct the general solution
of the Schwarz equation

w(ζ) = [A1w1(ζ) +B1]/[C1w1(ζ) +D1], (1.14)

where w1(ζ) = v1(ζ)/v2(ζ) is a particular solution of the Schwarz equation
with the right-hand side equal to

{w, ζ} = 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2, (1.15)

and A1, B1, C1, D1, A1D1 − B1C1 6= 0 are the integration constants of
(1.14).

The Wronskian for (1.11) has the form

v1j(ζ)v
′
2j(ζ) − v′1j(ζ)v2j(ζ) = c∗j

m∏

j=1

(ζ − aj)
α1j+α2j−1. (1.16)

The paper [14, p. 300] states that for reducing the right-hand side of
(1.15) to the function R(ζ) appearing in (1.2), we have to choose two func-
tions p(ζ) and q(ζ) due to which the problem becomes indeterminate. In
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[14] the author considers the linear second order equation of general type.

But if one takes (1.11), where α1j , α2j , j = 1, (m+ 1), satisfy the conditions

α1j − α2j =νi, j=1,m, α1(m+1) − α2(m+1) =1, t=am+1 =∞,

α1(m+1) = 3, α2(m+1) = 2,

m∑

k=1

[1− (α1j + α2i)] = 6,
(1.17)

then the right-hand side of (1.15) is, as it can be directly verified, represented
in the form

{w, ζ} = 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2 =

=

m∑

j=1

{0, 5[1− (α1i − α2i)
2](ζ − aj)

−2 + c∗∗j (ζ − aj)
−1}, (1.18)

where

c∗∗j =2c∗j −βj

m∑

k=1,k 6=j

βk(aj−ak)−1, βk =1− (α1k +α2k), k=1,m. (1.19)

Since α1j − α2j = νi, j = 1,m, the coefficients at (ζ − aj)
−2 in (1.2) and

(1.18) coincide.
The expansion of the function 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2 in the neighbor-

hood of the point ζ = ∞ into the series with respect to the powers 1/ζ
results in

2q(ζ)− p′(ζ) − 0, 5[p(ζ)]2 =

m∑

k=1

M∗
k ζ
−k. (1.20)

The point ζ = ∞ is not a branching point of (1.11), therefore the condi-
tions

M∗
1 ≡

m∑

j=1

c∗∗j = 0, M∗
2 =

m∑

k=1

[akc
∗∗
k + 0, 5(1− ν2

k)] = 0,

M∗
3 =

m∑

k=1

[a2
kc
∗∗
k + ak(1− ν2

k)] = 0

(1.21)

must be fulfilled.
The condition M∗

1 = 0 coincides with (1.13). Below we will see that the
last two equations of (1.21) can be obtained in somewhat different, natural
way.

As is known, an equation of the type (1.11) can be reduced to an equation
of the type (1.4). The expression q(ζ)−0, 5p(ζ)−0, 25[p(ζ)]2 is, in a certain
sense, an invariant of (1.4) [23, p. 243]. Indeed, using the substitution
v(ζ) = exp[−0, 5

∫
p(ζ)dζ]v0(ζ) [23], we reduce the equation (1.11) to the

type

v′′0 (ζ) + (q(ζ) − 0, 25p2(ζ) − 0, 5p′(ζ))v0(ζ) = 0. (1.22)
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If the characteristics α1j , α2j , j = 1,m, of equation (1.11) satisfy the
conditions α1j + α2j = 1, j = 1,m, then p′(ζ) = 0, p(ζ) = 0 and hence
R(ζ) = 2q(ζ), 2c∗j = cj , j = 1,m.

The parameters α1j and α2j in the case of the equation (1.1) are defined
by the equalities α1j = 0, 5(1 + νj), α2j = 0, 5(1 − νj), α1j + α2j = 1,
α1j − α2j = νj , j = 1,m.

In (1.6) there take place indeterminate constants c∗j , j = 1,m, which
can be defined by the equality (1.16).

Indeed, if we divide both sides of the equality (1.16), by (ζ−aj)
α1j+α2j−1

and then pass to the limit ζ → aj , we will get a system of equations for
determination of c∗j , j = 1,m.

Note here that the equalities (1.10) can be generalized even in the case
where α1j + α2j 6= 1.

2. Solution of Plane Problems of Filtration with Partially
Unknown Boundaries

Consider some plane problems of the theory of stationary motion of in-
compressible liquid in a porous medium subjected to the Darcy law. The
porous medium is assumed to be undeformable, isotropic and homogeneous
[1–7].

The plane of the liquid motion coincides with the plane of the complex
variable z = x+ iy. In the domain s(z) with the boundary l(z) we seek for a
complex potential w(z) = ϕ(x, y) + iψ(x, y), where ϕ(x, y) and ψ(x, y) are,
respectively, the velocity potential and the stream function which satisfies
the boundary conditions given below. The functions ϕ(x, y) and ψ(x, y)
are connected by means of the Cauchy-Riemann conditions. If the analytic
function ω(z) is found, then due to the dependencies [1–7]

ϕ(x, y) = −k(p/γ + y) + c, w(z) = u− iv,

u =
∂ϕ

∂x
=
∂ψ

∂y
, v =

∂ϕ

∂y
= −

∂ψ

∂x
,

(2.1)

where p is the hydrodynamic pressure, γ is the specific weight of the liquid,
u and v are the vector components of filtration velocity, ω′(z) ≡ w(z) is the
complex velocity, k is the coefficient of filtration, and c is an arbitrary con-
stant, all the characteristics of the filtration stream can be found, namely:
filtration velocity, pressure head, pressure, liquid discharge for filtration and
unknown parts of the boundary l(z) of s(z) [1–7; 24–31]. Below we shall
consider the reduced complex potential ω(z), the complex potential divided
by the coefficient of filtration. Next we assume that the boundary l(z)
of s(z) is a simple, piecewise analytic contour consisting of a finite num-
ber of unknown depression curves, segments of straight lines, half-lines and
straight lines. The domains s(z), ω(z) and w(z) = ω′(z) may be bounded
or unbounded. In particular, if the boundary l(z) has no depression curves,
then the domain s(z) turns into a linear polygon.
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In the domain s(z) we have to find an analytic function ω(z) = ϕ(x, y)+
iψ(x, y) which must satisfy the boundary conditions [1–7]

ak1ϕ(x, y)+ak2ψ(x, y)+ak3x+ak4y = fk, k = 1, 2, (x, y) ∈ l(z), (2.2)

where akj , fk, j = 1, 4, are given piecewise constant real functions.
Before we proceed to solution of the basic problem of filtration, we can

determine the boundary l(w) of the domains s(w) and also a part of the
boundary l(ω) of s(ω) [1–7].

Using the functions ω(z) and ω′(z) = dω(z)/dz, the domain s(z) with
the boundary l(z) is mapped conformally respectively onto the domain s(ω)
and s(w) with the boundaries l(ω) and l(w), where the domain s(w) is a
circular polygon with the boundary l(w) consisting of a finite number of
circular arcs, segments of straight lines, half-lines and straight lines.

If we take arbitrarily any part of the boundary l(z) of s(z) and differenti-
ate (2.2) along that part of the boundary l(z) with respect to the parameter
s, where s is the arc length of the curve, we get

(a11u− a12v + a13) cos(x, s) + (a11v + a12u+ a14) cos(y, s) = 0, (2.3)

(a21u− a22v + a23) cos(x, s) + (a21v + a22u+ a24) cos(y, s) = 0, (2.4)

where dx/ds = cos(x, s) and dy/ds = cos(y, s).
For the system (2.3) and (2.4) have a nontrivial solution with respect to

dx/ds and dy/ds, it is necessary and sufficient that the determinant of the
system at the given part of the boundary be equal to zero,

A11(u
2 + v2) +A12u+A13v +A14 = 0. (2.5)

The coefficients akj , k = 1, 2, j = 1, 4, are given by (2.2), and therefore
coefficients A11, A12, A13, and A14 are fixed.

The equation (2.5) can be written in the complex form

w = [Bw + i2A14][−2iA11w +B]−1, (2.6)

where w = u− iv, w = u+ iv, B = A13 + iA12, B = A13 − iA12,

A11 = a11a22 − a21a12, A12 = a11a24 − a21a14 + a13a22 − a23a12,

A13 = a14a22 − a24a12 + a13a21 − a23a11, A14 = a13a24 − a23a14. (2.7)

The coordinates (u∗, v∗) of the center and the radius R∗ of the circum-
ference (2.5) for the chosen by us part of the boundary l(w) are defined as
follows:

u∗ = −A12/[2A11], v∗ = −A13/[2A11],

R∗ =
1

2

√
[A12/A11]2 + [A13/A11]2 − 4A14/A11.

(2.8)

We can require the condition BB − 4A11A14 6= 0, but not the condition
BB − 4A11A14 = 1 because the parameters akj , k = 1, 2, j = 1, 4, are fixed
by the condition (2.2).

For solving the problems of filtration, one usually introduces the plane
ζ = t+ iτ and maps conformally the half-plane Im(ζ) > 0 onto the domains
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s(z), s(ω) and s(w). We denote the conformally mapping functions respec-
tively by z(ζ), ω(ζ) and w(ζ) = ω′(ζ)/z′(ζ), where dω(ζ)/dζ = ω′(ζ) and
dz(ζ)/dζ = z′(ζ). Bk, k = 1, n, denote angular points of the boundary l(z),
l(ω) and l(w) of the domains s(z), s(ω) and s(w) which will be met at least
on one of the above-mentioned boundaries l(z), l(ω) and l(w), as a result
of a circuit in the positive direction. By t = ek, k = 1, n, we denote the
points of the t-axis of the plane ζ which are mapped, respectively, into the
points Bk, k = 1, n, where −∞ < e1 < e2 < · · · < en < +∞. The point
t = en+1 = ∞ is mapped into the nonangular point which lies on some part
of the boundary BnB1.

The boundary values of the functions z(ζ), ω(ζ) and w(ζ), as ζ → t,
ζ ∈ Im(ζ) > 0 will be denoted by z(t) = x(t) + iy(t), ω(t) = ϕ(t) + iψ(t),
w(t) = u(t)− iv(t), while the complex conjugates to the functions z(t), ω(t)

and w(t) will be denoted by z(t), ω(t), and w(t).

Introduce the vectors Φ(ζ) = [ω(ζ), z(ζ)], Φ(ζ) = [ω(t), z(t)], Φ′(ζ) =

[ω′(ζ), z′(ζ)], Φ′(ζ) = [ω′(ζ), z′(ζ)], f(t) = [f1(t), f2(t)]. Then the boundary
conditions (2.2) can be written as follows

(ak2 + iak1)ω(t) + (ak4 + iak3)z(t) = (ak2 − iak1)ω(t)+

+(ak4 − iak3)z(t) + 2ifk(t), −∞ < t < +∞, k = 1, 2. (2.9)

The condition (2.9) by means of the vector Φ(z) can be rewritten as

Φ(t) = g(t)Φ(t) + 2iG−1f(t), −∞ < t < +∞, (2.10)

where g(t) = G−1(t)G(t) is a piecewise constant nonsingular second order
matrix with the discontinuity points t = ek, k = 1, n. G−1(t) is the inverse

to G(t) matrix and G(t) is the complex-conjugate to G(t) matrix.
Below, instead of akj(t), k = 1, 2, j = 1, 4 we will write akj , k = 1, 2,

j = 1, 4.
Matrices G(t) and G−1(t) are defined by the formulas

G(t) =

(
a12 + ia11, a14 + ia13

a22 + ia21, a24 + ia23

)
(2.11)

and

G−1(t) =
1

detG(t)

(
a24 + ia23, −(a14 + ia13)

−(a22 + ia21), a12 + ia11

)
. (2.12)

The matrix g(t) in the interval (aj , aj+1) is defined as

gj(t) = G−1
j Gj =

1

detGj(t)

(
A∗j11, iA∗j12

iA∗j21, A
∗j

11

)
, aj < t < aj+1, (2.13)
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but for j = n− 1 we have

A
∗(n−1)
11 = (−1)(An−1

13 + iAn−1
12 ),

A
∗(n−1)
12 = (−2)A

(n−1)
14 , A

∗(n−1)
21 =2A

(n−1)
11 ,

A
∗(n−1)
11 = a24a12 + a23a11 − a14a22 − a13a21+

+ i(a23a12 − a24a11 + a21a14 − a13a22).

(2.14)

The function A
∗(n−1)

11 is the complex-conjugate to A
∗(n−1)
11 .

Differentiation of (2.10) yields

Φ′(t) = g(t)Φ
′
(t), −∞ < t < +∞. (2.15)

It can be easily verified that the equality g(t) = [g(t)]−1 = G
−1
G holds,

where [g(t)]−1 is the matrix, inverse to g(t), and g(t) is the matrix, complex-
conjugate to g(t).

For the point t = ej we compose the characteristic equation

det(g−1
j+1(ei + 0)gj(ej − 0)− λE) = 0, (2.16)

where g−1
j+1(ej + 0)gj(ej − 0) is a matrix, E is the unit matrix, λ is the pa-

rameter, and gj(ej +0), gj−1(ej−0) are the limiting values of matrices gj(t),
gj−1(y) at the point t = ej from the right and from the left, respectively;

g−1
j (ej + 0) is the inverse to gj(ej + 0) matrix.

If we denote by λkn the characteristic numbers of the matrix g(n−1)(t),
then the equalities

λ1n + λ2n =[A
∗(n−1)
11 +A

∗(n−1)

11 ]/[2 detGn−1],

λ1n · λ2n =detGn−1/ detGn−1,

|λ1n||λ2n| = 1, | det g(t)| = 1, λ1n · λ2n = 1/[λ1n · λ2n],

1/λ1n + 1/λ2n = λ1n + λ2n, λ1n + λ2n = λ1nλ2n(λ1n + λ2n)

hold [1-31].
Let us introduce the characteristic numbers αkn = 1

2πi lnλkn, k = 1, 2.

Then α1n + α2n = α0j , where α0j = 1
2πi arg det(Gj/Gj),

α1n − α2n =
1

2πi
ln(λ1n/λ2n) = νn, (2.17)

where πνn is the interior angle of the contour l(w) of s(w) at the point An.
The roots λkn, k = 1, 2, for the point t = en are calculated by the formula

[1–7]

λkn = [A
∗(n−1)
11 +A

∗n

11±

±i

√
4 detGn detGn − (A∗n11 +A

∗n

11 )2]/[2 detGn], k = 1, 2. (2.18)
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For the points t = ej , j = 1, 2, . . . , n− 1, we have

g−1
j+1(aj + 0)gj(ej − 0) = G

−1

j+1Gj+1G
−1
j Gj ,

g−1
j+1(aj + 0)gj(ej − 0) =

=
1

detGj+1

·
1

detGj

(
A
∗(j+1)

11 , −iA
∗(j+1)
12

−iA
∗(j+1)
21 , A

∗(j+1)
11

)(
A
∗j)

11 , iA
∗j)
12

iA∗j21, A
∗j

11

)
, (2.19)

λ1j + λ2j = [A
∗(j+1)

11 A∗j11 +A
∗(j+1)
12 A∗j21+

+A
∗(j+1)
21 A∗j12 +A

∗(j+1)
11 A

∗j

11]/[detGj+1 detGj ], (2.20)

λ1jλ2j = detGj+1 detGj/[detGj+1 detGj ]. (2.21)

Using (2.19), (2.20) and (2.21), we can calculate

λ1j/λ2j , α1j , α2j , α1j + α2j = α∗0j , α1j − α2j = νj , (2.22)

α∗0j =
1

π
[α0(j+1) − α0j ], detGj = R0exp(iα0j).

The characteristic numbers αkj , k = 1, 2, j = 1, (n+ 1), must satisfy the
Fuchs condition [1–31]

n+1∑

j=1

[1− (α1j + α2j)] = 2,

α1(n+1) = 3, α2(n+1) = 2, t∞ = an+1 = ∞.

(2.23)

The equality α1j +α2j = 1, j = 1, n, under the condition (2.5) may fail to
be fulfilled, and hence we are unable to apply the equation (1.4) for solving
the equation (2.15). As it will be seen below, to solve (2.15) completely it
suffices to use the linearly independent solutions (1.11).

Of all singular angular points of the boundaries l(z) and l(ω), we select
such angular points to which on the boundary l(w) of s(w) there correspond
regular nonangular points. Such angular points on the boundaries l(z) and
l(ω) are usually called removable singular points [1–7]. For the sake of sim-
plicity we assume that the number of removable singular points is equal to
two. Denote these points by t = ek and t = ek+j . The angles corresponding
to such points on the contours l(z) and l(ω) are equal to π/2. To remove
those singular points from the boundary conditions (2.15), we introduce the
new unknown vector Φ1(ζ) by the formula

Φ′(ζ) = Φ1(ζ)

√
(ζ − ek−1)(ζ − ek+j−1)

(ζ − ek)(ζ − ek+j)
,

√
(ζ − ek−1)(ζ − ek+i−1)

(ζ − ek)(ζ − ek+j)
> 0, ζ > ek+j .

(2.24)

When passing from the vector Φ(ζ) to Φ1(ζ), the matrix g(t) in the
interval (ek−1, ek), (ek+j−1, ek+j) is multiplied by (−1).
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We enumerate the remaining singular points along the t-axis as t = ak,
k = 1,m. To these points there correspond the points Ak, k = 1,m, on the
contour l(w). In what follows, the notation for the matrices g(t) = G−1G
will remain unchanged, but all the changes which occurred while introducing
Φ1(ζ) will be taken into account.

If one or several elements in the matrix g(t) are equal to zero, and more-
over, det g(t) 6= 0, then the problem (2.10) is solved completely by means of
the Cauchy type integral [1–31]. Besides the above-mentioned one we come
across the cases where all the elements in the matrix g(t) are different from
zero and then the problem (2.10) is solved by elementary means [16, 26].

The boundary condition with respect to Φ1(ζ) can be written as

Φ1(t) = g(t)Φ1(t), −∞ < t < +∞. (2.25)

To solve the problem (2.25), we first find all the roots λkj , k = 1, 2,
j = 1,m+ 1, from (2.16) and then, taking into account (2.23), we find αki,
k = 1, 2, j = 1,m+ 1 [1,7]. Having found the above-mentioned quantities,
we substitute αkj , k = 1, 2, j = 1,m into (1.11).

All the equations and formulas (1.11)–(1.16) remain valid and will be
used later on for solving of (2.10), (2.15) and (2.25).

3. The Fuchs Class Equation in the Form of a System

The equation (1.11) in the neighborhood of every singular point t = ak,
k = 1,m+ 1, and in the neighborhood of any regular point, where p(ζ) and
q(ζ) are analytic, has two linearly independent local solutions which are
constructed by means of infinite series whose coefficients are defined in the
well-known manner. These series converge respectively in the circles with
centers at the points for which these series have been constructed, and the
convergence radii of the series are bounded by the distance from the centers
of the given circles to the nearest to the centers singular points.

We denote the local linearly independent solutions of the equation (1.11)

for singular points ζ = ak, k = 1, 2, . . . ,m + 1, by vkj(ζ), j = 1, (m+ 1),
and for t = a∗j = (aj + aj+1)/2, j = 1, 2, . . . ,m − 1, by σkj (ζ), k = 1, 2,
j = 1, 2, . . . ,m− 1.

Suppose

u1(ζ) = pu1j(ζ) + qu2j(ζ), u2(ζ) = ru1j(ζ) + su2j(ζ), (3.1)

where p, q, r, s are the integration constants of (1.15).
The equation (1.11) can be written in the form of the system

χ′1(ζ) = χ1(ζ)P(ζ), (3.2)

χ1(ζ) =

(
u1(ζ), u′1(ζ)
u2(ζ), u′2(ζ)

)
,P(ζ) =

(
0, −q(ζ)
1, −p(ζ)

)
, (3.3)

where u1(ζ), u2(ζ) are linearly independent solutions of (1.11).
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A solution of the boundary value problem (2.25) will be sought by means
of the matrix χ1(ζ). It is known that if the matrix χ1(ζ) is a solution of
(3.2), then the matrix Tχ1(ζ) is also the solution of (3.2), where

T =

(
p, q
r, s

)
, detT 6= 0. (3.4)

If we construct the local linearly independent solutions ukj(ζ) and σkj(ζ)
of (1.11), for the points ζ = aj , j = 1,m+ 1, ζ = a∗j = (aj + aj+1)/2,

j = 1,m− 1, respectively, then the local fundamental matrices for (3.2)
will have the form

Θj(ζ) =

(
u1j(ζ), u′1j(ζ)
u2j(ζ), u′2j(ζ)

)
, j = 1,m+ 1, (3.5)

σj(ζ) =

(
σ1j(ζ), σ′1j(ζ)
σ2j(ζ), σ′2j(ζ)

)
, j = 1,m− 1. (3.6)

Suppose that the inequality |am| > |a1| holds. Then at the point a∗m =
−|am| we construct the local series σ∗k(ζ), k = 1, 2, and the corresponding
local matrix σ∗j(ζ). The convergence radii of these series are bounded by
the distance from the point t = am to the singular point t = a1, and if
|a1| > |am|, then we construct at the point a∗1 = |a1| the local series σ∗k(ζ),
k = 1, 2, and the matrix σ∗(ζ). The convergence radius of these series will
be bounded by the distance from the point a∗1 to the point t = am.

It becomes evident that there exists a finite number of circles with centers
ζ = aj , j = 1,m+ 1, ζ = a∗j = (aj + aj+1)/2, j = 1,m− 1, ζ = a∗m (or

ζ = a∗1) which cover completely the x-axis, −∞ < t < +∞. Note that
the circle with the center ζ = ∞ is assumed to be the exterior of the circle
|ζ| < r0, where r0 is equal to the largest (in absolute value) of the numbers
a1 and am .

The equation (1.11) in the neighborhood of ζ = aj can be written as

(ζ − aj)
2v′′(ζ) + (ζ − aj)pj(ζ)v

′(ζ) + qj(ζ)v(ζ) = 0, (3.7)

where

pj(ζ) = p0j +

∞∑

n=1

pnj(ζ − aj)
n,

pnj = (−1)n−1
m∑

k=1,k 6=j

[1− α1k − α2k](aj − ak)n,

(3.8)

p0j = 1− α1j − α2j ,

qj(ζ) = α1jα2j + c∗j (ζ − aj) +

∞∑

n=2

qnj(ζ − aj)
n,

(3.9)

qnj = (−1)n−2
m∑

k=1,k 6=j

[α1kα2k(n− 1) + c∗k(aj − ak)](aj − ak)−n, (3.10)

n = 2, 3, . . .
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q0j = α1jα2j , q1j = c∗j , j = 1,m. (3.11)

The local solutions of (3.7) for the point t = aj , j = 1,m, will be sought
in the form

uj(ζ) = (ζ − aj)
αj ũj(ζ), ũj(ζ) = 1 +

∞∑

n=1

γnj(ζ − aj)
n. (3.12)

For definition of the coefficients γnj , n = 1,∞, j = 1,m, we have the
following recursion formulas:

f0j(αj) = αj(αj − 1) + p0jαj + q0j = 0, (3.13)

γ1jf0(αj + 1) + f1(γj) = 0, (3.14)

γ2jf0(αj+2) + γ1jf1(αj + 1) + f2(αj) = 0, (3.15)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γnjf0(αj + n) + γ(n−1)jf1(αj + n− 1)+

+ γ(n−2)jf2(αj + n− 2) + · · ·+ γ1jf(n−1)(αj + 1) + fn(αj) = 0, (3.16)

where
fn(αj) = αjpnj + qnj . (3.17)

The defining equation (3.13) for every point t = aj , j = 1,m, has two
roots, α1j and α2j . If the difference α1j − α2j is not an integer, then using
the formulas (3.14)–(3.16), we can construct for every point t = aj two
linearly independent solutions

ukj(ζ) = (ζ − aj)
αkj ũkj(ζ), ũkj = 1 +

∞∑

n=1

γk
nj(ζ − aj)

n, k = 1, 2. (3.18)

But if the difference α1j − α2j is an integer, then u1j(ζ), j = 1,m,
can be constructed by the formulas (3.14)–(3.16), while if u2j(ζ) involves a
logarithmic term, u2j(ζ) can be constructed with the help of the Frobenius
method [15, 27-31].

Let us pass now to the construction of u2j(ζ) when the difference α1j −
α2j = 2 and u2j(ζ) does not involve a logarithmic term. For such a point
t = aj , on the contour l(w) there is a cut (circular or linear) with the
angle 2π. P. Ya. Polubarinova-Kochina has proved [2] that u2j(ζ) does not
contain a logarithmic term. She also obtained the equation connecting the
parameters aj , c

∗
j [1-7, 25-31]. To construct u2j(ζ), we will act as follows

[25-31].
For the point t = ak, the equality (3.15) fails to be fulfilled because

f0j(αj + 2) = 0 (3.19)

as αj → α2j .
In order for the equality (3.15) to take place as αj → α2j , it is necessary

and sufficient that the condition

γ1jfj(αj + 1) + f2(αj) = 0, αj → α2j (3.20)
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be fulfilled.
After certain transformations, the equation (3.20) takes the form

q2j + q21j + q1jp1j = 0. (3.21)

Note that for the cut end t=aj with the angle 2π the equality dw(ζ)/dζ =
0 holds for t = aj , where w(ζ) is the general solution of (1.1) or (1.18).

To construct u2j(ζ) for the cut end, it suffices to calculate γ2
2j(α2j)

uniquely; the remaining coefficients γ2
nj(α2j), n = 1, 3, 4, 5, . . . , can be cal-

culated by the formula (3.16). Under the conditions (3.19) and (3.20) the
equation (3.15) is fulfilled.

To define γ2
2j(α2j) and, consequently, u2j(ζ) uniquely, we suppose that

αj 6= α2j . Then (1.5) implies that

γ2j(αj) = −[γ1j(αj)f1j(αj + 1) + f2j(αj)]/f0j(αj + 2). (3.22)

The numerator and denominator on the right-hand side of (3.22) van-
ish as αj → α2j , and hence there is an indeterminacy. Developing this
indeterminacy by the L’Hospital rule, we obtain

γ2
2j = −0, 5[p1j(p1j + 2q1j) + p2j ]. (3.23)

Thus γ2
2j , and hence u2j(ζ), are defined uniquely.

Let us proceed now to the determination of the local solutions in the
neighborhood of the point ζ = am+1 = ∞.

Represent p(ζ) and q(ζ) in the neighborhood of ζ = ∞ as follows

p(ζ) = ζ−1
∞∑

n=0

pn∞ζ
−n, q(ζ) = ζ−2

∞∑

n=0

qn∞ζ
−n, (3.24)

where

pn∞ =

m∑

k=1

[1− (α1k + α2k)]an
k , p0∞ = 6, (3.25)

qn∞ =

m∑

k=1

[α1kα2k(n+ 1) + c∗kak]an
k , (3.26)

q0∞ =

m∑

k=1

[α1kα2k + c∗kak], (3.27)

q1∞ =

m∑

k=1

[2α1kα2kak + c∗ka
2
k]. (3.28)

The local solutions in the neighborhood of the point t = ∞ will be sought
in the form

u∞(ζ) = ζ−α∞ +
∞∑

n=1

γn∞ζ
−α∞−n. (3.29)

For definition of γn∞, n = 1,∞, we have the formulas

f0∞(α∞) = α∞(α∞ + 1)− p0∞α∞ + q0∞ = 0, (3.30)
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γ1∞f0∞(α∞ + 1)− p1∞ + q1∞ = 0, (3.31)

γ2∞f0∞(α∞ + 2) + γ1∞f1∞(α∞ + 1)− p2∞α∞ + q2∞ = 0, (3.32)

. . . . . . . . . . . . . . . . . . . . . . . .

γn∞f0∞(α∞ + n) + γ(n−1)∞f1∞(α∞ + n− 1)+

+ γ(n−2)∞f2∞(α∞ + n− 2) + · · ·+ γ1∞f(n−1)(α∞ + 1)−

− pn∞α∞ + qn∞ = 0, (3.33)

where
fk∞ = qk∞ − (α∞ + k)pk∞. (3.34)

Owing to the fact that t = ∞ is the image of the nonangular point, the
equation (3.30) must have the roots α1∞ = 3 and α2∞ = 2, and hence the
free term q0∞ must satisfy the condition

q0∞ =

m∑

k=1

[α1kα2k + akc
∗
k] = 6. (3.35)

Since α1∞ − α2∞ = 1, the equality (3.31) fails to be fulfilled, therefore
the formulas (3.31)–(3.33) allow one to determine only γ ′n∞, n = 1,∞,
and hence the solution u1∞(ζ). For the equality (3.31) to take place for
α∞ = α2∞, it is necessary and sufficient that the condition

q1∞ − p1∞α2∞ = 0 (3.36)

be fulfilled.
To define γ2

1∞, we act as follows: from (3.31) for α∞ 6= α2∞ we define
γ1∞ and obtain

γ1∞ = [p1∞ − q1∞]/f0∞(α∞ + 1). (3.37)

Since the numerator and the denominator in (3.37) vanish as α∞ → α2∞,
we can develop the indeterminacy in the well-known manner and get

γ2
1∞ = p1∞. (3.38)

After that we define γ2
n∞, n = 2,∞, by the formulas (3.32)–(3.33). Thus

we have obtained the solution u2∞(ζ).
Finally, we have

uk∞(ζ) = ζ−αk∞ +

∞∑

n=1

γn
n∞ζ

−α2∞−n, k = 1, 2. (3.39)

The equations (1.21) coincide respectively with the equations (1.13),
(3.35) and (3.36).

4. Local Representations of the Matrices χj(ζ), j = 1,m+ 1

Of each set of branches of the functions exp[αkj ln(t− aj)] appearing in
the local solutions ukj(ζ), we choose one as follows:

exp[αkj ln(t− aj)] > 0, t > aj ,

[exp[αkj ln(t− aj)]]
± = exp[±iαkj ] exp[αkj ln(aj − t)], t < aj ,
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[exp[−αk∞ ln(−t)]]± > 0, −∞ < t < aj ;

[exp[−αk∞ ln t]]± = exp[±iπ(−αk∞)] exp[−αk∞ ln t], am < t <∞.

Along with (3.5) and (3.6), we introduce the matrices

Θ∗
j (t) =

(
u∗1j(t), u′∗1j(t)
u∗2j(t), u′∗2j(t)

)
, aj−1 < t < aj , (4.1)

where

u∗kj(t) = (aj − t)αkj ũkj(t),

u′kj(t) = −(aj − t)αkj−1ũ′∗kj(t), u′kj(t) = dukj(t)/dt,

ũ′∗kj(t) ≡ αkj +

∞∑

n=1

γk
nj(αkj + n)(t− aj)

n.

(4.2)

Between the matrices Θj(t) and Θ∗
j (t) there is the connection

Θ±
j (t) = θ±j Θ∗

j (t), aj−1 < t < aj , (4.3)

Θ±
∞(t) = θ±∞(t)Θ∗

∞(t), am < t < +∞, (4.4)

where the matrices θ±j are defined by the formula

θ± =

(
exp(±iπα1j), 0

0, exp(±iπα2j)

)
(4.5)

for α1j − α2j 6= n, while for n = 0, 1, 2 they are defined by the equality

θ±j =e±πα2j

(
1, 0
∓πi, 1

)
, n=0, 2; θ±j =e±iπα2i

(
−1, 0
±πi, −1

)
, n=1. (4.6)

For the cut end w = Aj , the matrices θ±j are defined in the following

manner. If the eigenvalues are of the type α1j = 3/2, α2j = −1/2, then
θ±j = ∓iE, where E is the unit matrix, but if α1i = 2, α2j = 0, then

θ±j = E.

The elements of the matrix Θ∗
j (t) involving logarithmic terms are defined

by the formulas

u∗2j(t) = (aj − t)α2i [(t− aj)
nũ1j(t) ln(aj − t) + ũ2

2i(t)], (4.7)

u′∗2i(t) = −(aj − t)α2j−1{[(aj − t)neiπnũ1
2j ln(aj − t) + ũ1j(t)]+

+ũ2
2j(t)}, n = 0, 1, 2. (4.8)

5. The Fundamental Matrix

Let us construct the matrix χ(ζ). The domains of convergence of the
matrices Θi(t) and σj(t) have always a part in common in which one can
write the equalities

Θ∗
j (t)=T

∗
j σj(t), σj(t)=T0jΘj−1(t), Tj−1 =T ∗j T0j , aj−1<t<aj , (5.1)

Θ∗
1(t) = T−mσ−m(t), σ−m(t) = T−∞Θ∞(t), −∞ < t < a1 (5.2)

Θ∗
∞(t) = T∞Θm(t), am < t < +∞. (5.3)
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Here T ∗j , T0j , T−m, Tj−1, T−∞, T∞ are constant real matrices defined by

the equalities (5.1)–(5.3). In these equalities we can fix t arbitrarily in the
domain where the two local matrices, appearing in the above-mentioned
equalities, converge.

Define the matrix χ1(ζ) along the t-axis of the plane ζ as

χ±1 (t) = TΘ±
m(t), Θ+

m(t) = Θ−
m(t), am < t < +∞, (5.4)

χ±1 (t) = Tθ±mΘ∗
m(t), am−1 < t < am; (5.5)

χ±1 (t) = Tθ±mTm−1Θ
±
m−1(t), Tm−1 = T ∗mT0m, am−1 < t < am; (5.6)

χ±1 (t) = Tθ±mTm−1θ
±
m−1Θ

∗
m−1(t), am−2 < t < am−1; (5.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ±1 (t) = Tθ±mTm−1 . . . T1θ
±
1 Θ∗

1(t), −∞ < t < a1, (5.8)

χ±1 (t) = Tθ±mTm−1 . . . θ
±
1 T−∞Θ∞(t), −∞ < t < a1, (5.9)

χ±1 (t) = TT∞Θ±
∞(t), am < t < +∞, (5.10)

where the matrix T is defined by the formula (3.4).
The upper signs (±) in the matrices (5.4)–(5.10) denote the limiting

values of the matrix χ(ζ) respectively from the upper (when ζ ∈ Im(ζ) > 0,
ζ → t) and in the lower (when ζ ∈ Im(ζ) < 0, ζ → t) half-planes. The

limiting values of χ+(t) and of χ−(t) are connected follows: χ−(t) = χ+(t),

where χ+(t) is the complex conjugate of the matrix χ+(t).

6. Solution of the Boundary Value Problem (2.25)

A straightforward checking shows that the matrices (5.4)–(5.10) satisfy
the equation (3.2). Therefore, by appropriate choice of the parameters aj ,
cj , j = 1,m, p, q, r, s, the same matrices must satisfy the condition (2.25).
Indeed, we start our proof from the interval (am,+∞). We have

TΘ+
m(t) = gm(t)TΘ−

m(t), gm(t) = E,

Θ+
m(t) = Θ−

m(t), T = T , am < t < +∞.
(6.1)

For the interval (am−1, am) in the neighborhood of A = am we obtain
the equality

Tθ+mΘ∗
m(t) = gm−1Tθ

−
mΘ∗

m(t), am−1 < t < am. (6.2)

The expressions (6.1) and (6.2) result in the matrix equations

(θ+m)2 = T−1G−1
m−1Gm−1T, (6.3)

from which one can see that the matrices (θ+
m)2 and G−1

m−1Gm−1 are similar.
The matrix equation (6.2) can be rewritten in the form

T

(
λ̃1(m), 0

0, λ̃2(m)

)
=

(
A
∗(m−1)
11 , iA

∗(m−1)
12

iA
∗(m−1)
21 , A

∗(m−1)

11

)
T, (6.4)

λkm = λ̃km/ detGm−1, k = 1, 2, (6.5)
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which in its turn results in the system consisting of two equations

r/p=
{√

detGm−1 detGm−1−(ReA
∗(m−1)
11 )2−ImA

∗(m−1)
11

}/
A
∗(m−1)
12 , (6.6)

and

s/q=
{
ImA

∗(m−1)
11 −

√
detGm−1 detGm−1−(ReA

∗(m−1)
11 )2

}/
A
∗(m−1)
21 . (6.7)

Analogously to the matrix equation (6.3), we find the matrix equations
successively for the points ζ = aj , j = m− 1,m− 2, . . . , 2, 1. We have

Tθ+mTm−1θ
+
m−1 = gm−2(t)Tθ

−
mTm−1θ

−
m−1, (6.8)

Tθ+mTm−1θ
+
m−1Tm−2θ

+
m−2 = gm−3Tθ

−
mTm−1θ

−
m−1Tm−2θ

−
m−2, (6.9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T θ+mTm−1θ
+
m−1Tm−2θ

+
m−2 . . . T1θ

+
1 =

= Tθ−mTm−1θ
−
m−1Tm−2θ

−
m−2 . . . T1θ

−
1 . (6.10)

Similarly to the system of equations (6.6) and (6.7), from the matrix
equations (6.8)–(6.10) we get two equations for every singular point.

The matrix equation (6.3) can be written as

p · exp(iπα1m) =

= A
∗(m−1)
11 p · exp(−iπα1m) + iA

∗(m−1)
12 r · exp(−iπα1m), (6.11)

r· exp(iπα1m) =

= iA
∗(m−1)
21 p · exp(−iπα1m) + A

∗(m−1)

11 r · exp(−iπα1m), (6.12)

q · exp(iπα2m) =

= A
∗(m−1)
11 q · exp(−iπα2m)+iA12∗(m−1)s · exp(−iπα2m), (6.13)

s · exp(iπα2m) =

= iA
∗(m−1)
21 q · exp(−iπα2m) +A

∗(m−1)

11 s · exp(−iπα2m). (6.14)

Dividing the corresponding parts of the equations (6.11) and (6.12),
(6.13) and (6.14), one can see that the ratios p/r, q/s in the interval
(am−1, am) satisfy the boundary condition (2.25),

p

r
=

iA
∗(m−1)
11 p/r +A

∗(m−1)
12

iA
∗(m−1)
21 p/r + iA

∗(m−1)

11

,
q

s
=
A
∗(m−1)
11 q/s+ iA

∗(m−1)
12

iA
∗(m−1)
21 q/s+A

∗(m−1)

11

. (6.15)

The coordinates of the points w = Am, w = A′m also satisfy the same
condition and, consequently,

p/r = Am, q/s = A′m, (6.16)

where A′m is the second point of intersection of the two neighboring circum-
ferences.

Remind that by Ak, A′k, k = 1, 2, . . . ,m, we have denoted the complex
coordinates of the angular points of the circular polygon s(w) at which two
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neighboring circumferences may intersect; note that the point A′k lies more
often outside of the contour l(w).

On the plane w, if the origin coincides with the point w = Am, then
Am = 0 and A′m = ∞. Consequently, p = 0 and s = 0. It should be noted
that for the interval (am−1, am), if νm 6= 0, one can always suppose that

Gm−1 =

(
A
∗(m−1)
11 , 0

0, A
∗(m−1)

11

)
. (6.17)

Consider the matrix equation (6.8),

T∗(m−1)θ
+
m−1 = gm−2T ∗(m−1)θ

−
m−1, T∗(m−1) = Tθ+mTm−1. (6.18)

From (6.18) we get the system of equations

p∗(m−1)/r∗(m−1) = Am−1, q∗(m−1)/s∗(m−1) = A′m−1, (6.19)

where p∗(m−1), q∗(m−1), r∗(m−1) and s∗(m−1) are the elements of the matrix
T∗(m−1). Taking into account (6.18), the equalities (6.19) can be rewritten
as follows:

p∗pm−1 + q∗rm−1

r∗pm−1 + s∗rm−1
= Am−1,

p∗qm−1 + q∗sm−1

r∗pm−1 + s∗sm−1
= A′m−1, (6.20)

where p∗, q∗, r∗ and s∗ are the elements of the matrix T∗ = Tθ+m.
The equalities (6.20) with regard for (6.19) can in their turn be rewritten

as
r∗pm−1Am+s∗rm−1A

′
m

r∗pm−1+s∗rm−1
=Am−1,

r∗qm−1Am+s∗sm−1A
′
m

r∗qm−1+s∗sm−1
=A′m−1.

(6.21)

After simplification, the equations (6.21) take the form

r∗pm−1(Am −Am−1) + s∗rm−1(A
′
m −Am−1) = 0, (6.22)

r∗qm−1(Am −A′m−1) + s∗sm−1(A
′
m −A′m−1) = 0. (6.23)

The condition of compatibility of (6.22) and (6.23) with respect to r∗ and
s∗ has the form

pm−1sm−1

rm−1qm−1
=
A′m −Am−1

Am −Am−1
·
Am −A′m−1

A′m −A′m−1

. (6.24)

From the matrix equation (6.9) we obtain the system of equations

p∗(m−1)pm−2 + q∗(m−1)rm−2

r∗(m−1)pm−2 + s∗(m−1)rm−2
= Am−2,

p∗(m−1)qm−2 + q∗
∗(m−1)sm−2

r∗(m−1)qm−2 + s∗(m−1)sm−2
= A′m−2,

(6.25)

where p∗(m−1), q∗(m−1), r∗(m−1), S∗(m−1) are the elements of the matrix

T∗(m−1) = Tθ+mTm−1θ
+
m−1. (6.26)
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After certain transformations the above system takes the form

r∗(m−1)pm−2(Am−1 −Am−2) + s∗(m−1)rm−2(A
′
m−1 −Am−2) = 0, (6.27)

r∗(m−1)qm−2(Am−1 −A′m−2) + s∗(m−1)sm−2(A
′
m−1 −A′m−2) = 0. (6.28)

The equations (6.27) and (6.28) imply

pm−2sm−2

rm−2qm−2
=
A′m−1 −Am−2

Am−1 −Am−2
·
Am−1 −A′m−2

A′m−1 −A′m−2

, (6.29)

The remaining matrix equations can be investigated analogously [25-31].
The equations (6.24) and (6.29) are nothing but the invariant cross-ratios

of four points of the same circumference at which the given circumference
intersects with the two neighboring ones.

From (6.3)–(6.10) we can get all the needed equations with respect to ak,
ck, k = 1,m, and to the integrations constants p, q, r and s.

For every point t = aj we have obtained a system of two equations which
are homogeneous with respect to the elements of the matrices Tk, k = 1,m;
their conditions of compatibility for, e.g., the points t = am and am−1 have
the form (6.24) and (6.29). The above-mentioned systems of equations have
been obtained under the assumption that α1j − α2j 6= n, n = 0, 1, 2.

Consider briefly the case where α1j − α2j = n, n = 0, 1, 2. According to
the representations (5.4)–(5.10), the unknown matrices χ+(t) and χ−(t) in
the interval (aj−1, aj) must satisfy the boundary condition

Tθ+mTm−1θ
+
m−1Tm−2θ

+
m−2 . . . Tjθ

+
j =

= gj−1Tθ
−
mTm1θ

−
m−1Tm−2θ

−
m−2 . . . Tjθ

−
j , (6.30)

where

θ+j = eiπα2j

(
1, 0
±πi, 1

)
, θ−j = θ

+

j , n = 0, 2;

θ+j = eiπα2j

(
−1, 0
−πi, 1

)
, n = 1, θ−j = θ

+

j .

It can immediately be verified that (6.30) leads to a usual system of
two equations with respect to pj , qj , rj , sj , but the condition of their
compatibility does not provide now the relations analogous to (6.24) and
(6.29).

As is mentioned above, matrix equations similar to (6.1)–(6.10) can be
obtained for all the points ζ = ak, with the exclusion of the points ζ = aj

to which there correspond the cut ends of the boundary l(w) of the circular
polygon w = Aj for which νj = 2. For such points we have either the
condition (3.20) or (3.21). This allows one to obtain one equation for each
point, the second equation being obtained after determination of l(z), l(ω)
and l(w).

From the matrix representations we first define u+
1 (t) and u+

2 (t) and
then compose the ration w+(t) = u+

1 (t)/u+
2 (t). According to (5.4)–(5.10),
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the function w+(t) for the interval (aj , aj+1) can be represented as

w+(t) = [A∗ju
+
1j(t) +B∗j u

∗
2j(t)]/[C

∗
j u

+
1j +D∗

ju
+
2j(t)], (6.31)

where A∗j , B
∗
j , C∗j , D∗

j are defined by (5.4)–(5.10).
Calculating the limit as ζ → aj by means of (6.31), we obtain the equa-

tion

Aj = B∗j /D
∗
j . (6.32)

The corresponding equations for other points t = ak, k = 1,m+ 1, can
be obtained analogously.

Finally, for every point t = aj we obtain two real, homogeneous with
respect to pj , qj , rj and sj equations, for example, (6.6) and (6.7). From
the condition of compatibility of homogeneous equations for νj 6= 0, 1, 2,
we obtain invariant cross-ratios for four points of one circumference, for
example, (6.24) and (6.29). In the case where νj = 0, 1, 2, the conditions
of compatibility of two equations provide certain, equations which, however
are not anharmonic.

From each system of two equations we can take one equation and, in
addition, one more equation of compatibility, i.e. we take two equations for
each point ζ = aj . The number of equations is equal to 2m and the number
of unknown parameters ak, c∗k k = 1,m, p, q, r, s with ps−rq 6= 0 is 2m−3.
Consequently, the number of equations will be greater by three than the
number of unknown parameters. It should be noted here that from the
very beginning we have supposed that the linear fractional transformation
over the domain s(w) was performed with a view to have the equation
Gm = E (E is the unit matrix) on one part of the boundary l(w). Thus the
parameters p, q, r, and s turned out to be real and their number equals to
three, since ps − rq 6= 0. The above-described method of constructing the
functions w(ζ), ω(ζ) and z(ζ) and the system of equations with respect to
aj , c

∗
j , j = 1,m, is assumed to be much more convenient than some other

methods. One can give up transformation of the domain s(w). In this case
the parameters p, q, r and s will be complex and the number of the unknown
parameters will equal to 2m. The appearance of three additional equations
can be explained just as in the case of linear polygons.

Having constructed the system of equations for determining ak, c∗k, p, q,
r and s, k = 1,m, we have first to establish the intervals of variation of the
parameters c∗k, k = 1,m, then to solve the system with respect to ak, c∗k,
k = 1,m and finally, to define p, q, r and s.

Remind that pj , qj , rj and sj , j = 1,m, depend implicitly, through the
coefficients of the generalized hypergeometric series, on the parameters ak,
c∗k, k = 1,m. The intervals of variation of the parameters can be established
according to [27].

As is known, the series ukj(ζ), j = 1,m+ 1, k = 1, 2, converge, re-
spectively, in the neighborhood of the points ζ = aj , j = 1,m+ 1, t =
am+1 = ∞ and the series σkj(ζ) in the neighborhood of the points a∗j =
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(aj + aj+1)/2. The convergence radii of these series are bounded by the
distance from the given point t = aj (or from the point a∗j ) to the nearest
points ζ = aj−1, aj+1.

The series ukj(ζ), k = 1, 2, j = 1,m, are whole functions of the parame-
ters c∗j , j = 1,m, but with respect to ζ these series converge slowly, which

makes numerical calculations difficult. As n increases, the coefficients γk
nj

sometimes rapidly increase, although their multipliers (ζ −aj)
n on the con-

trary rapidly decrease. Electronic computers fail to multiply γk
nj by (t−aj)

n

despite the fact that the series converge. To eliminate this drawback, we
have suggested to write the same series in the form of rapidly and uniformly
convergent functional series [28-31].

Let us consider the structure of the recurrence formulas (3.15)–(3.16),
(3.31)–(3.33). The sum of the first lower indices in the expressions γ(k−n)j ·

fnj(αj +k−n) is always equal to k, i.e. to the exponent of (t−aj)
k. Instead

of the series (3.18) let us consider the function series of the type

ukj(t) = (t−aj)
αkj ũkj(t−aj), ũkj(t) =

∞∑

n=0

γk
nj(t−aj), γk

0j = 1, (6.33)

where γk
nj is defined, according to (3.15)–(3.16), in terms of γ1j , γ2j , . . . ,

γ(n−1)j , and the latter in their turn are defined in terms of fkj(αj), where

fkj(t− aj , αj) = αjpkj(t− aj) + qkj(t− aj) (6.34)

pnj(t− aj) = (−1)n−1
k∑

k=1,j 6=k

[1− α1k − α2k]
( t− aj

aj − ak

)n

, (6.35)

n = 1, 2, . . . ,

qnj(t−aj)=(−1)n−2
∑

k=1,k 6=j

[α1kα2k(n− 1)+c∗k(aj−ak)]
( t− aj

aj − ak

)n

, (6.36)

n = 2, 3, . . . ,
∣∣∣
t− aj

aj − ak

∣∣∣ < 1, k 6= j (6.37)

pn∞(t) =
m∑

k=1

[1− α1kα2k](ak/t)
n, (6.38)

qn∞(t) =

∞∑

k=1

[α1kα2k(n+ 1) + c∗kak](ak/t)
n, (6.39)

n = 0, 1, 2, . . . ,

|ak/t| < 1. (6.40)

The formulas (6.34)–(6.40) show that the fundamental series (6.33) and
the series

uk∞(t) = ζ−αk∞

[
1 +

∞∑

n=1

γk
n∞(t)

]
(6.41)



132 A. Tsitskishvili

converge in the domain |ζ − aj | more rapidly than the series (3.18).
The matrices χ±(t) defined by the formulas (5.1)–(5.10) satisfy the boun-

dary condition (2.25).

7. Definition of the Functions ω(ζ) and z(ζ)

Along the real t-axis, the function w+(t) is defined by the equality

w+(t) = u+
1 (t)/u+

2 (t), −∞ < t < +∞, (7.1)

where u+
1 (t) and u+

2 (t), being the linear independent solutions of (1.11), are
defined by the formulas (5.1)–(5.10).

Knowing w(ζ) along the entire real t-axis of the plane, we can find w(ζ)
for Im(ζ) > 0 for all t = ek, k = 1, n+ 1, with the help of the well-known
formula given in [16].

Note that using the matrix χ(ζ) defined by the formulas (5.4)–(5.10),
we can construct a canonical matrix for the corresponding homogeneous
problem (2.10) with regard for all singular points t = ek, k = 1, n+ 1, after
which it becomes possible to solve the nonhomogeneous boundary value
problem (2.10) by means of the Cauchy type integral. This has been done
by us in [27]. In the present paper we find the solution of (2.10) in a more
simple way than that described in [27] and [29]. We rely here on the linear
independent solutions (1.11) and on the general solution of (1.18).

Let us multiply the functions u+
1 (t) and u+

2 (t) by

χ0(ζ) =

√
(ζ − ek−1)(ζ − ek+j−1)

(ζ − ek)(ζ − ek+j)
.

The matrix χ1(ζ) defined by the formulas (5.4)–(5.10) satisfies the boundary
condition (2.25), as far as we take for granted that the equalities (6.1)–(6.32)
are fulfilled. This means that the columns of the matrix χ1(ζ) defined by
the formulas (5.4)–(5.10) satisfy the boundary condition (2.25). To obtain
the solution Φ1(ζ), we have to take the elements of the first column of the
matrix χ1(ζ) which are defined by the formulas (6.1)–(6.32) and then to
compose the vector Φ1(ζ) = [u1(ζ), u2(ζ)], Im(ζ) ≥ 0.

We have taken the elements of the first column of the matrix χ1(ζ) be-
cause the relation w(ζ) = u1(ζ)/u2(ζ) gives the general solution of the
Schwarz equation with the right-hand side (1.18), while the ratio u′1(ζ)/u

′
2(ζ)

does not satisfy the equation (1.18).

The vector Φ′(ζ) = Φ1(ζ)χ0(ζ), where χ0(ζ) =
√

(ζ−ek−1)(ζ−ek+j−1)
(ζ−ek)(ζ−ek+j)

, will

be a solution of the problem (2.15). Consequently, the elements of the
vector Φ′(ζ), ω′(ζ) = u+

1 (ζ)χ0(ζ) and z′(ζ) = u+
2 (ζ)χ0(ζ), satisfy both the

boundary conditions (2.15) and the conditions at the singular points t = ek,
k = 1, n+ 1.

Now we can write the following equalities:

dω(t) = u+
1 (t)χ+

0 (t)dt, −∞ < t < +∞, (7.2)
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dz(t) = u+
2 (t)χ+

0 (t)dt, −∞ < t < +∞. (7.3)

Integrating the equalities (7.2) and (7.3) in the intervals (−∞, t), (ej , t),
j = 1, 2, . . . , n, we obtain

ω+(t) =

t∫

−∞

u+
1 (t)χ+

0 (t)dt+ ω+(−∞), −∞ < t < e1, (7.4)

z+(t) =

t∫

−∞

u+
2 (t)χ+

0 (t)dt+ z+(−∞), −∞ < t < e1, (7.5)

ω+(t) =

t∫

ej

u+
1 (t)χ+

0 (t)dt+ ω+
j (ej), j = 1, n+ 1, ej < t < ej+1, (7.6)

z+(t) =

t∫

ej

u+
2 (t)χ+

0 (t)dt+ z+
j (ej), j = 1, n+ 1, ej < t < ej+1, (7.7)

where ω+(−∞), z+(−∞), ω+(ej), z
+(ej) are the limiting values of the

corresponding functions ω+(t), z+(t) from the right at the points −∞, ej ,
j = 1, n+ 1.

Obviously, the functions ω+(t), z+(t) defined by the formulas (7.4)–(7.7)
satisfy the boundary conditions (2.10).

In the formulas (7.4)–(7.7) we can separate the real and imaginary parts
and get expressions for the functions ϕ(t), ψ(t), χ(t) and y(t).

Passing in the formulas (7.4) and (7.5) to the limit as t → ej from the
left, we arrive at

ω+(e1) =

e1∫

−∞

u+
1 (t)χ+

0 (t)dt + ω+(−∞), (7.8)

z+(e1) =

e1∫

−∞

u+
2 (t)χ+

0 (t)dt + z+(−∞), (7.9)

ω+(ej+1) =

ej+1∫

ej

u+
1 (t)χ+

0 (t)dt + ω+(ej), j = 1, n+ 1, (7.10)

z + (ej+1) =

ej+1∫

ej

u+
2 (t)χ+

0 (t)dt + z+(ej), j = 1, n+ 1, (7.11)

where ω+(ej+1), z
+(ej+1), are the limiting values of the functions ω+(t),

z+(t) from the left at the point t = ej+1.
In the formulas (7.4)–(7.11) it is assumed that the integrands at the

points t = −∞, t = ej , j = 1, n are integrable. In case the integrands
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are nonintegrable at some point t = ej of e1, e2, e2, . . . , en+1, we take the
integrals from the other end of the interval, where they are integrable. But
if the above-mentioned functions are nonintegrable at both ends of the in-
terval, then we take any interior point of the interval and from that point
(as the lower limit) the integral is taken.

For determination of the parameters aj and cj , j = 1,m, we have ob-
tained a system of higher transcendent equations, e.g., the equations (6.6)–
(6.32); as for the parameters t = ej , j = 1, n, which do not coincide with
the parameters t = aj and the function χ0(ζ) depends on, and also as for
the parameter Q which is connected with the liquid discharge, for their
determination we have obtained the system of equations (7.8)–(7.11).

Having found all the unknown parameters on which the functions ω(ζ),
z(ζ), and w(ζ) depend, by the formulas (7.6)–(7.7) we can find the equations
for the unknown parts of the boundaries of the domains s(z), s(ω) and s(w),
as well as for other geometric and mechanical parameters of the liquid flow
[30, 31].

8. Another Method of Solving the System (6.3)–(6.10) with
Respect to pj/rj, sj/qj.

Of the system (6.3)–(6.10), we consider the matrix equations for two
neighboring points t = aj and t = aj−1. We have

A+
j+1 = gjA

−
j+1, A+

j+1Tjθ
+
j = gj−1A

−
j+1Tjθ

−
j , (8.1)

where
A±j+1 = Tθ±mTm−1θ

±
m−1 . . . Tj+1θ

±
j+1. (8.2)

Excluding A+
j+1 from the system (8.1), we obtain the equation with re-

spect to Tj :

Tj(θ
+
j )2 = BjTj , Bj =

(
Bj

11, Bj
12

Bj
21, BJ

22

)
= (A−j+1)

−1g−1
j gj−1A

−
j+1. (8.3)

When solving (8.3), consider the following cases: (1) the difference α1j −
α2j is not an integer; (2) the difference α1j − α2j is an integer.

1. The solution of (8.3) with respect to the elements of the matrix Tj

has the form

pj/rj = Bj
12[λ1j −Bj

11]
−1, pj/rj = (Bj

21)
−1[λ1j −Bj

22] (8.4)

sj/qj = (Bj
12)

−1[λ2j −Bj
11]

−1, sj/qj = Bj
21[λ2j −Bj

22]
−1. (8.5)

We take one equation from each of (8.4) and (8.5) because the second
equations coincide with the first ones owing to the fact that

detBj = λ1jλ2j , Bj
11 +Bj

22 = λ1j + λ2j . (8.6)

Consequently, the solution of (8.3) for one point is given in the form of
two scalar equations with respect to the parameters aj , cj , j = 1,m. Recall
(5.1) and (5.2) in which it is seen that the parameters pj , qj , rj , sj depend
implicitly on aj , cj , j = 1,m.
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The solution of the matrix equation

Tθ+m = gm−1Tθ
−
m, gm−1 =

(
gm−1
11 , gm−1

12

gm−1
21 , gm−1

22

)
(8.7)

have the form

p/r = gm−1
12 [λ1m − gm−1

11 ]−1, s/q = Bm−1
12 [λ2m − gm−1

11 ], (8.8)

where p/r and s/q are the integration constants of the Schwarz differential
equation (1.15).

We can immediately verify that the solutions (8.4) and (8.5) are real,
hence the equation

pjsj/(rjqj) = [λ2j −Bj
11][λ1j −Bj

11]
−1, (8.9)

is real as well. This equation is connected with the invariant cross-ratio of
four intersection points of one circumference with two neighboring circum-
ferences (see, e.g., (6.29) or (6.24)).

2(a). The difference λ1j − λ2j = n, n = 0, 2. In this case the equation
(8.3) takes the form

λ2jTj

(
1, 0

2πi, 1

)
= BjTj . (8.10)

The solution (8.10) has the form

λ2j(pj +2πiqj)=B
j
11pj +Bj

12rj , λ2j [rj +2πisj)=B
j
21pj +Bj

22rj , (8.11)

sj/qj = [λ2j −Bj
11](B

j
12)

−1, sj/qj = Bj
2j [λ2j −Bj

22]
−1. (8.12)

We take one equation from each of (8.11) and (8.12) because the second
equations coincide with the first ones. Indeed, this is obvious for (8.12),
while for (8.11) it is necessary to indicate the way of proving. First we
define qj/sj from (8.12) and substitute the obtained value into the first of
the equations (8.11), then we divide by sj the left and right sides of both
equations (8.11) and obtain

pj

sj
(λ2j −Bj

11)−
rj
sj
Bj

12 = −2πiλ1jB
j
12[λ1j −Bj

11], (8.13)

pj

sj
(−Bj

21) + (λ2j −Bj
22)

rj
sj

= 2πiλ2j . (8.14)

These equations coincide because the coefficients (including the free terms)
are proportional.

2(b). If α1j − α2j = 1, then the equation (8.3) takes the form

λ2jTj

(
1, 0

−2πi, 1

)
= BjTj . (8.15)

In this case (8.12) remains invariable, and proportionality of the coef-
ficients (including free terms) is not violated if in the systems (8.13) and
(8.14) we replace 2πi by −2πi.
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Defining the elements pj , qj , rj and sj from (5.1) as depending on aj , cj ,
j = 1,m, and substituting them in (8.4), (8.5), (8.9), (8.11) and (8.12), we
obtain equations with respect to aj , cj , j = 1,m.
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