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1. Introduction

In [1, 2] we initiated the study of nonoscillatory solutions to the differ-
ential inclusion

(a(t) y′(t))′ ∈ F (t, y(t)) for a.e. t ≥ t0 ≥ 0. (1.1)

However to our knowledge, no oscillatory results are available in the litera-
ture for differential inclusions. This paper begins this study. As an added
bonus the results of this paper are new even in the single values case i.e. in
particular some of the results in [3–7] are extended and improved.

In this paper by a solution y to (1.1) we mean a y ∈ C[t0,∞) with
a y′ ∈ C[t0,∞) and (a y′)′ ∈ L1

loc[t0,∞). We assume throughout that (1.1)
possesses such solutions. Recall a nontrivial solution of (1.1) is called oscil-
latory if it has arbitrarily large zeros, otherwise it is called nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

2. Differential Inclusions

In this section a variety of oscillation results will be presented for the
differential inclusion

(a(t) y′(t))′ ∈ F (t, y(t)) for a.e. t ≥ t0 ≥ 0; (2.1)

the function a is single valued and F : [t0,∞)×R → 2R is a multifunction
(here 2R denotes the family of nonempty subsets of R).

Remark 2.1. The usual standard notation in inclusion theory is used here
e.g. |F (t, u)| = sup{|v| : v ∈ F (t, u)} and F (t, u) > 0 means w > 0 for
each w ∈ F (t, u).

The first few results in this section discuss the case when F has a par-
ticular sign. Both sublinear and superlinear results will be presented. Our
first result is a theorem of superlinear type.

Theorem 2.1. Suppose the following conditions are satisfied:

a ∈ C([t0,∞),R+) (here R+ = (0,∞)), (2.2)
{

F (t, x) < 0 for (t, x) ∈ [t0,∞)× (0,∞) and

F (t, x) > 0 for (t, x) ∈ [t0,∞)× (−∞, 0),
(2.3)

∫

∞

t0

du

a(u)
= ∞, (2.4)















∃ q : [t0,∞) → (0,∞) with q ∈ L1
loc[t0,∞), ψ : R→ R

continuous and nondecreasing with xψ(x) > 0 for x 6= 0,
and with |F (t, x)| ≥ q(t)ψ(x) for (t, x) ∈ [t0,∞)× (0,∞)
and |F (t, x)| ≥ − q(t)ψ(x) for (t, x) ∈ [t0,∞)× (−∞, 0),

(2.5)

∫

∞ du

ψ(u)
<∞ and

∫

−∞

du

[−ψ(u)]
<∞ (2.6)
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and
∫

∞

t0

q(u)

∫ u

t0

ds

a(s)
du = ∞. (2.7)

Then equation (2.1) is oscillatory.

Proof. Let y be a nonoscillatory solution of (2.1). Suppose first that y(t) >
0 for t ≥ t0. We first show

y′(t) > 0 for t > t0. (2.8)

To see this first suppose there exists µ > t0 with y′(µ) < 0. Let

τ(t) = (a(t) y′(t))′ with τ(t) ∈ F (t, y(t)) and τ ∈ L1
loc[t0,∞). (2.9)

From (2.3) we have (a(t) y′(t))′ ≤ 0 for a.e. t ≥ t0 and so

a(t) y′(t) ≤ a(µ) y′(µ) for t > µ.

Now an integration from µ to t (t > µ) yields

y(t) ≤ y(µ) + a(µ) y′(µ)

∫ t

µ

du

a(u)
.

From (2.4) we have immediately that

y(µ) + a(µ) y′(µ)

∫ t

µ

du

a(u)
→ −∞ as t→∞,

a contradiction. Thus y′(t) ≥ 0 for t > t0. Next assume there exists
µ > t0 with y′(µ) = 0. Then (2.3) implies (a(t) y′(t))′ < 0 for a.e. t ≥ t0,
so a(t) y′(t) < 0 for t > µ, a contradiction. Thus (2.8) is true.

Fix x > t0 and integrate (2.9) from s (t0 < s < x) to x to obtain

y′(s) =
a(x)

a(s)
y′(x) +

1

a(s)

∫ x

s

[− τ(u)] du ≥
1

a(s)

∫ x

s

[− τ(u)] du.

This together with (2.3) and (2.5) gives

y′(s) ≥
1

a(s)

∫ x

s

q(u)ψ(y(u)) du for s ∈ (t0, x).

Divide by ψ(y(s)) and integrate from t0 to x to obtain
∫ x

t0

y′(s)

ψ(y(s))
ds ≥

∫ x

t0

∫ x

s

q(u)

a(s)

ψ(y(u))

ψ(y(s))
du ds.

That is
∫ y(x)

y(t0)

du

ψ(u)
≥

∫ x

t0

∫ u

t0

q(u)

a(s)

ψ(y(u))

ψ(y(s))
ds du.

From (2.8) and the fact that ψ is nondecreasing we have that
∫ y(x)

y(t0)

du

ψ(u)
≥

∫ x

t0

q(u)

∫ u

t0

ds

a(s)
du.
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As a result we have

∞ =

∫

∞

t0

q(u)

∫ u

t0

ds

a(s)
du ≤

∫

∞

y(t0)

du

ψ(u)
<∞,

a contradiction.
Next suppose y(t) > 0 for t ≥ t0. As in the first part, it is easy to check

that

y′(t) < 0 for t > t0. (2.10)

Fix x > t0 and integrate (2.9) from s (t0 < s < x) to x to obtain

− y′(s) =
a(x)

a(s)
[− y′(x)] +

1

a(s)

∫ x

s

τ(u) du ≥
1

a(s)

∫ x

s

τ(u) du

≥−
1

a(s)

∫ x

s

q(u)ψ(y(u)) du.

Divide by −ψ(y(s)) (note ψ(x) < 0 for x < 0) and integrate from t0 to
x to obtain

∫ y(x)

y(t0)

du

ψ(u)
≥

∫ x

t0

∫ u

t0

q(u)

a(s)

ψ(y(u))

ψ(y(s))
ds du.

Now (2.10), ψ nondecreasing and ψ(x) < 0 for x < 0 implies
∫ y(t0)

y(x)

du

[−ψ(u)]
≥

∫ x

t0

q(u)

∫ u

t0

ds

a(s)
du,

and we again obtain a contradiction by letting x→∞. �

Remark 2.2. In Theorem 2.1, if (2.4) is not assumed, then (2.1) has no
nonoscillatory solutions y which satisfy y(t) y′(t) > 0 for t > t0.

Our next result is a theorem of sublinear type.

Theorem 2.2. Suppose (2.2) holds and assume the following conditions

are satisfied:
{

F (t, x) > 0 for (t, x) ∈ [t0,∞)× (0,∞) and

F (t, x) < 0 for (t, x) ∈ [t0,∞)× (−∞, 0),
(2.11)















∃ q : [t0,∞) → (0,∞) with q ∈ L1
loc[t0,∞), ψ : R → R

continuous and nonincreasing with xψ(x) > 0 for x 6= 0,
and with |F (t, x)| ≥ q(t)ψ(x) for (t, x) ∈ [t0,∞)× (0,∞)
and |F (t, x)| ≥ − q(t)ψ(x) for (t, x) ∈ [t0,∞)× (−∞, 0),

(2.12)

∫

0

du

ψ(u)
<∞ and

∫ 0 du

[−ψ(u)]
<∞ (2.13)

and
∫

∞

t1

q(u)

∫ u

t1

ds

a(s)
du = ∞ for any t1 ≥ t0. (2.14)

Then (2.1) has no nonoscillatory solution y with y(t) y′(t) < 0 eventually.
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Proof. Let y be a nonoscillatory solution of (2.1). Suppose first that y(t) >
0 for t ≥ t0, and assume y′(t) < 0 for t ≥ t1 ≥ t0. Let

τ(t) = (a(t) y′(t))′ with τ(t) ∈ F (t, y(t)) and τ ∈ L1
loc[t0,∞). (2.15)

Fix x > t1 and integrate (2.15) from s (t1 < s < x) to x to obtain

− y′(s) =
a(x)

a(s)
[− y′(x)] +

1

a(s)

∫ x

s

τ(u) du ≥
1

a(s)

∫ x

s

τ(u) du,

and this together with (2.12) gives

− y′(s) ≥
1

a(s)

∫ x

s

q(u)ψ(y(u)) du for s ∈ (t1, x).

Divide by ψ(y(s)) and integrate from t1 to x to obtain (see the ideas in
Theorem 2.1)

∫ y(t1)

y(x)

du

ψ(u)
≥

∫ x

t1

∫ u

t1

q(u)

a(s)

ψ(y(u))

ψ(y(s))
ds du.

Now y′(t) < 0 for t ≥ t1, and the fact that ψ is nonincreasing yields
∫ y(t1)

y(x)

du

ψ(u)
≥

∫ x

t1

q(u)

∫ u

t1

ds

a(s)
du.

That is
∫ x

t1

q(u)

∫ u

t1

ds

a(s)
du ≤

∫ y(t1)

0

du

ψ(u)
.

Let x→∞ to get

∞ =

∫

∞

t1

q(u)

∫ u

t1

ds

a(s)
du ≤

∫ y(t1)

0

du

ψ(u)
< ∞,

a contradiction.
Now suppose y(t) < 0 for t ≥ t0 and y′(t) > 0 for t ≥ t1 ≥ t0. Fix

x > t1 and notice for s ∈ (t1, x) that

y′(s) =
a(x)

a(s)
[y′(x)] +

1

a(s)

∫ x

s

[− τ(u)] du ≥
1

a(s)

∫ x

s

[− τ(u)] du

≥−
1

a(s)

∫ x

s

q(u)ψ(y(u)) du.

Divide by −ψ(y(s)) (note ψ(x) < 0 for x < 0) and integrate from t1 to
x to obtain

∫ y(t1)

y(x)

du

ψ(u)
≥

∫ x

t1

∫ u

t1

q(u)

a(s)

ψ(y(u))

ψ(y(s))
ds du.

Now y′ > 0, ψ nonincreasing and ψ(x) < 0 for x < 0 implies
∫ y(x)

y(t1)

du

[−ψ(u)]
≥

∫ x

t1

q(u)

∫ u

t1

ds

a(s)
du.
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Thus
∫ x

t1

q(u)

∫ u

t1

ds

a(s)
du ≤

∫ 0

y(t1)

du

[−ψ(u)]
,

and we again obtain a contradiction by letting x→∞. �

In Theorem 2.2 if we assume (2.4) then we have the following result.

Theorem 2.3. Suppose (2.2), (2.4) and (2.11)–(2.14) hold. Then every

bounded solution of (2.1) is oscillatory.

Proof. Let y be a bounded nonoscillatory solution of (2.1), and without
loss of generality assume y(t) > 0 for t ≥ t0. We claim

y′(t) < 0 for t > t0. (2.16)

To see this suppose there exists µ > t0 with y′(µ) > 0. Then (a(t) y′(t))′ ≥

0 for a.e. t ≥ t0, so y′(t) ≥ a(µ)
a(t) y

′(µ) for t > µ. Thus

y(t) ≥ y(µ) + a(µ) y′(µ)

∫ t

µ

du

a(u)
→∞ as t→∞.

This contradicts the fact that y is bounded. As a result y′(t) ≤ 0 for t > t0.
Next assume there exists µ > t0 with y′(µ) = 0. Then (a(t) y′(t))′ > 0
for a.e. t ≥ t0 together with y′(µ) = 0 implies a(t) y′(t) > 0 for t > µ, a
contradiction. Thus (2.16) holds. Consequently y(t) y′(t) < 0 for t > t0,
which contradicts Theorem 2.2. �

Next we present two results where F does not satisfy a sign change.

Theorem 2.4. Suppose (2.2) and (2.4) hold and assume the following

conditions are satisfied:














∃ q : [t0,∞) → R with q ∈ L1
loc[t0,∞), ψ : R→ R

continuous with xψ(x) > 0 for x 6= 0, and with

F (t, x) ≤ − q(t)ψ(x) for (t, x) ∈ [t0,∞)× (0,∞) and

F (t, x) ≥ − q(t)ψ(x) for (t, x) ∈ [t0,∞)× (−∞, 0),

(2.17)

∫

∞

q(x) dx = ∞ (2.18)

and

ψ′(x) ≥ 0 for x 6= 0. (2.19)

Then equation (2.1) is oscillatory.

Proof. Let y be a nonoscillatory solution of (2.1) with y(t) > 0 for t ≥ t0.
Let

w(t) =
a(t) y′(t)

ψ(y(t))
for t ≥ t0. (2.20)

Also let

τ(t) = (a(t) y′(t))′ with τ(t) ∈ F (t, y(t)) and τ ∈ L1
loc[t0,∞). (2.21)
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Notice for t > t0 that

w′(t) =
(a(t) y′(t))′

ψ(y(t))
−
ψ′(y(t))w2(t)

a(t)
≤

τ(t)

ψ(y(t))
≤ − q(t). (2.22)

Integrate (2.22) from t0 to t (t ≥ t0) to obtain

w(t) ≤ w(t0)−

∫ t

t0

q(s) ds. (2.23)

Now (2.18) and (2.23) guarantee that there exists t1 ≥ t0 with w(t) < 0
for t ≥ t1. That is y′(t) < 0 for t ≥ t1. Also (2.18) guarantees that there

exists t2 ≥ t1 with
∫ t2

t1
q(s) ds = 0 and

∫ t

t1
q(s) ds > 0 for t > t2. Integrate

(2.21) from t2 to t (t > t2) to obtain

a(t) y′(t) = a(t2) y
′(t2) +

∫ t

t2

τ(s) ds ≤ a(t2) y
′(t2)−

∫ t

t2

q(s)ψ(y(s)) ds

= a(t2) y
′(t2)− ψ(y(t))

∫ t

t2

q(s) ds+

∫ t

t2

y′(s)ψ′(y(s))

(
∫ s

t2

q(u) du

)

ds

≤ a(t2) y
′(t2).

Thus

y′(t) ≤
a(t2) y

′(t2)

a(t)
for t ≥ t2,

so

y(t) ≤ y(t2) + a(t2) y
′(t2)

∫ t

t2

ds

a(s)
→ −∞ as t→∞,

a contradiction.
Next suppose y(t) < 0 for t ≥ t0 and let w be as in (2.20) and τ as in

(2.21). Notice for t > t0 that

w′(t) ≤
τ(t)

ψ(y(t))
≤ − q(t), (2.24)

since ψ(x) < 0 for x < 0. Integrate (2.24) from t0 to t (t ≥ t0) to obtain

w(t) ≤ w(t0)−

∫ t

t0

q(s) ds.

Now there exists t1 ≥ t0 with w(t) < 0 for t ≥ t1, and so y′(t) > 0 for

t ≥ t1 since ψ(x) < 0 for x < 0. Again choose t2 ≥ t1 with
∫ t

t1
q(s) ds > 0

for t > t2. Integrate (2.21) from t2 to t (t > t2) to obtain

a(t) y′(t) = a(t2) y
′(t2) +

∫ t

t2

τ(s) ds ≥ a(t2) y
′(t2)−

∫ t

t2

q(s)ψ(y(s)) ds

= a(t2) y
′(t2)− ψ(y(t))

∫ t

t2

q(s) ds+

∫ t

t2

y′(s)ψ′(y(s))

(
∫ s

t2

q(u) du

)

ds

≥ a(t2) y
′(t2),
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and so

y(t) ≥ y(t2) + a(t2) y
′(t2)

∫ t

t2

ds

a(s)
→∞ as t→∞,

a contradiction. �

Remark 2.3. It is possible to remove condition (2.4) in Theorem 2.4
provided we assume (2.13) and

∫

∞ 1

a(s)

∫ s

t0

q(u) du ds = ∞. (2.25)

To see this let y be a nonoscillatory solution of (2.1) and without loss of
generality assume y(t) > 0 for t ≥ t0. Then (2.23) holds and we may
choose t1 ≥ t0 with y′(t) < 0 for t ≥ t1 and we may also choose t2 ≥ t1

with
∫ t

t0
q(s) ds ≥ 2w(t0) for t ≥ t2, so

w(t) ≤ −
1

2

∫ t

t0

q(s) ds for t ≥ t2.

That is
y′(t)

ψ(y(t)
≤ −

1

2 a(t)

∫ t

t0

q(s) ds for t ≥ t2,

so integration from t2 to t (t ≥ t2) yields
∫ y(t)

y(t2)

du

ψ(u)
≤ −

∫ t

t2

1

2 a(s)

∫ s

t0

q(u) du ds.

Thus for t ≥ t2 we have

1

2

∫ t

t2

1

a(s)

∫ s

t0

q(u) du ds ≤

∫ y(t2)

y(t)

du

ψ(u)
≤

∫ y(t2)

0

du

ψ(u)
,

and let t→∞ to get a contradiction.

It is possible to remove condition (2.18), provided extra conditions are
added, as we will see in our next result.

Theorem 2.5. Suppose (2.2), (2.4), (2.17) and (2.19) hold and in addition

assume the following conditions are satisfied:
∫

∞

t0

q(s) ds <∞, (2.26)

lim inf
t→∞

∫ t

T

q(s) ds > 0 for large T, (2.27)

∫

∞

t0

1

a(s)

∫

∞

s

q(u) du ds = ∞ (2.28)

and
∫

∞ du

ψ(u)
<∞ and

∫

−∞

du

[−ψ(u)]
<∞ (2.29)

Then equation (2.1) is oscillatory.
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Proof. Let y be a nonoscillatory solution of (2.1) with y(t) > 0 for t ≥ t0.
Let w be as in (2.20), and as in Theorem 2.4 we have

w(t) ≤ − q(t) for t ≥ t0. (2.30)

Also let

τ(t) = (a(t) y′(t))′ with τ(t) ∈ F (t, y(t)) and τ ∈ L1
loc[t0,∞). (2.31)

There are three cases to consider, either y′(t) ≥ 0 for t ≥ t0, y
′(t) ≤ 0 for

t ≥ t0, or y′ oscillates.
Case (i). y′(t) ≤ 0 for t ≥ t0.

From (2.27) there exists t1 ≥ t0 and t2 ≥ t1 with
∫ t

t1
q(x) dx > 0 for

t ≥ t2. Also from (2.30) we have
∫ t

t1

q(x) dx ≤ w(t1)− w(t) for t ≥ t2.

If there exists µ > t2 with y′(µ) = 0 then

0 <

∫ µ

t1

q(x) dx ≤ w(t1) ≤ 0,

a contradiction. Thus y′(t) < 0 for t > t2. Integrate (2.31) from t2 to t

(t > t2) to obtain (as in Theorem 2.4)

y′(t) ≤
a(t2) y

′(t2)

a(t)
,

and so

y(t) ≤ y(t2) + a(t2) y
′(t2)

∫ t

t2

ds

a(s)
→ −∞ as t→∞,

a contradiction.
Case (ii). y′(t) ≥ 0 for t ≥ t0.
Now from (2.30) for s ≥ t ≥ t0 we have

∫ s

t

q(x) dx ≤ w(t) − w(s) ≤ w(t).

As a result (letting s→∞) we have
∫

∞

t

q(x) dx ≤
a(t) y′(t)

ψ(y(t))
for t ≥ t0.

Divide by a and integrate from t0 to t (t < t0) to obtain
∫ t

t0

1

a(s)

∫

∞

s

q(x) dx ds ≤

∫ y(t)

y(t0)

du

ψ(u)
≤

∫

∞

y(t0)

du

ψ(u)
.

Thus

∞ =

∫

∞

t0

1

a(s)

∫

∞

s

q(x) dx ds ≤

∫

∞

y(t0)

du

ψ(u)
<∞,

a contradiction.
Case (iii). y′ oscillates.
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Then there exists a sequence {Tn}
∞

1 with limn→∞ Tn = ∞ and y′(Tn) <
0. Choose N large enough so that

lim inf
t→∞

∫ t

TN

q(s) ds > 0.

Now integrate (2.30) from Tn to t (t > TN ) to obtain

a(t) y′(t)

ψ(y(t))
≤
a(TN ) y′(TN )

ψ(y(TN ))
−

∫ t

TN

q(s) ds,

so

lim sup
t→∞

a(t) y′(t)

ψ(y(t))
≤
a(TN ) y′(TN )

ψ(y(TN ))
+ lim sup

t→∞

(

−

∫ t

TN

q(s) ds

)

< 0.

This contradicts the fact that y′ oscillates.
Next suppose y(t) < 0 for t ≥ t0 and let w be as in (2.20) (so (2.30)

holds, see Theorem 2.4) and τ be as in (2.31). The same three cases need
to be considered here.

Case (i). y′(t) ≤ 0 for t ≥ t0.
Now from (2.30) for s ≥ t ≥ t0 we have

∫ s

t

q(x) dx ≤ w(t) − w(s) ≤ w(t),

since y′ ≤ 0 and ψ(x) < 0 for x > 0. Thus
∫

∞

t

q(x) dx ≤
a(t) y′(t)

ψ(y(t))
for t ≥ t0,

so divide by a, integrate from t0 to t (t < t0), and let t→∞ to obtain

∞ =

∫

∞

t0

1

a(s)

∫

∞

s

q(x) dx ds ≤

∫ y(t0)

−∞

du

ψ(u)
<∞,

a contradiction.
Case (ii). y′(t) ≥ 0 for t ≥ t0.

Now there exists t1 ≥ t0 and t2 ≥ t1 with
∫ t

t1
q(x) dx > 0 for t ≥ t2.

Also from (2.30) we have
∫ t

t1

q(x) dx ≤ w(t1)− w(t) for t ≥ t2.

If there exists µ > t2 with y′(µ) = 0 then

0 <

∫ µ

t1

q(x) dx ≤ w(t1) ≤ 0,

since y′ ≥ 0 and ψ(x) < 0 for x < 0. Thus y′(t) > 0 for t > t2. Integrate
(2.31) from t2 to t (t > t2) to obtain (as in Theorem 2.4)

y′(t) ≥
a(t2) y

′(t2)

a(t)
,
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and so

y(t) ≥ y(t2) + a(t2) y
′(t2)

∫ t

t2

ds

a(s)
→∞ as t→∞,

a contradiction.
Case (iii). y′ oscillates.
Then there exists a sequence {Tn}

∞

1 with limn→∞ Tn = ∞ and y′(Tn)>
0. Choose N large enough so that

lim inf
t→∞

∫ t

TN

q(s) ds > 0.

Integrate (2.30) from Tn to t (t > TN), and take lim sup′ s to obtain

lim sup
t→∞

a(t) y′(t)

ψ(y(t))
≤
a(TN ) y′(TN )

ψ(y(TN ))
+ lim sup

t→∞

(

−

∫ t

TN

q(s) ds

)

< 0,

a contradiction. �

Remark 2.4. It is easy to see that (2.27) can be replaced in Theorem 2.5
by

lim inf
t→∞

∫ t

T

q(s) ds ≥ 0 for large T.
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