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Abstract. For a system of differential inequalities we present exact con-
ditions for non-existence of global solutions of constant sign in subcritical
and critical cases. In the supercritical case we indicate one sufficient condi-
tion for non-existence of global solutions of constant sign which is, possibly,
also exact.
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Introduction

The problem on asymptotic behavior of solutions of second order nonlin-
ear nonautonomous ordinary differential equations attracted attention of a
great number of mathematicians at the beginning of the twentieth century
in connection with astrophysical investigations of R. Emden in which there
appeared the equation of the type

u′′ ± tσun = 0.

The detailed qualitative investigation of this equation, called subsequently
the Emden-Fowler equation, for different values of parameters σ and n was
carried out by R. Fowler.

The interest in the study of asymptotics of solutions of nonlinear second
order equations has considerably increased after the appearance of the well-
known R. Bellman’s monograph [5] in which the author stated all basic
results concerning the Emden-Fowler equation.

The qualitative investigation of the Emden-Fowler type equation

u′′ + a(t)|u|n signu = 0, (0.1)

where n ∈ (0, +∞) and the function a : [0, +∞) → R is summable on each
finite segment, was started by F.V. Atkinson [2]. He proved that if a(t) ≥ 0
and n > 1, then the condition

+∞
∫

0

ta(t)dt = +∞

is necessary and sufficient for all proper solutions of the equation (0.1) to
be oscillatory.

Š. Belohorec [6] proved that if a(t) ≥ 0, 0 < n < 1, then for all proper
solutions of the equation (0.1) to be oscillatory, it is necessary and sufficient
that

+∞
∫

0

tna(t)dt = +∞.

The oscillation problem of solutions of the equation (0.1) in case a(t) is
a function with alternating signs, has been studied by I.T. Kiguradze [25].

The efficient methods for investigating the asymptotic behavior of proper
and singular solutions of the equation (0.1) have been proposed by M.M.
Aripov [1], L.A. Beklemisheva [4], Š. Belohorec [6,7], T.A. Chanturia [27,30],
V.M. Evtukhov [20], A.G. Katranov [24], I.T. Kiguradze [25–28], L.B. Kle-
banov [29], A.V. Kostin [32] and others.

The equations of the type

u′′ + f(t, u) = 0.

are also studied in detail. In particular, there were obtained: sufficient
conditions for the existence of proper solutions; sufficient conditions for the
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boundedness and stability in one or another sense; necessary and sufficient
conditions for all proper solutions to be oscillatory; sufficient conditions for
the existence of at least one oscillatory solution; sufficient conditions for
all proper solutions to be nonoscillatory; conditions for the solvability of
various boundary value problems.

Similar problems for higher order nonlinear differential equations and
systems of nonlinear nonautonomous differential equations have been stud-
ied by M. Bartušhek [3], T.A. Chanturia [27,30], Z. Došla [8,9], O. Došly
[10–14], A. Elbert [13, 17–19], J. Jaroš [22], I.T. Kiguradze [26–28], T. Ku-
sano [19, 22, 33], A.G. Lomtatidze [14, 23, 34, 35], J.V. Manojlovič [36],
J. D. Mirzov [37], I. Nečas [39], B. Půža [41–43], V.A. Rabtsevich [44],
B. L. Shekhter [28], Ch.A. Skhalyakho [45, 46] etc.

In the last years a considerable progress has been made by many math-
ematicians in investigation of problems connected with the existence (non-
existence) of solutions of constant signs of nonlinear differential equations
and systems of differential equations. Among them we can mention the
works of M. Cecchi [8, 9], P. Drabek [15, 16], Yu.V. Egorov [21], V.A.
Galaktionov [21], V.A. Kondrat’ev [21], R.G. Koplatadze [30, 31], R. Man-
asevich [16], M. Marini [8, 9], E. Mitidieri [38] and S.I. Pokhozhaev [38,
40].

Our work is devoted to systems of the type

u′2 sign u1 ≤ −a2(t)|u1|
λ2 ≤ 0 ≤ a1(t)|u2|

λ1 ≤ u′1 signu2, (0.2)

−a2(t)|u1|
λ2 ≤ u′2 signu1 ≤ 0 ≤ u′1 signu2 ≤ a1(t)|u2|

λ1 , (0.3)

where ai : (0, +∞) → [0, +∞) (i = 1, 2) are the functions which are sum-
mable on every finite segment from (0, +∞), λi > 0 (i = 1, 2).

Below we will indicate exact conditions guaranteeing the non-existence
of global solutions of constant signs of systems of the type (0.2), i.e. the
solutions such that u1(t) · u2(t) 6= 0 for 0 < t < +∞. The exactness of the
conditions is understood in a sense that their violation leads to the existence
of global solutions of constant sign of the system (0.3).

For the nonlinear system of the type

u′i = (−1)i−1ai(t)|u3−i|
λi signu3−i,

where ai(t) ≥ 0 (i = 1, 2), λ1 · λ2 = 1, we present an original characteristic
of the principal solution and new criteria for the non-existence of conjugate
points.

The basic method of our investigation is the method of a priori estimates
which is widely used by I.T. Kiguradze and his numerous followers.

The results obtained in the paper can be applied to the qualitative theory
of ordinary differential equations, to the theory of boundary value problems,
in investigating the behavior of solutions of partial differential equations
with p-Laplacian, and so on.
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It should be noted that the statements given in the present work can,
with natural changes, be paraphrased for any interval of the type (a, b),
where −∞ ≤ a < b ≤ +∞.

1. Systems of Inequalities in the Subcritical Case

In this section, using the results of [37], we find exact conditions ensuring
the non-existence of global solutions of constant signs of systems of the type
(0.2) with λ1 · λ2 < 1, and then we apply the obtained conditions to some
partial differential equations.

Theorem 1.1. Let λ1 · λ2 < 1 and for some t0 ∈ [0, +∞)

t0
∫

0

a1(t)dt < +∞,

t0
∫

0

a2(t)dt = +∞,

+∞
∫

t0

a1(t)dt = +∞,

+∞
∫

t0

a2(t)dt < +∞.

(1.1)

Then for the system (0.2) to have no global solution with the property

u1(t) · u2(t) > 0 for 0 < t < +∞, it is sufficient that the equality

t0
∫

0

a1(t)

(

t0
∫

t

a2(τ)dτ

)λ1

dt +

+∞
∫

t0

a2(t)

(

t
∫

t0

a1(τ)dτ

)λ2

dt=+∞ (1.2)

be fulfilled.

Proof. Assume the contrary, i.e., suppose that the first summand in (1.2)
is equal to +∞ and, nevertheless, u1(t) · u2(t) > 0 for t ∈ (0, +∞) for some
solution u1(t), u2(t) of the system (0.2). Then for 0 < t < +∞,

|u1|
′ ≥ a1(t)|u2|

λ1 , |u2|
′ ≤ −a2(t)|u1|

λ2 . (1.3)

Hence |u2(t)| ≥ |u1(t)|
λ2

∫ t0

t
a2(τ)dτ for 0 < t ≤ t0. Therefore

|u1(t)|
−λ1λ2 |u1(t)|

′ ≥ a1(t)

(

t0
∫

t

a2(τ)dτ

)λ1

for 0 < t ≤ t0.

Integrating the last inequality from t to t0 and passing to the limit as
t → 0+, we come to the contradiction.

Suppose now that the second summand in (1.2) is equal to +∞ and, nev-
ertheless, u1(t)·u2(t) > 0 for t ∈ (0, +∞) for some solution u1(t), u2(t) of the

system (0.2). Then (1.3) holds. Consequently, |u1(t)| ≥ |u2(t)|
λ1

∫ t

t0
a1(τ)dτ

for t ≥ t0. Therefore |u2(t)|
−λ1·λ2 |u2(t)|

′ ≤ −a2(t)
( ∫ t

t0
a1(τ)dτ

)λ2
for

t ≥ t0. Integrating the last inequality from t0 to t and passing to the limit as
t → +∞, we arrive at the contradiction. �
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Theorem 1.2. Let λ1 · λ2 < 1 and (1.1) be satisfied. Then for the

system (0.3) to have no global solution with the property u1(t) ·u2(t) > 0 for

0 < t < +∞, it is necessary that the equality (1.2) be fulfilled.

Proof. Suppose that (1.2) is not fulfilled. Let us show that the system
(0.3) has a solution u1(t), u2(t) defined on (0, +∞) with the property
u1(t) · u2(t) > 0 for 0 < t < +∞.

Consider the solution u1(t), u2(t) of the system (0.3) defined by the initial
conditions u1(t0) = u10, u2(t0) = u20, u10 · u20 > 0, where the numbers u10

and u20 will be chosen later on. In some neighbourhood of t0 the inequalities

u1(t) · u2(t) > 0,

−a2(t)|u1(t)|
λ2 ≤ |u2(t)|

′ ≤ 0 ≤ |u1(t)|
′ ≤ a1(t)|u2(t)|

λ1
(1.4)

hold. Consequently, for t ≥ t0 in the neighbourhood of t0 we have

|u20| −

t
∫

t0

a2(τ)

∣

∣

∣

∣

|u10|+

τ
∫

t0

a1(s)|u2(s)|
λ1ds

∣

∣

∣

∣

λ2

dτ ≤ |u2(t)|.

Since (x+y)α ≤ 2α(xα +yα) for any x > 0, y > 0, α ≥ 0, the last inequality
yields

|u20| − 2λ2 |u10|
λ2

t
∫

t0

a2(τ)dτ−

−2λ2 |u20|
λ1·λ2

t
∫

t0

a2(τ)

(

τ
∫

t0

a1(s)ds

)λ2

dτ ≤ |u2(t)|.

Thus we see that |u2(t)| > 0 for all t ≥ t0 if

|u20| − 2λ2 |u10|
λ2

+∞
∫

t0

a2(t)dt−

−2λ2 |u20|
λ1·λ2

+∞
∫

t0

a2(t)

(

t
∫

t0

a1(τ)dτ

)λ2

dt > 0. (1.5)

For t ≤ t0, in the neighbourhood of t0 according to (1.4) we have

|u10| ≤ |u1(t)|+

t0
∫

t

a1(τ)
∣

∣|u20|+

t0
∫

τ

a2(s)|u1(s)|
λ2ds

∣

∣

λ1
dτ ≤ |u1(t)|+

+2λ1 |u20|
λ1

t0
∫

t

a1(τ)dτ + 2λ1 |u10|
λ1·λ2

t0
∫

t

a1(τ)

(

t0
∫

τ

a2(s)ds

)λ1

dτ.
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Hence, if

|u10| − 2λ1 |u20|
λ1

t0
∫

0

a1(t)dt−

−2λ1 |u10|
λ1·λ2

t0
∫

0

a1(t)

(

t0
∫

t

a2(s)ds

)λ1

dt > 0, (1.6)

then |u1(t)| > 0 for all t ∈ (0, t0].
To complete the proof of the theorem we have to show that the system

of inequalities (1.5), (1.6) has at least one solution |u10|, |u20|. Suppose
|u20| = |u10|

γ , where λ2 < γ < 1
λ1

. It is obvious that for sufficiently large

|u10| the inequalities (1.5), (1.6) are fulfilled. Therefore for any solution
of the system (0.3) defined by the above-mentioned initial values we have
u1(t) · u2(t) > 0 for 0 < t < +∞. �

From Theorems 1.1 and 1.2 we immediately arrive at

Theorem 1.3. Let λ1 ·λ2 < 1 and (1.1) be satisfied. Then for the system

a1(t)|u2|
λ1 ≤ u′1 signu2 ≤ Ma1(t)|u2|

λ1 ,

−Ma2(t)|u1|
λ2 ≤ u′2 sign u1 ≤ −a2(t)|u1|

λ2 ,
(1.7)

where M ≥ 1, to have no global solution with the property u1(t) · u2(t) > 0
for 0 < t < +∞, it is necessary and sufficient that the condition (1.2) be

fulfilled.

Theorem 1.4. Let λ1 · λ2 < 1 and for some t0 ∈ (0, +∞),

t0
∫

0

a1(t)dt = +∞,

t0
∫

0

a2(t)dt < +∞,

+∞
∫

t0

a1(t)dt < +∞,

+∞
∫

t0

a2(t)dt = +∞.

(1.8)

Then for the system (0.2) to have no global solution with the property

u1(t) · u2(t) < 0 for 0 < t < +∞, it is sufficient that the equality

t0
∫

0

a2(t)

(

t0
∫

t

a1(τ)dτ

)λ2

dt+

+∞
∫

t0

a1(t)

(

t
∫

t0

a2(τ)dτ

)λ1

dt=+∞ (1.9)

be fulfilled.

Proof. Assume ai = b3−i, λi = µ3−i, ui = (−1)i−1v3−i (i = 1, 2) and make
use of Theorem 1.1. �
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Theorem 1.5. Let λ1 · λ2 < 1 and (1.8) be satisfied. Then for the

system (0.3) to have no global solution with the property u1(t) ·u2(t) < 0 for

0 < t < +∞, it is necessary that the condition (1.9) hold.

The proof is similar to that of the previous theorem and follows directly
from Theorem 1.2.

From Theorems 1.4 and 1.5 follows

Theorem 1.6. Let λ1 ·λ2 < 1 and (1.8) be satisfied. Then for the system

(1.7) to have no solution with the property u1(t) ·u2(t) < 0 for 0 < t < +∞,

it is necessary and sufficient that the condition (1.9) hold.

At the end of this section we give some applications of the obtained
results to the partial differential equations of the type

div(| 5 u|m−2 5 u) + f(|x|)|u|n−2u = 0, (1.10)

where the function f : (0, +∞) → [0, +∞) is summable on every finite
segment of the interval (0, +∞), m > 1, n > 1, x = (x1, x2, . . . , xN ) ∈ R

N ,

N ≥ 2, 5u =
(

∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xN

)

.

It is known that the function u(x) = y(|x|) = y(t) is a solution of (1.10)
if and only if y(t) satisfies the ordinary differential equation [33]

(tN−1|y′|m−2y′)′ + tN−1f(t)|y|n−2y = 0. (1.11)

Theorem 1.7. Let n < m, N < m and for some t0 ∈ (0, +∞),

t0
∫

0

tN−1f(t)dt = +∞,

+∞
∫

t0

tN−1f(t)dt < +∞.

Then for the equation (1.10) to have no global radial positive (negative),
increasing (decreasing) with respect to the radial variable solution, it is nec-

essary and sufficient that

t0
∫

0

t−
N−1
m−1

(

t0
∫

t

τN−1f(τ)dτ

)
1

m−1

dt +

+∞
∫

t0

tN−1+ (m−N)(n−1)
m−1 f(t)dt = +∞.

Proof. We rewrite the equation (1.11) in the form of the system

u′1 = t−
N−1
m−1 |u2|

1
m−1 signu2, u′2 = −tN−1f(t)|u1|

n−1 signu1

and make use of Theorem 1.3. �

Theorem 1.8. Let n < m, N > m and for some t0 ∈ (0, +∞),

t0
∫

0

tN−1f(t)dt < +∞,

+∞
∫

t0

tN−1f(t)dt = +∞.
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Then for the equation (1.10) to have no global radial positive (negative),
decreasing (increasing) with respect to the radial variable solution, it is nec-

essary and sufficient that

t0
∫

0

tN−1+ (m−N)(n−1)
m−1 f(t)dt +

+∞
∫

t0

t−
N−1
m−1

(

t
∫

t0

τN−1f(τ)dτ

)
1

m−1

dt = +∞.

The proof follows directly from Theorem 1.6.

2. Systems of Inequalities in the Critical Case

In this section we obtain exact conditions for the non-existence of global
solution of constant sign of the system (0.2) for λ1 · λ2 = 1.

First we give some auxiliary statements.

Lemma 2.1. Let λ1 ·λ2 = 1, σ ∈ {−1, 1} the system (0.2) have a solution

defined on [t0, +∞) ((0, t0]) and possessing the property σu1(t) · u2(t) > 0
for t ≥ t0 (t ≤ t0). Then the system

v′1 = a1(t)|v2|
λ1 sign v2, v′2 = −a2(t)|v1|

λ2 sign v1 (2.1)

has also a solution defined on [t0, +∞] ((0, t0]) and possessing the property

σv1(t) · v2(t) > 0 for t ≥ t0 (t ≤ t0).

Proof. For the sake of definiteness, we assume that σ = 1. Suppose that the
system (0.2) has the solution u1(t), u2(t), defined on [t0, +∞) and possessing
the property u1(t) · u2(t) > 0 for t ≥ t0. Consider a solution v1(t), v2(t) of
the system (2.1) whose initial values satisfy the inequality

v2(t0) sign v1(t0)

|v1(t0)|λ1
≥

u2(t0) signu1(t0)

|u1(t0)|λ2
.

From (0.2) it follows that
(u2 sign u1

|u1|λ2

)′

≤ −λ2a1(t)
( |u2|

|u1|λ2

)1+λ1

− a2(t) for t ≥ t0.

Therefore, by virtue of the lemma on differential inequalities (see, e.g., [26],
p. 42), we obtain

v2(t) sign v1(t)

|v1(t)|λ2
≥

u2(t) sign u1(t)

|u1(t)|λ2
for t ≥ t0,

where it is clear that the function appearing in the left-hand side of the
inequality is non-increasing on [t0, +∞).

Let us prove the second part of the statement of the lemma. Suppose that
the system (0.2) has a solution u1(t), u2(t) defined on (0, t0] and possessing
the property u1(t) · u2(t) > 0 for t ≤ t0. Consider the solution v1(t), v2(t)
of the system (2.1) whose initial values satisfy the inequality

v1(t0) sign v2(t0)

|v2(t0)|λ1
≥

u1(t0) signu2(t0)

|u2(t0)|λ1
.
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From (0.2) it follows that

(u1 sign u2

|u2|λ1

)′

≥ λ1a2(t)
( |u1|

|u2|λ1

)1+λ2

+ a1(t) for 0 < t ≤ t0.

Therefore by virtue of the above-mentioned lemma on differential inequali-
ties, we get

v1(t) sign v2(t)

|v2(t)|λ1
≥

u1(t) sign u2(t)

|u2(t)|λ1
for 0 < t ≤ t0,

where the function appearing in the left-hand side of the inequality does
not decrease on (0, t0]. The case where σ = −1 is reduced by means of
the substitution ui = (−1)i−1w3−i, vi = (−1)i−1z3−i, ai = b3−i, λi = µ3−i

(i = 1, 2) (since the systems (0.2), (0.3) and (2.1) are invariant with respect
to the above-mentioned substitution) to the previous one. �

Lemma 2.2. Let λ1 ·λ2 = 1, σ ∈ {−1, 1}, the system (2.1) have a solution

defined on [t0, +∞) ((0, t0]) and possessing the property σv1(t) · v2(t) > 0
for t ≥ t0 (t ≤ t0). Then the system (0.3) has also a solution defined on

[t0, +∞) ((0, t0]) and possessing the property σu1(t) · u2(t) > 0 for t ≥ t0
(t ≤ t0).

Proof. For the sake of definiteness, we assume σ = 1. Suppose that the
system (2.1) has a solution v1(t), v2(t) defined on [t0, +∞) and possessing
the property v1(t) · v2(t) > 0 for t ≥ t0. Consider the solution u1(t), u2(t)
of the system (0.3) whose initial values satisfy the inequality

u2(t0) sign u1(t0)

|u1(t0)|λ2
≥

v2(t0) sign v1(t0)

|v1(t0)|λ2
.

It follows from (0.3) that

(u2 signu1

|u1|λ2

)′

≥ −λ2a1(t)
( |u2|

|u1|λ2

)1+λ1

− a2(t)

in some right half-neighbourhood of t0, and the function appearing under
the sign of the derivative does not increase in the above-mentioned half-
neighbourhood. According to the lemma on differential inequalities,

u2(t) sign u1(t)

|u1(t)|λ2
≥

v2(t) sign v1(t)

|v1(t)|λ2

for all t ≥ t0.
Let us prove the second part of the lemma. Let the system (2.1) have a so-

lution v1(t), v2(t) defined on (0, t0] and possessing the property
v1(t) · v2(t) > 0 for t ≤ t0. Consider the solution u1(t), u2(t) of the system
(0.3) whose initial values satisfy the inequality

u1(t0) sign u2(t0)

|u2(t0)|λ1
≥

v1(t0) sign v2(t0)

|v2(t0)|λ1
.
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It follows from (0.3) that

(u1 signu2

|u2|λ1

)′

≤ λ1a2(t)
( |u1|

|u2|λ1

)1+λ2

+ a1(t)

in some left half-neighbourhood of t0, and the function appearing under
the sign of the derivative does not decrease in the above-mentioned half-
neighbourhood. According to the lemma on differential inequalities,

u1(t) sign u2(t)

|u2(t)|λ1
≥

v1(t) sign v2(t)

|v2(t)|λ1

for all t ∈ (0, t0]. For σ = −1, the statement of the lemma remains valid. �

Theorem 2.1. Suppose that λ1 · λ2 = 1, (1.1) holds and the condition

lim
n→+∞

(

t0
∫

0

a2(t)ρ
1+λ2
n (t)dt +

+∞
∫

t0

a1(t)r
1+λ1
n (t)dt

)

< +∞ (2.2)

is satisfied, where

r0(t) =

+∞
∫

t

a2(τ)dτ > 0, rn(t) =

= λ2

+∞
∫

t

a1(τ)r1+λ1
n−1 (τ)dτ +

+∞
∫

t

a2(τ)dτ for t0 ≤ t < +∞, (2.3)

ρ0(t) =

t
∫

0

a1(τ)dτ > 0, ρn(t) =

= λ1

t
∫

0

a2(τ)ρ1+λ2
n−1 (τ)dτ +

t
∫

0

a1(τ)dτ for 0 < t ≤ t0. (2.4)

Then for the system (2.1) to have no global solution with the property v1(t) ·
v2(t) > 0 for 0 < t < +∞, it is necessary and sufficient that

r(t0) · ρ
λ2(t0) > 1, (2.5)

where r(t) = limn→+∞ rn(t) and ρ(t) = limn→+∞ ρn(t).

Proof. The necessity. Let the system (2.1) have no solution with the prop-
erty v1(t) · v2(t) > 0 for 0 < t < +∞. It follows from (2.2) that there exist
the limits

r(t)= lim
n→+∞

rn(t) for t0 ≤ t < +∞, ρ(t)= lim
n→+∞

ρn(t) for 0 < t ≤ t0.

Clearly, r(t) is a minimal solution of the equation

r′ = −λ2a1(t)|r|
1+λ1 − a2(t) (2.6)
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defined on [t0, +∞) (see [37], p. 65), and ρ(t) is a minimal solution of the
equation

ρ′ = λ1a2(t)|ρ|
1+λ2 + a1(t) (2.7)

defined on (0, t0]; note that r(t) > 0 for t0 ≤ t < +∞ and ρ(t) > 0 for
0 < t ≤ t0. Consequently, ρ−λ2(t) is a maximal solution of the equation
(2.6) defined on (0, t0]. As far as we have assumed that the system (2.1) has
no solution defined on (0, +∞) and possessing the property v1(t) · v2(t) > 0
for 0 < t < +∞, the equation (2.6) has no solution defined on (0, +∞).
Therefore ρ−λ2(t0) < r(t0), i.e. (2.5) holds.

The sufficiency. Let (2.5) hold. Let us show that the system (2.1) has
no global solution possessing the property v1(t) · v2(t) > 0 for 0 < t < +∞.
Suppose that this is not the case, i.e., we suppose that the system (2.1) has a

solution with the above-mentioned property. Then the function v2(t) sign v1(t)

|v1(t)|λ2

is a solution of the equation (2.6), defined on (0, +∞). As far as r(t) is a
minimal solution of the equation (2.6) on [t0, +∞), we get

v2(t0) sign v1(t0)

|v1(t0)|λ2
≥ r(t0),

and also, taking into account the fact that ρ−λ2(t) is a maximal solution of
the equation (2.6), defined on (0, t0], we have

ρ−λ2(t0) ≥
v2(t0) sign v1(t0)

|v1(t0)|λ2
.

Consequently, r(t0) · ρ
λ2(t0) ≤ 1, which contradicts (2.5). �

Theorem 2.2. Suppose that λ1 · λ2 = 1, (1.8) holds and the condition

lim
n→+∞

(

t0
∫

0

a1(t)ρ
1+λ1
n (t)dt +

+∞
∫

t0

a2(t)r
1+λ2
n (t)dt

)

< +∞, (2.8)

is satisfied, where

r0(t) =

+∞
∫

t

a1(τ)dτ > 0, rn(t) = λ1

+∞
∫

t

a2(τ)r1+λ2
n−1 (τ)dτ+

+

+∞
∫

t

a1(τ)dτ for t0 ≤ t < +∞ (2.9)

and

ρ0(t) =

t
∫

0

a2(τ)dτ > 0, ρn(t) = λ2

t
∫

0

a1(τ)ρ1+λ1
n−1 (τ)dτ+

+

t
∫

0

a2(τ)dτ for 0 < t ≤ t0. (2.10)
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Then for the system (2.1) to have no global solution with the property

v1(t) · v2(t) < 0 for 0 < t < +∞, it is necessary and sufficient that

r(t0) · ρ
λ1(t0) > 1, (2.11)

where r(t) = limn→+∞ rn(t) and ρ(t) = limn→+∞ ρn(t).

Proof. We put vi = (−1)i−1w3−i, ai = b3−i, λi = µ3−i (i = 1, 2) and make
use of Theorem 2.1. �

Theorem 2.3. Let λ1 · λ2 = 1 and the conditions (1.1), (2.2)–(2.4) be

satisfied. If the inequality (2.5) is fulfilled, then the system (0.2) has no

global solution with the property u1(t) · u2(t) > 0 for 0 < t < +∞; if the

system (0.3) has no global solution with the property u1(t) · u2(t) > 0 for

0 < t < +∞, then the inequality (2.5) holds.

Proof. Let the inequality (2.5) hold. Make sure that the system (0.2) has
no solution with the property u1(t) ·u2(t) > 0 for 0 < t < +∞. Indeed, if we
assume the contrary that the system (0.2) has a solution with the property
u1(t) · u2(t) > 0 for 0 < t < +∞, then this by Lemma 2.1 will mean
that the system (2.1) has a solution with the property v1(t) · v2(t) > 0 for
0 < t < +∞. But this is impossible because by Theorem 2.1 the condition
(2.5) is sufficient for the non-existence of solutions with the above-mentioned
property.

Let the system (0.3) have no solution with the property u1(t) · u2(t) > 0
for 0 < t < +∞. Let us show that in this case the inequality (2.5) is
satisfied. Indeed, if this is not the case, then by Theorem 2.1 system (2.1)
has a solution with the property v1(t) · v2(t) > 0 for 0 < t < +∞. But
then by Lemma 2.1, the system (0.3) has also a solution with the property
u1(t) · u2(t) > 0 for 0 < t < +∞, which contradicts our supposition. �

Theorem 2.4. Let λ1 · λ2 = 1, and let the conditions (1.8), (2.8)–(2.10)
be satisfied. If the inequality (2.11) is fulfilled, then the system (0.2) has no

global solution with the property u1(t) · u2(t) < 0 for 0 < t < +∞; if the

system (0.3) has no global solution with the property u1(t) · u2(t) < 0 for

0 < t < +∞, then the inequality (2.11) holds.

Proof. Put ui = (−1)i−1v3−i, ai = b3−i, λi = µ3−i (i = 1, 2) and make use
of Theorem 2.3. �

In conclusion, we present new criteria for the non-existence of conju-
gate points and an original characteristic of the principal solution (for the
definition see [37], p. 95) of the system (2.1).

Theorem 2.5. Let λ1 · λ2 = 1, and let (1.1), (2.2)–(2.4) hold. Then for

every solution v1(t), v2(t) of the system (2.1) the components vi(t) (i = 1, 2)
have on (0, +∞) not more than one zero if and only if

r(t0) · ρ
λ2(t0) ≤ 1. (2.12)
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Proof. The necessity. Let for every solution v1(t), v2(t) of the system
(2.1) the components vi(t) (i = 1, 2) have on (0, +∞) not more than one
zero. Let us show that (2.12) holds. Indeed, if we assume that this is
not the case, then (2.5) is fulfilled. Let us take α ∈ (ρ−λ2(t0), r(t0)) and
consider the solution x(t) of the equation (2.6) which is defined by the initial
condition x(t0) = α. Since r(t) is a minimal solution of the equation (2.6)
defined on [t0, +∞), and ρ−λ2(t) is a maximal solution of the equation (2.6)
defined on (0, t0], there exist numbers t1 ∈ (0, t0) and t2 ∈ (t0, +∞) such
that limt→t1+ x(t) = +∞ and limt→t2− x(t) = −∞. The latter means that
for the solution v1(t), v2(t) of the system (2.1) which corresponds to the
solution x(t) of the equation (2.6), the component v1(t) has two zeros t1
and t2, which contradicts our assumption.

Analogously, let us take β ∈ (r−λ1 (t0), ρ(t0)) and consider the solution
y(t) of the equation (2.7) defined by the initial condition y(t0) = β. Since
r−λ1(t) is a maximal solution of the equation (2.7) defined on [t0, +∞),
and ρ(t) is a minimal solution of the same equation defined on (0, t0], there
exist numbers t1 ∈ (0, t0) and t2 ∈ (t0, +∞) such that limt→t1+ y(t) = −∞
and limt→t2− y(t) = +∞. But this implies that for the solution v1(t), v2(t)
of the system (2.1) which corresponds to the solution y(t) of the equation
(2.7), the component v2(t) has two zeros t1 and t2, which contradicts our
assumption.
The sufficiency. Let (2.12) hold. Then the solution x(t) of the equation
(2.6) defined by the initial value x(t0) ∈ [r(t0), ρ

−λ1(t0)] will be given on
(0, +∞). If we assume that for some solution v1(t), v2(t) of the system
(2.1) the component v1(t) has two different zeros t1 < t2 on the interval

(0, +∞), then this will imply that the function v2(t) sign v1(t)
|v1(t)|λ2

is a solution of

the equation (2.6) and

lim
t→t1+

v2(t) sign v1(t)

|v1(t)|λ2
= +∞, lim

t→t2−

v2(t) sign v1(t)

|v1(t)|λ2
= −∞.

But then there exists a point τ ∈ (t1, t2) such that

x(τ) =
v2(τ) sign v1(τ)

|v1(τ)|λ2
.

This contradicts the uniqueness of a solution of the Cauchy problem for the
equation (2.6).

Analogously, if we assume that for some solution of the system (2.1) the
component v2(t) has two different zeros t1 < t2 on the interval (0, +∞),

then the function v1(t) sign v2(t)
|v2(t)|λ1

is a solution of the equation (2.7) and

lim
t→t1+

v1(t) sign v2(t)

|v2(t)|λ1
= −∞, lim

t→t2−

v1(t) sign v2(t)

|v2(t)|λ1
= +∞.

Therefore for the solution y(t) of the equation (2.7) defined by the initial
value y(t0) ∈ [ρ(t0), r

−λ2(t0)] and given on (0, +∞) there exists a point
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τ ∈ (t1, t2) such that

y(τ) =
v1(τ) sign v2(τ)

|v2(τ)|λ1
.

As before, we have a contradiction since the solution of the Cauchy problem
for the equation (2.7) is unique. �

Remark. Note that (2.12) is a necessary and sufficient condition for any
component of each solution of the system (2.1) to have not more than one
zero on (0, +∞).

Theorem 2.6. Let λ1 · λ2 = 1 and (1.8), (2.8)–(2.10) hold. Then for

every solution v1(t), v2(t) of the system (2.1) the components vi(t) (i = 1, 2)
have on (0, +∞) not more than one zero if and only if

r(t0) · ρ
λ1(t0) ≤ 1.

Proof follows from Theorem 2.5 if we make the substitution vi =(−1)i−1×
w3−i, ai = b3−i, λi = µ3−i (i = 1, 2).

Theorem 2.7. Let λ1 · λ2 = 1 and the conditions

+∞
∫

t0

a1(t)dt = +∞, 0 ≤

+∞
∫

t

a2(τ)dτ < +∞,

r0(t) =

+∞
∫

t

a2(τ)dτ, rn(t) = λ2

+∞
∫

t

a1(τ)r1+λ1
n−1 (τ)dτ +

+∞
∫

t

a2(τ)dτ,

lim
n→+∞

rn(t) = r(t) for t ≥ t0

be satisfied (note that in this theorem a2(t) may be a function with alternat-

ing signs on [t0, +∞)). Then the solution v1(t), v2(t) of the system (2.1) is

principal if and only if the equality

v2(t) sign v1(t)

|v1(t)|λ2
= r(t) for t ≥ t0 (2.13)

is fulfilled or, what comes to the same thing, that

v1(t) = v1(t0) exp

t
∫

t0

a1(τ)rλ1 (τ)dτ for t ≥ t0. (2.14)

Proof. The function r(t) is a minimal solution of the equation (2.6) given
on [t0, +∞), and hence the bounding solution of that equation [37]. Conse-
quently, the solution v1(t), v2(t) of the system (2.1) is principal if and only if
(2.13) holds. By virtue of (2.1), the equality (2.14) follows from (2.13). �
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3. Systems of Inequalities in the Supercritical Case

In this section we present sufficient conditions for the non-existence of
global solutions of constant sign of the system (0.2) in the case λ1 · λ2 > 1.

Theorem 3.1. Let λ1 · λ2 > 1 and (1.1) be satisfied. Then for the

system (0.2) to have no global solution with the property u1(t)u2(t) > 0 for

0 < t < +∞, it is sufficient that the equality

t0
∫

0

a2(t)

(

t
∫

0

a1(τ)dτ

)λ2

dt+

+

+∞
∫

t0

a1(t)

(

+∞
∫

t

a2(τ)dτ

)λ1

dt = +∞ (3.1)

be fulfilled.

Proof. Assume the contrary, i.e., suppose that the first summand in (3.1)
is equal to +∞ and, nevertheless, u1(t) ·u2(t) > 0 for 0 < t < +∞ for some
solution u1(t), u2(t) of the system (0.2). Then (1.3) holds. Therefore

|u2(t)|
−λ1 ·λ2 |u2(t)|

′ ≤ −a2(t)

(

t
∫

0

a1(τ)dτ

)λ2

for 0 < t ≤ t0.

Integrating the last inequality from t to t0 and passing to the limit as
t → 0+, we come to the contradiction.

Assume now that the second summand in (3.1) is equal to +∞ and,
nevertheless, u1(t) · u2(t) > 0 for 0 < t < +∞ for some solution of the
system (0.2). Then from (1.3) it follows that

|u1(t)|
−λ1·λ2 |u1(t)|

′ ≥ a1(t)

(

+∞
∫

t

a2(τ)dτ

)λ1

for t ≥ t0.

Integrating the last inequality from t0 to t and passing to limit as t → +∞,
we arrive at the contradiction. �

Theorem 3.2. Let λ1 · λ2 > 1 and (1.8) be satisfied. Then for the

system (0.2) to have no global solutions with the property u1(t) · u2(t) < 0
for 0 < t < +∞, it is sufficient that

t0
∫

0

a1(t)

(

t
∫

0

a2(τ)dτ

)λ1

dt+

+∞
∫

t0

a2(t)

(

+∞
∫

t

a1(τ) dτ

)λ2

dt=+∞. (3.2)

Proof. Put ui = (−1)i−1v3−i, ai = b3−i, λi = µ3−i (i = 1, 2) and make use
of Theorem 3.1. �
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We do not know whether the conditions (3.1) or (3.2) are necessary for
the system (0.3) to have no global solution of constant sign on (0, +∞).

Note that Theorems 1.2 and 1.5 hold true for λ1 · λ2 > 1 as well. To see
that this is so, we have to repeat the proofs of these theorems by putting
1
λ1

< γ < λ2 and choosing |u10| sufficiently small.

It should also be noted that the conditions (1.2) or (1.9) in the case
λ1 ·λ2 > 1 are not sufficient for the system (0.2) to have no global solutions
of constant sign on (0, +∞).

As an example, consider the system

u′1 = t−2u2, u′2 = −3t2|u1|
5 signu1

for which the conditions (1.8) and (1.9) are fulfilled. Nevertheless, this
system has a global solution of constant sign on (0, +∞):

u1(t) = (1 + t2)−
1
2 , u2(t) = −t3(1 + t2)−

3
2 .
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