Ravi P. Agarwal, Haishen Lü and Donal O'Regan

POSITIVE SOLUTIONS FOR THE BOUNDARY
VALUE PROBLEM $\left(\left.\left|u^{\prime \prime}\right|\right|^{p-2} u^{\prime \prime}\right)^{\prime \prime}-\lambda q(t) f(u(t))=0$

Abstract. This paper considers the boundary value problem:

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime \prime}\right|^{p-2} u^{\prime \prime}\right)^{\prime \prime}-\lambda q(t) f(u(t))=0, \text { in }(0,1) \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

with $\lambda>0$. The value of λ is chosen so that the boundary value problem has a positive solution. Moreover, we derive an explicit interval for λ such that for any λ in this interval, the existence of a positive solution to the boundary value problem is guaranteed. In addition we also discuss the existence of two positive solutions for λ in an appropriate interval.

2000 Mathematics Subject Classification. 34B15.
Key words and phrases: Boundary value problem, Positive solution, Beam equation.

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime \prime}\right|^{p-2} u^{\prime \prime}\right)^{\prime \prime}-\lambda q(t) f(u(t))=0, \quad(0,1)-q_{y} \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

1. Introduction

This paper studies the two-point boundary value problem

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(u^{\prime \prime}\right)\right)^{\prime \prime}-\lambda q(t) f(u(t))=0, \quad t \in(0,1) \tag{1.1}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

where $\varphi_{p}(s)=|s|^{p-1} s$, and $p>1$.
Equations of the above form (1.1) occur in beam theory [1], for example,

1. a beam with small deformations (also called geometric linearity);
2. a beam of a material which satisfies a nonlinear power-like stress -strain law;
3. a beam with two-sided links (for example, springs) which satisfies a nonlinear power-like elasticity law.

The best known setting is the boundary value problem when $p=2$, namely

$$
u^{(4)}-q(t) f(u(t))=0, \quad t \in(0,1)
$$

This equation arises when one describes deformations of an elastic beam. Usually both ends are simply supported, or one end is simply supported and the other end is clamped by sliding clamps. Also vanishing moments and shear forces at the beam ends are frequently included in the boundary conditions; see Gupta [2] and Yang [5]. One derivation of this fourth order equation plus the two-point boundary conditions occurs when the method of lines is used in the description over regions of certain partial differential equations describing the deflection of an elastic beam.

Closely related to the results of this paper is the recent work by Ma and Wang [4]. In [4] the authors establish the existence of at least one positive solution of the above fourth order equation for $p=2$ satisfying the boundary value conditions, when the nonlinearity f is superlinear and sublinear.

Singular nonlinear two-point boundary value problem arise naturally in applications and usually, only positive solutions are meaningful. By a positive solution of (1.1), we mean a function $u \in C^{2}([0,1], R)$ with $\varphi_{p}\left(u^{\prime \prime}\right) \in C^{2}((0,1), R)$ satisfying (1.1), and with u nonnegative and not identically zero on $[0,1]$. If, for a particular λ the boundary value problem (1.1) has a positive solution u, then λ is called an eigenvalue and u a corresponding eigenfunction of (1.1). The set of eigenvalues of (1.1) will be denoted by E, i.e.,

$$
E=\{\lambda>0 \mid(1.1)-(1.2) \text { has a positive solution }\} .
$$

In section 2, some preliminary results are presented. Section 3 presents explicit eigenvalue intervals in terms of f_{0} and f_{∞}, where

$$
f_{0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x^{p-1}} \text { and } f_{\infty}=\lim _{x \rightarrow \infty} \frac{f(x)}{x^{p-1}}
$$

Finally, we state a fixed point theorem due to Krasnosel'skii which will be needed in this paper.

Theorem 1.1. Let X be a Banach space, and let $K(\subset X)$ be a cone. Assume Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K
$$

be a completely continuous operator such that, either
(a) $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$, or
(b) $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{2}$.

Then, T has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

2. Preliminary Results

Throughout this paper, it is assumed that $f:[0, \infty) \rightarrow[0, \infty)$ is continuous and that the following condition is satisfied:
(H1) $q \in C(0,1)$ is nonnegative with $\int_{0}^{1} t(1-t) q(t) d t<\infty$ and there exist a natural number $m \geq 3$ and $c \in\left(\frac{1}{m}, \frac{m-1}{m}\right)$ with $q(c)>0$.

Let $X=(C[0,1],\|\cdot\|)\left(\right.$ here $\left.\|u\|=\sup _{t \in[0,1]}|u(t)|, u \in C[0,1]\right)$ be our Banach space and

$$
\begin{gathered}
K=\left\{u \in C[0,1] \mid u(t) \geq 0 \text { for } t \in[0,1] \text { and } \min _{t \in\left[\frac{1}{m}, 1-\frac{1}{m}\right]} u(t) \geq \frac{1}{m}\|u\|\right\}, \\
K_{r}=\{u \in K:\|u\|<r\} \text { and } \partial K_{r}=\{u \in K:\|u\|=r\} .
\end{gathered}
$$

Let $G(t, s)$ be the Green's function for

$$
\left\{\begin{array}{c}
u^{\prime \prime}=0, \quad 0 \leq t \leq 1 \\
u(0)=u(1)=0
\end{array}\right.
$$

Then

$$
G(t, s)= \begin{cases}(1-t) s, & 0 \leq s \leq t \leq 1 \\ (1-s) t, & 0 \leq t \leq s \leq 1\end{cases}
$$

Let

$$
A_{1}=\max _{0 \leq t \leq 1} \int_{0}^{1} G(t, s) \varphi_{p}^{-1}\left(\int_{0}^{1} G(s, x) q(x) d x\right) d s
$$

and

$$
A_{2}=\min _{1 / m \leq t \leq 1-1 / m} \int_{0}^{1} G(t, s) \varphi_{p}^{-1}\left(\int_{1 / m}^{1-1 / m} G(s, x) q(x) d x\right) d s
$$

where $\varphi_{p}^{-1}(s)=|s|^{\frac{1}{p-1}} s$ is an inverse function of φ_{p}. It is easy to see that $0<A_{1}<\infty$ and $0<A_{2}<\infty$.

Define $T, H: X \rightarrow X$ by

$$
\begin{equation*}
(T u)(s)=\int_{0}^{1} \lambda G(x, s) q(x) f(u(x)) d x \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(H u)(t)=\int_{0}^{1} G(t, s) \varphi_{p}^{-1}(u(s)) d s \tag{2.2}
\end{equation*}
$$

Lemma 2.1. $H(T(K)) \subset K$.

Proof. A direct calculation shows that

$$
\begin{equation*}
G(t, s) \leq G(s, s), \text { for } 0 \leq t \leq 1 \text { and } 0 \leq s \leq 1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t, s) \geq \frac{1}{m} G(s, s), \text { for } \frac{1}{m} \leq t \leq 1-\frac{1}{m} \text { and } 0 \leq s \leq 1 . \tag{2.4}
\end{equation*}
$$

From (2.3), we obtain

$$
\begin{aligned}
(H(T u))(t) & =\int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \leq \int_{0}^{1} G(x, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x .
\end{aligned}
$$

Thus

$$
\|H(T u)\| \leq \int_{0}^{1} G(x, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x
$$

Finally notice

$$
\begin{aligned}
& \min _{t \in\left[\frac{1}{m}, 1-\frac{1}{m}\right]}(H(T u))(t) \\
= & \min _{t \in\left[\frac{1}{m}, 1-\frac{1}{m}\right]} \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
\geq & \frac{1}{m} \int_{0}^{1} G(x, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
\geq & \frac{1}{m}\|H T u\| .
\end{aligned}
$$

Remark 1. We can easily prove that $T(K) \subset K$ and that $H(K) \subset K$.
Lemma 2.2. $H T: K \rightarrow K$ is completely continuous.
Proof. We first prove $T: K \rightarrow K$ is completely continuous.
For $n=1,2, \ldots$, let $q_{n}(t)=\min \{q(t), n\}$, and $e_{n}=\{t \in[0,1] \mid q(t) \geq$ $n\}$. Let

$$
\left(T_{n} u\right)(s)=\int_{0}^{1} \lambda G(s, x) q_{n}(x) f(u(x)) d x
$$

It is easy to see [4] that $T_{n}: K \rightarrow K$ is completely continuous, for $n \in N=$ $\{1,2, \cdots\}$. By $(H 1)$, we have

$$
\lim _{n \rightarrow \infty} \int_{e_{n}} t(1-t) q(t)=0
$$

For $\forall R>0$ and $\forall u \in \bar{K}_{R}$, with $M=\max _{0 \leq x \leq R} f(x)$, we have

$$
\begin{aligned}
\left\|T u-T_{n} u\right\| & =\max _{0 \leq t \leq 1}\left|(T u)(t)-\left(T_{n} u\right)(t)\right| \\
& =\lambda \max _{0 \leq t \leq 1} \int_{e_{n}} G(x, t)(q(x)-n) f(u(x)) d x
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lambda M \max _{0 \leq t \leq 1} \int_{e_{n}} G(x, t) q(x) d x \\
& \leq \lambda M \int_{e_{n}} x(1-x) q(x) d x \rightarrow 0,(n \rightarrow \infty)
\end{aligned}
$$

so $\sup \left\{\left\|T u-T_{n} u\right\|: u \in \bar{K}_{R}\right\} \rightarrow 0$, as $n \rightarrow \infty$. Therefore, $T: K \rightarrow K$ is completely continuous. Also it is easy to prove that $H: K \rightarrow K$ is completely continuous. Consequently, $H T: K \rightarrow K$ is completely continuous.

3. Eigenvalue Intervals

Theorem 3.1. Suppose that (H1) holds. Then, (1.1) has at least one positive solution for each

$$
\begin{equation*}
\lambda \in\left(\frac{\varphi_{p}(m)}{f_{\infty} \varphi_{p}\left(A_{2}\right)}, \frac{1}{f_{0} \varphi_{p}\left(A_{1}\right)}\right) ; \tag{3.1}
\end{equation*}
$$

here m is chosen as in (H1).
Proof. Let λ satisfy (3.1) and let $\varepsilon>0$ be such that

$$
\begin{equation*}
\frac{\varphi_{p}(m)}{\left(f_{\infty}-\varepsilon\right) \varphi_{p}\left(A_{2}\right)} \leq \lambda \leq \frac{1}{\left(f_{0}+\varepsilon\right) \varphi_{p}\left(A_{1}\right)} \tag{3.2}
\end{equation*}
$$

Next, we pick $r>0$ so that

$$
\begin{equation*}
f(x) \leq\left(f_{0}+\varepsilon\right) x^{p-1}, 0<x \leq r \tag{3.3}
\end{equation*}
$$

Let $u \in \partial K_{r}$. We find that for $t \in[0,1]$,

$$
\begin{aligned}
(H(T u))(t) & =\int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \leq \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s)\left(f_{0}+\varepsilon\right) u^{p-1}(s) d s\right) d x \\
& \leq \lambda^{\frac{1}{p-1}}\left(f_{0}+\varepsilon\right)^{\frac{1}{p-1}} r \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} G(x, s) q(s) d s\right) d x \\
& \leq r A_{1} \lambda^{\frac{1}{p-1}}\left(f_{0}+\varepsilon\right)^{\frac{1}{p-1}} \\
& \leq r=\|u\|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|H T u\| \leq\|u\|, \text { for } u \in \partial K_{r} . \tag{3.4}
\end{equation*}
$$

If we set $\Omega_{1}=\{u \in X:\|u\|<r\}$, then (3.4) holds for $u \in K \cap \partial \Omega_{1}$.
Let $R_{1}>0$ be such that

$$
\begin{equation*}
f(x) \geq\left(f_{\infty}-\varepsilon\right) x^{p-1}, \quad x \geq R_{1} . \tag{3.5}
\end{equation*}
$$

Let $u \in K$ be such that $\|u\|=R:=\max \left\{2 r, m R_{1}\right\}$; here m is chosen as in (H1). Then, for $t \in\left[\frac{1}{m}, \frac{m-1}{m}\right]$,

$$
u(t) \geq \frac{1}{m}\|u\| \geq \frac{1}{m} \cdot m R_{1}=R_{1}
$$

which in view of (3.5) leads to

$$
\begin{equation*}
f(u(t)) \geq\left(f_{\infty}-\varepsilon\right) u^{p-1}(t), t \in\left[\frac{1}{m}, \frac{m-1}{m}\right] . \tag{3.6}
\end{equation*}
$$

Consequently (here $c \in\left[\frac{1}{m}, 1-\frac{1}{m}\right]$ is chosen as in $(H 1)$),

$$
\begin{aligned}
& (H(T u))(c)=\int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \quad \geq \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} \lambda G(x, s) q(s)\left(f_{\infty}-\varepsilon\right) u^{p-1}(s) d s\right) d x \\
& \quad \geq \lambda^{\frac{1}{p-1}}\left(f_{0}-\varepsilon\right)^{\frac{1}{p-1}} \cdot \frac{R}{m} \cdot \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} G(x, s) q(s) d s\right) d x \\
& \quad \geq \frac{R}{m} \cdot A_{2} \lambda^{\frac{1}{p-1}}\left(f_{0}-\varepsilon\right)^{\frac{1}{p-1}} \\
& \quad \geq R=\|u\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|H T u\| \geq\|u\|, \text { for } u \in \partial K_{R} \tag{3.7}
\end{equation*}
$$

If we set $\Omega_{2}=\{u \in X:\|u\|<R\}$, then (3.7) holds for $u \in K \cap \partial \Omega_{2}$.
Now (3.4), (3.7), and Theorem 1.1 guarantee that $H T$ has a fixed point $u \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r \leq\|u\| \leq R$. Clearly, this u is a positive solution of (1.1).

Theorem 3.2. Suppose that (H1) holds. Then (1.1) has at least one positive solution for each

$$
\begin{equation*}
\lambda \in\left(\frac{\varphi_{p}(m)}{f_{0} \varphi_{p}\left(A_{2}\right)}, \frac{1}{f_{\infty} \varphi_{p}\left(A_{1}\right)}\right) \tag{3.8}
\end{equation*}
$$

here m is chosen as in (H1).
Proof. Let λ satisfy (3.8) and let $\varepsilon>0$ be such that

$$
\begin{equation*}
\frac{\varphi_{p}(m)}{\left(f_{0}-\varepsilon\right) \varphi_{p}\left(A_{2}\right)} \leq \lambda \leq \frac{1}{\left(f_{\infty}+\varepsilon\right) \varphi_{p}\left(A_{1}\right)} \tag{3.9}
\end{equation*}
$$

Choose $r>0$ so that

$$
\begin{equation*}
f(x) \geq\left(f_{0}-\varepsilon\right) x^{p-1}, \quad 0<x \leq r . \tag{3.10}
\end{equation*}
$$

Now, let $u \in K$ be such that $\|u\|=r$. Then, $u(t) \geq \frac{1}{m}\|u\|$ for $t \in\left[\frac{1}{m}, \frac{m-1}{m}\right]$.
Then (3.10) guarantees (here c is as in (H1)),

$$
\begin{aligned}
& (H(T u))(c)=\int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \quad \geq \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} \lambda G(x, s) q(s)\left(f_{\infty}-\varepsilon\right) u^{p-1}(s) d s\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda^{\frac{1}{p-1}}\left(f_{0}-\varepsilon\right)^{\frac{1}{p-1}} \cdot \frac{r}{m} \cdot \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} G(x, s) q(s) d s\right) d x \\
& \geq \frac{r}{m} \cdot A_{2} \lambda^{\frac{1}{p-1}}\left(f_{0}-\varepsilon\right)^{\frac{1}{p-1}} \\
& \geq r=\|u\| .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|H T u\| \geq\|u\|, \text { for } u \in \partial K_{r} \tag{3.11}
\end{equation*}
$$

Next, we may choose $R_{2}>0$ such that

$$
\begin{equation*}
f(x) \leq\left(f_{\infty}+\varepsilon\right) x^{p-1}, x \geq R_{2} \tag{3.12}
\end{equation*}
$$

Here there are two cases to consider, namely, f bounded and f unbounded.
Case 1. Suppose that f is bounded. Then, there exists some $M>0$ with

$$
\begin{equation*}
f(x) \leq M, x \in(0, \infty) \tag{3.13}
\end{equation*}
$$

We define

$$
R=\max \left\{2 r,(\lambda M)^{\frac{1}{p-1}} A_{1}\right\} .
$$

Let $y \in K$ be such that $\|y\|=R$. For $t \in[0,1]$, from (3.12) we have

$$
\begin{aligned}
(H(T u))(t) & =\int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \leq \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) M d s\right) d x \\
& =\lambda^{\frac{1}{p-1}} M^{\frac{1}{p-1}} \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} G(x, s) q(s) d s\right) d x \\
& \leq A_{1} \lambda^{\frac{1}{p-1}} M^{\frac{1}{p-1}} \\
& \leq R=\|u\|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|H T u\| \leq\|u\|, \text { for } u \in \partial K_{R} \tag{3.14}
\end{equation*}
$$

Case 2. Suppose that f is unbounded. Then, there exists $R \geq$ $\max \left\{2 r, R_{2}\right\}$ such that

$$
\begin{equation*}
f(x) \leq f(R), 0<x \leq R \tag{3.15}
\end{equation*}
$$

Let $y \in K$ be such that $\|y\|=R$. Then, (3.15) yields for $t \in[0,1]$ that

$$
\begin{aligned}
(H(T u))(t) & =\int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \leq \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(R) d s\right) d x \\
& =\lambda^{\frac{1}{p-1}} f(R)^{\frac{1}{p-1}} \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} G(x, s) q(s) d s\right) d x \\
& \leq A_{1} \lambda^{\frac{1}{p-1}}\left(f_{\infty}+\varepsilon\right)^{\frac{1}{p-1}} R
\end{aligned}
$$

$$
\leq R=\|u\|
$$

Thus (3.14) is true also in this case.
In both cases, if we set $\Omega_{2}=\{u \in K:\|u\|<R\}$, then (3.14) holds for $u \in K \cap \partial \Omega_{2}$.

If we set $\Omega_{1}=\{u \in X:\|u\|<r\}$, then (3.11) holds for $u \in K \cap \partial \Omega_{1}$.
Now that we have obtained (3.11) and (3.14), it follows from Theorem 1.1 that $H T$ has a fixed point $u \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ such that $r \leq\|u\| \leq R$. It is clear that u is a positive solution of (1.1).

Let

$$
(L 1) f_{0}=\infty,(L 2) f_{\infty}=\infty,(L 3) f_{0}=0, \text { and }(L 4) f_{\infty}=0
$$

Corollary 3.1. Suppose that $(H 1)$ holds. In addition, assume one of the following conditions hold: (1) (L1) and (L4); (2) (L2) and (L3). Then we conclude from Theorem 3.1 and 3.2 that $E=(0, \infty)$, i.e., (1.1) has a positive solution for any $\lambda>0$.

Theorem 3.3. Suppose that (H1) holds. In addition assume there exist two constants $R>r>0$, such that

$$
\max _{0 \leq y \leq r} f(y) \leq \varphi_{p}\left(r / A_{1}\right) / \lambda, \min _{\gamma R \leq y \leq R} f(y) \geq \varphi_{p}\left(R / A_{2}\right) / \lambda ;
$$

here $\gamma=\frac{1}{m}$, and m is as in (H1). Then, (1.1) has a solution $u \in K$ with $r \leq\|u\| \leq R$.

Proof. For $u \in \partial K_{r}$, we have that $f(u(t)) \leq \varphi_{p}\left(r / A_{1}\right) / \lambda$, for $t \in[0,1]$. Then

$$
\begin{aligned}
(H(T u))(t) & =\int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \leq \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) \varphi_{p}\left(r / A_{1}\right) / \lambda d s\right) d x \\
& =r / A_{1} \cdot \int_{0}^{1} G(t, x) \varphi_{p}^{-1}\left(\int_{0}^{1} G(x, s) q(s) d s\right) d x \\
& \leq r=\|u\| .
\end{aligned}
$$

As a result $\|H T u\| \leq\|u\|$, for $\forall u \in \partial K_{r}$.
For $u \in \partial K_{R}$, we have that $f\left((u(t)) \geq \varphi_{p}\left(R / A_{2}\right) / \lambda\right.$, for $t \in\left[\frac{1}{m}, \frac{m-1}{m}\right]$. Then, with c as in (H1),

$$
\begin{aligned}
(H(T u))(c) & =\int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{0}^{1} \lambda G(x, s) q(s) f(u(s)) d s\right) d x \\
& \geq \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} \lambda G(x, s) q(s) \varphi_{p}\left(R / A_{2}\right) / \lambda d s\right) d x \\
& =R / A_{2} \cdot \int_{0}^{1} G(c, x) \varphi_{p}^{-1}\left(\int_{\frac{1}{m}}^{\frac{m-1}{m}} G(x, s) q(s) d s\right) d x \\
& \geq R=\|u\|
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|H T u\| \geq\|u\|, \text { for } u \in \partial K_{R} \tag{3.16}
\end{equation*}
$$

It follows from Theorem 1.1 that $H T$ has a fixed point in $\bar{K}_{r, R}$.
Next we need the following condition:
(H2) There exist a constant ρ_{n} with $\lim _{n \rightarrow \infty} \rho_{n}=0$ and $f\left(\rho_{n}\right)>0$, for $n=1,2, \ldots$.

Let

$$
\lambda^{*}=\sup _{r>0} \frac{\varphi_{p}\left(r / A_{1}\right)}{\max _{0 \leq y \leq r} f(y)}
$$

We easily obtain that $0<\lambda^{*} \leq \infty$ using (H2).
Theorem 3.4. Suppose (H1), (H2), (L1) and (L2) hold. Then (1.1) has at least two nontrivial positive solutions for all $\lambda \in\left(0, \lambda^{*}\right)$.
Proof. Define $h(r)=\frac{\varphi_{p}\left(r / A_{1}\right)}{\max _{0}<x<r f(x)}$. Using conditions $(H 2),(L 1)$ and (L2), we easily obtain that $h:(0, \infty) \rightarrow(0, \infty)$ is continuous and $\lim _{r \rightarrow 0} h(r)=$ $\lim _{r \rightarrow \infty} h(r)=0$. There exists $r_{0} \in(0,+\infty)$ such that $h\left(r_{0}\right)=\sup _{r>0} h(r)=$ λ^{*}. For $\lambda \in\left(0, \lambda^{*}\right)$, there exist constants $c_{1}, c_{2}\left(0<c_{1}<r_{0}<c_{2}<\infty\right)$, such that $h\left(c_{1}\right)=h\left(c_{2}\right)=\lambda$.

As a result

$$
f(y) \leq \varphi_{p}\left(c_{1} / A_{1}\right) / \lambda, \text { for } y \in\left[0, c_{1}\right],
$$

and

$$
f(y) \leq \varphi_{p}\left(c_{2} / A_{1}\right) / \lambda, \text { for } y \in\left[0, c_{2}\right] .
$$

On the other hand, using conditions (L1) and (L2), there exist constants $d_{1}, d_{2}\left(0<d_{1}<c_{1}<c_{2}<d_{2}<\infty\right)$ such that

$$
\frac{f(y)}{y^{p-1}} \geq \frac{1}{\lambda} \varphi_{p}\left(\frac{1}{\gamma A_{2}}\right), y \in\left(0, d_{1}\right) \cup\left(\gamma d_{2},+\infty\right)
$$

and so,

$$
\min _{\gamma d_{1} \leq y \leq d_{1}} f(y) \geq \varphi_{p}\left(d_{1} / A_{2}\right) / \lambda, \min _{\gamma d_{2} \leq y \leq d_{2}} f(y) \geq \varphi_{p}\left(d_{2} / A_{2}\right) / \lambda .
$$

Theorem 3.5. Suppose (H1) and (H2) hold. Assume either (L1) or (L2) hold. Then (1.1) has at least one positive solution for all $\lambda \in\left(0, \lambda^{*}\right)$.

Next we need the following condition:
$(H 3) \min _{r>0} \sup _{\gamma r \leq y \leq r} f(y)>0$, here $\gamma=\frac{1}{m}$.
Let

$$
\lambda^{* *}=\inf _{r>0} \frac{\varphi_{p}\left(r / A_{2}\right)}{\min _{\gamma r \leq y \leq r} f(y)}
$$

We easily obtain that $0 \leq \lambda^{* *}<\infty$ using (H3).
Theorem 3.6. Suppose $(H 1),(H 3),(L 3)$ and (L4) hold. Then (1.1) has at least two nontrivial positive solutions for all $\lambda \in\left(\lambda^{* *}, \infty\right)$.

Proof. Define $p(r)=\frac{\varphi_{p}\left(r / A_{2}\right)}{\min _{\gamma r \leq x \leq r} f(x)}$. Using conditions (H3),(L3) and (L4), we easily obtain that $p:(\overline{0}, \infty) \rightarrow(0, \infty)$ is continuous and $\lim _{r \rightarrow 0} p(r)=$ $\lim _{r \rightarrow \infty} p(r)=\infty$. There exists $r_{0} \in(0,+\infty)$ such that $p\left(r_{0}\right)=\inf _{r>0} p(r)=$ $\lambda^{* *}$. For $\lambda \in\left(\lambda^{* *}, \infty\right)$, there exist constants $d_{1}, d_{2}\left(0<d_{1}<r_{0}<d_{2}<\infty\right)$, such that $p\left(d_{1}\right)=p\left(d_{2}\right)=\lambda$, and so

$$
f(x) \geq \varphi_{p}\left(d_{1} / A_{2}\right) / \lambda, x \in\left[\gamma d_{1}, d_{1}\right],
$$

and

$$
f(x) \geq \varphi_{p}\left(d_{2} / A_{2}\right) / \lambda, x \in\left[\gamma d_{2}, d_{2}\right] .
$$

On the other hand, using condition (L3) there exists a constant $c_{1}(0<$ $c_{1}<d_{1}$) such that

$$
\frac{f(x)}{x^{p-1}} \leq \frac{1}{\lambda} \varphi_{p}\left(\frac{1}{A_{1}}\right), x \in\left(0, c_{1}\right),
$$

and so

$$
\max _{0 \leq x \leq c_{1}} f(x) \leq \varphi_{p}\left(c_{1} / A_{1}\right) / \lambda .
$$

Using condition (L4), there exists a constant $c\left(d_{2}<c<\infty\right)$ such that

$$
\frac{f(x)}{x^{p-1}} \leq \frac{1}{\lambda} \varphi_{p}\left(\frac{1}{A_{1}}\right), \text { for } x \in(c, \infty) .
$$

Let $M=\sup _{x \in[0, c]} f(x)$, and $c_{2} \geq \max \left\{c, A_{1} \varphi_{p}^{-1}(\lambda M)\right\}$. It is easily proved that

$$
\max _{0 \leq x \leq c_{2}} f(x) \leq \varphi_{p}\left(c_{2} / A_{1}\right) / \lambda .
$$

Theorem 3.7. Suppose (H1) and (H3) hold. Assume either (L3) or (L4) hold. Then (1.1) has at least one positive solution for all $\lambda \in\left(\lambda^{* *}, \infty\right)$.

Corollary 3.2. Suppose (H1), (H2), (L1) and (L4) hold. Then (1.1) has at least one positive solution for all $\lambda>0$.

Proof. We prove $\lambda^{*}=\infty$.
If $\sup _{x \in[0,+\infty)} f(x)=M<\infty$, then $\lambda^{*}=\sup _{r>0} \frac{\varphi_{p}\left(r / A_{1}\right)}{\max _{0 \leq x \leq r} f(x)} \geq$ $\sup _{r>0} \frac{\varphi_{p}\left(r / A_{1}\right)}{M}=\infty$. If f is unbounded, there exist a sequence $\left\{r_{n}\right\}$ such that $r_{n} \rightarrow \infty$, and $f\left(r_{n}\right)=\max _{0 \leq x \leq r_{n}} f(x) \rightarrow \infty$. Using (L4), we obtain that

$$
\lambda^{*} \geq \varphi_{p}\left(1 / A_{1}\right) \sup _{n} \frac{\varphi_{p}\left(r_{n}\right)}{f\left(r_{n}\right)}=\infty .
$$

Corollary 3.3. Suppose (H1), (H3), (L2) and (L3) hold. Then the problem (1.1) has at least one positive solution for all $\lambda>0$.
Proof. We first prove that $\lambda^{* *}=0$. Using (L2), $f(x) \rightarrow \infty$ for $x \rightarrow$ ∞, so there exist a sequence $\left\{r_{n}\right\}$ such that $r_{n} \rightarrow \infty$, and $f\left(\gamma r_{n}\right)=$ $\min _{\gamma r_{n} \leq x \leq r_{n}} f(x)$. As a result

$$
\lambda^{* *} \leq \varphi_{p}\left(1 / A_{2}\right) \inf _{n} \frac{\varphi_{p}\left(r_{n}\right)}{f\left(\gamma r_{n}\right)}=0
$$

Condition (H3) can easily be proved. It follows from Theorem 3.5 that (1.1) has at least one positive solution for all $\lambda>0$.

Let
(L5) $f_{0}=l, \quad(L 6) f_{\infty}=l$, here $0<l<\infty$.
Corollary 3.4. Suppose ($H 1$) and ($H 2$) hold. Also assume one of the following conditions hold: (1) (L1) and (L6); (2) (L2) and (L5). Then (1.1) has at least one positive solution for all $\lambda \in\left(0, \frac{1}{l \varphi_{p}\left(A_{1}\right)}\right)$.

Corollary 3.5. Suppose (H1) and (H3) hold. Also assume one of the following conditions hold: (1) (L3) and (L6); (2) (L4) and (L5). Then (1.1) has at least one positive solution for all $\lambda \in\left(\frac{1}{l \varphi_{p}\left(\gamma A_{2}\right)}, \infty\right)$.

References

1. F. Bernis, Compactness of the support in convex and nonconvex fourth order elasticity problems. Nonlinear Anal. 6(1982), 1221-1243.
2. C. P. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonance. J. Math. Anal. Appl. 135(1998), 208-225.
3. C. P. Gupta, Existence and uniqueness results for some fourth order fully quasilinear BVP. Appl. Anal. 36(1990), 157-169.
4. R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 59(1995), 225-231.
5. Y. S. Yang, Fourth-order, two-point boundary value problem. Proc. Amer. Math. Soc. 104(1988), 175-180.
6. Paul W. Eloe and J. Henderson, Singular nonlinear $(m, n-m)$ conjugate boundary value problems. J. Differential Equations 133(1997), 136-151.
7. Ravi P. Agarwal and Donal O'Regan, Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240(1999), 433-445.
8. Haishen Lü and Donal O'Regan, A general existence theorem for positive solutions to singular second order ordinary and functional differential equations. Nonlinear Funct. Anal. Appl., 5(2000), 1-13.
(Received 13.03.2002)
Authors' addresses:
Ravi P. Agarwal
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901-6975, U.S.A.
Haishen Lü
Department of Mathematics, Lanzhou University
Lanzhou, 730000, P.R. China
Donal O'Regan
Department of Mathematics
National University of Ireland
Galway, Ireland
