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Abstract. The singular boundary value problem
{

(ϕp(y
′))′ + q (t) f(t, y) = 0, for t ∈ (0, 1),

y(0) = y(1) = 0

is studied in this paper with ϕp(s) = |s|p−2
s, p > 1. The nonlinearity may

be singular at y = 0, t = 0 and t = 1, and the function f may change sign.
An upper and lower solution approach is presented.
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1. Introduction

In this paper we study the singular boundary value problem

{

(ϕp(y
′))′ + q (t) f(t, y) = 0, for t ∈ (0, 1),

y(0) = y(1) = 0
(1.1)

where ϕp(s) = |s|p−2
s, p > 1. The singularity may occur at y = 0, t = 0

and t = 1, and the function f is allowed to change sign.
The boundary value problem (1.1) has been discussed extensively in the

literature; see [3− 8] , and the references therein. In almost all of these
papers qf is allowed to be positive. As a result the solutions are concave.
When p = 2 the authors in [1, 2] studied the case when f is allowed to
change sign.

In this paper we note in particular that q is not necessarily in L1 [0, 1] .
Also f may not be a Carathéodory function because of the singular be-
haviour of the y variable. The ideas presented here were motivated by the
papers [1− 2] where the case p = 2 is considered. Finally we remark that
equations of the form (1.1) occur in non-Newtonial fluid theory, and in the
study of turbulent flow of a gas in a porous medium[3].

To conclude the introduction we state a general existence principle [8] ,
which will be needed in section 2, for the singular Dirichlet boundary value
problem

{

(ϕp(y
′))′ + g(t, y) = 0, 0 < t < 1,

y(0) = 0 = y(1).
(1.2)

Lemma 1.1. Suppose the following conditions are satisfied:
(H1) g : (0, 1)× R → R is continuous,
(H2) there exists q ∈ C (0, 1) with q > 0 on (0, 1) and

∫ 1
2

0

ϕ−1
p

(

∫ 1
2

s

q (r) dr

)

ds +

∫ 1

1
2

ϕ−1
p

(

∫ s

1
2

q (r) dr

)

ds < ∞

such that |g (t, y)| ≤ q (t) for a.e. t ∈ (0, 1) and y ∈ R. Then (1.2) has a
solution y ∈ C [0, 1] ∩ C1 (0, 1) with ϕp (y′) ∈ AC (0, 1) .

Notice ϕ−1
p (s) = |s|1/(p−1)

sign (s) is the inverse function to ϕp (s) .

2. Existence Results

In this section we discuss the Dirichlet singular boundary value problem

{

(ϕp(y
′))′ + q (t) f(t, y) = 0, 0 < t < 1,

y(0) = y(1) = 0,
(2.1)

where our nonlinearity f may change sign. We begin with our main result.
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Theorem 2.1. Let n0 ∈ {3, 4, . . .} be fixed and suppose the following
conditions are satisfied:

f : [0, 1]× (0,∞) → R is continuous, (2.2)














let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for

1
2n+1 ≤ t < 1 we have q (t) f (t, ρn) ≥ 0,

(2.3)

{

q ∈ C (0, 1) with q > 0 on (0, 1) and
∫ 1

2

0
ϕ−1

p

(

∫ 1
2

s
q (r) dr

)

ds +
∫ 1

1
2

ϕ−1
p

(

∫ s
1
2

q (r) dr
)

ds < ∞,
(2.4)







there exists a function α ∈ C[0, 1] ∩ C1(0, 1), ϕp(α
′) ∈ C1(0, 1),

with α(0) = α(1) = 0, α (t) > 0 on (0, 1) such that

q (t) f(t, α (t)) + (ϕp(α
′(t)))

′ ≥ 0 for t ∈ (0, 1)
(2.5)

and














there exists a function β ∈ C[0, 1] ∩ C1(0, 1),
ϕp(β

′) ∈ C1(0, 1), with β (t) ≥ α (t) and β (t) ≥ ρn0
on [0, 1]

such that q (t) f(t, β (t)) + (ϕp(β
′(t)))

′ ≤ 0 for t ∈ (0, 1)

with q (t) f( 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤ 0 for t ∈ (0, 1

2n0+1 ).

(2.6)

Then (2.1) has a solution in y ∈ C[0, 1] ∩ C1(0, 1) with ϕp (y′) ∈ C1 (0, 1)
with y (t) ≥ α (t) for t ∈ [0, 1] .

Proof. For n = n0, n0 + 1, . . . , let

en =

[

1

2n+1
, 1

]

and θn (t) = max

{

1

2n+1
, t

}

, 0 ≤ t ≤ 1

and

fn (t, x) = max {f (θn (t) , x) , f (t, x)} .

Next we define inductively

gn0
(t, x) = fn0

(t, x)

and

gn (t, x) = min {fn0
(t, x) , . . . , fn (t, x)} , n = n0 + 1, n0 + 2, . . . .

Notice

f (t, x) ≤ · · · ≤ gn+1 (t, x) ≤ gn (t, x) ≤ · · · ≤ gn0
(t, x)

for (t, x) ∈ (0, 1)× (0,∞) and

gn (t, x) = f (t, x) for (t, x) ∈ en × (0,∞) .

Without loss of generality assume ρn0
≤ mint∈[ 1

3
, 2
3 ]

α (t) . Fix n ∈
{n0, n0 + 1, . . .} . Let tn ∈

[

0, 1
3

]

and sn ∈
[

2
3 , 1
]

be such that

α (tn) = α (sn) = ρn and α (t) ≤ ρn for t ∈ [0, tn] ∪ [sn, 1] .
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Define

αn (t) =

{

ρn if t ∈ [0, tn] ∪ [sn, 1]
α (t) if t ∈∈ (tn, sn).

Consider the boundary value problem
{

(ϕp(y
′))′ + q (t) g∗n0

(t, y) = 0, 0 < t < 1,

y(0) = y(1) = ρn0
;

(2.7)

here

g∗n0
(t, y) =







gn0
(t, β (t)) + r (β (t)− y) , y > β (t) ,

gn0
(t, y) , αn0

(t) ≤ y ≤ β (t)
gn0

(t, αn0
(t)) + r (αn0

(t)− y) , y < αn0
(t)

where r : R → [−1, 1] is the radial retraction defined by

r (x) =

{

x, |x| ≤ 1
x
|x| , |x| > 1.

From Lemma 1.1 we know that (2.7) has a solution yn0
∈ C[0, 1]∩C1(0, 1)

with ϕp

(

y′n0

)

∈ C1 (0, 1). We first show

yn0
(t) ≥ αn0

(t) , t ∈ [0, 1] . (2.8)

Suppose (2.8) is not true. Then yn0
−αn0

has a negative absolute minimum
at τ ∈ (0, 1) . Now since yn0

(0)−αn0
(0) = 0 = yn0

(1)−αn0
(1) there exists

τ0, τ1 ∈ [0, 1] with τ ∈ (τ0, τ1) and

yn0
(τ0)−αn0

(τ0)=yn0
(τ1)−αn0

(τ1)=0 and yn0
(t)−αn0

(t)<0, t∈(τ0, τ1) .

We now claim
(

ϕp

(

y′n0
(t)
))′ ≤

(

ϕp

(

α′n0
(t)
))′

for a.e. t ∈ (τ0, τ1) . (2.9)

We first show that if (2.9) is true then (2.8) will follow. Let

w (t) = yn0
(t)− αn0

(t) < 0, for t ∈ (τ0, τ1) .

Then
∫ τ1

τ0

(

(ϕp(y
′
n0

(t)))′ − (ϕp

(

α′n0
(t)
)

)′
)

w (t) dt ≥ 0. (2.10)

On the other hand, the inequality

(ϕp(b)− ϕp (a)) (b− a) ≥ 0, for a, b ∈ R,

yields
∫ τ1

τ0

(

(ϕp(y
′
n0

(t)))′ − (ϕp

(

α′n0
(t)
)

)′
)

w (t) dt

= −
∫ τ1

τ0

(

ϕp(y
′
n0

(t))− ϕp

(

α′n0
(t)
)) (

y′n0
(t)− α′n0

(t)
)

dt

< 0,

a contradiction. As a result if we show that (2.9) is true then (2.8) will
follow. To see (2.9) we will in fact prove more i.e. we will prove

(ϕp (yn0
(t)))′≤(ϕp (αn0

(t)))′ for t∈(τ0, τ1) provided t 6= tn0
or t6=sn0

. (2.11)
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Fix t ∈ (τ0, τ1) and assume t 6= tn0
or t 6= sn0

. Then
(

ϕp

(

y′n0
(t)
))′ −

(

ϕp

(

α′n0
(t)
))′

= −
[

q (t) {gn0
(t, αn0

(t)) + r (αn0
(t)− yn0

(t))}+ (ϕp (αn0
(t)))′

]

=







−
[

q (t) {gn0
(t, α (t)) + r (α (t)− yn0

(t))}+ (ϕp (α′ (t)))
′]

if t ∈ (tn0
, sn0

)

−q (t) {gn0
(t, ρn0

) + r (ρn0
− yn0

(t))} if t ∈ (0, tn0
) ∪ (sn0

, 1) .

Case (i) . t ≥ 1
2n0+1 .

Then since gn0
(t, x) = f (t, x) for x ∈ (0,∞) we have

(

ϕp

(

y′n0
(t)
))′ −

(

ϕp

(

α′n0
(t)
))′

=







−
[

q (t) {f (t, α (t)) + r (α (t)− yn0
(t))}+ (ϕp (α′ (t)))

′]

if t ∈ (tn0
, sn0

)

−q (t) {f (t, ρn0
) + r (ρn0

− yn0
(t))} if t ∈ (0, tn0

) ∪ (sn0
, 1)

< 0,

from (2.3) and (2.5) .

Case (ii) . t ∈
(

0, 1
2n0+1

)

.

Then since

gn0
(t, x) = max

{

f

(

1

2n0+1
, x

)

, f (t, x)

}

we have gn0
(t, x) ≥ f (t, x) and gn0

(t, x) ≥ f
(

1
2n0+1 , x

)

for x ∈ (0,∞) .

Thus we have
(

ϕp

(

y′n0
(t)
))′ −

(

ϕp

(

α′n0
(t)
))′

≤







−
{

q (t) [f (t, α (t)) + r (α (t)− yn0
(t))] + (ϕp (α′ (t)))

′}

if t ∈ (tn0
, sn0

)

−q (t)
[

f
(

1
2n0+1 , ρn0

)

+ r (ρn0
− yn0

(t))
]

if t ∈ (0, tn0
) ∪ (sn0

, 1)

< 0,

from (2.3) and (2.5) .

Consequently (2.9) ( and so (2.8) ) holds and now since α (t) ≤ αn0
(t)

for t ∈ [0, 1] we have

α (t) ≤ αn0
(t) ≤ yn0

(t) for t ∈ [0, 1] . (2.12)

Next we show

yn0
(t) ≤ β (t) for t ∈ [0, 1] . (2.13)

If (2.13) is not true then yn0
−β would have a positive absolute maximum at

say t0 ∈ (0, 1) , in which case y′n0
(t0) = β′ (t0). It is easy to check (see [10])

that (ϕp(y
′
n0

))′ (t0) − (ϕp(β
′))′ (t0) ≤ 0. There are two cases to consider,

namely t0 ∈ [ 1
2n0+1 , 1) and t0 ∈

(

0, 1
2n0+1

)

.

Case (i). t0 ∈ [ 1
2n0+1 , 1).
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Then yn0
(t0) > β (t0) together with gn0

(t0, x) = f (t0, x) for x ∈ (0,∞)
gives

(ϕp(y
′
n0

))′ (t0)− (ϕp(β
′))′ (t0)

= −q (t0) [gn0
(t0, β (t0)) + r (β (t0)− yn0

(t0))]− (ϕp(β
′))′ (t0)

= −q (t0) [f (t0, β (t0)) + r (β (t0)− yn0
(t0))]− (ϕp(β

′))′ (t0)

> 0

from (2.6) , a contradiction.
Case (ii). t0 ∈

(

0, 1
2n0+1

)

.

Then yn0
(t0) > β (t0) together with

gn0
(t0, x) = max

{

f

(

1

2n0+1
, x

)

, f (t0, x)

}

for x ∈ (0,∞) gives

(ϕp(yn0
))′ (t0)− (ϕp(β

′))′ (t0)

= − q (t0)

{

max

[

f

(

1

2n0+1
, β (t0)

)

, f (t0, β (t0))

]

+ r (β (t0)− yn0
(t0))

}

− (ϕp(β
′))′ (t0)

> 0,

form (2.6) , a contradiction.
Thus (2.13) holds, so we have

α (t) ≤ αn0
(t) ≤ yn0

(t) ≤ β (t) for t ∈ [0, 1] .

Next we consider the boundary value problem
{

(ϕp(y
′))′ + q (t) g∗n0+1(t, y) = 0, 0 < t < 1,

y(0) = y(1) = ρn0+1;
(2.14)

here

g∗n0+1 (t, y) =







gn0+1 (t, yn0
(t)) + r (yn0

(t)− y) , y > yn0
(t) ,

gn0+1 (t, y) , αn0+1 (t) ≤ y ≤ yn0+1 (t)
gn0+1 (t, αn0+1 (t)) + r (αn0+1 (t)− y) , y < αn0+1 (t) .

From Lemma 1.1 we know that (2.14) has a solution yn0+1 ∈ C[0, 1] ∩
C1(0, 1) with ϕp

(

y′n0+1

)

∈ C1 (0, 1). We first show

yn0+1 (t) ≥ αn0+1 (t) , t ∈ [0, 1] . (2.15)

Suppose (2.15) is not true. Then yn0+1 − αn0+1 has a negative absolute
minimum at τ ∈ (0, 1) . Now since yn0+1 (0)− αn0+1 (0) = 0 = yn0+1 (1) −
αn0+1 (1) there exists τ0, τ1 ∈ [0, 1] with τ ∈ (τ0, τ1) and

yn0+1 (τ0)− αn0+1 (τ0) = yn0+1 (τ1)− αn0+1 (τ1) = 0

and

yn0+1 (t)− αn0+1 (t) < 0, t ∈ (τ0, τ1) .
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If we show

(ϕp (yn0+1 (t)))′ ≤ (ϕp (αn0+1 (t)))′ for a.e. t ∈ (τ0, τ1) , (2.16)

then as before (2.15) is true. Fix t ∈ (τ0, τ1) and assume t 6= tn0+1 or
t 6= sn0+1. Then

(

ϕp

(

y′n0+1 (t)
))′ −

(

ϕp

(

α′n0+1 (t)
))′

=















−
{

q (t) [gn0+1 (t, α (t)) + r (α (t)− yn0+1 (t))] + (ϕp (α′ (t)))′
}

if t ∈ (tn0+1, sn0+1)

−q (t) [gn0+1 (t, ρn0+1) + r (ρn0+1 − yn0+1 (t))]
if t ∈ (0, tn0+1) ∪ (sn0+1, 1) .

Case (i). t ≥ 1
2n0+2 .

Then since gn0+1 (t, x) = f (t, x) for x ∈ (0,∞) we have

(ϕp (yn0+1 (t)))
′ − (ϕp (αn0+1 (t)))

′

=















−
{

q (t) [f (t, α (t)) + r (α (t)− yn0+1 (t))] + (ϕp (α′ (t)))
′}

if t ∈ (tn0+1, sn0+1)

−q (t) [f (t, ρn0+1) + r (ρn0+1 − yn0+1 (t))]
if t ∈ (0, tn0+1) ∪ (sn0+1, 1) .

< 0,

from (2.3) and (2.5) .

Case (ii) t ∈
(

0, 1
2n0+2

)

.

Then since

gn0+1 (t, x)

= min

{

max

{

f

(

1

2n0+1
, x

)

, f (t, x)

}

, max

{

f

(

1

2n0+2
, x

)

, f (t, x)

}}

we have

gn0+1 (t, x) ≥ f (t, x)

and

gn0+1 (t, x) ≥ min

{

f

(

1

2n0+1
, x

)

, f

(

1

2n0+2
, x

)}

for x ∈ (0,∞) . Thus we have
(

ϕp

(

y′n0+1 (t)
))′ −

(

ϕp

(

α′n0+1 (t)
))′

≤















−
{

q (t) [f (t, α (t)) + r (α (t)− yn0+1 (t))] + (ϕp (α′′ (t)))
′}

if t ∈ (tn0+1, sn0+1)

−q (t)
{

min
{

f
(

1
2n0+1 , ρn0+1

)

, f
(

1
2n0+2 , ρn0+1

)}

+r (ρn0+1 − yn0+1 (t))} if t ∈ (0, tn0+1) ∪ (sn0+1, 1) .

< 0,

from (2.3) and (2.5) . (note f
(

1
2n0+1 , ρn0+1

)

≥ 0 since f (t, ρn0+1) ≥ 0 for

t ∈
[

1
2n0+2 , 1

]

and 1
2n0+1 ∈

[

1
2n0+2 , 1

]

).
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Consequently (2.15) is true so

α (t) ≤ αn0+1 (t) ≤ yn0+1 (t) for t ∈ [0, 1] . (2.17)

Next we show
yn0+1 (t) ≤ yn0

(t) for t ∈ [0, 1] . (2.18)

If (2.18) is not true then yn0+1 − yn0
would have a positive absolute maxi-

mum at say t0 ∈ (0, 1) , in which case

y′n0+1 (t0) = y′n0
(t0) and (ϕp(y

′
n0+1))

′ (t0)− (ϕp(y
′
n0

))′ (t0) ≤ 0.

Then yn0+1 (t0) > yn0
(t0) together with gn0

(t0, x) ≥ gn0+1 (t0, x) for x ∈
(0,∞) gives

(ϕp(y
′
n0+1))

′ (t0)− (ϕp(y
′
n0

))′ (t0)

= −q (t0) [gn0+1 (t0, yn0
(t)) + r (yn0

(t)− yn0+1 (t0))]− (ϕp(y
′
n0

))′ (t0)

≥ −q (t0) [gn0
(t0, yn0

(t)) + r (yn0
(t0)− yn0+1 (t0))]− (ϕp(y

′
n0

))′ (t0)

= −q (t0) [r (yn0
(t0)− yn0+1 (t0))]

> 0,

a contradiction.
Now proceed inductively to construct yn0+2, yn0+3, . . . as follows. Sup-

pose we have yk for some k ∈ {n0 + 1, n0 + 2, . . .} with αk (t) ≤ yk (t) ≤
yk−1 (t) for t ∈ [0, 1] . Then consider the boundary value problem

{

(ϕp(y
′))′ + q (t) g∗k+1(t, y) = 0, 0 < t < 1,

y(0) = y(1) = ρk+1;
(2.19)

here

g∗k+1 (t, y) =







gk+1 (t, yk (t)) + r (yk (t)− y) , y > yk (t)
gk+1 (t, y) , αk+1 (t) ≤ y ≤ yk (t)
gk+1 (t, αk+1 (t)) + r (αk+1 (t)− y) , y < αk+1 (t) .

Now Lemma 1.1 guarantees (2.19) has a solution yk+1 ∈ C[0, 1] ∩ C1(0, 1)
with ϕp (yk+1) ∈ C1 (0, 1), and essentially the same reasoning as above
yields

α (t) ≤ αk+1 (t) ≤ yk+1 (t) ≤ yk (t) for t ∈ [0, 1] . (2.20)

Thus for each n ∈ {n0 + 1, . . .} we have

α (t) ≤ yn (t) ≤ yn−1 (t) ≤ . . . . . . ≤ yn0
(t) ≤ β (t) for t ∈ [0, 1] . (2.21)

Now lets look at the internal
[

1
2n0+1 , 1− 1

2n0+1

]

. Let

Rn0
=sup

{

|q (t) f (t, x)| : t ∈
[

1

2n0+1
, 1− 1

2n0+1

]

and α (t)≤x≤yn0
(t)

}

.

The mean value theorem implies that there exists τ ∈
(

1
2n0+1 , 1− 1

2n0+1

)

with |y′n (τ)| ≤ 2 sup[0,1] yn0
(t) . Hence for t ∈

(

1
2n0+1 , 1− 1

2n0+1

)

,

|y′n (t) | ≤ ϕ−1
p

(

ϕp(|y′n (τ) |) +

∣

∣

∣

∣

∫ t

τ

(ϕp(y
′
n(τ)))′dx

∣

∣

∣

∣

)

.
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As a result

{yn}∞n=n0
is a bounded, equicontinuous family on

[

1

2n0+1
, 1− 1

2n0+1

]

. (2.22)

The Arzela-Ascoli theorem guarantees the existence of a subsequence Nn0

of integers and a function zn0
∈ C

[

1
2n0+1 , 1− 1

2n0+1

]

with yn converging

uniformly to zn0
on
[

1
2n0+1 , 1− 1

2n0+1

]

as n →∞ through Nn0
. Similarly

{yn}∞n=n0+1 is a bounded, equicontinuous family on

[

1

2n0+2
, 1− 1

2n0+2

]

,

so there is a subsequence Nn0+1 of Nn0
and a function

zn0+1 ∈ C

[

1

2n0+2
, 1− 1

2n0+2

]

with yn converging uniformly to zn0+1 on
[

1
2n0+2 , 1− 1

2n0+2

]

as n → ∞
through Nn0+1. Note zn0+1 = zn0

on
[

1
2n0+1 , 1− 1

2n0+1

]

since Nn0+1 ⊆ Nn0
.

Proceed inductively to obtain subsequence on integers

Nn0
⊇ Nn0+1 ⊇ . . . ⊇ Nk ⊇ . . .

and functions

zk ∈ C

[

1

2k+1
, 1− 1

2k+1

]

with

yn converging uniformly to zk on

[

1

2k+1
, 1− 1

2k+1

]

as n→∞ through Nk

and

zk = zk−1 on

[

1

2k
, 1− 1

2k

]

.

Define a function y : [0, 1] → [0,∞) by y (x) = zk (x) on
[

1
2k+1 , 1− 1

2k+1

]

and
y (0) = y (1) = 0. Notice y is well defined and α (t) ≤ y (t) ≤ yn0

(t) (≤ β (t))
for t ∈ (0, 1) . Next we prove y is a solution of (1.1) . Fix t ∈ (0, 1) and
let m ∈ {n0, n0 + 1, . . .} be such that 1

2m < t < 1 − 1
2m . Let N+

m =

{n ∈ Nm : n ≥ m} . Let yn, n ∈ N+
m, and let a = 1

2m , b = 1− 1
2m .

Define the operator, L : C [a, b] → C [a, b] by

(Lu) (t) = u (a) +

∫ t

a

ϕ−1
p (Au +

∫ b

s

q (τ) (g∗n(τ, u(τ)))dτ)ds

where Au satisfy
∫ b

a

ϕ−1
p (Au +

∫ b

s

q (τ) (g∗n(τ, u(τ)))dτ)ds = u (a)− u (b) .

Let um → u uniformly on [a, b] . As in the proof of Theorem 2.4[4], if we
show limm→∞ Aum

= Au, then this together with ϕ−1
p continuous, implies
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L : C [a, b] → C [a, b] is continuous, (here Aum
is associated with um). First

notice

∫ b

a

(

ϕ−1
p (Aum

+

∫ b

s

q (τ) (g∗n(τ, um(τ)))dτ)

−ϕ−1
p (Au +

∫ b

s

q (τ) (g∗n(τ, u(τ)))dτ)

)

ds

= um (b)− um (a)− u (b) + u (a) .

The Mean Value theorem for integrals implies that there exists ηn ∈ [0, 1]
with

ϕ−1
p (Aum

+

∫ b

ηm

q (τ) (g∗n(τ, um(τ)))dτ)

− ϕ−1
p (Au +

∫ b

ηm

q (τ) (g∗n(τ, u(τ)))dτ)

=
um (b)− um (a)− u (b) + u (a)

b− a
,

and now since um → u uniformly on [a, b] we have limm→∞ Aum
= Au.

Now ym converging uniformly on [a, b] to y as m → ∞ and Lym = ym,

yields Ly = y, i. e.

(ϕp(y
′(t)))

′

+ q(t)(g∗n(t, y(t)) = 0, a ≤ t ≤ b.

Thus

(ϕp(y
′(t)))

′

+ q(t)(f(t, y(t)) = 0, a ≤ t ≤ b.

We can do this argument for each t ∈ (0, 1) and so (ϕp(y
′(t)))

′

+
q(t)(f(t, y(t)) = 0 for t ∈ (0, 1) . It remains to show y is continuous at 0
and 1.

Let ε > 0 be given. Now since limm→∞ ym (0) = 0 there exists m1 ∈
{m0, m0 + 1, . . .} with ym1

(0) < ε
2 . Since ym1

∈ C [0, 1] there exists δm1
> 0

with

ym1
(t) <

ε

2
for t ∈ [0, δm1

] .

Now for m ≥ m1 we have, since {ym (t)} is nonincreasing for each t ∈ [0, 1] ,

α (t) ≤ ym (t) ≤ ym1
(t) <

ε

2
for t ∈ [0, δm1

] .

Consequently

α (t) ≤ y (t) ≤ ε

2
< ε for t ∈ [0, δm1

] ,

and so y is continuous at 0. Similarly y is continuous at 1. As a result, we
have shown y ∈ C [0, 1] .
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Suppose (2.2)−(2.5) hold and in addition assume the following conditions
are satisfied:

q (t) f(t, y) + (ϕp(α
′(t)))

′

> 0

for (t, y) ∈ (0, 1)× {y ∈ (0,∞) : y < α (t)} (2.23)

and














there exists s function β ∈ C[0, 1] ∩ C1(0, 1),
ϕp(β

′) ∈ C1(0, 1) with β (t) ≥ ρn0
on [0, 1]

such that q (t) f(t, β (t)) + (ϕp(β
′(t)))

′ ≤ 0 for t ∈ (0, 1)

with q (t) f( 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤ 0 for t ∈ (0, 1

2n0+1 ).

(2.24)

Then the result in Theorem 2.1 is true. This follows immediately from
Theorem 2.1 once we show (2.6) holds i.e. once we show β (t) ≥ α (t)
for t ∈ [0, 1] .Suppose it is false. Then α − β would have a positive abso-

lute maximum at say t0 ∈ (0, 1) , so (α− β)′ (t0) = 0 and (ϕp(α
′))

′

(t0) ≤
(ϕp(β

′))
′

(t0). Now α (t0) > β (t0) and (2.23) implies

q (t0) f (t0, β (t0)) + (ϕp(α
′))

′

(t0) > 0.

This together with (2.24) yields

(ϕp(α
′))

′

(t0)− (ϕp(β
′))

′

(t0) ≥ (ϕp(α
′))

′

(t0) + q (t0) f (t0, β (t0)) > 0,

a contradiction. �

Thus we have

Corollary 2.1. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2) − (2.5) ,

(2.23) and (2.24) hold. Then (2.1) has a solution y ∈ C [0, 1]∩C1 (0, 1) and
ϕp(y

′) ∈ C1 (0, 1) with y (t) ≥ α (t) for t ∈ [0, 1] .

Remark 2.1. If in (2.3) we replace 1
2n+1 ≤ t < 1 with 0 < t ≤ 1 − 1

2n+1

then one would replace (2.6) with














there exists s function β ∈ C[0, 1] ∩ C1(0, 1),
ϕp(β

′) ∈ C1(0, 1) with β (t) ≥ α (t) , and β (t) ≥ ρn0
on [0, 1]

such that q (t) f(t, β (t)) + (ϕp(β
′(t)))

′ ≤ 0 for t ∈ (0, 1)

with q (t) f(1− 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤ 0 for t ∈ (1− 1

2n0+1 , 1).

If in (2.3) we replace 1
2n+1 ≤ t < 1 with 1

2n+1 ≤ t ≤ 1 − 1
2n+1 then

essentially the same reasoning as in Theorem 2.1 establishes the following
results.

Theorem 2.2. Let n0 ∈ {3, 4, . . .} be fixed and suppose (2.2) , (2.4) , (2.5)
and the following hold:















let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a nonincreasing
sequence with limn→∞ ρn = 0 and such that for

1
2n+1 ≤ t ≤ 1− 1

2n+1 we have q (t) f (t, ρn) ≥ 0

(2.25)
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and






















there exists a function β ∈ C[0, 1] ∩ C1(0, 1),
ϕp(β

′) ∈ C1(0, 1), with β (t) ≥ α (t) and β (t) ≥ ρn0
on [0, 1]

such that q (t) f(t, β (t)) + (ϕp(β
′(t)))

′ ≤ 0 for t ∈ (0, 1) with

q (t) f( 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤ 0 for t ∈ (0, 1

2n0+1 ) and

q (t) f(1− 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤0 for t∈(1− 1

2n0+1 , 1).

(2.26)

Then (2.1) has a solution y ∈ C[0, 1]∩C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with
y (t) ≥ α (t) for t ∈ [0, 1] .

Corollary 2.2. Let n0 ∈ {3, 4, . . .} be fixed and suppose (2.2) , (2.4) ,

(2.5) , (2.23) , (2.25) and the following hold.






















there exists a function β ∈ C[0, 1] ∩ C1(0, 1),
ϕp(β

′) ∈ C1(0, 1), with and β (t) ≥ ρn0
on [0, 1]

such that q (t) f(t, β (t)) + (ϕp(β
′(t)))

′ ≤ 0 for t ∈ (0, 1) with

q (t) f( 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤ 0 for t ∈ (0, 1

2n0+1 ) and

q (t) f(1− 1
2n0+1 , β (t)) + (ϕp(β

′(t)))
′ ≤0 for t∈(1− 1

2n0+1 , 1).

(2.27)

Then (2.1) has a solution y ∈ C[0, 1]∩C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with
y (t) ≥ α (t) for t ∈ [0, 1] .

Next we consider how to construct the lower solution α in (2.5) and
(2.23) . Suppose the following condition is satisfied:























let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and there exists a
constant k0 > 0 such that for 1

2n+1 ≤ t ≤ 1− 1
2n+1

and 0 < y ≤ ρn we have q (t) f (t, y) ≥ k0.

(2.28)

A slight modification of the argument in Q.Yao and H.Lü [7] guarantees
that exists a α ∈ C[0, 1] ∩ C1(0, 1), ϕp(α

′) ∈ C1(0, 1) with α(0) = α(1) =
0, α (t) ≤ ρn0

, for t ∈ [0, 1] with (2.5) and (2.23) holding. We combine this
with Corollary 2.1 to obtain our next result.

Theorem 2.3. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2) , (2.4) , (2.26)
and (2.28) hold. Then (2.1) has a solution y ∈ C[0, 1] ∩ C1(0, 1) with
ϕp (y′) ∈ C1 (0, 1) with y (t) > 0 for t ∈ (0, 1).

Corollary 2.3. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2) , (2.4) , (2.24)
and (2.28) (with 1

2n+1 ≤ t < 1 replaced by 1
2n+1 ≤ t ≤ 1− 1

2n+1 ) hold. Then

(2.1) has a solution y ∈ C[0, 1] ∩ C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with
y (t) > 0 for t ∈ (0, 1).

Looking at Theorem 2.3 we see that the main difficulty when discussing
examples is the construction of the β in (2.26) . Our next result replaces
(2.26) with another condition.
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Theorem 2.4. Let 0 ∈ {1, 2, . . .} be fixed and suppose (2.2)–(2.5) hold.
Also assume the following two conditions are satisfied:















|f (t, y)| ≤ g (y) + h (y) on [0, 1]× (0,∞) with
g > 0 continuous and nonincreasing on (0,∞) ,

h ≥ 0 continuous on [0,∞), and h
g

nondecreasing on (0,∞)

(2.29)

and
{

for any R > 0, 1
g is differentiable on (0, R] with

g′ < 0 a.e. on (0, R], g′

g2 ∈ L1 [0, R] .
(2.30)

In addition assume there exists M > supt∈[0,1] α (t) with

1

ϕ−1
p

(

1 + h(M)
g(M)

)

∫ M

0

du

ϕ−1
p (g (u))

> b0 (2.31)

holding; here

b0 = max

{

∫ 1
2

0

ϕ−1
p

(

∫ 1
2

s

q (r) dr

)

ds,

∫ 1

1
2

ϕ−1
p

(

∫ s

1
2

q (r) dr

)

ds

}

.

Then (2.1) has a solution y ∈ C[0, 1]∩C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with
y (t) ≥ α (t) for t ∈ [0, 1] .

Proof. Fix n ∈ {n0, n0 + 1, . . .} . Choose ε, 0 < ε < M with

1

ϕ−1
p

(

1 + h(M)
g(M)

)

∫ M

ε

du

ϕ−1
p (g (u))

> b0 (2.32)

Let m0 ∈ {3, 4, . . .} be chosen so that ρm0
< ε and without loss of generality

assume m0 ≤ n0. Let en, θn, fn, gn and αn be as in Theorem 2.1. We
consider the boundary value problem (2.7) with in this case g∗n0

given by

g∗n0
(t, y) =







gn0
(t, M) + r (M − y) , y > M,

gn0
(t, y) , αn0

(t) ≤ y ≤ M

gn0
(t, αn0

(t)) + r (αn0
(t)− y) , y < αn0

(t) .

Essentially the same reasoning as in Theorem 2.1 implies that (2.7) has a
solution yn0

∈ C[0, 1] ∩ C1(0, 1) with ϕp

(

y′n0

)

∈ C1 (0, 1) with yn0
(t) ≥

αn0
(t) ≥ α (t) for t ∈ [0, 1] . Next we show

yn0
(t) ≤ M for t ∈ [0, 1] . (2.33)

Suppose (2.33) is false. Now since yn0
(0) = yn0

(1) = ρn0
there exists either

Case (i). t1, t2 ∈ (0, 1) with αn0
(t) ≤ yn0

(t) ≤ M for t ∈ [0, t2), yn0
(t2) =

M and yn0
(t) > M on (t2, t1) with y′n0

(t1) = 0;
or
Case (ii). t3, t4 ∈ (0, 1) , t4 < t3 with αn0

(t) ≤ yn0
(t) ≤ M for t ∈ (t3, 1],

yn0
(t3) = M and yn0

(t) > M on (t4, t3) with y′n0
(t4) = 0.
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We can assume without loss of generality that either t1 ≤ 1
2 or t4 ≥ 1

2 .

Suppose t1 ≤ 1
2 . Notice for t ∈ (t2, t1) that we have

−
(

ϕp

(

y′n0

))′
= q (t) g∗n0

(t, yn0
(t)) ≤ q (t) [g (M) + h (M)] ; (2.34)

note if t ∈ (t2, t1) that we have

g∗n0
(t, yn0

(t)) = gn0
(t, M) + r (M − yn0

(t))

≤ max

{

f

(

1

2n0+1
, M

)

, f (t, M)

}

.

Integrate (2.34) from t2 to t1 to obtain

ϕp

(

y′n0
(t2)
)

≤ [g (M) + h (M)]

∫ t1

t2

q (s) ds,

and this together with yn0
(t2) = M yields

ϕp

(

y′n0
(t2)

)

g (yn0
(t2))

≤
[

1 +
h (M)

g (M)

]
∫ t1

t2

q (s) ds. (2.35)

Also for t ∈ (0, t2) we have

−
(

ϕp

(

y′n0
(t)
))′

= q (t) max

{

f

(

1

2n0+1
, yn0

(t)

)

, f (t, yn0
(t))

}

≤ q (t) [g (yn0
(t)) + h (yn0

(t))]

and so

−
(

ϕp

(

y′n0
(t)
))′

g (yn0
(t))

≤ q (t)

{

1 +
h (yn0

(t))

g (yn0
(t))

}

≤ q (t)

{

1 +
h (M)

g (M)

}

for t ∈ (0, t2). Integrate from t (t ∈ (0, t2)) to t2 to obtain

−ϕp

(

y′n0
(t2)

)

g (yn0
(t2))

+
ϕp

(

y′n0
(t)
)

g (yn0
(t))

+

∫ t2

t

{−g′ (yn0
(x))

g2 (yn0
(x))

}

∣

∣y′n0
(x)
∣

∣

p
dx

≤
{

1 +
h (M)

g (M)

}
∫ t2

t

q (s) ds,

and this together with (2.35) yields

ϕp

(

y′n0
(t)
)

g (yn0
(t))

≤
{

1 +
h (M)

g (M)

}
∫ t1

t

q (s) ds. for t ∈ (0, t2) .

Integrate from 0 to t2 to obtain
∫ M

ε

du

ϕ−1
p (g (u))

≤
∫ M

ρn0

du

ϕ−1
p (g (u))

≤ ϕ−1
p

(

1 +
h (M)

g (M)

)
∫ t2

0

ϕ−1
p

(
∫ t1

t

q (s) ds

)

dt.

That is
∫ M

ε

du

ϕ−1
p (g (u))

≤ b0ϕ
−1
p

(

1 +
h (M)

g (M)

)

.



28 Ravi P. Agarwal, Haishen Lü and Donal O’Regan

This contradicts (2.32) so (2.33) holds (a similar argument yields a contra-
diction if t4 ≥ 1

2 ). Thus we have

α (t) ≤ αn0
(t) ≤ yn0

(t) ≤ M for t ∈ [0, 1] .

Essentially the same reasoning as in Theorem 2.1 (from (2.14) onwards)
completes the proof. �

Similarly we have the following result.

Theorem 2.5. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2) , (2.4) ,

(2.5) , (2.25) , (2.28) and (2.29) hold. In addition assume there exists

M > sup
t∈[0,1]

α (t)

with (2.31) holding. Then (2.1) has a solution y ∈ C[0, 1] ∩ C1(0, 1) with
ϕp (y′) ∈ C1 (0, 1) with y (t) ≥ α (t) for t ∈ [0, 1] .

Corollary 2.4. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2)–(2.5),
(2.23), (2.28) and (2.29) hold. In addition assume there exists a constant
M > 0 with

1

ϕ−1
p

(

1 + h(M)
g(M)

)

∫ M

0

du

ϕ−1
p (g (u))

> b0 (2.36)

holding; here

b0 = max

{

∫ 1
2

0

ϕ−1
p

(

∫ 1
2

s

q (r) dr

)

ds,

∫ 1

1
2

ϕ−1
p

(

∫ s

1
2

q (r) dr

)

ds

}

.

Then (2.1) has a solution y ∈ C[0, 1]∩C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with
y (t) ≥ α (t) for t ∈ [0, 1] .

Proof. The result follows immediately from Theorem 2.5 once we show
α (t) ≤ M for t ∈ [0, 1] . Suppose this is false. Now since α (0) = α (1) = 0
there exists either
Case (i). t1, t2 ∈ (0, 1) , t2 < t1 with 0 ≤ α (t) ≤ M for t ∈ [0, t2), α (t2) =
M and α (t) > M on (t2, t1) with α′ (t1) = 0;
or
Case (ii). t3, t4 ∈ (0, 1) , t4 < t3 with 0 ≤ α (t) ≤ M for t ∈ (t3, 1],
α (t3) = M and α (t) > M on (t4, t3) with α′n0

(t4) = 0.

We can assume without loss of generality that either t1 ≤ 1
2 or t4 ≥ 1

2 .

Suppose t1 ≤ 1
2 . Notice for t ∈ (t2, t1) that we have

− (ϕp (α′))
′ ≤ q (t) [g (M) + h (M)] , (2.37)

so integrating from t2 to t1 yields

ϕp (α′ (t2))

g (α (t2))
≤
[

1 +
h (M)

g (M)

]
∫ t1

t2

q (s) ds. (2.38)
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Also for t ∈ (0, t2) we have that

− (ϕp (α′ (t)))
′ ≤ q (t) g (α (t))

[

1 +
h (α (t))

g (α (t))

]

≤ q (t) g (α (t))

[

1 +
h (M)

g (M)

]

.

Integrate from t (t ∈ (0, t2)) to t2 and use (2.38) to obtain

ϕp (α′ (t))

g (α (t))
≤
{

1 +
h (M)

g (M)

}
∫ t1

t

q (s) ds. for t ∈ (0, t2) .

Finally integrate from 0 to t2 to obtain
∫ M

0

du

ϕ−1
p (g (u))

≤ b0ϕ
−1
p

(

1 +
h (M)

g (M)

)

,

a contradiction. �

Corollary 2.5. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2) , (2.4) ,

(2.5) , (2.21) , (2.24) , (2.29) and (2.30) hold. In addition assume there is
a constant M > 0 with (2.35) holding. Then (2.1) has a solution y ∈
C[0, 1] ∩ C1(0, 1) with ϕp (y′) ∈ C1 (0, 1) with y (t) ≥ α (t) for t ∈ [0, 1] .

Combining Corollary 2.4 with the comments before Theorem 2.5 yields
the following theorem.

Theorem 2.6. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.2), (2.4),
(2.28), (2.29) and (2.30) hold. In addition assume there is a constant M > 0
with (2.36) holding. Then (2.1) has a solution y ∈ C[0, 1] ∩ C1(0, 1) with
ϕp (y′) ∈ C1 (0, 1) with y (t) > 0 for t ∈ (0, 1).

Next we present an example which illustrates how easily the theory is
applied in practice.

Example 1. Consider the boundary value problem
{
(

|y′|p−2
y′
)′

+
(

t
y2 + 1

32y2 − µ2
)

= 0, 0 < t < 1

y (0) = y (1) = 0
(2.39)

with 1.4 ≤ p < 5 and µ2 > 1. Then (2.39) has a solution y ∈ C[0, 1]∩C1(0, 1)
with ϕp (y′) ∈ C1 (0, 1) with y (t) > 0 for t ∈ (0, 1) .

To see this we will apply Corollary 2.3 with that

q ≡ 1, ρn =

(

1

2n+1 (µ2 + a)

)
1
2

and k0 = a;

here a > 0 chosen so that a ≤ 1
8 −

p−1
2p ; note 1

8 −
p−1
2p > 0 since 1.4 ≤ p < 5.

Also choose n0 ∈ {1, 2, . . .} with ρn0
≤ 1. Clearly (2.2) and (2.4) hold.

Notice for n ∈ {1, 2, . . .} , 1
2n+1 ≤ t < 1 and 0 < y ≤ ρn that we have

q (t) f (t, y) ≥ t

y2
− µ2 ≥ 1

2n+1ρ2
n

− µ2 =
(

µ2 + a
)

− µ2 = a,
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so (2.28) ( with 1
2n+1 ≤ t < 1 replaced by 1

2n+1 ≤ t ≤ 1− 1
2n+1 ) is satisfied.

It remains to check (2.24) with

β (t) =
√

t + ρn0
.

Now
(

|β′ (t)|p−2
β′ (t)

)′

= −p−1
2p t−

p+1

2 and so for t ∈ (0, 1) we have

(

|β′ (t)|p−2
β′ (t)

)′

+ q (t) f (t, β (t))

≤ − p− 1

2p
t−

p+1

2 +

(

t

t
+

(√
t + ρn0

)2

32
− µ2

)

≤ − p− 1

2p
+

(

1 +
1

8
− µ2

)

≤ 0.

Also for t ∈
(

0, 1
2n0+1

)

we have

(

|β′ (t)|p−2
β′ (t)

)′

+ q (t) f (t, β (t))

≤ − p− 1

2p
t−

p+1

2 +

(

1

2n0+1ρ2
n0

+

(√
t + ρn0

)2

32
− µ2

)

≤ − p− 1

2p
+

(

(

µ2 + a
)

+
1

8
− µ2

)

= a +
1

8
− p− 1

2p
≤ 0.
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8. H. Lü and D. O’Regen, A general existence theorem for singular equation (ϕp(y′))′+
f(t, y) = 0. Math. Inequal. Appl. (to appear).

9. P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden–
Fowler equation. J. Math. Anal. Appl. 181(1994), 684–700.



AN UPPER AND LOWER SOLUTION METHOD 31
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