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POSITIVE SOLUTIONS FOR THE BOUNDARY

VALUE PROBLEM (|u′′|p−2u′′)′′ − λq(t)f(u(t)) = 0



Abstract. This paper considers the boundary value problem:
{
(

|u′′|
p−2

u′′
)′′

− λq(t)f(u (t)) = 0, in (0, 1) ,

u(0) = u(1) = u′′ (0) = u′′ (1) = 0,

with λ > 0. The value of λ is chosen so that the boundary value problem has
a positive solution. Moreover, we derive an explicit interval for λ such that
for any λ in this interval, the existence of a positive solution to the boundary
value problem is guaranteed. In addition we also discuss the existence of
two positive solutions for λ in an appropriate interval.
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1. Introduction

This paper studies the two-point boundary value problem
{

(ϕp (u′′))
′′
− λq (t) f (u (t)) = 0, t ∈ (0, 1)

u (0) = u (1) = u′′ (0) = u′′ (1) = 0
(1.1)

where ϕp (s) = |s|
p−1

s, and p > 1.
Equations of the above form (1.1) occur in beam theory [1], for example,
1. a beam with small deformations (also called geometric linearity);
2. a beam of a material which satisfies a nonlinear power-like stress -strain

law;
3. a beam with two-sided links (for example, springs) which satisfies a

nonlinear power-like elasticity law.
The best known setting is the boundary value problem when p = 2,

namely

u(4) − q (t) f (u (t)) = 0, t ∈ (0, 1) .

This equation arises when one describes deformations of an elastic beam.
Usually both ends are simply supported, or one end is simply supported
and the other end is clamped by sliding clamps. Also vanishing moments
and shear forces at the beam ends are frequently included in the boundary
conditions; see Gupta [2] and Yang [5] . One derivation of this fourth order
equation plus the two-point boundary conditions occurs when the method
of lines is used in the description over regions of certain partial differential
equations describing the deflection of an elastic beam.

Closely related to the results of this paper is the recent work by Ma and
Wang [4] . In [4] the authors establish the existence of at least one positive
solution of the above fourth order equation for p = 2 satisfying the boundary
value conditions, when the nonlinearity f is superlinear and sublinear.

Singular nonlinear two-point boundary value problem arise naturally
in applications and usually, only positive solutions are meaningful. By
a positive solution of (1.1), we mean a function u ∈ C2 ([0, 1] , R) with
ϕp (u′′) ∈ C2 ((0, 1) , R) satisfying (1.1) , and with u nonnegative and not
identically zero on [0, 1] . If, for a particular λ the boundary value problem
(1.1) has a positive solution u, then λ is called an eigenvalue and u a cor-
responding eigenfunction of (1.1) . The set of eigenvalues of (1.1) will be
denoted by E, i.e.,

E = {λ > 0 | (1.1)− (1.2) has a positive solution } .

In section 2, some preliminary results are presented. Section 3 presents
explicit eigenvalue intervals in terms of f0 and f∞, where

f0 = lim
x→0+

f(x)

xp−1
and f∞ = lim

x→∞

f(x)

xp−1
.

Finally, we state a fixed point theorem due to Krasnosel’skii which will
be needed in this paper.
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Theorem 1.1. Let X be a Banach space, and let K(⊂ X) be a cone.

Assume Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : K ∩
(

Ω2\Ω1

)

→ K

be a completely continuous operator such that, either

(a) ‖Tu‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω2, or
(b) ‖Tu‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω2.
Then, T has a fixed point in K ∩

(

Ω2\Ω1

)

.

2. Preliminary Results

Throughout this paper, it is assumed that f : [0,∞) → [0,∞) is contin-
uous and that the following condition is satisfied:

(H1) q ∈ C (0, 1) is nonnegative with
∫ 1

0 t (1− t) q (t) dt < ∞ and there

exist a natural number m ≥ 3 and c ∈
(

1
m , m−1

m

)

with q (c) > 0.
Let X = (C [0, 1] , ‖·‖) ( here ‖u‖ = supt∈[0,1] |u (t)| , u ∈ C [0, 1] ) be our

Banach space and

K =
{

u ∈ C [0, 1] | u(t) ≥ 0 for t ∈ [0, 1] and min
t∈[ 1

m
,1− 1

m
]
u(t) ≥

1

m
‖u‖

}

,

Kr = {u ∈ K : ‖u‖ < r} and ∂Kr = {u ∈ K : ‖u‖ = r} .

Let G (t, s) be the Green’s function for
{

u′′ = 0, 0 ≤ t ≤ 1,
u (0) = u (1) = 0.

Then

G (t, s) =

{

(1− t) s, 0 ≤ s ≤ t ≤ 1,
(1− s) t, 0 ≤ t ≤ s ≤ 1.

Let

A1 = max
0≤t≤1

∫ 1

0

G (t, s) ϕ−1
p

(
∫ 1

0

G (s, x) q (x) dx

)

ds,

and

A2 = min
1/m≤t≤1−1/m

∫ 1

0

G (t, s) ϕ−1
p

(

∫ 1−1/m

1/m

G (s, x) q (x) dx

)

ds.

where ϕ−1
p (s) = |s|

1
p−1 s is an inverse function of ϕp. It is easy to see that

0 < A1 < ∞ and 0 < A2 < ∞.
Define T, H : X → X by

(Tu) (s) =

∫ 1

0

λG (x, s) q (x) f (u (x)) dx (2.1)

and

(Hu) (t) =

∫ 1

0

G (t, s) ϕ−1
p (u (s)) ds. (2.2)

Lemma 2.1. H(T (K)) ⊂ K.
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Proof. A direct calculation shows that

G (t, s) ≤ G (s, s) , for 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1, (2.3)

and

G (t, s) ≥
1

m
G (s, s) , for

1

m
≤ t ≤ 1−

1

m
and 0 ≤ s ≤ 1. (2.4)

From (2.3), we obtain

(H (Tu)) (t) =

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≤

∫ 1

0

G (x, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx.

Thus

‖H (Tu)‖ ≤

∫ 1

0

G (x, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx.

Finally notice

min
t∈[ 1

m
,1− 1

m
]
(H (Tu)) (t)

= min
t∈[ 1

m
,1− 1

m
]

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≥
1

m

∫ 1

0

G (x, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≥
1

m
‖HTu‖ .

�

Remark 1. We can easily prove that T (K) ⊂ K and that H(K) ⊂ K.

Lemma 2.2. HT : K → K is completely continuous.

Proof. We first prove T : K → K is completely continuous.
For n = 1, 2, . . . , let qn (t) = min {q (t) , n}, and en = {t ∈ [0, 1] | q (t) ≥

n}. Let

(Tnu) (s) =

∫ 1

0

λG (s, x) qn (x) f (u (x)) dx.

It is easy to see [4] that Tn : K → K is completely continuous, for n ∈ N =
{1, 2, · · · }. By (H1) , we have

lim
n→∞

∫

en

t (1− t) q (t) = 0.

For ∀R > 0 and ∀u ∈ KR, with M = max0≤x≤R f (x) , we have

‖Tu− Tnu‖ = max
0≤t≤1

|(Tu) (t)− (Tnu) (t)|

= λ max
0≤t≤1

∫

en

G (x, t) (q (x)− n) f (u (x)) dx
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≤ λM max
0≤t≤1

∫

en

G (x, t) q (x) dx

≤ λM

∫

en

x (1− x) q (x) dx → 0, (n →∞) ,

so sup
{

‖Tu− Tnu‖ : u ∈ KR

}

→ 0, as n → ∞. Therefore, T : K → K
is completely continuous. Also it is easy to prove that H : K → K is
completely continuous. Consequently, HT : K → K is completely continu-
ous. �

3. Eigenvalue Intervals

Theorem 3.1. Suppose that (H1) holds. Then, (1.1) has at least one

positive solution for each

λ ∈

(

ϕp (m)

f∞ϕp (A2)
,

1

f0ϕp (A1)

)

; (3.1)

here m is chosen as in (H1) .

Proof. Let λ satisfy (3.1) and let ε > 0 be such that

ϕp (m)

(f∞ − ε)ϕp (A2)
≤ λ ≤

1

(f0 + ε)ϕp (A1)
(3.2)

Next, we pick r > 0 so that

f (x) ≤ (f0 + ε)xp−1, 0 < x ≤ r. (3.3)

Let u ∈ ∂Kr. We find that for t ∈ [0, 1] ,

(H(Tu)) (t) =

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≤

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)(f0 + ε)up−1(s)ds

)

dx

≤ λ
1

p−1 (f0 + ε)
1

p−1 r

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

G(x, s)q(s)ds

)

dx

≤ rA1λ
1

p−1 (f0 + ε)
1

p−1

≤ r = ‖u‖ .

Hence,
‖HTu‖ ≤ ‖u‖ , for u ∈ ∂Kr. (3.4)

If we set Ω1 = {u ∈ X : ‖u‖ < r} , then (3.4) holds for u ∈ K ∩ ∂Ω1.
Let R1 > 0 be such that

f (x) ≥ (f∞ − ε) xp−1, x ≥ R1. (3.5)

Let u ∈ K be such that ‖u‖ = R := max {2r, mR1} ; here m is chosen as in
(H1) . Then, for t ∈

[

1
m , m−1

m

]

,

u (t) ≥
1

m
‖u‖ ≥

1

m
·mR1 = R1,
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which in view of (3.5) leads to

f (u (t)) ≥ (f∞ − ε) up−1 (t) , t ∈

[

1

m
,
m− 1

m

]

. (3.6)

Consequently ( here c ∈
[

1
m , 1− 1

m

]

is chosen as in (H1) ),

(H(Tu)) (c) =

∫ 1

0

G (c, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≥

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

λG(x, s)q(s) (f∞ − ε)up−1(s)ds

)

dx

≥ λ
1

p−1 (f0 − ε)
1

p−1 ·
R

m
·

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

G(x, s)q(s)ds

)

dx

≥
R

m
· A2λ

1
p−1 (f0 − ε)

1
p−1

≥ R = ‖u‖ .

Therefore,

‖HTu‖ ≥ ‖u‖ , for u ∈ ∂KR. (3.7)

If we set Ω2 = {u ∈ X : ‖u‖ < R} , then (3.7) holds for u ∈ K ∩ ∂Ω2.
Now (3.4), (3.7) , and Theorem 1.1 guarantee that HT has a fixed point

u ∈ K ∩ (Ω2\Ω1) with r ≤ ‖u‖ ≤ R. Clearly, this u is a positive solution of
(1.1) . �

Theorem 3.2. Suppose that (H1) holds. Then (1.1) has at least one

positive solution for each

λ ∈

(

ϕp (m)

f0ϕp (A2)
,

1

f∞ϕp (A1)

)

; (3.8)

here m is chosen as in (H1) .

Proof. Let λ satisfy (3.8) and let ε > 0 be such that

ϕp (m)

(f0 − ε)ϕp (A2)
≤ λ ≤

1

(f∞ + ε)ϕp (A1)
. (3.9)

Choose r > 0 so that

f (x) ≥ (f0 − ε)xp−1, 0 < x ≤ r. (3.10)

Now, let u ∈ K be such that ‖u‖ = r. Then, u (t) ≥ 1
m ‖u‖ for t ∈

[

1
m , m−1

m

]

.
Then (3.10) guarantees ( here c is as in (H1) ),

(H(Tu)) (c) =

∫ 1

0

G (c, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≥

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

λG(x, s)q(s) (f∞ − ε)up−1(s)ds

)

dx
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≥ λ
1

p−1 (f0 − ε)
1

p−1 ·
r

m
·

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

G(x, s)q(s)ds

)

dx

≥
r

m
· A2λ

1
p−1 (f0 − ε)

1
p−1

≥ r = ‖u‖ .

Therefore,

‖HTu‖ ≥ ‖u‖ , for u ∈ ∂Kr. (3.11)

Next, we may choose R2 > 0 such that

f (x) ≤ (f∞ + ε)xp−1, x ≥ R2. (3.12)

Here there are two cases to consider, namely, f bounded and f unbounded.
Case 1. Suppose that f is bounded. Then, there exists some M > 0

with

f (x) ≤ M, x ∈ (0,∞) . (3.13)

We define

R = max
{

2r, (λM)
1

p−1 A1

}

.

Let y ∈ K be such that ‖y‖ = R. For t ∈ [0, 1], from (3.12) we have

(H(Tu)) (t) =

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≤

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)Mds

)

dx

= λ
1

p−1 M
1

p−1

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

G(x, s)q(s)ds

)

dx

≤ A1λ
1

p−1 M
1

p−1

≤ R = ‖u‖ .

Hence,

‖HTu‖ ≤ ‖u‖ , for u ∈ ∂KR. (3.14)

Case 2. Suppose that f is unbounded. Then, there exists R ≥
max {2r, R2} such that

f (x) ≤ f (R) , 0 < x ≤ R. (3.15)

Let y ∈ K be such that ‖y‖ = R. Then, (3.15) yields for t ∈ [0, 1] that

(H(Tu)) (t) =

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≤

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f (R) ds

)

dx

= λ
1

p−1 f (R)
1

p−1

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

G(x, s)q(s)ds

)

dx

≤ A1λ
1

p−1 (f∞ + ε)
1

p−1 R
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≤ R = ‖u‖ .

Thus (3.14) is true also in this case.
In both cases, if we set Ω2 = {u ∈ K : ‖u‖ < R} , then (3.14) holds for

u ∈ K ∩ ∂Ω2.
If we set Ω1 = {u ∈ X : ‖u‖ < r} , then (3.11) holds for u ∈ K ∩ ∂Ω1.
Now that we have obtained (3.11) and (3.14) , it follows from Theorem

1.1 that HT has a fixed point u ∈ K ∩
(

Ω2\Ω1

)

such that r ≤ ‖u‖ ≤ R. It
is clear that u is a positive solution of (1.1) .

Let

(L1) f0 = ∞, (L2) f∞ = ∞, (L3) f0 = 0, and (L4) f∞ = 0. �

Corollary 3.1. Suppose that (H1) holds. In addition, assume one of

the following conditions hold: (1) (L1) and (L4); (2) (L2) and (L3). Then

we conclude from Theorem 3.1 and 3.2 that E = (0,∞) , i.e., (1.1) has a

positive solution for any λ > 0.

Theorem 3.3. Suppose that (H1) holds. In addition assume there exist

two constants R > r > 0, such that

max
0≤y≤r

f (y) ≤ ϕp(r/A1)/λ, min
γR≤y≤R

f (y) ≥ ϕp(R/A2)/λ;

here γ = 1
m , and m is as in (H1) . Then, (1.1) has a solution u ∈ K with

r ≤ ‖u‖ ≤ R.

Proof. For u ∈ ∂Kr, we have that f(u(t)) ≤ ϕp(r/A1)/λ, for t ∈ [0, 1]. Then

(H(Tu)) (t) =

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≤

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)ϕp(r/A1)/λds

)

dx

= r/A1 ·

∫ 1

0

G (t, x) ϕ−1
p

(
∫ 1

0

G(x, s)q(s)ds

)

dx

≤ r = ‖u‖ .

As a result ‖HTu‖ ≤ ‖u‖ , for ∀u ∈ ∂Kr.
For u ∈ ∂KR, we have that f((u(t)) ≥ ϕp(R/A2)/λ, for t ∈

[

1
m , m−1

m

]

.
Then, with c as in (H1) ,

(H(Tu)) (c) =

∫ 1

0

G (c, x) ϕ−1
p

(
∫ 1

0

λG(x, s)q(s)f(u(s))ds

)

dx

≥

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

λG(x, s)q(s)ϕp(R/A2)/λds

)

dx

= R/A2 ·

∫ 1

0

G (c, x) ϕ−1
p

(

∫
m−1

m

1
m

G(x, s)q(s)ds

)

dx

≥ R = ‖u‖ .
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Therefore,

‖HTu‖ ≥ ‖u‖ , for u ∈ ∂KR. (3.16)

It follows from Theorem 1.1 that HT has a fixed point in Kr,R.
Next we need the following condition:
(H2) There exist a constant ρn with limn→∞ ρn = 0 and f(ρn) > 0, for

n = 1, 2, . . . .
Let

λ∗ = sup
r>0

ϕp (r/A1)

max0≤y≤r f(y)

We easily obtain that 0 < λ∗ ≤ ∞ using (H2) . �

Theorem 3.4. Suppose (H1) , (H2) , (L1) and (L2) hold. Then (1.1) has

at least two nontrivial positive solutions for all λ ∈ (0, λ∗) .

Proof. Define h(r) =
ϕp(r/A1)

max0≤x≤r f(x) . Using conditions (H2) , (L1) and (L2) ,

we easily obtain that h : (0,∞) → (0,∞) is continuous and limr→0 h (r) =
limr→∞ h (r)=0. There exists r0∈(0, +∞) such that h (r0)=supr>0 h (r) =
λ∗. For λ ∈ (0, λ∗) , there exist constants c1, c2 (0 < c1 < r0 < c2 < ∞) ,
such that h (c1) = h (c2) = λ.

As a result

f(y) ≤ ϕp(c1/A1)/λ, for y ∈ [0, c1],

and

f(y) ≤ ϕp(c2/A1)/λ, for y ∈ [0, c2].

On the other hand, using conditions (L1) and (L2) , there exist constants
d1, d2 (0 < d1 < c1 < c2 < d2 < ∞) such that

f(y)

yp−1
≥

1

λ
ϕp

(

1

γA2

)

, y ∈ (0, d1) ∪ (γd2, +∞),

and so,

min
γd1≤y≤d1

f(y) ≥ ϕp(d1/A2)/λ, min
γd2≤y≤d2

f(y) ≥ ϕp(d2/A2)/λ.
�

Theorem 3.5. Suppose (H1) and (H2) hold. Assume either (L1) or

(L2) hold. Then (1.1) has at least one positive solution for all λ ∈ (0, λ∗) .
Next we need the following condition:

(H3) minr>0 supγr≤y≤r f(y) > 0, here γ = 1
m .

Let

λ∗∗ = inf
r>0

ϕp (r/A2)

minγr≤y≤r f(y)
.

We easily obtain that 0 ≤ λ∗∗ < ∞ using (H3) .

Theorem 3.6. Suppose (H1) , (H3) , (L3) and (L4) hold. Then (1.1)
has at least two nontrivial positive solutions for all λ ∈ (λ∗∗,∞) .
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Proof. Define p(r) =
ϕp(r/A2)

minγr≤x≤r f(x) . Using conditions (H3) , (L3) and (L4) ,

we easily obtain that p : (0,∞) → (0,∞) is continuous and limr→0 p (r) =
limr→∞ p (r)=∞. There exists r0 ∈ (0, +∞) such that p (r0)=infr>0 p (r) =
λ∗∗. For λ ∈ (λ∗∗,∞) , there exist constants d1, d2 (0 < d1 < r0 < d2 < ∞) ,
such that p (d1) = p (d2) = λ, and so

f (x) ≥ ϕp(d1/A2)/λ, x ∈ [γd1, d1],

and
f (x) ≥ ϕp(d2/A2)/λ, x ∈ [γd2, d2].

On the other hand, using condition (L3) there exists a constant c1 (0 <
c1 < d1) such that

f(x)

xp−1
≤

1

λ
ϕp

(

1

A1

)

, x ∈ (0, c1) ,

and so
max

0≤x≤c1

f (x) ≤ ϕp(c1/A1)/λ.

Using condition (L4) , there exists a constant c (d2 < c < ∞) such that

f(x)

xp−1
≤

1

λ
ϕp

(

1

A1

)

, for x ∈ (c,∞) .

Let M = supx∈[0,c] f (x) , and c2 ≥ max
{

c, A1ϕ
−1
p (λM)

}

. It is easily
proved that

max
0≤x≤c2

f (x) ≤ ϕp(c2/A1)/λ.
�

Theorem 3.7. Suppose (H1) and (H3) hold. Assume either (L3) or

(L4) hold. Then (1.1) has at least one positive solution for all λ ∈ (λ∗∗,∞).

Corollary 3.2. Suppose (H1) , (H2) , (L1) and (L4) hold. Then (1.1)
has at least one positive solution for all λ > 0.

Proof. We prove λ∗ = ∞.

If supx∈[0,+∞) f (x) = M < ∞, then λ∗ = supr>0
ϕp(r/A1)

max0≤x≤r f(x) ≥

supr>0
ϕp(r/A1)

M = ∞. If f is unbounded, there exist a sequence {rn} such
that rn → ∞, and f (rn) = max0≤x≤rn

f(x) → ∞. Using (L4) , we obtain
that

λ∗ ≥ ϕp (1/A1) sup
n

ϕp (rn)

f(rn)
= ∞.

�

Corollary 3.3. Suppose (H1) , (H3) , (L2) and (L3) hold. Then the

problem (1.1) has at least one positive solution for all λ > 0.

Proof. We first prove that λ∗∗ = 0. Using (L2) , f (x) → ∞ for x →
∞, so there exist a sequence {rn} such that rn → ∞, and f (γrn) =
minγrn≤x≤rn

f(x). As a result

λ∗∗ ≤ ϕp (1/A2) inf
n

ϕp (rn)

f(γrn)
= 0.
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Condition (H3) can easily be proved. It follows from Theorem 3.5 that (1.1)
has at least one positive solution for all λ > 0. �

Let

(L5) f0 = l, (L6) f∞ = l, here 0 < l < ∞.

Corollary 3.4. Suppose (H1) and (H2) hold. Also assume one of the

following conditions hold: (1) (L1) and (L6); (2) (L2) and (L5). Then (1.1)

has at least one positive solution for all λ ∈
(

0, 1
lϕp(A1)

)

.

Corollary 3.5. Suppose (H1) and (H3) hold. Also assume one of the

following conditions hold: (1) (L3) and (L6); (2) (L4) and (L5). Then (1.1)

has at least one positive solution for all λ ∈
(

1
lϕp(γA2)

,∞
)

.
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