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Abstract. The singular boundary value problem

{ (ep(¥)) +q(t) f(t,y) =0, fort e (0,1),
y(0) =y(1)=0

is studied in this paper with ¢, (s) s, p > 1. The nonlinearity may
be singular at y = 0,¢t = 0 and ¢t = 1, and the function f may change sign.
An upper and lower solution approach is presented.
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1. INTRODUCTION

In this paper we study the singular boundary value problem

{ (G £a) st =0, onec @ )
y(0) =y(1)=0
where ¢, (s) = |s|p_2 s,p > 1. The singularity may occur at y = 0,t = 0

and t = 1, and the function f is allowed to change sign.

The boundary value problem (1.1) has been discussed extensively in the
literature; see [3 — 8], and the references therein. In almost all of these
papers qf is allowed to be positive. As a result the solutions are concave.
When p = 2 the authors in [1,2] studied the case when f is allowed to
change sign.

In this paper we note in particular that ¢ is not necessarily in L' [0, 1].
Also f may not be a Carathéodory function because of the singular be-
haviour of the y variable. The ideas presented here were motivated by the
papers [1 — 2] where the case p = 2 is considered. Finally we remark that
equations of the form (1.1) occur in non-Newtonial fluid theory, and in the
study of turbulent flow of a gas in a porous medium|3].

To conclude the introduction we state a general existence principle [8],
which will be needed in section 2, for the singular Dirichlet boundary value
problem

{ (‘P;D(y/))/i (1.2)

Lemma 1.1. Suppose the following conditions are satisfied:
(H1) g:(0,1) x R — R is continuous,
(H2) there exists ¢ € C (0,1) with ¢ >0 on (0,1) and

/0;9051 </s;q(r)dr> ds+/11<,0;1 <[q(r)dr> ds < 0o

such that |g (t,y)| < q(t) for a.e. t € (0,1) and y € R. Then (1.2) has a
solution y € C'[0,1]

Notice o, (s)

NC(0,1) with ¢, (y') € AC(0,1).
1/(p—1)

|s| sign (s) is the inverse function to ¢y (s).
2. EXISTENCE RESULTS

In this section we discuss the Dirichlet singular boundary value problem

() +q(t) flt,y) =0, 0<t <1,
S .

where our nonlinearity f may change sign. We begin with our main result.
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Theorem 2.1. Let ng € {3,4,...} be fized and suppose the following

conditions are satisfied:
f:]0,1] x (0,00) — R is continuous,

let n € {ng,no +1,...} and associated with each n we
have a constant p,, such that {p,}is a nonincreasing
sequence with lim, o pn, = 0 and such that for

gt <t <1 we have q(t) f (t,pn) >0,

q€ C(0,1) withq >0 on (0,1) and
Jo et (ffq(ﬂdr) ds+f%1<,0;1 (fgq(r)dr) ds < o0,

there exists a function o € C[0,1] N CY(0,1), ¢,(a’) € C1(0,1),
with a(0) = (1) =0, a(t) > 0 on (0,1) such that
q(8) f(t,a (1)) + (pp( (1)) 2 0 fort € (0,1)
and
there exists a function 3 € C[0,1] N C1(0,1),
op(B") € CH0,1), with B(t) > a(t) and B(t) > pn, on [0,1]
such that q (t) f(t,8(t)) + (2p(8' (1)) <0 for t € (0,1)
with ¢ (8) f (g, B (1) + (£p(8'(1) < 0 for t € (0, ).
]

(2.2)

(2.6)

Then (2.1) has a solution in y € C[0,1] N C(0,1) with ¢, (y') € C*(0,1)

with y (t) > a(t) for t € [0,1].

Proof. For n =mng,ng+1,..., let

1
en:{%71:| and en(t):max{%,t},()ﬁtﬁl

and
fu (t,2) = max {f (On (t) ;) , f (£, )}
Next we define inductively
Gno (t,2) = fuy (t, )

and

gn (t, ) =min{f,, (t,x),...,fnt, )}, n=no+1,n0+2,....
Notice

flto) < < gnpa (t2) S gn(ba) <0 < g, (H2)
for (¢,z) € (0,1) x (0,00) and
gn (t,x) = f(t,x) for (t,x) € en x (0,00).
Without loss of generality assume p,, < min, e[1.2]@ (t). Fix
{no,no+1,...}. Let t,, € [O, %] and s, € [%, 1] be such that
a(ty) = a(sy) = pn and a (t) < py, for t € [0,t,] U [sn, 1].

n
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Define

a(t) iftee (tn,sn).
Consider the boundary value problem

(ep(¥)) +a(t)gn,(ty) =0, 0 <t <1,
{ y(0) = y(1) = pny; (2.7)

here
gno (1 8(1)) +7(B() —y), y>B(1),
g;kzo (t,y) = Ino (tay)a Qng (t) <y<p (t)
Gno (tv Qn, (t)) +r (ano (t) - y) y Y < Qg (t)
where 7 : R — [—1, 1] is the radial retraction defined by

(2) x, |z| <1
r(x) =
o el >1

From Lemma 1.1 we know that (2.7) has a solution y,, € C[0,1]NnC*(0,1)
with ¢, (y,,,) € C*(0,1). We first show
Yno (1) = am, (1)t € [0,1]. (2.8)
Suppose (2.8) is not true. Then y,,, — o, has a negative absolute minimum
at 7 € (0,1). Now since yn, (0) — tng (0) = 0 = ypn, (1) — ap, (1) there exists
70,71 € [0,1] with 7 € (79, 71) and
Yno (70)=Cng (T0) =Yno (T1)—ng (71) =0 and yp, (t) —an, (t) <0, t€ (10, 71) -
We now claim
(op (Y, (t)))/ < (¢p (o, (t)))/ for a.e. t € (19, 71). (2.9)
We first show that if (2.9) is true then (2.8) will follow. Let
W (t) = Yny (t) — an, (t) <0, for t € (10,71) .
Then .
| (@t 0 = oyl O)) w0y @t =0, (2.10)

70

On the other hand, the inequality
(op(b) — ¢p (a)) (b—a) >0, for a,b € R,
yields

/ " (oo, 1)) — (2 (e, (1)) w0 (8)

0

_ /ﬁ (op (e (1)) = 0p (o, (1)) (i () — . (£)) dlt

70

< 0,

a contradiction. As a result if we show that (2.9) is true then (2.8) will
follow. To see (2.9) we will in fact prove more i.e. we will prove

(©p Wno (t)))'g(gap (@ng (t)))' for te(rg, 71) provided t#t, 0r t#£s,,. (2.11)
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Fix t € (109, 71) and assume t # t,,, or t # $y,. Then

(0 (4o (1)) = (0 (@, 1))’
- [ () {gno (t, ang (1)) + 7 (ng (1) = Yny ()} + (ep (g (t)))/]
{ — g (D) {gno (& (1)) + 7 (@ (£) = yno (1))} + (2 (@' (1)))']

ift € (tnys Sno)
=q () {gno (£, Pno) + 7 (Pro — Yno (1))} if £ € (0,85,) U (8, 1) -
Case (i) . t > snrr-
Then since g, (t,2) = f (t,z) for z € (0,00) we have
(0 (v ) = (0 (0, 1))
{ —la@®{f (ta () +r(a(t) —yu, ()} + (0p (@ (1)))]

if t € (tng, Sng)
=g () (Epno) + 7 (Pro = Yno ()} i £ € (0,2n0) U (809, 1)

< 0,

from (2.3) and (2.5).
Case (ii) . t € (0, 7e57) -
Then since

Gno (t, ) = maX{f (2n0+1,x ,f(t,x)}

we have gn, (t,2) > f(t,2) and gn, (t, ) > [ (gmzr,2) for z € (0,00).
Thus we have

(s (U, (1)) — ( (ahy (1))
t

{ —{aO[f (ta®) +r (@) = yn ()] + (p (@' (1)}

< if t € (tng, Sno)

—-q (t) [f (2710;-#1) pno) +r (pno — Yno (t))} ift e (Ovtno) U (Snoa 1)
< 0,

from (2.3) and (2.5).
Consequently (2.9) ( and so (2.8) ) holds and now since « (t) < ap, (t)
for t € [0, 1] we have

a(t) < apg (1) < yp, () for t € [0,1]. (2.12)

Next we show

Yno (1) < B(t) for t €10,1]. (2.13)
If (2.13) is not true then y,, — 8 would have a positive absolute maximum at
say to € (0,1), in which case y;,, (to) = 3" (to). It is easy to check (see [10])
that (¢, (y5,,)) (to) — (¢p(8)) (to) < 0. There are two cases to consider,
namely to € [5msr, 1) and to € (0, grarr) -
Case (i). to € [gmirt, 1).
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. Then yn, (to) > B (to) together with g, (to,x) = f (to,x) for x € (0, 00)
gives
(00 (Uny))" (t0) = (p(8"))" (t0)
=4 (to) [gno (to, B (to)) + 1 (B (to) = yn, (t0))] = (2p(B'))" (t0)
—q (to) [f (to, B (t0)) + 7 (B (to) = yn, (t0))] = (2p(8"))’ (o)

> 0

from (2.6), a contradiction.
Case (ii). to € (0, gmsr) -
Then yy,, (to) > 5 (to) together with

oo (t0.0) = e {1 (Gtz.0) 7 (10

for x € (0, 00) gives

(n(yno))" (to) = (p(8"))" (t0)

=~ alao) {max [ (g 5 0)) £ 0500+ 500) = i )}

= (p(8))" (t0)

> 0,

form (2.6), a contradiction.
Thus (2.13) holds, so we have

& (£) < g () < gy (1) < B (1) for t € [0,1].
Next we consider the boundary value problem
{ (o) +q(t) grora(ty) =0, 0 <t <1, (2.14)
y(0) = y(1) = pnyt1;
here

Ino+1 (ta Yno (t)) +r (yno (t) - y) » Y > YUng (t) s
g;0+1 (ta y) = Ino+1 (tay) ) Ono+1 (t) < Yy § Yno+1 (t)
Ino+1 (t7 Qng+1 (t)) +r (ano-i-l (t) - y) » Y < Qngt1 (t) :

From Lemma 1.1 we know that (2.14) has a solution y,,+1 € C[0,1] N
C1(0,1) with ¢, (yh,41) € C*(0,1). We first show
Yno+1 (t) > Qng+1 (t) NS [07 1] . (215)

Suppose (2.15) is not true. Then y,,+1 — Qny+1 has a negative absolute
minimum at 7 € (0,1). Now since ypny+1 (0) — tngt1 (0) = 0 = ypo41 (1) —
Qng+1 (1) there exists 79,7 € [0,1] with 7 € (79, 71) and
Ynot+1 (70) = Anpt1 (10) = Yno+1 (1) — ngp1 (11) = 0
and
Yno+1 (t) — Qno+1 (t) <0, te (TO, Tl)'
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If we show

(0 Wno+1 (1)) < (@ (g1 (1)) for ae. t € (r0,71), (2.16)

then as before (2.15) is true. Fix ¢t € (79,71) and assume t # tp 41 oOr
t 7& Sno+1- Then

(00 Who 1 (1) = (20 (@11 1))
—{a () [gno+1 (£ (b)) + (Oé(f?)f Yno+1 ()] + (0 (¢ (1))}

1 € ( no+1a8no+1)

—q (t) [gn0+1 (tv Pnngl) +r (pn0+1 Yno+1 (t))]
ifte (03 tn0+1) U (SnoJrla 1) :

!’

Case (i). t > zm7s.
Then since gy +1 (¢

(e Ynot1 (1) = (sop (@no+1 (1))
~{a@[f ta®) +7(a(t) = ynyr1 O] + (2p (o (1))}

ifte (tnoJrla SnoJrl)

—=q () [f (£, pnot1) + 7 (Pnot1 = Yno+1 (1))]
ift e (O, tn0+1) U (Sno+17 1) .

x) = f(t,z) for z € (0,00) we have

/

< 0,

from (2.3) and (2.5).
Case (ii) t € (0, 5ma7z) -

Then since
Ino+1 (t,:C)
—min fwax {7 (o) of (o) fomac {1 (gz.a) S ) |}
we have
Ino+1 (t,IC) Z f (tax)
and

gn0+1 (t,l‘) Z mln{f (2710%7‘%) 7f (2?14’27.%)}

for x € (0,00) . Thus we have

90;0 ynngl 9017( n0+1 (t)))l
—{a(®) () +7 (a (t) = Yng+1 ()] + (2p (@ (1))}
ifte (tnoJrla 5no+1)
{mm{f o 0+1,Pn0+1) / (Qno;ﬂ’pn(ﬁ’l)}
7 (Pro+1 = Ynot1 ()} i £ € (0, Eng41) U (Sno41,1).
Oa

2.3) and (2.5). (10t J (gber. pugsa) 2 0 since £ (501 2 0 for
=5, 1] and 5 ST € [g7er=,1]).

fro

€ [m
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Consequently (2.15) is true so
a(t) < angt1 (t) < Yng1 () for t € [0,1]. (2.17)
Next we show
Yno+1 (£) < Yn, (¢) for t €[0,1]. (2.18)
If (2.18) is not true then yp,+1 — yn, would have a positive absolute maxi-
mum at say tp € (0,1), in which case

Ynot1 (to) = Y, (to) and (0p(yy,41))" (to) = (0p(yy,)) (o) < 0.
Then Yno+1 (to) > Yn, (to) together with gn, (to,2) > gne+1 (to, x) for x €
(0,00) gives
(0 (Ung11)) (o) = (@p(¥n,)) (to)
= (t0) [gno+1 (t0: Yno (1)) + 7 (Yno (£) = Yno+1 (0))] = (0p(Yn,))’ (o)
=4 (t0) [gno (to: Yno (£)) + 7 (Yno (t0) = Ynot1 (00))] = (2p(Yn,))" (F0)
=4 (to) [ (Yno (t0) = Yno+1 (t0))]

v

> 0,
a contradiction.

Now proceed inductively to construct ¥pn,+2,Yno+3, ... as follows. Sup-
pose we have y for some k € {ng+1,n0 +2,...} with ay (t) < yr (t) <
yk—1 (t) for t € [0,1]. Then consider the boundary value problem

(ep(¥)) +q () gii(ty) =0, 0 <t <1,
here

g1 (Eye (8) + 7 (ye (B) —y) s v >y (1)
Go1 (LY) = ge41 (L,Y), k1 (1) <y <k (t)

Gr1 (g (1) + 7 (ar1 (B) —y), y < o (2).
Now Lemma 1.1 guarantees (2.19) has a solution yx1 € C[0,1] N C1(0,1)
with ¢, (yk+1) € C1(0,1), and essentially the same reasoning as above
yields

a(t) <agyr (8) <yrpr (B) <y (t) for t €[0,1]. (2.20)
Thus for each n € {ng + 1,...} we have
G() <y (D) S gt () oo < yng (< B(H) fort€[0,1]. (221)
Now lets look at the internal [20;“, 1-— 20%} . Let

1 1
Rnozsup{|q(t)f(t,x)| te {2%“,1 - 2n0+1} and a (t) <z <yp, (t)}

The mean value theorem implies that there exists 7 € (2,10%, 1— 2%%)
with [y, ()] < 2supg 1) Yn, (t) . Hence for ¢ € (5rerr> 1 — gmer1) 5

[ entunionyasl).

Wl (1) ] < o5 (sop<|y; ()] +
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As a result

{yn}nep, is a bounded, equicontinuous family on

1 1 1 2.22
2’n0+17 - 2n0+1 : ( . )

The Arzela-Ascoli theorem guarantees the existence of a subsequence N,
of integers and a function z,, € C [20%, 1-— 2T1+1} with y, converging
uniformly to z,, on [#, 1-— 2,10%} as n — oo through N, . Similarly

1
2n0 +27 - 2n0+2 ?

{Yn}nepno41 is a bounded, equicontinuous family on [

so there is a subsequence N, 41 of N, and a function

1 1
Zno+1 € C Tk 1-— SroT2

with y, converging uniformly to z,,4+1 on [2,10%, 1-— 2”0%] as n — 0o
1 1 :

thI‘OUgh Nn0+1. Note Zno+1 = Zngy ON [W’ 1-— 27,()—“] simce Nn0+1 - Nno.

Proceed inductively to obtain subsequence on integers

Npy D Npgi1 2 ... 2N, D ...

1 1
ZkEC[—l ]

and functions

ok+1’ " 9k+l
with
1

SR 1-— W} as n— oo through Ny

yn converging uniformly to z; on [

and

1 1
2k = Zp—1 ON 2—k,172—k .

Define a function y : [0,1] — [0,00) by y () = 2z () on [5+, 1 — 52| and
)

y (0) =y (1) = 0. Notice y is well defined and « (t) < y (t) < yn, (t) (< B (¢))
for t € (0,1). Next we prove y is a solution of (1.1). Fix ¢ € (0,1) an
let m € {ng,mo+1,...} be such that 7% < t < 1 — 5&. Let N} =

{n € Ny :n>m}. Let y,,n € N}, and let a = 55, b
Define the operator, L : C'[a,b] — C [a, ] by
b

(Lu) (t) :u(a)+/ w;l(Aqu/ q(7) (g (7, u(7)))dr)ds

S

I
-
|
H
3

where A, satisfy

b b
/ o (A + / ¢ (7) (g7, u(r)))dr)ds = u (a) — u (5).

Let w,, — u uniformly on [a,b]. As in the proof of Theorem 2.4[4], if we
show limy, 0 Ay,, = Ay, then this together with ¢, I continuous, implies



AN UPPER AND LOWER SOLUTION METHOD 23

L: Cla,b] — Ca,b] is continuous, (here A, is associated with w,,). First
notice

/ab (so;l(Aum + /sbq (7) (g5 (7, U (7)) dT)

b
_¢;1(Au +/ q(r) (gZ(T,u(T)))dﬂ) ds

S

= U, (b) — um (a) —u (b) +u(a).

The Mean Value theorem for integrals implies that there exists 7, € [0,1]
with

o (Au,, + / ¢ () (g2 (s tm (7)) d)

m

b
— o (A + / ¢ (7) (g, u(r)))dr)

m

_ U (D) — U (@) —u (D) +u(a)
b—a ’

and now since u,, — v uniformly on [a, b] we have lim,, o Ay,, = Ay.
Now y,, converging uniformly on [a,b] to y as m — oo and Ly, = Ym,
yields Ly =y, i. e.
(pp(y' (1)) +a(t)(g5(t,y(1) = 0, a < t <.
Thus
(ep(y' (1)) +a®)(f(t,y(t) =0, a<t <D

We can do this argument for each ¢ € (0,1) and so (p,(y/ (1)) +
q@®)(f(t,y(t)) = 0 for t € (0,1). It remains to show y is continuous at 0
and 1.

Let € > 0 be given. Now since lim, oo ym (0) = 0 there exists my €
{mo,mo +1,...} with yp,, (0) < §. Since y,, € C'[0, 1] there exists d,,, >0
with

Yoy (£) < g for ¢ € [0, 0m,] .
Now for m > my we have, since {y,, (t)} is nonincreasing for each ¢ € [0,1],
a(t) < Ym () < ym, (t) < g for ¢ € [0, 0m,] .
Consequently
at) Sy(t) < 5 <cfortef0,6m],

and so y is continuous at 0. Similarly y is continuous at 1. As a result, we
have shown y € C'[0,1].
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Suppose (2.2)—(2.5) hold and in addition assume the following conditions
are satisfied:

q(t) f(t,y) + (pp(a’ (1)) >0

for (t,y) € (0,1) x {y € (0,00) : y < a(t)} (2.23)
and
there exists s function 3 € C[0,1] N C*(0, 1),
2ol € C1(0.1) with (1) > puy on [0, .
el that 4(0) £(1,6(0) + (o (3(0)) < 0for £ (0,1) '
with ¢ () f (g7, 8 (1)) + (@p(5'(1))" <0 for ¢ € (0, zm77)-

Then the result in Theorem 2.1 is true. This follows immediately from
Theorem 2.1 once we show (2.6) holds i.e. once we show () > a(t)
for t € [0,1].Suppose it is false. Then o — § would have a positive abso-
lute maximum at say to € (0,1), so (a — 8)' (to) = 0 and (,(e’)) (to) <
(p(8)) (to). Now o (to) > B (to) and (2.23) implies

q(to) f (t0, B (t0)) + (2p(a”) (t0) > 0.
This together with (2.24) yields

(pp(@)) (o) = (9p(8) (t0) = (@) (t0) + q (ko) f (t0, B (t0)) > 0,

a contradiction. O

Thus we have

Corollary 2.1. Let ng € {1,2,...} be fized and suppose (2.2) — (2.5),
(2.23) and (2.24) hold. Then (2.1) has a solution y € C'[0,1]NC*(0,1) and
op(y’) € CH(0,1) with y (t) > a(t) fort € [0,1].

Remark 2.1. If in (2.3) we replace 2,L+1 <t<lwithO<t<1- 2,L+1
then one would replace (2.6) with

there exists s function 8 € C[0,1] N C1(0, 1),

op(B') € CH0,1) with 8(t) > a(t), and S (t) > pn, on [0,1]

such that q () f(t, 8 (1)) + (#p(8'()))" < 0for ¢ € (0,1)

with ¢ (£) f(1 = gmrr, B(1) + (9p(B'(1))) < 0 for ¢ € (1 — grr, 1)

If in (2.3) we replace mmr < ¢ < 1 with 5y < ¢ < 1 — 5 then
essentially the same reasoning as in Theorem 2.1 establishes the following
results.

Theorem 2.2. Let ng € {3,4,...} be fized and suppose (2.2),(2.4),(2.5)
and the following hold:

let n € {ng,no +1,...} and associated with each n we
have a constant p,, such that {p,}is a nonincreasing
sequence with lim, o pn = 0 and such that for

2n+1 <t<1- 2n1+1 we have q (t) f (t, pn) > 0

(2.25)
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and

there exists a function 3 € C[0,1]NC1(0,1),

pp(8) € C(0,1), with B(t) > a(t) and B (t) > pn, on [0,1]

such that q (t) f(t,8(t)) + (pp(3'(£)) <0 fort € (0,1) with  (2.26)
q () f (g, B (1) + (9p(8'(1) < 0 for t € (0, 5= and

q(t) fF(1 = gmgrr, B1) + (pp(B' (1)) <O forte(l — grsr, 1)

Then (2.1) has a solution y € C[0,1]NC*(0,1) with ¢, (y') € C* (0,1) with
y(t) > al(t) forte0,1].

Corollary 2.2. Let ng € {3,4,...} be fized and suppose (2.2), (2.4),
(2.5), (2.23), (2.25) and the following hold.

there exists a function 3 € C[0,1]NC1(0,1),

op(B) € CH0,1), with and B (t) > pn, on [0,1]

such that q (t) f(t, 6(t)) + (pp(3' (1)) <0 fort € (0,1) with  (2.27)
q () f (g, B (1) + (9p(8'(1) < 0 for t € (0, 5= and

q(8) F(1 = gmzr, B (D) + (9p(B'(1))) <0 for t€ (1 — g, 1).

Then (2.1) has a solution y € C[0,1]NC*(0,1) with ¢, (y') € C* (0,1) with
y(t) > a(t) fort e0,1].

Next we consider how to construct the lower solution « in (2.5) and
(2.23) . Suppose the following condition is satisfied:

let n € {ng,no +1,...} and associated with each n we

have a constant p,, such that {p,} is a decreasing

sequence with lim, . p, = 0 and there exists a (2.28)
constant kg > 0 such that for # <t<1- 2,1%

and 0 <y < p,, we have ¢ (¢) f (t,y) > ko.

A slight modification of the argument in Q.Yao and H.Li [7] guarantees
that exists a a € C[0,1] N C*(0,1), ¢,(a’) € C1(0,1) with a(0) = a(1) =
0, a(t) < pn,, for t € [0,1] with (2.5) and (2.23) holding. We combine this
with Corollary 2.1 to obtain our next result.

Theorem 2.3. Letng € {1,2,...} be fized and suppose (2.2),(2.4),(2.26)
and (2.28) hold. Then (2.1) has a solution y € C[0,1] N C*(0,1) with
op (y') € C1(0,1) with y (t) >0 for t € (0,1).

Corollary 2.3. Letng € {1,2,...} be fivred and suppose (2.2), (2.4) ,(2.24)
and (2.28) (with 5 <t <1 replaced by 52+ <t <1— 547 ) hold. Then
(2.1) has a solution y € C[0,1] N C*(0,1) with ¢, (y') € C'(0,1) with
y(t) >0 fort e (0,1).

Looking at Theorem 2.3 we see that the main difficulty when discussing
examples is the construction of the 3 in (2.26). Our next result replaces
(2.26) with another condition.
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Theorem 2.4. Let 0 € {1,2,...} be fized and suppose (2.2)~(2.5) hold.
Also assume the following two conditions are satisfied:

[ &yl < g(y) +h(y) on [0,1] x (0,00) with
g > 0 continuous and nonincreasing on (0,00),

h >0 continuous on [0,00), and % (2.29)

nondecreasing on (0, 00)

and

or any R > 0,1 is differentiable on (0, R] with
{ for any L is diff (0, R] (2.30)

g <0 a.e. on (0,R], *g’é € L' [0, R].

In addition assume there exists M > sup;cpo ) @ (t) with

1 M du
op' (1 + W) /0 ©p (g (u)) > bo (2.31)

holding; here

bozmax{/oégo;l </fq(7“)dr> ds,/llap;1 <[q(r)dr> ds}.

Then (2.1) has a solution y € C[0,1]NC*(0,1) with ¢, (y') € C* (0,1) with
y(t) > al(t) forte0,1].

Proof. Fix n € {ng,no+1,...}. Choose ¢, 0 < ¢ < M with

1 /M du
> by (2.32)
- h(M —1
op! (1 + ﬁ) e wp (g(u)

Let mgo € {3,4,...} be chosen so that p,,, < ¢ and without loss of generality

assume mg < ng. Let ey, 0, fn,9n and «, be as in Theorem 2.1. We
consider the boundary value problem (2.7) with in this case g;,  given by

Gno (& M) +1 (M —y), y> M,
g:lg (tvy) = Ing (t,y), Qny (t) <y<M
gn[) (t7 an() (t)) + r (ano (t) - y) ? y < ano (t) .

Essentially the same reasoning as in Theorem 2.1 implies that (2.7) has a
solution yn, € C[0,1] N C*(0,1) with ¢, (y,,) € C* (0,1) with yy, (t) >
Qn, (t) > a (t) for t € [0,1]. Next we show

Yn, () < M for t € [0,1]. (2.33)

Suppose (2.33) is false. Now since yn, (0) = yn, (1) = pn, there exists either
Case (i). t1,t2 € (0,1) with au, (1) < yn, (t) < M for t € [0,t2), Yn, (t2) =
M and ypn, (t) > M on (t2,t1) with y;,  (t1) = 0;

or

Case (ii) t3, 14 € (O, 1) ,t4 < t3 with Qlpy (t) < Yn, (t) < M fort e (tg, 1],
Yno (t3) = M and yy, (t) > M on (t4,t3) with y;, (1) = 0.
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We can assume without loss of generality that either t; < % or ty > %
Suppose t; < % Notice for t € (ta,t1) that we have

—(p (1)) = a0 (1) g5y (b ymo (£) < g (B) [g (M) +h(M)];  (2.34)
note if t € (t2,t1) that we have

Ino (L Yno (1) = gno (8, M) +7 (M = yn, (1))

Smax{f (W%,M) 7f(?f,M)}.

Integrate (2.34) from 2 to ¢ to obtain

t1
o0 (o (2)) < lg )+ R QD) [ (),
ta
and this together with y,, (t2) = M yields

#p (Uny (2)) E NN
9 (Yn, (t2)) = |:1+g(M):|/t2 q(s)ds. (2.35)

Also for t € (0,t2) we have

(60 (v ) = aOmx {7 (grrzz s ) f (s )]
< 4 0)[9 (g () + B (3, (1)

and so

— (o (v, 1)) h (yn, (1)) h(M)
9 (o (D) Sqm{1+g@ma»}§q”{l+gw®}

for ¢t € (0,t3). Integrate from ¢ (¢ € (O, t2)) to t2 to obtain

©p (yno (tg)) CPp yno +/ { yno } ‘y;o (Z)|p dx
t

g (Yn, (t2)) 9 Yno ( 9% (Yn, (

h (M) } / "
< 1+ ——= q(s)ds,
e San ) oo
and this together with (2.35) yields

M w ) s)ds. for
9 (Yno (1)) §{1+9(M)}/t q(s)ds. for t € (0,t2).

Integrate from 0 to t2 to obtain

/ w;1?:<u» Sném)w;lf:<u»
o (1390 ([ )

LM%fﬁDS“%1@+§%Q'

That is
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This contradicts (2.32) so (2.33) holds (a similar argument yields a contra-
diction if t4 > %) Thus we have

a(t) <ap, () <yn, () <M for te€][0,1].

Essentially the same reasoning as in Theorem 2.1 (from (2.14) onwards)
completes the proof. O

Similarly we have the following result.

Theorem 2.5. Let ng € {1,2,...} be fized and suppose (2.2), (2.4),
(2.5), (2.25), (2.28) and (2.29) hold. In addition assume there exists
M > sup «aft)
t€[0,1]
with (2.31) holding. Then (2.1) has a solution y € C[0,1] N C*(0,1) with
op () € C (0, 1) with y (t) > o (t) for t € [0,1].

Corollary 2.4. Let ng € {1,2,...} be fized and suppose (2.2)—(2.5),
(2.23), (2.28) and (2.29) hold. In addition assume there exists a constant
M > 0 with

1 /M du
> bo (2.36)
- h(M —1
op ! (1 + ﬁ) o ¢ (9(w)

holding; here

bomax{/oécppl (/fq(r)dr) ds,[lcppl ([sq(r)dr> ds}.

2 2

Then (2.1) has a solution y € C[0,1]NC*(0,1) with ¢, (y') € C* (0,1) with
y(t) > al(t) forte0,1].

Proof. The result follows immediately from Theorem 2.5 once we show
a(t) < M for t € [0,1]. Suppose this is false. Now since o (0) = a (1) =0
there exists either
Case (i). t1,t2 € (0,1),t2 < t1 with 0 < a(t) < M for t € [0,t2), a(t2) =
M and « (t) > M on (t2,t1) with o/ (1) = 0;
or
Case (ii). t3,t4 € (0,1),ts < t3 with 0 < a(t) < M for ¢t € (t3,1],
a(t3) = M and a(t) > M on (t4,t3) with a7, (t1) = 0.

We can assume without loss of generality that either t; < % or ty >
Suppose t; < % Notice for t € (ta,t1) that we have

—(pp (@) < q(t) [g(M) +h(M)], (2.37)

so integrating from t, to t; yields

g (@ (t2)) hQO)
e < 15 [, oo (235)

[
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Also for ¢ € (0,t2) we have that

—@Aw@»Ysmwuam>P+ }Sﬂﬂﬂa@)ﬁ+282]

Integrate from ¢ (¢ € (0,t2)) to t2 and use (2.38) to obtain

M w ) s)ds. for
g(a(t)) §{1+9(M)}/t q(s)ds. for t € (0,t2).

Finally integrate from 0 to t2 to obtain

AMﬁfﬁw»S“%ﬁﬁ+§%%)

a contradiction. O

Corollary 2.5. Let ng € {1,2,...} be fized and suppose (2.2), (2.4),
(2.5), (2.21), (2.24), (2.29) and (2.30) hold. In addition assume there is
a constant M > 0 with (2.35) holding. Then (2.1) has a solution y €
C[0,1] N C*(0,1) with ¢, (y') € C*(0,1) with y (t) > a(t) for t € [0,1].

Combining Corollary 2.4 with the comments before Theorem 2.5 yields
the following theorem.

Theorem 2.6. Let ng € {1,2,...} be fized and suppose (2.2), (2.4),
(2.28), (2.29) and (2.30) hold. In addition assume there is a constant M > 0
with (2.36) holding. Then (2.1) has a solution y € C[0,1] N C*(0,1) with
op (y') € C1(0,1) with y (t) >0 for t € (0,1).

Next we present an example which illustrates how easily the theory is
applied in practice.

Example 1. Consider the boundary value problem

_92 /

{ (Iy’l” y’) + <y% + 35y% — /ﬂ) =0, 0<t<1 (2.39)
y(0)=y(1)=0

with 1.4 < p < 5 and p? > 1. Then (2.39) has a solution y € C[0,1]nC*(0, 1)

with ¢, (y') € C* (0,1) with y () > 0 for t € (0,1).
To see this we will apply Corollary 2.3 with that

1
=lpp=——/—"—7—"—
1=t~ (g

here a > 0 chosen so that a < 1 — 2-L; note  — 221 > 0 since 1.4 < p < 5.
Also choose ng € {1,2,...} with p,, < 1. Clearly (2.2) and (2.4) hold.

NoticefornG{l,Q,...},Qn%§t<1and0<y§pn that we have

1
3
> and ko = a;

1
2ntpl

q(t)f(t,y)zéffz

-t =’ +a)—p’=aq,
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so (2.28) ( with # <t < 1 replaced by 271% <t <1— 527 ) is satisfied.
It remains to check (2.24) with

ﬁ(t) = \/E+pn0'

!/
Now (|ﬁ' Ol (t)) = —%}t_p?ﬁ and so for ¢ € (0,1) we have

(18 OF 8 ) +a () £ (1.5(0)

2
Pl ep §+(\/¥+pn0) i
2 ¢ 32 a

IN
\

Also for t € (07 2,10%) we have
(18O~ 5 ) +a() £ (2.6

= P;plprH i <2no+11 5 T (VI )’ —p?
Pro 32
< —p2p + ((u2+a)+§—u2)
a+ é — p2—p1 <0.
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