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Abstract. We discuss some recent generalizations of the Riemann-
Hilbert transmission problem and their connections with certain geomet-
ric objects appearing in the theory of loop groups and infinite-dimensional
Grassmanians. In particular, we describe in some detail the geometric model
for the totality of elliptic Riemann-Hilbert problems in terms of Fredholm
pairs of subspaces suggested by B.Bojarski. A number of fundamental geo-
metric and topological properties of related infinite-dimensional Grassma-
nians are established in this context, with a special emphasis on relations
to the theory of Fredholm structures. Several generalizations of the clas-
sical Riemann-Hilbert problem are also discussed. The main attention is
given to linear conjugation problems for compact Lie groups, Riemann-
Hilbert problems for generalized Cauchy-Riemann systems, and nonlinear
Riemann-Hilbert problems for solutions of generalized Cauchy-Riemann sys-
tems. Some geometric aspects of the Riemann-Hilbert monodromy problem
for ordinary differential equations with regular singular points are discussed
in brief.
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INTRODUCTION

As is well known, the classical Riemann—Hilbert (transmission) problem
(or linear conjugation problem for holomorphic functions) has deep and far
reaching connections with many important problems in analysis and geome-
try (see, e.g., [122], [61], [19], [20], [21]). Thus in addition to a comprehensive
analytic theory [122], it also has some natural global geometric aspects. In
particular as was suggested in [20] (see also [21]), the totality of elliptic
Riemann-Hilbert problems permits a visual geometric description in terms
of Fredholm pairs of subspaces of an appropriate functional space.

This geometric interpretation enabled one to study various global aspects
of the Riemann—Hilbert problem in an abstract setting, which has eventually
led to some conceptual developments [22], [23], [85], [86] and non-trivial
geometric results about certain infinite-dimensional Grassmanians [20], [22],
[88], [90], [163]. Closely related concepts and constructions appeared useful
in the geometric theory of loop groups of compact Lie groups [136], [86].
The goal of this paper is to present a coherent exposition of those geometric
results and discuss some new developments in the same direction.

We begin with a brief recollection of basic facts about the classical
Riemann-Hilbert problems. The main emphasis is on the factorization of
matrix-functions on the unit circle (Birkhoff factorization theorem [136])
and the group of invertible abstract singular integral operators [20].

We proceed by studying the geometric model of the set of elliptic Rie-
mann-Hilbert problems suggested by B.Bojarski [20]. The related Grass-
manians and operator groups are introduced and their topology is studied.
In particular, we describe the homotopy type of the Fredholm Grassmani-
ans, show that they can be endowed with smooth manifold structures, and
explain how one can put them in the context of Fredholm structures. Similar
results are obtained for the group of invertible abstract singular operators.
Our exposition of these topics essentially relies on results of [20], [24], [136],
[58], [86], but we present some new results as well.

In the next five sections we describe some recent developments related to
geometric aspects of linear conjugation problems. They arise from several
natural generalizations of the Riemann—Hilbert problem in various direc-
tions. Those generalizations can be roughly divided in two groups: linear
(Sections 2,3,4) and nonlinear ones (Sections 5,6). Our exposition of these
topics is based on the papers [86], [88], [151], [160], [95].

In the second section we develop the Fredholm theory of the so-called
Riemann—Hilbert problem with coefficients in a compact Lie group which
was studied in the author’s papers [86], [88]. Our derivation of the main
results is based on the generalized Birkhoff factorization theorem for regular
loops on a compact Lie group obtained in [136].

It should be noted that most of the results of this section can be derived
from the classical Fredholm theory by realizing the group of coefficients as
a matrix group. However the invariant approach suggests a more flexible
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setting and reveals some new aspects of the topic which did not arise in
the classical setting. For example, in this way one obtains a natural way of
constructing Fredholm structures on loop groups and Birkhoff strata, which
suggests a number of non-trivial questions and perspectives. In should be
noted that similar problems are treated in recent papers of D.Freed [58],
[569] and G.Misiolek [120], [121] by essentially different methods.

Another type of “linear” generalization of the Riemann—Hilbert problem
is considered in the third section. This generalization was suggested by the
present author in the framework of Hilbert modules over C*-algebras [88],
[90].

It turns out that one can determine the homotopy type of the related
Grassmanian in terms of the K-groups of the basic algebra. This result
enables one to obtain natural invariants of families of elliptic Riemann—
Hilbert problems and extends some aspects of the Birkhoff factorization in
the context of C*-algebras. Its proof requires a considerable portion of the
theory of Hilbert modules over C*-algebras which was founded in papers of
A Fomenko and A.Mishchenko [119], and G.Kasparov [79].

Most of the technical results needed for our purposes can be found in the
papers of A.Mishchenko and his school [118], [156], [114]. Closely related
results on the structure of Grassmanians over C*-algebras can be found
in recent papers [170], [43] but those authors did not consider relations to
Riemann-Hilbert problems.

The general theory of boundary value problems for elliptic systems sug-
gests a natural formulation of a local boundary value problem for a wide
class of first order systems with constant coefficients [17], [162] which spe-
cializes to the Riemann—-Hilbert problem in the case of the usual Cauchy-
Riemann system. Thus it is natural to refer to those multidimensional
boundary value problems as to Riemann—Hilbert problems for first order sys-
tems. As was revealed by recent developments in Clifford analysis [31], this
analogy is quite far-reaching for the so-called generalized Cauchy-Riemann
systems introduced by E.Stein and G.Weiss [150], in particular for the sys-
tems associated with Euclidean Dirac operators.

A version of Fredholm theory can be developed for those multidimen-
sional Riemann—Hilbert problems which satisfy the Shapiro-Lopatinski con-
dition [151]. Some effective methods of verifying this condition were devel-
oped by L.Stern [151], [152]. This topic suggested some interesting problems
and it has gained considerable attention in last forty years [162], [9], [151].
Notice that the problem of describing those generalized Cauchy-Riemann
systems which possess elliptic local boundary value problems appeared suf-
ficiently difficult and remained unsolved for a long time [151]. Its solution
became eventually possible [90] due to the recent advances in operator K-
theory [10], [71].

In the fourth section we describe some results of I.Stern [151], [152], and
of the present author [90], [91], which contribute to the Fredholm theory of
multi-dimensional Riemann-Hilbert problems. In particular, following [151]
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we derive explicit criteria of fredholmness and present a comprehensive list of
generalized Cauchy-Riemann systems possessing elliptic Riemann—Hilbert
problems. This list extends the one presented in [152]. It was obtained by
the present author using some recent results from operator K-theory [10],
[71]. The results of this section seem interesting by their own and provide a
background for our approach to non-linear Riemann—Hilbert problems for
Cauchy-Riemann systems described in the last section.

The theory of non-linear Riemann—Hilbert problems for holomorphic
functions is nowadays a well-developed topic of complex analysis [143], [159].
It is naturally connected with the so-called analytic discs attached to to-
tally real submanifolds [16], [56] and non-linear singular integral equations
[159]. Attached analytic and pseudo-analytic discs play important role in
M.Gromov’s approach to some problems of symplectic geometry [72].

A good understanding of the structure of solutions to non-linear Rie-
mann—Hilbert problems is important in many aspects of this topic. Espe-
cially interesting are the cases when a target manifold is globally foliated by
the boundaries of attached analytic discs. In the Section 5 we describe a
class of non-linear Riemann—Hilbert problems which possess this property.
This class was investigated in the papers [160], [95], and it seems to provide
a reasonable starting point for investigating multi-dimensional non-linear
Riemann-Hilbert problems.

Up to our knowledge there only exist a few papers devoted to multi-
dimensional non-linear Riemann—Hilbert problems, basically in the case
when the non-linearity enters through a small perturbation of a linear
problem [11], [165]. It seems natural to ask if it is possible to apply the
paradigm of analytic discs attached to totally real submanifolds in some
multi-dimensional settings. This suggests considering hyper-holomorphic
cells with boundaries in a given submanifold.

Apparently, for such an attempt to be reasonable it is necessary to choose
a submanifold (target manifold) in an appropriate way. A natural approach
to this problem, based on our results for linear Riemann—Hilbert problems,
is described in the sixth section. We become able to indicate a class of tar-
gets which give rise to certain non-linear Fredholm operators describing the
local structure of attached hyper-holomorphic cells. A number of seemingly
interesting open problems may be formulated in this setting and we discuss
some of them at the end of the section.

A classical topic closely related to the Riemann—Hilbert transmission
problem (RHTP) is the so-called Riemann—Hilbert monodromy problem for
differential equations with regular singularities [36], [7]. It is formulated
as the problem of constructing a system of ordinary differential equations
with regular or Fuchs type singularities and prescribed monodromy [7]. This
problem is often referred to as Hilbert’s 21st problem because it appeared
in the famous list of problems formulated by Hilbert in the beginning of
previous century.
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The theory of Riemann—Hilbert monodromy problem (RHMP) exhibits
a number of deep and important geometric aspects some of which are in-
trinsically connected with the main topics of this paper. As is well known
[139], [7], any concrete (i.e., with a given monodromy data [7]) RHMP can
be reduced to a RHTP with a piecewise constant matrix function as a coef-
ficient, in other words, the solution can be constructed in terms of Birkhoff
factorization of piecewise constant matrix-functions.

Thus the relation between these two problems is so natural and direct
that they can be considered as two different disguises of the same problem.
For this reason, any discussion of the RHTP would be essentially incom-
plete without mentioning at least some aspects of the RHMP so it seemed
reasonable to the author to include some of those in the present paper.

More precisely, we touch upon a few topics concerned with regular sys-
tems of differential equations on Riemann surfaces and holomorphic vector
bundles over Riemann surfaces which are closely related with the geometric
stuff considered in previous sections. In the last section we present a brief
discussion of those topics, including some background from the theory of
differential equations with regular singular points. The exposition in this
section is closely related to the topics studied by G.Giorgadze in [63], [64],
[65].

In a single paper it is of course impossible to present a comprehensive
exposition of all those topics we touched upon. Additional information
on these and other geometric aspects of Riemann—Hilbert problems can be
found, e.g., in [58], [59], [23], [39], [34], [35], [98], [100], [101], [102], [113],
[159], (93], [7], (251, [26], [65].

The author benefited from discussions of various aspects of Riemann—
Hilbert with a number of experts and colleagues. Especially extensive and
useful were discussions with B.Bojarski who initiated many of ideas and con-
cepts discussed in this paper. Some of the results on the global geometric
structure of Riemann—Hilbert problems and Fredholm Grassmanians were
obtained jointly with B.Bojarski [24]. Results of section 5 were obtained
jointly with E.Wegert and I.Spitkovsky [160] with whom the author had
numerous discussions about various aspects of Birkhoff factorization and
nonlinear analysis. Qur discussion of regular systems in the last section
is based on some results and papers of G.Giorgadze, who courteously sug-
gested to use them in the present paper.

A long-term cooperation with E.Wegert in the framework of a DFG grant
was extremely helpful for the formation of the author’s approach to hyper-
holomorphic cells. The author also acknowledges useful discussions with
H. Begehr, A. Bolibruch, B. Booss, P. Deift, A. Dynin, C. Kiselman, V. Kok-
ilashvili, E. Lagvilava, G. Misiolek, E. Obolashvili, V. Paatashvili, V. Pa-
lamodov, I. Sabadini, M. Shapiro, W. Sprossig, I. Stern, D. Struppa, and
N. Vasilevski. Special thanks go to V. Paatashvili for a number of valuable
comments and suggestions concerning a preliminary version of the present

paper.
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1. RIEMANN-HILBERT PROBLEMS AND FREDHOLM (GRASSMANIANS

The classical formulation of the Riemann—Hilbert problem is related to
the decomposition of the extended complex plane C (Riemann sphere) into
two complementary domains with a smooth common boundary I'. In the
simplest and the most classical case one just takes the decomposition

C=D,uUTuD_,

where D, is the unit disc, T stands for the unit circle, and D_ is the
complementary domain containing the infinite point oo (the North Pole
of Riemann sphere). Let A(D+) = C(D+) N H(D+) denote the set of
all complex valued functions which are continuous in the closure of the
corresponding domain and holomorphic inside. The set of vector functions
of length n > 1 with all their components in A(D.) is denoted by A™ (D).
A fundamental problem of complex analysis, known as Riemann—Hilbert
transmission problem or linear conjugation problem, is to describe the to-
tality of piecewise holomorphic (vector) functions (X, X_) € A™(D;) X
A"(D_), with the normalizing condition X_ (0c0) = 0, such that their bound-
ary values on T satisfy the transmission (or linear conjugation) condition

X, (t) = G)X_(t) + h(t), teT, (1.1)

where h(#) is a given (vector) function and G(t) is a given continuous matrix
function of the size (n x n) on T.

The same problem can be of course formulated on any Riemann surface
but we stick here to the zero genus case (Riemann sphere) as above. Solu-
tions may be considered in various functional spaces. Actually, in order to
obtain a reasonable theory it is necessary to impose some additional regu-
larity conditions on the functions in question. In the classical setting one
works with the functions which are Holder continuous [122], [61].

Discussion of those regularity conditions and functional spaces is beyond
the scope of this paper. In fact for us it is basically sufficient that the prob-
lem can be described by some Fredholm operator between certain Hilbert
or Banach spaces so in the sequel we tacitly assume that all ingredients
satisfy some regularity conditions which guarantee fredholmness of the cor-
responding operators in question. For example, the problem can be placed
in a Hilbert space context by working with square-integrable functions and
this is well-suited for studying global geometric aspects of the problem.

Solvability and other properties of this problem are very well understood
in various classes of functional spaces (see, e.g., [122]). For example, the
problem is Fredholm in appropriate L2-spaces if the coefficient matrix G(t)
is non-degenerate at every point of the unit circle and belongs to some
Holder class. The index of such problem appears to be equal to the winding
number (topological degree) of the determinant det G(t), i.e., it is equal to
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the divided by 27 increment of the argument of det G(t) along the unit
circle [122].

One can also express the kernel and cokernel dimension in terms of the
so-called partial indices of the matrix function G(¢). Those are defined in
terms of Birkhoff factorization of non-degenerate matrix functions on the
circle [122], [19].

The famous Birkhoff factorization theorem states that a sufficiently reg-
ular (e.g., Holder continuous) non-degenerate matrix function on T can be
represented in the form

G(t) = G (t)diag(s*)G-(t), (1.2)

where matrix functions G4 (t) are of the same regularity class, non-degene-
rate, and holomorphic in domains Dy respectively, G_(00) is the identity
matrix, and

diag(z¥) = diag(2*,...,2"), ki,....k, €Z,

is a diagonal matrix function on T [122], [158].

Integer numbers k; are called (left) partial indices [122], [158] (or ex-
ponents [38], [136]) of matrix function G(¢). For a given matrix function
G (%), there can exist different factorizations of the form 1.2 but (left) par-
tial indices are uniquely defined up to the order [158]. Analogously one can
define a right Birkhoff factorization of G(¢) and right partial indices. We
will only deal with the left factorizations because they are well-suited for
investigation of Riemann—Hilbert problems of the form (1.1).

Partial indices exhibit quite non-trivial behaviour. Right partial indices
need not be equal to the left ones. However for sufficiently regular (rational,
Holder) matrix functions, the sum of all left partial indices (left total index)
is equal to the analogously defined right total indez. Actually, both the left
and right total index are equal to the Fredholm index of the corresponding
Riemann-Hilbert problem (1.1).

In fact, even for very regular (smooth, rational) matrix functions their
collections of left and right partial indices are practically independent of
each other (except the restriction that both total indices should be equal).
For example, it was proved in [53] that, for each two integer vectors k,l € Z
with > k; = > 1; there exists a non-degenerate rational matrix-function on
the unit circle whose vectors of left and right partial indices are k and [
respectively.

At the same time if the algebraic degrees of the numerator and denomi-
nator of each element of a rational matrix function are bounded by a fixed
integer N then one can get upper estimates for the modulus of the left and
right indices [63], thus in this case differences between right and left indices
can not be arbitrary. If one drops regularity requirements and considers
almost everywhere non-degenerate matrix functions with bounded measur-
able coeflicients then each pair of integer vectors can serve as collections of
left and right partial indices of such a matrix function [30].
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Partial indices are closely related to the properties of holomorphic vector
bundles over the Riemann sphere [19], [21], [63]. The problem of computing
(left or right) partial indices of a concrete matrix function is far from trivial
because in most cases they are not topological invariants and one has to
take into account the analytic properties of a given matrix function. After
several decades of gradual progress, this problem was eventually solved for
several important classes of matrix functions [32], [113].

Recently these results were simplified and generalized in [5]. We repro-
duce here some results of [5] because they enable one to effectively compute
partial indices in most of situations appearing in practice. Thus the prob-
lem of computing partial indices nowadays can be considered as an algo-
rithmically solvable one. Moreover, these results, besides being important
and instructive by themselves, suggest further interesting problems some of
which are described below.

More precisely, following [5] we present the formulae with the aid of which
one can calculate the left and right partial indices of continuous matrix func-
tions (or, which is the same, matriz loops) and relate them to the splitting
type of the corresponding holomorphic vector bundle.

Let T be a smooth closed positively oriented loop in CP! which separates
CP! into two connected domains U, and U_. Suppose 0 € U, and oo €
U_. In this situation one can investigate the Riemann—-Hilbert transmission
problem with coefficient f: ' = GL,(C) of Holder class.

To investigate solvability of such a problem one needs some effective
methods of finding partial indices of the coefficient matrix. We now describe
an algorithm based on results of [32] and [5].

Let a : I' = GL(n, C) be a continuous and invertible matrix function on
the contour I'. Its partial indices may be found using the so-called power
moments of a [32].

Definition 1.1 ([32], [5]). A power moment of matrix function a(t) with
respect to contour I is defined as the matrix

1 i1 — .
G =5 t=" a7 (t)dt, JjEL.
T

Let k£ = indra(t) and consider the family of block T6plitz matrices T;:

C Ci—1 C_2k
Cl+1 &) C_2k+1 le?
?
Co (1] C—2k—1

It turns out that the partial indices of matrix function a(t) can be derived
from the ranks of matrices T;. Suppose that a matrix function a(t) admits
analytic continuation to Uy and has in that domain p poles 21, ..., 2, of mul-
tiplicities &1,...,%p. Then the matrix function a(t) = [[5_, (2 — 2j)" a(t)
is analytic and

indy det a(t) = indr det a(t) + Nn,



10 G. Khimshiashvili

where N = K1 + k2 + - - - + Kp is the total multiplicity of poles of a(t). The
index of @(t) is denoted by &, i.e. K =k + Nn.

For such a matrix function, left and right partial indices k}, ki, 3 =
1,...,n, can be expressed by explicit formulae.

Theorem 1.1 ([32], [5]). The left and right partial indices of matriz
function a(t) are given by the formulae

kij=card{l | n+r1—-r<j-1, 1=2k26-1,...0} -1,
k}:2m+1—card{l | ropr—r<j-1, 1=2k,26-1,...,0}.

j=1,...,n, r; is the rank of the Toplitz matriz T_; and it is assumed that
T_25—1 = 0.

One can now derive various conclusions about the structure of partial
indices of a given matrix function.

Proposition 1.1 ([5]). Let N > 0.

i) Suppose N > 2k, then all right partial indices of the meromorphic
function a(t) are negative.

ii) Suppose N < 2k, then in order for the inequalities ki <0 to hold
for all j, it is necessary and sufficient that

TN—2r S TN_25—1 + 1.

If among the right partial indices occur both negative and positive num-
bers, then let us introduce the following numbers: a = } .. |k}| and
M

8= Zk§>0 |k}|. As is well known, the numbers o and 3 are dimensions of

the kernel and cokernel of the Fredholm operator of a given RHTP [122],
[61]. The possibility of calculating these numbers in terms of matrices T_,
is guaranteed by the following statement.

Proposition 1.2 ([5]). Suppose that among the partial indices of mero-
morphic matriz function a(t) there are positive as well as negative numbers.
Then

a=(N+1n—ry_sxB8=+n—rn_ok-

In order to establish solvability of a concrete Riemann—Hilbert problem
it is important to have some criteria for existence of non-negative partial
indices.

Theorem 1.2 ([5]). In order that among the partial indices of meromor-
phic matriz function appear non-negative ones, it is necessary and sufficient
that the following conditions hold:

i) indpdeta(t) > 0,
il) rN—2s = (N + 1)n.

As is well known the situation is especially simple if the coefficient of
a RHTP admits the so-called canonical factorization [113]. The above re-
sults enable one to get a simple effective criterion for existence of canonical
factorization.
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Theorem 1.3 ([5]). In order that the meromorphic matriz function a(t)
has a canonical factorization, it is necessary and sufficient that
i) indpdeta(t) =0,
if) r_(2n—1)N = (N + Dn.
The concept of stability of a matrix function naturally arises from the

relation between RHTP and holomorphic vector bundles [139], [20]. In
concrete cases one can effectively stability by the same approach.

Theorem 1.4 ([5]). Suppose k = indrdeta(t) + Nn = 0. Then the
right partial indices of the meromorphic matriz function a(t) are equal to
—N and hence a(t) is stable.

One can obtain a similar result when & # 0. Define the integers ¢ and r,
0 < r < |g| by the relation

indp det a(t) = ng+ .
Then for the stability of partial indices it is necessary and sufficient that
Tetg—26 = (K+gq+1)n,
Prtg—2k+1 = (K+g+1)n+r

Proofs of the above results follow more or less directly from the general
formulae for partial indices presented in Theorem 1.1. One can extend the
list of corollaries of the latter theorem. In particular, as was shown in [65]
one can obtain some general estimates for partial indices in terms of the
above data.

Theorem 1.5 ([65]). For the left partial indices A; = k;., the following
estimate is valid

—N < \; <2indrdeta(t) + N2n - 1) +1,

where N is the number of poles counted with multiplicities and n is the
dimension of a(t).

Proof. We present a proof of this estimate following [65]. Observe first that
from the above formulae for k; one has

A; =2indpdeta(t) + N(2n— 1) +1—d;,

where d; =card{l | r—yj_1 —r1 <j—-1,1=2«,26-1,...,0}.
This implies that

—]—-1 — 7 - < j — = .. =
lréljagcncard{l | repr—r <j-1, 1=2k,...,0}
=maxcard{l | rj_1 —r_; <0, I=2k,...,0} =2k+1
and
i g1 —=rg<ji- = =
1I§njl£ncard{l | regr—r <j-1, k=2k,...,0}
=mincard{l | r—y_1 —r_; <0, 1=2k,...,0} =0,

which proves the above inequalities. O
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An important task is to work out algorithms for explicit construction of
the factors fi in the Birkhoff factorization. This issue is far from being
solved in general but it should be noted that detailed results for (2 x 2)
matrix functions were obtained in [50], [77], [78]. A comprehensive review of
these and other analytic aspects of Riemann—Hilbert transmission problem
can be found in [100].

Thus one can conclude that the theory of Birkhoff factorization of a sin-
gle matrix function is sufficiently well developed. We now turn to some
geometric problems of global nature naturally associated with Birkhoff fac-
torization theorem.

For K = (k1,k2,...,ky), denote by Qx the Birkhoff stratum in the group
Q of based Holder loops on GL(n,C). In general the factors in Birkhoff fac-
torization are not unique, but if one fixes f* (or f~) then f~ (respectively
f) is uniquely defined [68].

Let €+ denote the subgroup consisting of boundary values of matrix
functions holomorphic in Uy, U_ respectively (in the latter case we require
that a matrix function is regular at infinity and tends to the identity matrix
at infinity). The Banach Lie group O x )~ acts analytically on Q via

fe5 hfhyt, fE€Q, heQt, hheQ .

It is clear, that the orbit of the diagonal matrix dg by the action a is Q.

In [38] it was proved that the stability subgroup Hg of f under the action
a consists of those pairs (h1, he) of upper triangular matrix-functions where
the (7, 7)-th entry in h; is a polynomial in z of degree at most (k; — k2) and
f = hifhy"'. Hence the subgroup Hx has the finite dimension

dim Hi = ) (ki — kj + 1).
ki>k;

Choose now any pair (h1,hs) € Hg and consider the holomorphic vector
bundle on CP! which is obtained by the covering of the Riemann sphere CP!
by three open sets {UT,U~,Us = CP'\{0, 00}}, with transition functions

g1z = hy: Uutn Us —» GL(H,C),
go3 = hodrg : U™ N U3 — GL(H,C)

Denote this bundle by E — CP!. From the Birkhoff factorization theo-
rem it follows that every holomorphic vector bundle splits into direct sum
of line bundles

E>FEk)® - @ E(ky).

Remark 1.1. The possibility of decomposing of a holomorphic vector
bundle into the direct sum of line bundles was proved by A. Grothendieck
without applying the Birkhoff theorem so there exist two independent proofs
of this important fact.

The numbers ki, . . ., ky are the Chern numbers of the line bundles E(k; ),

.., E(ky). we order them in such way that k1 > --- > k,. The integer-
valued vector K = (ki,...,k,) € Z" is called the splitting type of the
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holomorphic vector bundle E. It completely defines the holomorphic type
of the bundle E. The set of all matrix loops with a fixed collection of
left partial indices K is called Birkhoff stratum of type K and denoted by
Qx [68], [19]. Birkhoff strata have interesting geometric and topological
properties [68], [19], [21], [38] some of which will be described below.

Taking into account the relations between partial indices &1, . . ., &, of the
matrix-function f € Q0 and the splitting type of holomorphic vector bundle
FE it is easy to see that Birkhoff strata Qg numerate the holomorphy types
of vector bundles over CP!.

Theorem 1.6 ([68], [19]). There is a one-to-one correspondence between
the strata Qi and isomorphism classes of holomorphic vector bundles on
CP!.

Denote by O(E) the sheaf of germs of holomorphic sections of the bun-
dle E, then the solutions of the RHTP can be interpreted of the zeroth
cohomology group H°(CP!, O(E)). Therefore the number [ of the linearly
independent solutions is dim H°(CP!, O(E)). Moreover, the (total) Chern
number ¢; (E) of the bundle E is equal to index det G(t). In particular one
obtains a well known criterion of solvability of RHTP.

Theorem 1.7 ([139]). A RHTP has solutions if and only if c1(E) > 0
and the number | of linearly independent solutions is

| = dim H°(CP', O(E)).

Notice that, besides being interesting by themselves, the explicit formulae
for the partial indices given in Theorem 1.1 suggest further perspectives
and problems. Consider for example the set Ry of non-degenerate rational
matrix functions on T with the degrees of the numerator and denominator
bounded from above by a certain number N. From the aforementioned
formulae for the partial indices it follows that the range of the vector of
right partial indices of matrices from Ry is finite (cf. [64]). One can wonder
what is the maximal possible “distance” between the vectors of right and
left partial indices for matrix functions from Rpy. Some estimates of such
type were obtained in [64].

Furthermore, one may ask what can be the topological types of the inter-
sections Qg N Ry. For small N, they should admit a complete description.
On the other hand, for N large enough, it is natural to conjecture that the
topological type should be the same as for Qg itself. Up to the author’s
knowledge, both these issues remain uninvestigated.

From the preceding discussion it is clear that properties of a concrete
Riemann-Hilbert problem may be studied by well developed methods so we
will not further discuss those classical topics in this paper. As it was real-
ized relatively recently, the set of all Riemann—Hilbert problems possesses
interesting geometric properties and permits non-trivial geometric descrip-
tions in the framework of global analysis (see, e.g., [20], [21], [136]). The
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same is true for certain natural subsets of this set, e.g., for Birkhoff strata
21], [38].

In this way there emerged several interesting geometric settings and ap-
proaches which will be our main concern in the sequel. We begin with re-
calling an abstract geometric model for the set of elliptic Riemann—Hilbert
problems suggested in [20]. Following an established tradition, we say that a
Riemann-Hilbert problem is elliptic if it is described by a Fredholm operator
(i.e., an operator T' with a closed image and finite-dimensional kernel and
cokernel [46]). The index of a Riemann-Hilbert problem is defined as the
index of the corresponding Fredholm operator [122], [46], i.e., the difference
between the dimension of kernel and codimension of the image:

indT = dim ker T' — dim coker T..

For simplicity and brevity we choose the framework of operators acting
in Hilbert spaces. However most of our constructions and results remain
valid for a wide class of Banach spaces. As will be shown in the sequel, they
can be also generalized in the context of Hilbert modules over C*-algebras
[90].

Let H be a complex Hilbert space and M, N be its closed infinite-
dimensional subspaces.

Definition 1.2 ([80], [20]). A pair P = (M, N) is called a Fredholm
pair (FP) if M + N is a closed subspace of finite codimension bp, and
dim(M N N) = ap is also finite. If this is the case, then the difference
ap — bp = i(M, N) is called the index of Fredholm pair P.

The concept of Fredholm pair was introduced in 60-ties by T.Kato [80]
who established in particular that such pairs and their indices are stable
with respect to continuous deformations of the subspaces in question. For
a precise formulation of this property see [80] or [20].

In order to characterize Fredholm pairs, certain classes of bounded linear
operators in H were introduced in [20]. Let L(H) denote the algebra of
bounded linear operators in H and GL(H) denote the group of operators
possessing a bounded inverse. Let J be a fixed two-sided ideal in L(H). For
example, one can take the (unique closed two-sided) ideal K of compact
(completely continuous) operators or the subideal Ky consisting of finite
rank operators.

For a given operator S € L(H), let C(S,J) denote the subalgebra of
operators A € L(H) such that the commutator [4, 5] = AS — S A belongs to
the ideal J. The intersection C(S, J)NGL(H) will be denoted by GL(S, J),
clearly it is a subgroup of GL(H) (not necessarily a closed one).

As was explained in [20] the classical singular integral operators and
linear conjugation problems can be interpreted as elements of the algebra
C(P,K), where P is an orthogonal projector with infinite dimensional im-
age and kernel. Many topological properties of such operators and related
Grassmanians remain valid if one changes the ideal K by certain subideal
J as above.
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Definition 1.3 ([20]). Let P be an orthogonal projection on a closed
subspace in H such that dimimP = dimker P = oco. The algebra C(P, J)
is called the algebra of abstract singular operators associated with ideal J,
KyCcJCK.

In the sequel we will be mainly interested in the group of invertible
(abstract) singular operators GL(P,J). If M is a closed linear subspace
of H and A € GL(H) an invertible operator in H, then A(M) denotes
the image of M under A and we think of it as a subspace M rotated by
A. Let Py denote any projection onto M, i.e., the range of Py is M and
(Pp)? = Pyy. Of course there exist many projectors with the given range
M. In a Hilbert space, the condition that Py, is self-adjoint (or orthogonal)
specifies it in a unique way but we do not assume that Py is orthogonal. We
consider the complementary projections P = Py, Q = Id — P and present
a useful characterization of Fredholm pairs which was obtained in [20].

Theorem 1.8 ([20]). A pair (M,N) of closed subspaces of a Hilbert
space is a Fredholm pair if and only if it has the form (M, A(kerP)) for
some projection P as above and some operator A € G(P,K). The operator
® € L(H) defined by the formula

®(z) = Pz + AQz (1.3)

is a Fredholm operator with ind® = i(M,N). Any operator of this form in
L(H) is a Fredholm operator.

It turns out that in many problems it becomes necessary to consider the
set of all Fredholm pairs with a fixed first subspace. In other words, one
chooses a closed infinite dimensional and infinite codimensional subspace
M and considers the so-called Fredholm Grassmanian consisting of all sub-
spaces N such that (M, N) is a Fredholm pair (cf. [136], Ch.7). This is
actually a “leaf” in the Grassmanian of all Fredholm pairs and one may
represent the whole Grassmanian as a fibration with a fiber isomorphic to
this leaf.

This definition permits several useful modifications which we present fol-
lowing [136]. Consider a complex Hilbert space decomposed in an orthogo-
nal direct sum H = H, @ H_ and choose a real number s > 1. For further
use we need a family of subideals in K (H) which is defined as follows (cf.
[58)).

Recall that for any bounded operator A € L(H) the product A*A is
a non-negative self-adjoint operator, so it has a well-defined square root
|A] = (A*A)1/2 (see, e.g., [145]). If A is compact, then A* A is also compact
and |A| has a discrete sequence of eigenvalues

pr(A) > po(A) > -+
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tending to zero. The p,(A) are called singular values of A. For a finite
s > 1 one can consider the expression (sth norm of A)

o0

Il = | Sy v (14)

=1

and define the sth Schatten ideal K, as the collection of all compact oper-
ators A with a finite sth norm (s-summable operators) [145].

Using elementary inequalities it is easy to check that K, is really a two-
sided ideal in L(H). These ideals are not closed in L(H) with its usual norm
topology but if one endows K with the sth norm as above then K becomes
a Banach space [145]. Two special cases are well-known: K; is the ideal of
trace class operators and K is the ideal of Hilbert-Schmidt operators. For
s = 2, the above norm is called the Hilbert-Schmidt norm of A and it is well
known that K3(H) endowed with this norm becomes a Hilbert space (see,
e.g., [145]). Obviously K1 C K; C K, for 1 < s < r so one obtains a chain
of ideals starting with K;. For convenience we set Ko, = K and obtain an
increasing chain of ideals K, with s € [1, o0].

Of course one can introduce similar definitions for a linear operator A
acting between two different Hilbert spaces, e.g., for an operator from one
subspace M to another subspace N of a fixed Hilbert space H. In particular
we can consider the classes K (Hx, Hy). Let us also denote by F'(M,N)
the space of all Fredholm operators from M to N.

Definition 1.4 ([136]). The sth Fredholm Grassmanian of a polarized
Hilbert space H is defined as

Gry(H)={W C H: n|W is an operator from F(W, H,),
7_|W is an operator from K (W, H_)}.

These Grassmanians are of the major interest for us. Actually, many of
their topological properties (e.g., the homotopy type discussed below) do
not depend on the number s appearing in the definition. On the other hand,
more subtle properties like manifold structures and characteristic classes of
Gr% do depend on s in a quite essential way. As follows from the discussion
in [58] this is a delicate issue and we circumvent it by properly choosing the
context.

As follows from the results of [136], it is especially convenient to work
with the Grassmanian Gr%(H) defined by the condition that the second
projection w_ restricted to W is a Hilbert-Schmidt operator. Following
[136] we denote it by Gr,.(H) and call the restricted Grassmanian of H.

Fredholm Grassmanians appear to have interesting analytic and topo-
logical properties. It turns out that Grassmanian Gr§ can be turned into
Banach manifolds modelled on Schatten ideal K. In particular Gr,.(H)
has a natural structure of a Hilbert manifold modelled on the Hilbert space
K, = Ky(H) [136]. All these Grassmanians have the same homotopy type
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(see Theorem 1.9 below). Moreover certain natural subsets of Grassma-
nians Gri can be endowed with so-called Fredholm structures [47], which
suggests in particular that one can define various global topological invari-
ants of Gri.(H).

Definition 1.3 also yields a family of subgroups GL®* = GL(ny, K,) of
GL(r4,K) (s > 1). For our purposes especially important is the subgroup
GL(r,, K2) which naturally acts on Gr.(H).

Definition 1.5 ([136]). The restricted linear group GL,(H) is defined
as the subgroup of GL(ny, K) consisting of all operators A such that the
commutator [4, ;] belongs to the Hilbert-Schmidt class Ko (H).

From the very definition it follows that GL* acts on Gr® and by merely an
examination of the proof of Theorem 1.8 given in [20] (cf. also [136], Ch.7)
one finds out that these actions are transitive. In order to give the most
convenient description of the isotropy subgroups of these actions, we follow
the presentation of [136], denote by U(H) the group of unitary operators,
and introduce a subgroup U*(H) = U(H)NGL*(H) consisting of all unitary
operators from GL®. For s = 2 this subgroup is denoted by U,. Now the
description of isotropy groups is available by the same way of reasoning
which was applied in [136] for s = 2.

Proposition 1.3. The subgroup U*(H) acts transitively on Gré(H) and
the isotropy subgroup of the subspace H is isomorphic to U(H, ) x U(H_).

From the existence of a polar decomposition for a bounded operator on H
it follows that subgroup U*(H) is a retract of GL? and it is straightforward
to obtain similar conclusions for the actions of GL?®.

Corollary 1.1. The group GL® acts transitively on the Grassmanian
Gré(H) and the isotropy groups of this action are contractible.

Thus such an action obviously defines a fibration with contractible fibers
and it is well known that for such fibrations the total space (GL?) and the
base (Gr?®) are homotopy equivalent [46].

Corollary 1.2. For any s > 1, the Grassmanian Gr® and the group GL®
have the same homotopy type. In particular, GL, is homotopy equivalent to
Gr.,.

Remark 1.2. As we will see in the next section, all the groups GL(ny, J)
have the same homotopy type for any ideal J between Ky and K. In
particular, this is true for every Schatten ideal K,. Thus all the above
groups and Grassmanians have the same homotopy type.

We are now ready to have a closer look at the topology of Gr® and GL?®
which will be our main concern in the rest of this section.

The homotopy type of GL, and Gr, is described in the following state-
ment which was obtained in [86], [163], and [136]. This gives an answer to a
question posed in [20]. The proof presented below follows the lines of [136].
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Theorem 1.9. For any s € [1,00], the homotopy groups of the group
GL? and Fredholm Grassmanian Gr® are given by the formulae

mo 2 Z; moptr1 =Z, mopte =0, k>0 (1.5)

Proof. In virtue of Corollary 1.2, it is sufficient to determine the homotopy
type of GL? which we denote simply by G. To this end let us consider a
certain fibration

P GL? — F(H+,H+) X KS(H+,H_)

defined in the following way.
Write any element (operator) A € GL*® as a (2 X 2)-matrix of operators

(¢4)

corresponding to the given polarization of H (thus a is a bounded operator
from to H; to Hy and so on).

Then define p; (A) as the first column of this matrix, i.e., p1(4) = (a,c).
It is evident that the image X = Imp; is an open subset of the target
space. Introduce now a subgroup G; C G of elements of G defined by
upper-triangular matrices of the form

I, b
0 d)”
where I, denotes the identity operator on H, .

Lemma 1.1. The subgroup G, is contractible.

Indeed, notice first that in this representation the operator d is always
invertible, in other words the set of possible d-s appearing in the last for-
mula is exactly GL(H_). As to b it can be an arbitrary operator from
K ,(H_,H,). Thus the subgroup G; as a topological space is homeomor-
phic to the product GL(H_) x K4;(H_,H,;). By Kuiper’s theorem [104],
the first factor is contractible and the second factor, being a vector space,
is also contractible. Thus we conclude that G; is contractible.

Now it is straightforward to verify our next claim.

Lemma 1.2. p(A) = p1(4) if and only if there exists a T € G1 such
that A= A'T.

Thus we conclude that X is the homogeneous space G/G; which is appar-
ently a fibration with the fibers isomorphic to G;. As was already explained
above, this implies that G is homotopy equivalent to X.

Consider now the mapping m : X — F(H,, H,) defined as the restric-
tion of the first projection, i.e., m1(a,c) = a. We want to show that this
is also a surjective mapping with contractible fibers. Then, by the same
reasoning as above, we will be able to conclude that G is homotopy equiva-
lent to F(H,, Hy). Since it is well known that the homotopy groups of the
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latter space are exactly those as were given in the statement of the theorem,
this would complete the proof.
Thus we see that it remains to verify next two lemmas.

Lemma 1.3. Fach a € F(Hy,H}) can appear as an left upper corner
element of a two-by-two matriz above.

Lemma 1.4. For each a € F(Hy,H,), the set of all ¢ such that (a,c)*
can appear as the first column of a matriz representing an element of G,
coincides with the set of all c € K (Hy, H_) such that c|kera is injective.
The set of all such ¢ is a contractible subset in K (Hy,H_).

The first of these two lemmas follows from a well-known procedure of
regularizing of a Fredholm operator. One takes any embedding ¢ of kera
into H_ and takes b to be a finite rank operator from H_ onto (ima)'.
Then one can obtain an appropriate d by taking any epimorphism of H_
onto ker b with the kernel ime. It is trivial to check that this really defines an
operator from GL(74, Ko) so this construction does the job simultaneously
for all ideals K, with s > 1 and the first lemma, is proved.

Moreover, from this argument it becomes evident that the only restriction
on ¢ in order that it could “accompany” a given a in GL? is that it maps
ker a injectively into H_ (again no matter which ideal K is considered).
On the other hand if ¢ appears as the lower-left corner element of such a
matrix then its kernel should be trivial.

The last statement of the last lemma follows from the fact that the set of
all such ¢ is apparently homeomorphic to the set of all n-tuples of linearly
independent vectors (i.e., n-frames) in H_, where n = dimkera. As is well
known all spaces of frames are contractible [46] so we obtain the desired
conclusion. This completes the proof of the theorem. O

As was shown in [136], the restricted Grassmanian Gr?(H) has also a
remarkable structure of a cellular complex (CW-complex) which is closely
related to the so-called partial indices [19] and gives a visual interpretation
of certain phenomena discussed in [19], [20]. Moreover, Fredholm Grass-
manians can be turned into differentiable manifolds, which enables one to
construct an analogue of the Morse theory and recover in this way the cellu-
lar structure obtained from the partial indices [136], [88]. We describe here
a simple explicit way of introducing differentiable manifold structures on
Fredholm Grassmanians Gr?® following the exposition of this topic in [136].

Theorem 1.10. For any finite s > 1, the Grassmanian Gr®(H) is a
differentiable manifold modelled on Banach space K¢(H).

Proof. We first construct a natural atlas on Gr® (cf. [136] for s = 2).
Notice that the graph of every s-summable operator w : H, — H_ belongs
to Gr®. Since the sum of a Fredholm operator and an s-summable operator
is a Fredholm operator, one concludes that, for every W € Gr?, the graph
of any s-summable operator from W to W+ also belongs to Gr®. Such
graphs constitute an open subset Uy € Gr,. consisting of all W’ such that
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the orthogonal projection W/ — W is an isomorphism. Obviously this
open subset is in a one-to-one correspondence with the space K4 (W, W)
of s-summable operators from W to W=, which defines an atlas on Gr®.

We now describe an explicit form of the transition diffeomorphisms of this
atlas and verify that this atlas really defines a structure of a differentiable
manifold, i.e., differentials D(g; o gj_l)(p) are bounded operators in K (H).
This would apparently complete the proof.

Let Uy and Uy be the open sets in Gr® corresponding to the spaces H; =
K,(V,V1)and Hy = K,(W,W=). Let us show that the images Hi5 and Ho;
of the intersection Uy NUw in these spaces are open and the corresponding
“change of coordinates” Hio — Hs; is continuously differentiable.

Let us consider the identity transformation of H as an operator

VoViosWwaoWwt

and write it in the form of a two-by-two matrix of operators

a b
(¢ 4)
corresponding to these direct sum decompositions. Here a is an operator
from V to W, and so on (cf. the proof of Theorem 1.9).
From the fact that both V and W belong to Gr® it follows easily that
the diagonal terms a,d are Fredholm operators while b and ¢ are operators

of K class. Suppose now that a subspace L € Uy N Uy is simultaneously
the graph of operators Ty : V. — V+ and T : W — W+. Then operators

(ca)(n) = (n)s

should coincide as operators from V to W @ W+ for some isomorphism
q: V — W. This implies that

T = (c+dT1)(a+bT1)_1. (16)

The last relation apparently shows that T5 is a continuous function of T}
on the open set Hio = {T1 € Hy : a + b1} is invertible}.

This means that the atlas Uy really defines on Gr® a structure of a
topological manifold and it remains to verify that the differentials of coor-
dinate changes in this atlas do exist and they are bounded linear operators
as operators in K,(H). To this end let us compute the differential of T5 as a
function of T;. By a standard application of Leibniz rule for operator-valued
functions one obtains:

DTy (Ty) = d(a+ bT1) ™" — (¢ + dT1)(a + bTy)b(a + Ty ) .

Now one can make a straightforward examination the linear operator in
K (H) defined as the multiplication by the right hand side of this formula,
using the Neumann series for the inverse (a + b77)™!, and verify that it
defines a bounded linear operator on K (H). Thus this atlas really defines
a differentiable manifold structure on Gr® and the proof is complete. O
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Remark 1.3. In the case s = 2 the same atlas defines a holomorphic
Hilbert manifold structure on Gr, (modelled on the Hilbert space Ko(H)
with its Hilbert-Schmidt norm) (cf. [136]).

Remark 1.4. Apparently one can introduce similar operator groups and
Grassmanians in any Banach space. The above results remain valid for wide
classes of separable Banach spaces with basis and contractible general linear
group but here we cannot dwell upon that issue.

The restricted Grassmanian Gr?(H) possesses further interesting geomet-
ric properties and it is especially important in physical applications [115],
[116], [136], [148]. For this reason we now describe some important differ-
ential geometric properties of Gr, = Gr?(H) which can be established by
the same methods as above. First of all we collect some of its properties as
a particular case of the results already obtained.

Corollary 1.3. The restricted Grassmanian Gr, is a homogeneous space
under the actions of U, and GL,. If W is a closed complex subspace of H
and Py, denotes the orthoprojector on W then W € Gr, if and only if the
difference Py — Py is a Hilbert Schmidt operator.

The first statement was already proved. As to the second one, notice that
both conditions given in it obviously imply that W is of infinite dimension
and codimension. Thus there exist a U € U(H) such that W = U - H,.
Then of course Py = UP,U~! and it follows by a direct calculation that
Py, — Py is Hilbert-Schmidt if and only if [U, P, ] is Hilbert-Schmidt, which
exactly means that U € U,.

We can now list the basic geometric properties of Gr,..

Theorem 1.11 (cf. [136], [148)).

1. The restricted Grassmanion Gr.(H) is a complez-analytic manifold
modelled on the separable Hilbert space L2(H,H_).

2. The actions of GL.(H) and U, on Gr, are complezx analytic and real
analytic respectively.

3. The linear isotropy representation at the point H, is described by the
map

Ad:Gy —» GL(L*(Hy,H_)),AdT -S =Ty 0S80 Ty,',S € L*(H.,H_).

4. The connected components of Gr, consist of subspaces W with a fized
value of indP|W, in other words, they are given by the sets (k € Z)

GF = (W :ind(P|W : W — H,) = k}.
5. There exist natural holomorphic embeddings of the total Grassmanians
G(C) = URE G (C*Y)

into Gr,. such that their images Gr.(N) form an increasing sequence of sub-
sets and the union Un>1Gr,.(N) = Gr,(o0) is dense in Gr.. Moreover, for
all N and k the intersection Gr,.(N)NGF is biholomorphic to Gn15(C?V).

Corollary 1.4 ([136]). All holomorphic functions on Gr, are locally
constant.
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Proof. Since U, acts by holomorphic transformations, it is sufficient to con-
sider a function f which is holomorphic on G2, the connected component of
Gr, containing H. Given now two points W7 and W in GNGr,.(00) there
exists an N such that Wy, Wy € G® N Gr.(N). Since the latter is biholo-
morphic to a connected compact complex manifold G (C?V), the function
f takes the same values on W7 and Wa. Thus f is constant on GO NGr,.(00)
and the result follows from the density of the latter set in GO. O

As was shown by several authors (see [136], [58], [148], [167]), the re-
stricted Grassmanian Gr, possesses remarkable differential geometric prop-
erties. Most of them follow from the important observation that Gr, carries
a natural U,.-invariant Kahlerian structure which we will now describe fol-
lowing [136] and [148].

Recall that the so-called Schwinger term [148] is defined as a bilinear
form on the Lie algebra u, of U, given by

S(A, B) = tT'(Alngl bt BlgAgl)

where A, B € u, are represented as (2 x 2)-matrices with respect to a fixed
polarization. Define then a real-valued antisymmetric bilinear form on u,
by setting ~
Q(A, B) = (-i)s(4, B).
Then one can verify that the bilinear form € vanishes on the subalgebra
u(Hy) x uw(H_) and is invariant under the linear isotropy representation of
U(Hy) x U(H-). Hence it descends to a form Q4 on

up/u(Hy) x w(H_) = L*(Hy,H_) = Ty, Gr,

which is invariant under U(Hy) x U(H_).

Notice that there also exists a natural complex structure J; on Ty, Gr
which is also U(Hy) x U(H_)-invariant, namely: J.T = iT for all T €
L?(H,,H_). This in the usual way produces a U(H, ) x U(H_)-invariant
Kahlerian structure on on Gr;,.

The main properties of the restricted Grassmanian which can be formu-
lated in this context, are collected in the following statement.

Theorem 1.12 ([148]). The restricted Grassmanian is o Hermitian
symmetric space, in particular it is geodesically complete. The geodesic
exponential map Exp at the point Hy is given by

noexp: Ty, Gry = Gry,

where exp is the exponential map of U, and 7 is the projection U, — Gr,.
The Riemann curvature tensor of Gr, is completely fixed by its value in the
point H, where it can be given by a certain Toplitz-like operator.
Comparing the above formulae with the ones defining the Kéhler metric
on the based loop group investigated by D.Freed [58], one can observe that
they are completely similar. This similarity is not of course occasional, the
link between the both structures being given by the Gragsmanian embedding
of a based loop group [136]. It is now obvious that various properties of loop
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groups can derived from analogous properties of the restricted Grassmanian.
We confine ourselves to this short remark because exploiting this relation
further does not fit the main topic of this paper. Our aim was just to show
that Fredholm Grassmanians and loop groups can be studied using several
independent approaches each of which is rich enough to deserve a separate
detailed discussion.

In this spirit, we proceed by mentioning that another fruitful frame-
work for discussing various geometric properties of Fredholm Grassmanians
emerges from the Fredholm structures theory [46]. As was observed in [86],
[88], certain dense subsets of these Grassmanians can be endowed with nat-
ural Fredholm structures.

This fact seems remarkable since a Fredholm structure on an infinite
dimensional manifold enables one to introduce non-trivial global geometric
and topological invariants of this manifold. The reason for this circumstance
is that Fredholm Grassmanians are closely related to loop groups of compact
Lie groups [136] and such loop groups can be endowed with some natural
Fredholm structures [85], [86], [58]. Our discussion of this issue is based
on the results of [86] and [58] but we present them with a view toward
Fredholm Grassmanians.

For simplicity we only consider the classical case corresponding to the
loop group of unitary group U,. Recall that Riemann—Hilbert problems for
arbitrary compact Lie groups were studied in [86]. Some results of [86] are
presented in the next section. The discussion below is actually applicable
for arbitrary compact Lie groups.

Recall that a Fredholm structure on an (infinite-dimensional) Banach
manifold M modelled on a Banach space E is defined as by an atlas (U;, g;)
on M such that for any point p € g;(U; N U;) the differential (Frechet
derivative) of the transition diffeomorphism D(g; o g;° Y (p) is an invertible
operator of the form “identity + compact” [47].

Appearance of a natural Fredholm structure on an infinite dimensional
Banach manifold is a remarkable event as such structures possess various
interesting global geometric and topological invariants (curvatures, charac-
teristic classes) [46]. An important result due to J.Elworthy and A.Tromba
states that a Fredholm structure on M can be constructed from a Fredholm
mapping M — H with zero index and also from certain smooth families of
zero index Fredholm operators parameterized by the points of M [48].

These facts were used in [85], [88] to construct Fredholm structures on
loop groups. It was done using the families of Fredholm operators parame-
terized by regular loops. In virtue of the results of [85], [88], to each regular
loop f one can assign a Fredholm operator associated with the Riemann—
Hilbert problem Ry defined by loop f (i.e., f is the coefficient of the problem
Ry). The following statement follows from the results of [85], [88] combined
with the main result of [48].
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Theorem 1.13. With any (complex) linear representation v of U, one
can associate a Fredholm structure F., on the group L'U,, of H'-loops on U,.

Here the loop group L'U, is endowed with the usual H'-norm [120]. It
is easy to verify that with this norm it becomes a Hilbert Lie group. We
do not reproduce here details of the argument in [85], [88] because they
were performed in the framework of the Fredholm theory of generalized
Riemann-Hilbert problems which involves a lot of technicalities irrelevant
to the main subject of this paper.

A nice geometric explanation of the existence of Fredholm structures on
loop groups can be given using some recent results of G.Misiolek [120], [121].
The main result of [120] yields in particular that the exponential map of
the group LG of H'-loops on a compact Lie group G is a Fredholm map of
index zero. This local result enables one to obtain a Fredholm atlas on the
loop group by merely taking the inverse of the exponential map at identity
and spreading this chart to any point of LG by left shifts.

More precisely, there exists a local chart (U, ¢) at the unit of LG such that
¢ : U — V is a diffeomorphism on some open subset in the space of loops LA
on the Lie algebra A of group G, and for any z € U the differential Déz)
is an invertible operator of the form “identity + compact”. From the same
result of G.Misiolek it follows that differentials of left shifts L, by elements of
LG are also of the same form “identity + compact”. Let us construct a chart
(Uy, ¢4) at g € LG by setting U, = Ly (U), ¢, = ¢po (L,y)~'. This obviously
gives an atlas on LG and it is not difficult to check that differentials of the
transitions mappings of this atlas also belong to the Fredholm subgroup.
In this way one obtains a Fredholm structure corresponding to the adjoint
representation of a loop group.

This argument was worked out jointly with G.Misiolek in the August
of 2001 during a Banach Center workshop on non-linear differential equa-
tions. Details and applications will appear in a forthcoming paper by
G.Khimshiaghvili and G.Misiolek.

Actually Fredholm structures on loop groups come from various sources.
An interesting geometric way of constructing Fredholm structures on loop
groups was suggested by D.Freed [58].

The construction used by D.Freed reveals certain differential geometric
aspects of loop groups which are apparently interesting from the viewpoint
of Riemann-Hilbert problems. For this reason, we briefly discuss some
ingredients of his construction and their relation to the concepts used in the
theory of Riemann—Hilbert problems.

Let now QG denote the group of based (i.e. the number 1 maps to the
identity of G) smooth loops on a compact Lie group G with Lie algebra A.
Recall that any real number s one can define the (Sobolev) Hg metric on
QG by

(X,Y), = /T (V*X(2),Y(2))ads, X,Y € QA,
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where V denotes the Laplace operator d*d on T" and (-, ) 4 denotes the inner
product on A given by minus the Killing form on A [136].

The Hilbert space completion of the smooth loops in this inner product
is denoted by QzA. As is well known, Hy loops are continuous for s >
1/2 [136]. In this range one also obtains in the standard way [136] the
corresponding completions Q,G which are Hilbert manifolds modelled on
QA [136], [58]. As was proved in [59], loop groups Q,G are Hilbert Lie
groups for s > 1/2. In fact, in many aspects it is also important to consider
the Hy, = H; /5 metric (h for “one half”) on QG.

As was shown in [58], this metric is a homogeneous Kihler metric [105].
The corresponding Kéhler structure on )G is most easily described by ex-
hibiting its complex and symplectic structures and then observing that the
metric defined by those is exactly the Hj, metric.

The almost complex structure on QG is evident from the decomposition
of its complexified tangent space Lie algebra QAr = M, @ M_ into the
direct sum of two subspaces consisting of loops with only positive (negative)
Fourier coeflicients, i.e. we consider M, as the holomorphic tangent space
and M_ as the antiholomorphic tangent space. Alternatively, one can define
a J operator on the tangent space A, that is, an operator whose square is
equal to —1.

Denote by D the operator d/d¢ = izd/dz. Notice that its kernel is trivial
on the space of based loops 24 and the operator |D| is the square root of
the positive Laplacian —d?/d¢?. This implies that J = D/|D| has its square
equal to minus the identity. One concludes that QG is a complex manifold
by applying an infinite dimensional version of the Newlander-Nirenberg the-
orem [105]. It is possible since the torsion tensor of this almost complex
structure vanishes [58]. The same conclusion can be derived from the gen-
eralized Birkhoff theorem obtained in [136].

There also exists a left invariant symplectic form w on QG. It is described
by defining it on the Lie algebra QA by the formula

1

w(X,Y) = %/T(X”,Y)A.

Here X, Y are interpreted as elements of QA.

The form w is nondegenerate since D has no kernel on based loops and
one can check by standard computation that w is smooth (see [136]). Sum-
marizing all this we conclude that G is an infinite dimensional K#hler
manifold and w is the K&hler form for the K&hler metric

&) =5 | (|55/x@.v@), a0

Comparing with the above formula for Sobolev metrics we see that this
is precisely the Hy, metric. Using its specific properties an elegant formula,
for the corresponding K&hler connection was established in [58].

Denote by T the circle group, then T acts on the space of free loops LG
by rotations and one can form the semidirect product of T and LG which
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we denote EG. Obviously,
QG =EG/(T xG)

so EG naturally acts on QG. By the general principles of Lie group actions,
to this action corresponds an infinitesimal action which assigns a vector field
&z to each element Z € EG (as is well known, this vector field is the it right
invariant extension of Z to EG). Evaluation at the identity in QG gives the
map which identifies Mg = M @& M_ with the complexified tangent space
to QG.

Let V denote the Kihler connection and V% the Lie derivative. Then,
again by general principles, the difference V¢, — Vg“z is tensorial hence
it defines a linear transformation on M. Since both derivatives preserve
the complex structure, after complexification this transformation separately
preserves M, ad M_. Denoting by FA the semidirect product of R and
LA, we obtain a map ¢ : EA — L(M,) as the C-linear extension of the
map defined by

Z Ve, — Vi, | My

D.Freed expressed the Kéhler (H}) connection by indicating a remarkable
explicit formula for ¢ in terms of Toplitz operators [58]. Families of such
operators eventually enabled D.Freed to construct a Fredholm structure
on QG whose characteristic classes coincided with those defined using the
Chern-WEeil theory for the Kéhler Hy metric [59].

This circumstance is especially remarkable in the context of our ap-
proach because as was explained in [86], [88] Fredholm structures defined
by Riemann-Hilbert problems can be also induced from certain families of
Toplitz operators. Due to the considerable technical complicity of these
results we do not present here a detailed discussion of them but we wish
to emphasize that the approach of D.Freed can be used to establish some
subtle geometric and topological properties of Birkhoff strata in Hy, metric.
In particular, one obtains a general approach to computing their curvatures
and characteristic classes and it is interesting to verify if this leads to the
same results as were obtained in [38] for the groups of Holder loops.

Another intriguing open problem is to investigate whether those “Freed-
holm” structures are equivalent (concordant in the sense of [48]) to some of
ones obtained from parameterizing the loop groups by families of Riemann—
Hilbert problems as in [86], [88]. Actually, there is some evidence that
the structures constructed by D.Freed correspond to the case of Riemann—
Hilbert problems with respect to the adjoint representation of the group.

Since each Fredholm Grassmanian Gr?® by its very definition gives rise to
a family of Fredholm operators parameterized by it, one can consider the
Fredholm structure defined by this family. It is the natural to conjecture
that those Fredholm structures on Fredholm Grassmanians can be related
with the preceding results using the so-called Grassmanian models of loop
groups [136]. As will be explained in Section 2, the interpretation of a loop
as a coeflicient of Riemann—Hilbert problem gives a natural mapping of an
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appropriate loop group LG into the group GL(my,K). In virtue of the
above discussion (cf. also [136]) it is clear that by posing proper regularity
conditions on a loop f one can achieve that the rotation of subspace Hy by
the operator of multiplication by f gives a subspace in one of Grassmanians
Gr®. In this way one obtains a natural mapping of LG into Gr® which is
called the Grassmanian model (or Grassmanian embedding) of a loop group
[136].

Some properties of these models follow from the preceding discussion,
others were established in [136], basically for the case of the restricted
Grassmanian Gr,.(H). In particular it is well known that the group of
continuously differentiable loops can be embedded in Gr, [136]. However
the topology of LG and the one induced on its image as a subset of Fred-
holm Grassmanian do not coincide in general. In fact, it is an interesting
and difficult analytical problem to find exact regularity conditions which
guarantee that the corresponding loop group can be realized in Gr?® for a
concrete s (see examples presented in [136], Ch.7).

We avoid discussion of this problem by concentrating our attention on the
group of smooth (infinitely differentiable) loops LU, which is the smallest
of interesting groups of that kind. Its image under the above embedding is
called the smooth (Fredholm) Grassmanian Gr. It is easy to check that it
lies in each Fredholm Grassmanian Gr®. A more interesting circumstance is
that it is homotopy equivalent to each of them [136] so it captures important
global properties of these Grassmanians.

Now one can transplant various structures from Lo.U, to Gre,. In par-
ticular it is evident that L, U,, can be endowed with Fredholm structures
which are just the restrictions of the Fredholm structures on H'-loops pro-
vided by Proposition 1.13 so we obtain the same conclusion for the smooth
Grassmanian.

Proposition 1.4. With each linear (finite dimensional) representation
of U, one can associate a Fredholm structure on the smooth Grassmanian

Groo(H).

Of course one may ask whether it is possible to extend these structures to
ambient Grassmanians Gr® but this problem involves some delicate analytic
issues which will be discussed elsewhere.

As an example of perspectives suggested by these results let us formu-
late another natural problem. From the mentioned result of Elworthy and
Tromba and Proposition 1.13 it follows that there exists an index zero Fred-
holm mapping of the loop group L'U,, in Hilbert space. It would be inter-
esting and instructive to find an explicit construction of such a mapping.
The same problem can be formulated for all compact Lie groups. It would
be also interesting to find such a mapping from the smooth Grassmanian
Gre(H) in its model space.

Also, it is well known that for a Fredholm manifold M one can define its
characteristic classes chy(M) € H**(M,Z) [59]. A natural and important
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problem is to identify these clagses in the cohomology of M. In our setting
this problem permits a particularly nice formulation.

As was already mentioned, the smooth Grassmanian has the same homo-
topy type as Fredholm Grassmanians Gr®(H) so their cohomology rings are
isomorphic and the structure of these rings is well-known [47]. It is also well
known (see [47], [58]) that any Fredholm Hilbert manifold has well-defined
Chern classes ch; which are classes in the even-dimensional cohomology
of this manifold. Combining these two observations we conclude that a
Fredholm structure on the smooth Grassmanian defines certain classes in
H?(Gr®(H)). Thus we come to the problem of computing these classes
for the structures F, described above. Some results in this direction were
obtained in [58], [59]. It is remarkable that such Chern classes can be rep-
resented by some differential forms using traces of appropriate products of
operators from Schatten classes [58], which indicates an intriguing analogy
with the non-commutative geometry of A.Connes [33)].

We now recall the main result of [59] and explain its relation to the
geometric models for Riemann—Hilbert problems discussed in this section.
Recall that the group of units of the Calkin algebra Q(H) = L(H)/K(H)
can be naturally identified with the factor-group @* = GL(H)/GK(H). As
is well known it is a Banach Lie group modelled on its Lie algebra Q(H)
which is actually a C*-algebra [42].

One can analogously define factor-groups Q* = GL/GL?® for each s > 1.
Since L* is an ideal in L(H), GL? is a normal subgroup in GL(H) so the
quotient Q° is a group. Unfortunately it cannot be made into a Banach
Lie group because L® is not closed in L(H), which implies that the Lie
algebra L/L? is not Hausdorff in the quotient topology. So one has to regard
Q® just as an abstract group. Nevertheless these are god objects because
they are closely related to @Q* which has a number of useful topological
interpretations [47].

As wa shown by D.Freed [59], the hidden “nice” structure of groups Q°*
can be revealed by considering some special homomorphisms G — @Q° of
a Banach Lie group G which factor through the projection = : Fo(H) —
Q°. This setting is actually a particular case of the notion of Fredholm
representations considered by A.S.Mishchenko and his followers (cf. [118],
[147)).

In such a context D.Freed was able to prove a general theorem providing
useful information on the Chern classes of the GK *-bundle emerging on G
via pull-back from Fy(H) (recall that Fo(H) is the classifying space for all
GK*(H)-bundles [47]). Denote the Chern classes of the universal GK (H)-
bundle by chy.

Theorem 1.14 ([59]). Let G be a Banach Lie group with the Lie algebra
Lie(G). Suppose that T : G — Fy(H) is a smooth map such that the
composition woT : G — Q° is a homomorphism, i.e. T(g)T(h)—T(gh) € L*
for all g, h € G. Assume further that the map (g, h) — T(g)T (h) — T (gh) is
a smooth map into L*. Let T' : Lie(G) — L(H) be the differential of T at
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the identity, and define the left-invariant L®-valued 2-form on G by putting
QX,Y) =[T'(X), T'(Y)] - T'[X,Y],X,Y € Lie(G).

Then for all | > s the cohomology class T*ch, is represented invariantly by
the form
= —=(@/2m) AN " ().

Here the elements of Lie(G) are understood as left invariant vector fields
on G which, in the definition of € are evaluated at the identity of G. The
assumptions in the theorem guarantee that the trace tr(2!) exists for all
I > s. A detailed proof of this theorem may be found in [59].

Of course it is not quite obvious how to construct such maps T as required
in the theorem. Nevertheless, a natural source of examples is provided by
Fredholm Hilbert Lie groups G introduced above. Recall that a Fredholm
structure on G in a standard way defines a map G — Fy(H). One just
takes an Fy-map of F' : G — H (which exists according to the criterion
given in [48]) and takes as T the map defined by the family of differentials
d.F,z € G. In many cases this map satisfies conditions of the theorem for
some s and one becomes able to compute some components of the total
Chern class of the corresponding Fredholm structure.

An example of such kind emerges from the “Kéhlerian” Fredholm struc-
tures on loop groups constructed in [58]. This enabled D.Freed to compute
the total Chern class of such a Fredholm structure in the case of SU(n) [58].

Fredholm structures defined by families of Riemann—Hilbert problems in
some cases also generate maps T which satisfy conditions of the theorem [89].
Actually, in most cases such families only satisfy a weaker condition which
amounts to saying that “long commutators” of operators T'(g) belong to
some group GL*. In [89] the same is expressed by saying that the algebra of
operators generated by T'(g) satisfies a polynomial identity modulo compact
operators. This situation is not covered by Freed’s theorem but still it is
very close to the notion of Fredholm module which plays an important role
in the non-commutative differential geometry of A.Connes [33]. So one may
hope that the methods of computing Chern character developed in [33] can
be applied in this situation. Unfortunately this idea has not yet found
sufficient development so we delay discussion of the topic for the future.

It seems also worthy of noting that some properties of partial indices of
Riemann-Hilbert problems can be formulated in the language of Fredholm
structures. As is well known (see [21]), the collections of matrix functions
with the fixed partial indices, usually called Birkhoff strata [21], [136], define
an interesting stratification of the loop group. Using Grassmanian models
of loop groups and Riemann—Hilbert problems described above, one obtains
the corresponding strata in the smooth Grassmanian Gr., and restricted
Grassmanian Gr, (cf. [136]).

Using the well-known properties of partial indices [20], one can show
that Birkhoff strata are complex analytic submanifolds of the finite codi-
mension in the group LGL,,(C) of loops on the complex general linear group
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GL,(C) [38]. Similar conclusions can be derived for Birkhoff strata consid-
ered in the group QGL,(C) of based loops [38]. Analogous results in the
context of Fredholm Grassmanians were obtained in [136], [88]. One can
actually describe the homotopy type of a Birkhoff stratum Bk in terms of
the indexing vector K [38], [136].

In order to be more precise, denote for a while by G the group of L'-loops
on GL, (C) and denote by Bk the subset of all loops with a given collection
of (left) partial indices K.

Theorem 1.15 ([38]). Bk is a locally closed complex-analytic submani-
fold of G of a finite codimension and its codimension is equal to

> (ki —kj —1).

ki>k;

The homotopy type of Bk in terms of K can be described as follows.
Let gk denote the diagonal matrix function from 1.2 corresponding to the
integer vector K. Denote by GL(K) the centralizer in GL,(C) of the image
of gr and by A : GL,(C) - GL,(C) the diagonal embedding. Finally,
denote by Xk the factor space (as a topological space)

(GLn(C) x GLy(C))/ AGL(K)),

where in the denominator stays the image of GL(K) under the diagonal
embedding. Notice that this is a finite dimensional space of the type well
suited for applying usual methods of algebraic topology which enable one to
compute many topological invariants of this space and eventually determine
its homotopy type.

Theorem 1.16 ([38]). Bk is homotopy equivalent to X k.

Further results on the topological type of Birkhoff strata can be found in
[38], [68]. Most of the preceding discussion is applicable to Birkhoff strata in
the loop group LG of an arbitrary compact Lie group G (cf. the discussion
of G-exponents in the next section).

We proceed by explaining how one can approach the study of Birkhoff
strata in the context of Fredholm structures. To this end one can use a slight
generalization of the notion of a proper Fredholm submanifold introduced in
[131], [154].

The generalization we have in mind can be naturally formulated in the
setting of Riemannian Hilbert manifolds. In order to be more precise let us
recall some relevant notions from the theory of infinite dimensional mani-
folds.

Let M be a smooth infinite dimensional manifold modelled on a separable
Hilbert space H. Asis well known, one can introduce then all basic concepts
of differential geometry (vector fields, bracket operation, p-forms, tensors,
etc.) in the same way as for finite dimensional manifolds [105].

A Riemannian metric on M is defined as a smooth section g of S?(T %
M) such that g(z) is an inner (scalar) product on Ty M equivalent to the
inner product on H for all z € M. If such a g is given then (M,g) is
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called a Riemannian Hilbert manifold. It is well known that there exists
a unique torsion free connection (sometimes spelled as connezion) (in the
usual sense of differential geometry [105]) compatible with the metric g.
Such a connection is called the Lewvi-Civita connection of g.

Let M,N be Hilbert manifolds, g a Riemannian metric on N and V
the Levi-Civita connection of g. A smooth map is called an immersion if
d f is injective and d, f(T; M) is a closed linear subspace of T,y N for all
z € M. Then the restriction of g(z) to d,f(T;M) defines a Riemannian
metric on M. The normal bundle v(M) of f(M) in N is defined as the
bundle over M with fibers v, (M) isomorphic to the orthogonal complement
of dy f(T; M) in T,y N [105]. An immersion which is globally one-to-one
is called an embedding and its image is called a submanifold in N. We will
only deal with submanifolds of finite codimension, i.e. d,f(T,M) has finite
codimension in Ty, N (for all z € M).

For an embedded submanifold M one can in a standard way define its
tubular neighbourhood t(M) and exponential mapping exp : (M) - N
[105]. Finally, using the natural identification of (M) with a (locally trivial)
fibration of open normal disks (balls) D.(M) = D,(yM)) of (sufficiently
small) radius r in ¥(M) one can define the so-called end point map Y, :
D.(M)— N.

Notice that in the particular case when N is just the model space H, our
definition coincides with the definition of the end point map for submani-
folds of Hilbert space used in [131], [154]. Since D,.(M) is also a Riemannian
Hilbert manifold one can speak of Fredholm mappings of D,(M) into any
other Hilbert manifold. Thus in particular it make sense to speak of Fred-
holm maps into N.

Definition 1.6. M is called a proper Fredholm submanifold (PF-subma-
nifold) of N if the end point map Y;. : D,.(M) — N is proper and Fredholm
for all sufficiently small r > 0.

Many examples of proper Fredholm submanifolds of Hilbert space can
be found in [131], [154]. Their curvature operators have remarkable com-
pactness properties [154] and they can be successfully studied with differ-
ential geometric methods [154]. This concept is also well suited for the case
when the ambient manifold N is endowed with a Fredholm structure. This
situation repeatedly appears in the context of loop groups and Fredholm
Grassmanians so we introduce some relevant concepts.

Definition 1.7. An infinite dimensional Riemannian Hilbert manifold M
is called a Fredholm Riemannian Hilbert manifold (FRH-manifold for short)
if M is endowed with a compatible Fredholm atlas. If M is simultaneously
a Lie group and the metric is invariant then M is called a Fredholm Hilbert
Lie group (FHL-group).

It is now clear that one can also define the notion of a Fredholm action of
a FHL-group. From the preceding discussion it follows that these concepts
are “non-vacuous”. In particular, the smooth Fredholm Grassmanians give
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examples of FRH-manifolds. Moreover as was explained above, the groups of
H'-loops on compact Lie groups appear to have natural Fredholm structures
arising from the exponential mapping [120]. It is then easy to check that
they actually give examples of FHL-groups. Finally, an important example
of Fredholm action of a FHL-group is provided by the action of a loop group
on the appropriate space of connections described in [131], [154]. Actually,
some actions appearing in the context of integrable systems [121] can also
be interpreted as Fredholm actions of FHL-groups.

Remark 1.5. These definitions permit a lot of variations (e.g. in the
setting of more general Banach manifolds) and the range of applicability
of these concepts may be substantially extended (e.g. in the framework of
Euler equations on infinite dimensional Lie groups [94] and Poisson Hilbert
Lie groups) but we cannot dwell upon such developments in the present
paper.

Having these concepts at hand we can formulate some related results
with a view to applications to Birkhoff strata in loop groups.

Proposition 1.5. A PF-submanifold of finite codimension of a FRH-
manifold inherits a Fredholm structure whose equivalence class is uniquely
determined by the embedding.

This follows from the Proposition 2.8 of [154]. Indeed, the Fredholm
structure constructed there on a submanifold M of Hilbert space was defined
by the family of curvature operators of M. Since these operators can be
computed from an arbitrarily small tubular neighbourhood of M one can
easily check that the argument used in [154] can be applied in our situation.

Taking into account the general definition of a Fredholm submanifold
of a given Fredholm manifold [48], this proposition can be expressed by
saying that a PF-submanifold is a Fredholm submanifold. In the framework
of Fredholm structures theory one can introduce and investigate various
geometric properties of Fredholm submanifolds.

In order to apply all this to Birkhoff strata, notice that the exponential
mapping and curvature operators of loop groups and Birkhoff strata were
computed in [120], [58]. Translated into our language, results of [120], [58]
mean that the end point maps of Birkhoff strata are proper Fredholm so they
are PF-submanifolds of loop groups (as was shown above they have finite
codimension). Now the preceding proposition enables us to place Birkhoff
strata in the Fredholm structures context. As was shown in [47], for each
closed Fredholm submanifold its fundamental class is well defined as a class
in the cohomology of ambient Fredholm manifold.

Proposition 1.6. The Birkhoff strata are Fredholm submanifolds of
Groo(H) and each of them has a well-defined fundamental class in the even-
codimensional cohomology of Gr,.(H).

Some computations of the fundamental classes of Birkhoff strata can be
found in [38]. In particular, S.Disney managed to compute the fundamental
classes for all collections of partial indices with not more than three different
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components k;. It would be interesting to complete his results by finding a
general formula for the fundamental class of Bx in H*(LGL,(C)).

Remark 1.6. Taking into account the fact that the stratification of LG
given by Birkhof strata is of a complex-analytic nature [38] one may wish to
investigate its properties along the usual lines of stratification theory [70].
In particular, it is interesting to check if this stratification satisfies Whit-
ney conditions [70]. Some further results about the geometry of Birkhoff
strata can be derived from the results about the structure of the so-called
isoparametric submanifolds obtained by R.Palais and H.Terng [131], [154].

Using the above approach for loop groups and Fredholm Grassmanians
associated with compact Lie groups [136] one can generalize Theorem 1.13
in this context. The formulation which we present follows from the results
of [88] which in turn are based on the Fredholm theory for Riemann-Hilbert
problems developed in [85], [88]. The existence follows from the Fredholm-
ness of the corresponding linear conjugation problem for G [86]. Recall that
for any compact Lie group one can naturally define the smooth Grassmanian
Gr& lying in GrS (H).

Proposition 1.7. For each linear representation vy of a compact Lie group

G, the smooth Grassmanian GrS (H) has a canonical Fredholm structure F,
induced by .

As was already mentioned, for any Fredholm structure on a complex
Banach manifold one can define its Chern classes [47], so we become able
to introduce some global topological invariants of such Grassmanians.

Corollary 1.5. For each even k, there exists a canonical cohomology class
in H**(GrS (H)) which can be defined as the Chern class of the canonical
Fredholm structure F.,.

It is now evident that one can formulate a number of natural questions re-
lated to such Fredholm structures. It is the author’s hope that the approach
described in this section can lead to new insights about global properties
of the clagsical Riemann—Hilbert problems and geometric objects naturally
associated with them. In the next two sections we discuss some general-
izations of the classical Riemann-Hilbert problems which naturally arise in
the framework of this approach.

2. RIEMANN-HILBERT PROBLEMS FOR COMPACT LIE GROUPS

In this section we describe a generalization of the Riemann—Hilbert prob-
lem which was recently introduced by the present author [86] in the frame-
work of the geometric theory of loop groups [136].

Consider again the Riemann sphere P = C decomposed as the union of
the unit disc D4, unit circle T, and exterior domain D_, which contains
the infinite point co denoted by N (“north pole”). The main idea is to
permit more general coefficients in the transmission equation (1.1). It is
natural take as coeflicient a function on the circle with values in a compact
Lie group G, and to search for piecewise holomorphic mappings with values
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in a given representation space of G. The precise statement of the problem
is given below and the rest of the section is devoted to its investigation.

It appears that in the case of a Lie group G one can develop a reasonable
theory analogous to the classical one [158] which relies on the recent gen-
eralization by A.Pressley and G.Segal [136] of the well-known factorization
theorem due to G. Birkhoff [122].

It is easy to indicate several natural regularity conditions for a coefficient
which guarantee that the problem is described by a Fredholm operator in
appropriate functional spaces. One can also obtain an index formula (The-
orem 2.2) in terms of so-called partial G-indices (or G-exponents) which is
a direct generalization of the corresponding classical result [122]. A natural
framework for our discussion is provided by a generalized Birkhoff factor-
ization theorem and Birkhoff stratification of a loop group so we have to
present first some auxiliary concepts and results.

Let G be a connected compact Lie group of the rank p with the Lie algebra
A. As is well known [136], each of such groups has a complexification G¢
with the Lie algebra Ac = A ® C. This circumstance is very important as
it provides complex structures on loop groups and this is the main reason
why our discussion is restricted to compact groups.

Let LG denote the group of continuous based (i.e., sending the number
1 to the unit of G) loops on G endowed with the point-wise multiplication
and usual topology [136]. We need some regularity conditions on loops and
for the sake of simplicity let us first assume that all loops in loop groups
under consideration are (at least once) continuously differentiable.

For an open set U in P let A(U, C"*) denote the subset of C(U,C") formed
by those vector-functions which are holomorphic in U, where as usual U
denotes the closure of U.

Assume also that we are given a fixed linear representation r of the group
G in a vector space V. For our purposes it is natural to assume that V is
a complex vector space. Notice that for a compact group G, one has a
complete description of all its complex linear representations [1].

We are now in a position to formulate our generalization. Namely hav-
ing fixed a loop f € LG, the (homogeneous) generalized Riemann—Hilbert
problem (GRHP) R; with coeflicient f is formulated as a question about
the existence and description of pairs (X;,X_) € A(D;,V) x A(D_,V)
with X_ (V) = 0 satisfying the transmission condition on T

X1 (2) =r(f(2)) - X_(2). (2.1)

For any loop h on V, we also obtain an inhomogeneous problem Ry

(with the right-hand side k) by replacing the transition equation 2.1 by the
condition

X1(2) = r(f(2)) - X_(2) = h(2). (2.2)

In other words, we are interested in the kernel and cokernel of the nat-

ural linear operator Ty expressed by the left-hand side of the formula 2.2

and acting from the space of piecewise holomorphic vector-functions on P
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with values in V into the loop space LV. To avoid discussing regularity
conditions, when dealing with the inhomogeneous GRHP it will be always
assumed that the loop h is Hélder-continuous, which is a standard assump-
tion in the classical theory [122], [61].

Remark 2.1. In the particular case when G = U(n) is the unitary group
we get that G¢ = GL(n, C) is the general linear group. If we take r to be the
standard representation on C", then the equations (2.1) and (1.1) coincide
and we obtain the classical Riemann—Hilbert problem. Note that even in
this classical case one obtains a plenty of such problems at the expense of
taking various representations of U(n), and the result below can be best
illustrated in this situation.

Needless to say, the same picture is observed for all groups but as a
matter of fact only irreducible representations of simple groups are essential.
Moreover, the exceptional groups of Cartan’s list will also be excluded and
the remaining groups will be termed as “classical simple groups”.

It would not be appropriate to reproduce and discuss here all necessary
concepts and constructions from the theory of Lie groups. All necessary
results on Lie groups, in a form suitable for our purposes, are contained in
a book of J. Adams [1] and we repeatedly refer to this book in the sequel.

Let f be a loop on G. We would like to associate with f some numerical
invariants analogous to the classical partial indices. To this end let us
choose a maximal torus TP in G and a system of positive roots. Then
following [136] one can define the nilpotent subgroups Ni© of G¢ whose
Lie algebras are spanned by the root vectors of A¢ corresponding to the
positive (respectively negative) roots. We also introduce subgroups L* of
LG¢ formed by the loops which are the boundary values of holomorphic
mappings of the domain B, (respectively B_) into the group G¢, and the
subgroups N* consisting of the loops from Lt (respectively L_) such that
£(0) belongs to Ny (respectively f(IN) belongs to Ny ).

The following fundamental result was proved in [136].

Decomposition Theorem. Let G be a classical simple compact Lie
group, and H = L*(T, Ac) be the polarized Hilbert space with H = H, OH_,
where H, is the usual Hardy space of boundary values of holomorphic loops
on Ac. Then we have the following decomposition of the groups of based
loops LG:

(i) LG is the union of subsets Bi indexed by the lattice of holomorphisms
of T into the maximal torus TP.

(ii) Bk 14s the orbit of K -H, under N~ where the action is defined by the
usual adjoint representation of G. Every Bk is a locally closed contractible
complex submanifold of finite codimension dg in LG, and it is diffeomorphic
to the intersection L of N~ with K- L - K~', where Li consists of loops
equal to the unit ot the infinite point N.
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(iii) The orbit of K - Hy under Nt is a complex cell Cx of dimension
dk. It is diffeomorphic to the intersection L, of Nt with K - LT - K—1,
and meets By transversally at the single point K - H, .

(iv) The orbit of K- H, under K-LT - K1 is an open subset Uk of LG,
and the multiplication of loops gives a diffeomorphism from Bg x Ck into
Uk.

The proof presented in [136] is of a geometric nature and reveals a num-
ber of new aspects of Birkhoff factorization some of which were further
developed in [59], [88]. Recall that in the classical case this result reduces
essentially to the Birkhoff factorization theorem for matrix loops [158].

Let us use this theorem in our setting. For a loop f on G, the (left)
Birkhoff factorization is defined as its representation in the form

f=f-H |, (2.3)

where fi belong to the corresponding group L*G and H is some homo-
morphism of T into TP.

Now it is evident that the points (ii) and (iv) of the above theorem imply
the following existence result.

Proposition 2.1. Every differentiable loop in o classical simple compact
group has a factorization.

The same is true for Holder loops and for some wider classes of loops
[136]. Note that we could also introduce the right factorization with the
reversed order of fi and f_ and the result would also be valid. Our choice
of the factorization type is consistent with the problem under consideration.

Taking into account that any homomorphism H from 2.3 is determined by
a sequence of p integer numbers (k1,...,kp), we get that this sequence can
be associated with any loop f. These integers are called (left) G-ezponents
(or partial G-indices) of f. Their collection will be denoted by K(f).

It is easy to prove that K(f) (up to the order) does not actually depend
neither on the terms of the representation (2.3) nor on the choice of the
maximal torus. For a given maximal torus, the proof of this fact can be
obtained as in the classical case, while the independence on the choice of a
maximal torus follows from the well-known fact that any two maximal tori
are conjugate [1].

The exponents provide basic analytical invariants of loops and have some
topological interpretations.

Proposition 2.2. Two loops lie in the same connected component of LG
if and only if they have the same sum of exponents.

This follows easily from the contractibility of subgroups L* and the point
(ii) of the Decomposition Theorem.

Remark 2.2. In the classical case when G = U(n) we obtain the usual

partial indices, and Proposition 2.2 reduces to the evident observation that
the connected components of LU, are classified by the sum of partial indices
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which is known to coincide with the increment of the determinant argument
of a matrix function along the unit circle [122].

Having at hand exponents of loops we may identify each subset Bx with
the collection of loops having a given collection of G-exponents equal to K
(up to the order) and use the corresponding decomposition of LG in the
topological study of GRHP. Note that in the classical theory of RHP the
geometry of By (so-called Birkhoff strata) was the subject of an intensive
investigation [19], [68]. Later B. Bojarski proposed an approach in the spirit
of global analysis [20] which can also be treated from the viewpoint of the
theory of Fredholm structures [47].

Theorem 2.1 ([86], [58]). For any classical simple compact group G,
the group of based H'-loops QG carries a natural Fredholm structure with
respect to which all strata By are contractible Fredholm submanifolds of
QG.

This result provides a manifestation of close connections between the geo-
metric theory of Riemann—Hilbert problems and global analysis discussed
n [22], [23]. Its proof makes an essential use of results obtained in [136],
[85]. Another proof was given by D.Freed [58]. We mention here some of
corollaries which are in the spirit of our exposition.

Corollary 2.1. The inclusion of each stratum By into LG defines a
cohomological fundamental class [Bk] in H*(LG).

This is an immediate consequence of the cohomology theory for Fredholm
manifolds [47].

Remark 2.3. In the particular case when G = U(n) this fact was estab-
lished by S. Disney [38] without referring to Fredholm structures.

This corollary leads to the purely topological problem of computing such
fundamental classes in terms of the classical description of H*(LG) given
by R. Bott [28]. For G = U(n), some of those fundamental classes were
computed in the same work of S. Disney [38]. Further progress in this
topic was obtained in [58], [93]. The general problem of computing these
fundamental classes seems to remain unsolved.

Another type of problem arises in connection with the aforementioned
Grassmanian models for LG. We only describe it in the classical case when
G = U, and r is its canonical representation on C".

Recall that given a polarized Hilbert space H = H, @ H_, one may intro-
duce the Fredholm Grassmanian Gri (H) consisting of all subspaces in H
such that the orthogonal projection on H is Fredholm and the complemen-
tary projection on H_ is of Hilbert-Schmidt class [136]. For the canonical
representation of G = U,,, H, can be taken to coincide with the usual Hardy
subspace in the space H of square-integrable vector functions on the unit
circle [61], [136]. This is of course just a special case of Definition 1.4.

Note that any two elements of Gry (H) form then a Fredholm pair in the
sense of Definition 1.2 and the index of such a pair is well-defined. As was
shown in [136], smooth loop groups are embedded in Gry so that for any
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two loops the index of the pair of images of H, is defined, and one may
try to compute it in terms of exponents. It is sufficient to do that in the
case when one of the subspaces coincides with H,, which corresponds to
the constant loop. From the computation of the virtual dimension of an
element in Gry (H) [136] it is easy to derive a formula for the index of a
Fredholm pair of such subspaces which, in virtue of [20], coincides with the
index of the corresponding Riemann—Hilbert problem.

Corollary 2.2. The index under consideration is equal to the sum of
exponents of the given loop.

For any natural n, let B, denote the union of all Birkhoff strata with
the sum of exponents equal to n. Collection together all observations, we
see finally that the images of sets B,, lie in various connected components
of Gr; and n is equal to the Fredholm index of pry.

There are also some intersecting differential geometric aspects of the
Fredholm stratification. In particular, one may compute the curvature of
Bg in terms of the corresponding Toeplitz operators [58] and check that
they provide examples of the so-called isoparametric submanifolds of LG
[154]. These strata are among a few known examples of non-linear Fred-
holm submanifolds of a geometrically interesting Banach manifold.

In order to obtain a formula for the index of a GRHP, it is apparently nec-
essary to take into account the influence of a given representation r, which
is not difficult to do because for classical compact groups all irreducible
representations are determined by their highest weights [1]. At the same
time it is clear that the index of a GRHP behaves additively with respect to
taking direct sums of representations. Thus it is sufficient to assume that r
is irreducible with the highest weight w(r).

Recall also that with any weight w of the group G one can associate the
so-called elementary symmetric sum S(w) [1] and evaluate it on any integer
vector with p components.

Theorem 2.2. Letr be an irreducible representation of a classical simple
compact Lie group G. Then the index of a GRHP with a differentiable loop
I as coefficient is given by

indPy = S(w(r))(kr(f),- - kp(f)), (2.4)

where w(r) is the highest weight of representation r.

Proof. Standard facts about decompositions of characters of irreducible rep-
resentations imply that it is sufficient to prove 2.4 only for the so-called basic
representations, i.e., such that their classes in the representation ring R(G)
form a set of algebraic generators of R(G) [1].

According to Proposition 2.1 we may write representation (2.3) for the
coefficient loop f. Then we insert (2.3) in the equation (2.1) and collect the
“+”-marked terms in the left-hand side, which gives us an equivalent but
much more convenient form of the transmission condition:

(r(f4) ™ (X)) = r(H)r(f-)(X-).
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We introduce now the new functions

Yy =(r(f0) 7 (X4, Yo =r(fo)(X0)

and notice that they are holomorphic in the same domains as X, X_ re-
spectively. This means that we can equivalently solve the new Riemann—
Hilbert problem for the pair (Y, ,Y_) with respect to the action of T.

Since the representations of tori always decompose into the direct sum of
irreducible representations which are one-dimensional, we conclude that the
above factorization enables us to reduce the given problem to the collection
of ones having the same form as classical Riemann—Hilbert problems.

It remains only to determine the exponents of the one-dimensional com-
ponents of the representation r(H). This can be easily done using the ef-
fective description of basic representations available for all classical groups
[1]. These descriptions are similar for all classical groups and therefore we
shall consider only one case, say, for Ay series.

Then basic representations are of the form s with 1 < ¢ < k, where
the exponent in brackets denotes the exterior degree of the standard rep-
resentation on C* [1]. The character of s() is given by the ith elementary
symmetric function in k indeterminates and the Weyl group W reduces to
the symmetric group Sy. It follows that this character coincides with the
elementary symmetric sum of the highest weight S(x; + - -- + z;) and the
exponents of one-dimensional representations of TP are given by the terms
of the corresponding symmetric sum for exponents of the loop f.

Notice now that each of the arising one-dimensional problems is simply a
classical Riemann—Hilbert problem for vector-functions vanishing at infinity.
By a classical result [122], the index of such a problem is equal to the
exponent of the coefficient. Collecting all these observations we obtain the
desired index formula. O

Remark 2.4. The Fredholm property of operator T is automatically
available due to the regularity and invertibility of the coefficient f. This
easily follows from the description of our problem in terms of holomorphic
principal G¢-bundles on P, which is presented below.

In terms of G-exponents one can also obtain a more precise description
of the space of solutions to GRHP.

Corollary 2.3. The dimension of the kernel of a« GRHP R, is equal to
the sum of all positive terms in the formal symmetric sum of exponents of
its coefficient f.

This follows from the proof of the theorem, since the corresponding fact
for one-dimensional reductions of our problem is well known [158].

We would also like to indicate one aspect of the loop group theory where
our result seems useful. Namely, a given loop, generally speaking, can
be attributed to various ambient loop groups by considering some natural
embeddings of the groups under consideration (e.g., U(n) C O(2nr)). This
may change both the highest weight and exponents and there arises an
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interesting problem of describing possible changes of exponents under such
embeddings of coefficient groups.

This problem is not of a merely theoretical interest because it is closely
related with the problem of effective computation of the exponents and
explicit factorization of a given loop. A natural way is to realize the group
in question as a matrix group by considering the matrix realization of the
representation r involved in the definition of GRHP, and then compute the
partial indices of the corresponding matrix function using the well-known
results of [32] and [113].

It should be noted that for wide classes of matrix functions there exist
effective algorithms for such computations which are easy to implement on
computer [32], [5]. Then it would remain to take into account the changes
of exponents caused by embedding G in a matrix group.

It should be noted that in some cases one can explicitly compute the
factors entering into Birkhoff factorization even for certain discontinuous
loops. Interesting results in this direction may be found in [49], [50], [77],
[78].

The same problems can be formulated with respect to arbitrary homo-
morphisms of the groups under consideration. For example, it would be
interesting to investigate the role played by the Dynkin index of such a ho-
momorphism. We delay a discussion of this issue to the future and pass to
another geometric topic related with GRHP.

It is well known that an adequate language for classical RHP is provided
by holomorphic vector bundles over P [136]. In the case of an arbitrary
compact group G there exists a natural connection between GRHP and
principal Gg-bundles over the Riemann sphere [136]. This connection works
in both directions. In particular, the results on the structure of solutions of
GRHP enable one to get some information on deformations of G¢-bundles.

Theorem 2.3. The base of the versal deformation of a holomorphic
principal Ge-bundle corresponding to a loop f has dimension dg, where
K = K(f) is the collection of exponents of f. Moreover, it is given by the
formula

d = Y (ki —k; —1). (2.5)
ki>k;

This can be derived from the geometric description of the Birkhoff strat-
ification provided by the above Decomposition Theorem. Indeed, each stra-
tum corresponds to a fixed isomorphism class of the bundles under consid-
eration [136]. In fact, the point (iii) of the Decomposition Theorem shows
that such strata possess natural transversals which, due to the smoothness
of strata, yield the germs of base of versal deformation [132]. At the same
time, the dimension dg may be computed by the general technique of the
deformation theory in terms of the first cohomology group of P with co-
efficients in the adjoint representation of G [132]. The formula (2.5) then
follows from (2.3) and Serre duality [136].
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Corollary 2.4. A holomorphic principal Ge-bundle is (holomorphically)
trivial if and only if oll exponents of the corresponding loop are equal to
zero.

Corollary 2.5. A holomorphic principal Ge-bundle is stable if and only
if all pairwise differences of its exponents do not exceed 1.

One can also explicitly compute various cohomology groups associated
with such G¢-bundles in terms of exponents which appears useful, for ex-
ample, in some applications of GRHP to nonlinear equations [39]. One can
also use the exponents for investigating which principal bundles can be re-
alized as subbundles of a given G¢-bundle. Notice that for U,-bundles a
complete solution of this problem was obtained in [141].

It is worth noting that it is also possible to formulate some reasonable
non-linear versions of GRHP: one has to consider the equation 2.1 with
respect to more general actions of compact groups, e.g., on their homoge-
neous spaces. In this context one can obtain some conditions in terms of
the exponents which guarantee solvability of a non-linear problem [83].

In conclusion of this section it seems appropriate to point out that re-
cently there appeared a number of papers which use the generalized Birkhoff
factorization for solving non-linear equations. Some results of such kind are
presented in [136].

A spectacular application of Birkhoff factorization to proving the exis-
tence of solutions of a non-linear equation on Lie group can be found in the
paper of H.Doi [39]. The literature devoted to applications of Riemann—
Hilbert problems to non-linear equations and integrable systems is very
ample and there is no possibility to discuss this issue here. We just indicate
a recent book of P.Deift [34] which contains a detailed exposition of sev-
eral advanced applications of Riemann—Hilbert to analysis and differential
equations.

3. LINEAR CONJUGATION PROBLEMS OVER C*-ALGEBRAS

In this section we introduce certain geometric objects over C*-algebras
which are relevant to the homotopy classification of abstract elliptic prob-
lems of linear conjugation. The abstract problem of linear conjugation was
introduced by B. Bojarski [20] as a natural generalization of the classi-
cal Riemann-Hilbert problem for holomorphic vector-functions. As was
later realized by the author [84], the whole issue fits nicely into Fredholm
structures theory [47], more precisely into the homotopy theory of operator
groups started by R. Palais [130] and developed by M. Rieffel [137] and K.
Thomsen [155].

Similar geometric objects appear in loop groups theory, K-theory, and
the geometric aspects of operator algebras, and have recently gained con-
siderable attention [136], [27], [18], [147], [170], [114]. This circumstance
enabled the author [84], [91] to develop a geometric approach to abstract
linear conjugation problems presented in this section.
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Recall that in 1979 B. Bojarski formulated a topological problem which
appeared important in his investigation of Riemann—Hilbert transmission
problems [20]. That topological problem was later solved independently in
[81] and [163] (cf. also [136]). Moreover, these results were used in studying
several related topics of global analysis and operator theory [27], [164], [82],
[84].

An important advantage of the geometric formulation of elliptic trans-
mission problems in terms of Fredholm pairs of subspaces of a Hilbert space
given in [20], was that it permitted various modifications and generaliza-
tions. Thus it became meaningful to consider similar problems in more
general contexts [84]. Along these lines, the present author was able to
develop some aspects of Fredholm structures theory [46] in the context of
Hilbert C*-modules [79], [119], [114], which led to some progress in the
theory of generalized transmission problems [84], [91].

Such an approach enables one, in particular, to investigate elliptic trans-
mission problems over an arbitrary C*-algebra. Clearly, this gives a wide
generalization of the original setting used in [20], [163], [27], [81], since the
latter corresponds to the case in which the algebra is taken to be the field
of complex numbers C. This also generalizes the geometric models for clas-
sical Riemann—Hilbert problems considered in the previous section of this
paper. It may be added that this approach enabled the author to clarify the
homotopy classification of abstract singular and bisingular operators over
C*-algebras [84].

Notice also that the setting of transmission problems over C*-algebras
includes the investigation of families of elliptic transmission problems pa-
rameterized by a (locally) compact topological space X. In fact, this corre-
sponds to considering transmission problems over the algebra of continuous
functions on the parameter space C(X), and classification of families of
elliptic problems of such kind becomes a special case of our general results.

To make the presentation concise, we freely use the terms and construc-
tions from a number papers on related topics, especially from [20], [18],
[79], [119], [117], and [156]. An exhaustive description of the background
and necessary topological notions is contained in [18], [79], [119], [117],
[114]. Actually, all necessary results can be found in the recent book [114]
which contains a detailed description of the theory of Hilbert modules over
C'x-algebras.

We pass now to the precise definitions needed to formulate a gener-
alization of a geometric approach to transmission problems suggested by
B.Bojarski [20]. We use essentially the same concepts as in [20], but some-
times in a slightly different form adjusted to the case of Hilbert C*-modules.

Let A be a unital C*-algebra. Denote by H 4 the standard Hilbert module
over A, i.e.,

HA:{{ai}, a €A i=1,2,...: ZaiafeA}. (3.1)
i=1



GEOMETRIC ASPECTS OF RIEMANN-HILBERT PROBLEMS 43

Since there exists a natural A-valued scalar product on H 4 possessing
usual properties [114], one can introduce direct sum decompositions and
consider various types of bounded linear operators on H,. Denote by
B(H 4) the collection of all A-bounded linear operators having A-bounded
adjoints. This algebra is one of the most fundamental objects in Hilbert
C*-modules theory [79], [119], [114].

As is well known, B(H 4) is a Banach algebra and it is useful to consider
also its group of units GB = GB(H4) and the subgroup of unitaries U =
U(Ha). For our purpose it is important to have adjoints, which, as is
explained, e.g., in [114], is not the case for an arbitrary bounded operator on
the Hilbert A-module H 4. In particular, for this algebra we have an analog
of the polar decomposition [114], which implies that GB(H ) is retractable
to U(H4). Thus these two operator groups are homotopy equivalent, which
is important for our consideration.

Compact linear operators on H 4 are defined to be A-norm limits of finite
rank linear operators [114]. Their collection is denoted by K (H ).

Recall that one of the central object in B. Bojarski’s approach [20] is a
special group of operators associated with a fixed direct sum decomposition
of a given complex Hilbert space. With this in mind, we fix a direct sum
decomposition of Hilbert A-modules of the form Hy = Hy + H_, where H
and H_ are both isomorphic to H4 as A-modules. As is well known, any
operator on H4 can be written as a (2 x 2)-matrix of operators with respect
to this decomposition. We denote by m; and w_ the natural orthogonal
projections defined by this decomposition.

Introduce now the subgroup GB, = GB,.(H4) of GB(H 4) consisting of
operators whose off-diagonal terms belong to K(Ha). Let U, = U.(Ha)
denote the subgroup of its unitary elements. To relate this to transmission
problems, we must have an analog of the restricted (Fredholm) Grassmanian
introduced in [136]. In fact, this is practically equivalent to working with
Fredholm pairs of subspaces which was used in [20]. To implement all this
in our generalized setting, some technical preliminaries are needed.

Recall that there is a well-defined notion of a finite rank A-submodule
of a Hilbert A-module [119]. This enabled A. Mishchenko and A. Fomenko
to introduce the notion of a Fredholm operator in a Hilbert A-module by
requiring that its kernel and image be finite-rank A-submodules [119]. It
turns out that many important properties of usual Fredholm operators re-
main valid in this context, too. Thus, if the collection of all Fredholm
operators on H 4 is denoted by F'(H 4), then there exists a canonical homo-
morphism ind4 : F(H4) — Ko(A), where Ky(A) is the usual topological
K-group of the basic algebra A [18] (if there is no possibility of confusion
we write ind instead of ind4).

This means simply that Fredholm operators over C*-algebras have indices
obeying the usual additivity law. In the sequel, we will freely refer to the
detailed exposition of these results in [117], [114].
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Granted the above technicalities, we can now introduce a special Grass-
manian Gry = Gry (Ha) associated with the given decomposition. It con-
sists of all A-submodules V of H4 such that the projection 7 restricted
on V is Fredholm while the projection 7_ restricted on V is compact. Us-
ing the analogs of the local coordinate systems for Gry(Heg) constructed
in [136], we can verify that Gry(H,a) is a Banach manifold modelled on
the Banach space K(H4). For our purpose it suffices to consider Gry as
a metrizable topological space with the topology induced by the standard
one on the infinite Grassmanian Gr*°(A).

Now the problem that we are interested in is to investigate the topology
of Gry(Ha) and GB,(H4). Note that for A = C this is the problem
formulated by B. Bojarski in [20].

The main topological results about these objects can be formulated as
follows.

Theorem 3.1. The group GB,.(H4) acts transitively on Gro (H ) with
contractible isotropy subgroups.

Theorem 3.2. All even-dimensional homotopy groups of Gry(Ha) are
isomorphic to the index group Ko(A) while its odd-dimensional homotopy
groups are isomorphic to the Milnor group K;(A).

Of course, the same statements hold for the homotopy groups of
GB,.(H ,), since by Theorem 3.1 these two spaces are homotopy equivalent.
We formulate the result for Gri (H4) because it is the space of interest for
transmission problems theory.

The homotopy groups of GB,.(H4) were first computed by the author
in [84] without considering Grassmanians. Later, similar results were ob-
tained by S. Zhang [170] in the framework of K-theory. The contractibility
of isotropy subgroups involved in Theorem 3.1 in the case A = C was es-
tablished in [136].

In the proof of Theorem 3.1, we will obtain more precise information
on the structure of isotropy subgroups. It should also be noted that the
contractibility of isotropy subgroups follows from a fundamental result on
C*-modules called the generalization of Kuiper’s theorem for Hilbert C*-
modules, which was obtained independently by E. Troitsky [156] and J.
Mingo [117]. Particular cases of Theorem 3.2 for various commutative C*-
algebras A may be useful to construct classifying spaces for K-theory.

The solution of Bojarski’s original problem is now immediate (cf. [81],
[163], [136]).

Corollary 3.1. Even-dimensional homotopy groups of the collection of
classical Riemann—Hilbert problems are trivial while odd-dimensional ones
are isomorphic to additive group of integers 7.

Note that the non-triviality of these groups can be interpreted in terms
of the so-called spectral flow of order zero pseudo-differential operators,
which has recently led to some interesting developments by B. Booss and
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K.Wojciechowsky [27]. This has shed a new light on the Atiyah-Singer in-
dex formulas in the odd-dimensional case. Similar results hold for abstract
singular operators over A (for the definition of abstract singular operators
see [84]).

Corollary 3.2. Homotopy groups of invertible singular operators over a
unital C*-algebra A are expressed by the relations

o = Ko(A), m=ZOLZ® K (A);

3.2
Ton = Ko(A), Ton+1 = K1 (A), n e Z+. ( )

Specifying this result for the algebras of continuous functions one can,
in particular, compute the homotopy classes of invertible classical singular
integral operators on arbitrary regular closed curves in the complex plane
C (see [81], [84] for the precise definitions).

Corollary 3.3. If K C C is a smooth closed curve with k components,
then homotopy groups of invertible classical singular integral operators on
K are expressed by the relations (where n is natural and arbitrary):

WOEZ, 7T15Z2k+1; 7T2n:0, 7T2n+1EZ. (33)

As shown in [84], this information also enables one to find homotopy
classes and index formulas for the so-called bisingular operators. The lat-
ter can be defined by purely algebraic means, starting from the algebra of
abstract singular operators. One is thus led to the notion of a bisingular
operator over a C*-algebra and to the description of homotopy classes of
elliptic bisingular operators. The notion was introduced in [84] and the
description of index ranges follows from the results of this paper.

Corollary 3.4. Abstract elliptic bisingular operators over a C*-algebra
A are homotopically classified by their indices taking values in Ko(A). The
index homomorphism is an epimorphism onto Ky(A).

As is well known, the usual bisingular operators correspond to certain
pseudo-differential operators on the two-torus T? [42]. In a similar manner,
one may recover some of the known results on homotopy groups of invertible
pseudo-differential operators over other two-surfaces [44].

One can also obtain an index formula for abstract bisingular operators
in terms of homotopy classes of their operator-valued symbols which can
be described by Theorem 3.2. For brevity, the results concerning the index
formulas for bisingular operators will not be presented here.

Theorem 3.1 is proved below after developing the necessary geometric
constructions over C*-algebras. We also present the outlines of proofs of
Theorem 3.2 and corollaries.

It is standard in C*-algebras theory to identify subspaces with projec-
tions. Thus direct sum decompositions of the type described above corre-
spond to the so-called infinite Grassmanian over A which can be written
as
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Grm(A):{peB(HA): p=p’=p* and pNIdNId—p}, (3.4)
where ‘~” denotes the well-known equivalence relation for projections in-
troduced by Murray and von Neumann [18].

Fixing such a decomposition is equivalent to fixing a projection with
image and kernel being A-modules of infinite rank. Having fixed such a
projection p which will play the role of the projection n4 introduced above,
one can readily verify the useful characterization of GB,.

Lemma 3.1. GB.(H4) = {x € B(Ha) : zp—pzx € A® K(H)},
where K (H) stands for the ideal of compact operators in the usual separable
complex Hilbert space H.

The aforementioned (2 x 2)-matrix representation of z € B(H4) can be
rewritten as

Tl T12
z = (x21 $22) , (3.5)

where z11 = pzp, 212 = pz(1l — p), T21 = (1 — p)zp, T22 = (1 — p)z(1 — p).

It is obvious now that GB,.(H 4) is *-isomorphic to the group of units of
the C*-algebra consisting of (2 x 2)-matrices over B(H 4) whose off-diagonal
entries are the elements of A ® K (H). Further, from the existence, additiv-
ity, and stability properties of the Fredholm index (see diagram 3.6 below)
it follows that, for z € GB,.(H4a), both z11 and zee should be Fredholm
operators with the opposite indices, which is important for the sequel.

Using simple algebraic identities for such (2 x 2)-matrices (explicitly writ-
ten in [136] for matrices over B(H)), and the fact that K (H4) is an ideal
in B(H4,), it is easy to verify that if such a (2 x 2)-matrix is applied to
an element V of Gry(H,), then the restriction to V' of the first projection
74 18 transformed into z1174 + z12 and thus remains Fredholm, while the
restriction to V' of the second projection gives Zoom_ + 21 and remains
compact. This means that 2V is again in Gry (H4) and we have proved

Lemma 3.2. The restricted linear group GB,.(Ha) acts on the special
Grassmanian Gry (Ha).

Now, it is evident that to determine the isomorphy class of stability
subgroups it is sufficient to identify it for a “coordinate submodule” H,
in GB,(H,4). It readily follows from the existence of polar decompositions
that the latter subgroup is homotopy equivalent to the isotropy subgroup
of H, in the restricted unitary group U,.(H4) (which acts on Gry (H4) as
a subgroup of GB,.(H 4)).

Analyzing the description of a similar isotropy subgroup in the case of
the usual Hilbert space given in [136], one easily finds that in view of the
above technical results for Hilbert C*-modules the same conclusion holds in
our case, t00.
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Lemma 3.3. The stability subgroup of Hy in U.(Ha) is isomorphic to
U(Hy) x U(HZ).

Recall that the latter group is contractible according to the result of E.
Troitsky and J. Mingo [156], [117].

To prove Theorem 3.1 it remains to check the transitivity, which is the
most delicate part of the proof. We will use the method of proof from [136]
adapted to our situation. Note that Fredholm operators with vanishing
indices can be transformed into invertible ones by a compact perturbation.
The corresponding statement for Hilbert C*-modules is expressed by the
so-called fundamental commutative diagram of Fredholm structures theory
[47], [114]. In our case it has the form

GB(HA) E— FO(HA) E— F(HA) E— B(HA)

| | [

GB(H4)/GK(Hy) —— Gy —— G —— Qa.

Here F(H4) and Fy(H 4) stand for semigroups of all Fredholm operators
and those with the zero index, respectively. G denotes the group of units of
the factor-algebra Q4 = B(H4)/K(H4) (Calkin algebra over A) and Gy is
its identity component. The right vertical arrow is the Calkin factorization
and the left one is the factor-homomorphism on the factor-group below.
The upper arrows are inclusions.

The commutativity of this diagram is well known to experts and follows
from the facts established in [47], [114] (cf. also [18]). Also, it is a standard
verification that the left lower corner horizontal arrow is a homeomorphism.
In topological terms, the latter fact means that Gy is the classifying space
for the K-functor [18] and its homotopy groups are isomorphic to the cor-
responding K-groups of the basic algebra. This conclusion is explained in
full detail in [47], [114].

Let us now return to our situation and take an A-submodule V' belonging
to the special Grassmanian Gry (H4). By definition, there exists a Fredholm
operator T' € B(H,, H_) such that V is its graph, i.e., is the set of points
(z, Tz) with respect to the given decomposition of H 4.

To prove the transitivity of action, it is sufficient to obtain a (2 x 2)-
matrix M € GB,(H 4) of the form described above such that M(H)=V.
For this, we consider first the diagonal matrix diag(T,T*), where T™ is the
adjoint operator of T'. From the additivity property of the Fredholm index it
follows that this matrix has the zero index when considered as an element of
B(H 4). Considering its class in the space of (2 X 2)-matrix over the Calkin
algebra B/K, one sees that it is invertible. Thus our diagram shows that
this matrix can be turned into the invertible one by a compact perturbation.
In other words, there exist compact off-diagonal terms za1,%12 such that
our diagonal matrix completed with such entries becomes invertible as an
operator on H,4. This already implies the existence of the desired matrix
M. One could also finish the proof arguing as in [136], Ch. 6.
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The simplest way to verify Theorem 3.2 is as follows. One notices that
Proposition 6.2.4 of [136] suggests that G B,.(H 4) should be homotopy equiv-
alent to F'(H,). This would already prove Theorem 3.2 because from di-
agram 3.6 it follows that homotopy groups of F(H 4) are isomorphic with
K-theory of A. In fact, it may be actually proved that GB,(H4) is homo-
topy equivalent to F'(H,), using a suitable modification of the argument
from [136], Ch. 6. However, in order to make this argument rigorous one
needs to develop a substantial portion of Hilbert modules theory. For the
sake of brevity, here we prefer another way, more algebraic in spirit, which
closely follows the lines of [170]. In doing so we will borrow freely the
concepts and results from [117], [170], and [114].

Throughout this section we will use the identification of direct sum de-
compositions with projections and fix an element p € B(H4) with p = p? =
p*. Below we will omit some tedious details which are standard for the
theory of operator algebras and K-theory.

As was explained, it suffices to compute the homotopy groups of the
restricted linear group GB,.(Ha). Denote by GB2(H,) its identity com-
ponent. As is well known, in dealing with K-theory invariants, it is useful
to consider the conjugations by unitary operators. With this in mind, we
introduce the notation UpU* = {vpv* : v € U.(Ha)} = {vpv* : v €
GB.(Ha), vv* = v*v = Id}. The following simple proposition is verified
using the standard techniques of K-theory (cf. [18]).

Lemma 3.4. U(upu*)U* is the path component of UpU* containing

upu*.

One also has an equivalent description of the Ky-functor which was al-
ready used in [117] and [170].

Lemma 3.5. For any such p € Gr°(4), the fundamental group m (UpU*)
is isomorphic to Ko(A).

Indeed, later we will produce an explicit isomorphism between these
two groups in terms of some partial isometries associated with elements
of GB,.(H 4), which plays an important role in the argument.

Following [170], a unitary operator z € U,(H 4) will be called p-adapted
if both off-diagonal terms of the corresponding (2 x 2)-matrix (see formula
3.5) are some partial isometries in A @ K(H).

It is easy to calculate some associated projections needed in the sequel.

Lemma 3.6 ([170]). If z is ¢ p-adapted unitary, then p — 1123, p —
31211, (Id — p) — 22023y, (Id — p) — xhy200 are projections in A @ K(H).

The following results from [170] amount to a partial isometry description
of the K-functor. Equivalent statements can be found in [117] and [114]. A
similar factorization for the case A = C' was also used in [136].

Proposition 3.1. Any X € GB,.(H4) can be represented as
z = (Id + k) - diag(z1, 22) - u, (3.7)
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where k € A® K(H), the second factor is invertible, and v is a p-adapted
unitary.

Recall that according to one of the basic constructions any partial isom-
etry b € A® K(H) defines a class [bb*] € Ky(A) [18]. The following propo-
sition follows from this construction and the equivalence relation in Ky(A).

Proposition 3.2. The class
[u12uy] — [u21ug; | € Ko(A) (3.8)

is independent of a p-adapted unitary u entering into a representation of a
giwen x € GB.(Hya) in form 3.7.

Now we are able to define the mappings giving the desired group isomor-
phisms. Our strategy is to consider the group GB, as a fibration over its
homogeneous space GB,/GK and, next, to compute the homotopy groups
of GB,/GK, since the homotopy groups of the fibre GK(H4), being the
standard participants in K-theory, are well known.

Observe first that representation 3.7 implies the equality of cosets x -
GK(Ha) = u-GK(H 4) of the elements z and v with respect to the subgroup
GK(H4). By Lemma 3.5, for such u we have the following direct sum of
projections:

(p — ursuly) © (uiouly). (3.9)
As is well known, direct sums do not have any influence on the stable equiv-
alence relation involved in the definition of Ky(A). In other words, it is
meaningful to assign to element 3.9 the class

[u12uts] — [u21us] € Ko(4) (3.10)
A connection between the considered basic topological spaces is established
by
Lemma 3.7. The element defined by (3.9) belongs to UpU*.

For the proof it suffices to observe that this statement follows from Propo-
sition 3.1 in [170] by which for any two projections r1,r. € A® K(H) there
exists unitary w € GK(H4) such that wpw* = (p — 1) @ rs.

By virtue of these lemmas we arrive at the basic correspondence giving
the desired isomorphism at the level of fundamental groups. Below it is
assumed that the base point of GB,. is the identity, and that of UpU* is p.

Proposition 3.3. The maps defined by the relations
u-GBr(Ha) = [(p — u12uis) ® us1ug lupux —
= [ug1us; ] — [u12u]y] € Ko(A) (3.11)
are the bijections inducing the isomorphisms
m0(GB,)(= GB,(H4)/GK(H,)) = m(UpU™*) 22 Ky(A). (3.12)

Now the results concerning the computation of higher homotopy groups
can be formulated as follows (cf. [170]).
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Proposition 3.4. For any natural n one has the isomorphisms
Ton+1(GBr(Ha)) = mant1 (UpU™) = K, (4), (3.13)
Toan+2 (GBT(HA)) = Toan+2 (UpU*) = Ko(A) (314)

These isomorphisms can be verified by means of the long exact sequence
of homotopy groups associated with a natural operator fibration over UpU™
with the contractible total space Ux(A) which is, as above, the group of
unitaries in the unitization of A @ K(H).

To this end, we consider the map defined by u — upu*. Clearly, its fibers
are all isomorphic with the commutant of pin U, i.e., (p)v = {u € Us(4) :
up = pu}. It is also simple to check that this map is a submersion and,
according to an infinite-dimensional generalization of Ehresmann’s theorem
[46], defines a locally trivial fibration with the fiber p'.

The long exact homotopy sequence of this fibration breaks, as usual, into
short exact sequences:

0= me 1 (UpU*) = mip(p') = 7 (Uss(4)) — 0. (3.15)

Since the homotopy groups of the stabilized unitary group Us (A) are
isomorphic to the K-groups of A, these exact sequences immediately imply
that man 0 (UpU*) =2 Ko(A4) and wap41 = K1 (A). Recalling that UpU* is
weakly homotopy equivalent to GB,.(H 1), we obtain the desired conclusion.

Now Theorem 3.2 becomes an immediate consequence of Propositions 3.3
and 3.4.

We will make a few comments on the formulations and proofs of the
corollaries.

Corollary 3.1 is simply a special case of Theorem 3.2, where A = C(S?!)
is the algebra of continuous functions on the unit circle, which is clear from
the interpretation of Riemann-Hilbert problems given in [21]. By a similar
reasoning, Corollary 3.3 follows from Corollary 3.2.

Corollary 3.2 can be derived from Theorem 3.2 using the scheme of [84],
where the same result for classical singular integral operators on closed con-
tours was derived from the solution of the Bojarski’s problem formulated
above. To do that, we need first to clarify which one of several possible defi-
nitions of abstract singular operators (cf. [20], [135]) is actually appropriate
in our setting.

We will use a modification of the approach of [135] (cf. [84]). Fix an
invertible operator U € GB(H 4) with the properties:

1. Both operators U and U~! have spectral radii equal to 1;

2. There exists a projector p € GB(Ha),p ~ Id ~ Id — p, such that

Up=pUp, Up#pU, pU'=pU 'p; (3.16)

3. coker(U | im p) is an A-module of finite rank.

There are many such operators. For example, one may take the right
shift in a Hilbert A-module and the projector on the “positive half-space”
(these are the abstract counterparts of multiplication by the independent
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variable and the Hardy projector from the theory of classical singular in-
tegral operators [135]). Denote by R(U) the C*-subalgebra generated by
U and U~!. It is trivial to verify that for any T' € R(U) the commutator
[T,p] = Tp— pT is compact, i.e., [T,p] € K(Ha).

Moreover, the information about A-Fredholm operators contained in di-
agram 3.6 enables one to apply the arguments from [135] and obtain a
description of invertible elements in R = R(U).

Proposition 3.5. Invertible operators are dense in R(U). They are
characterized by the condition that at least one of their restrictions on im p
orim (Id — p) is a semi-Fredholm operator [135].

Following [135], any operator of the form
T=Lp+Mqg+C, (3.17)

whereq=1—-p, L, M € R(U), C € K(H4), is called an abstract singular
operator over A (associated with the pair (U,p)). The totality of all such
operators is denoted by S(U).

This is a true generalization of the usual singular operators which are
obtained when A = C, U is the unitary operator of multiplication by an
independent variable in H = Ly(S!), and p is the Hardy projector (for
details see [135]).

A standard application of Gelfand theory [18] provides symbols of sin-
gular operators which are functions on the spectrum of U. Assuming U
to be unitary, it follows that with any operator T of form 3.17 one may
naturally associate a pair of continuous functions h(T") = (h(L), h(M)) on
the unit circle. A symbol is called nondegenerate if both its components
are nowhere vanishing on S. As usual, the index ind h(7T') of such a non-
degenerate symbol is defined as the difference of argument increments of its
components along S'. Thus we can now formulate the key characterization
of elliptic singular operators.

Proposition 3.6. An operator T € S(U) of form 3.17 is Fredholm if
and only if its symbol is nondegenerate, i.e., both its coefficients L, M are
invertible operators.

After the above preparations, the proof runs in complete analogy with
that from [135]. To compute 7.(S(U)) over A one has only to compute
the homotopy groups of pairs of invertible operators in GR(U). The latter
group being homotopy equivalent to GB,.(H 4) with 7 = p, the answer is
provided by Theorem 3.2. Adding the groups from the latter theorem to the
homotopy groups of nondegenerate symbols computed in [81], one obtains
Corollary 3.2.

Finally, Corollary 3.4 can be obtained from Corollary 3.2 using the scheme
of [81], where this was done for the classical counterparts of our results.
However, this requires a lot of technical preparation. In particular, one
needs to generalize the tensor product construction of conventional bisin-
gular operators from the algebra of pseudodifferential operators on the unit
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circle (see [42]). These technicalities are rather tedious and require a sepa-
rate presentation.

Note that in the geometry of Hilbert C*-modules there are some related
topics which admit a nice presentation in terms of special Grassmanians and
transmission problems. Part of these results can be found in [170], [114].

Here we will discuss only one topic most closely related to the geometric
study of elliptic transmission problems [20], [136]. The point is that our
Theorem 3.2 suggests that there should exist a finer geometric structure of
the Grassmanian Gry (Ha) expressed in terms of a stratification similar to
the Birkhoff stratification by partial indices of invertible matrix-functions
on the unit circle [68], [19] which plays a prominent role in the classical
theory of transmission problems [61], [158].

Such a stratification can be constructed using the geometric language
developed in this paper. To this end, let us fix a path component Gr, of
the Grassmanian Gry (Ha) corresponding to a certain element y € Ky(A).
By Proposition 3.3 it is clear that <y is essentially the Fredholm index of the
projection 7y restricted to any element V of this component.

Since Ky(A) is a group, it is reasonable to consider all pairs («,3) €
Ky x Ky, where o — 8 = . For any pair denote by B, g the subset of all V'
such that the following relations hold for classes in Ky(A) (recall that any
projective A-module generates a class in Ky(A4)):

[kermy | V] =a, [cokerny |V]=8. (3.18)

Evidently, such a collection is a subset of the given component. Obviously,

Gry =|JBa,s. (3.19)

The path component Gr, being arbitrary, we obtain a natural decom-
position of the special Grassmanian Gry which is similar to the classical
Birkhoff stratification [19], [68] (in fact, our decomposition is cruder, which
can be seen in the case of classical transmission problems with respect to
the unit circle). Of course, it is tempting to verify which properties of the
Birkhoff stratification are still valid in our generalized setting and to gener-
alize some of the results on its geometric structure obtained in the classical
case [21], [136]. This topic awaits further investigation but certain results
are already available of which we present only two.

Proposition 3.7. All B, g are Banach analytic subspaces of Gry (Ha)
in the sense of [41].

Proposition 3.8. Decomposition 3.19 is a complex analytic stratification
of Gry(Hya) [41].

These results are of the technical nature and require a big portion of the
Banach analytic geometry in the spirit of [41] which would be irrelevant to
the present exposition. We give them only to indicate more connections
with nontrivial geometric problems one of which will be formulated below.
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Note that a less precise version of Proposition 3.7 was obtained in the
classical case (A = C) by S. Disney [38]. The classical counterpart of Propo-
sition 3.8 was implicitly used by B. Bojarski [19] in his investigation of the
stability properties of partial indices.

We conclude with a purely geometric problem suggested by our construc-
tions, which leads to highly nontrivial homological computations even in the
classical case [38], [58]. Recall that a complex analytic subset of a complex
Banach manifold has a well-defined cohomological fundamental class in the
cohomology of the ambient manifold [47]. A discussion of the orientation
classes for K-theory in [48] shows that the same is valid for extraordinary
cohomological theories like K-theory. Hence fundamental classes of By, g
are well defined and there arises a problem of computing them in terms of
K-theory. As was mentioned, some results for the classical case were ob-
tained in [38], but our knowledge of these fundamental classes is still very
poor.

An intriguing open problem is to construct a finer analytic stratification
of the special Grassmanian Gr, (H4) similar to that in [136] to obtain more
topological invariants for transmission problems. There is some evidence
that this should be possible for commutative A.

Our constructions and results can also be interpreted in terms of Fred-
holm structures over A. Granted diagram 3.6, the basic notions of this
theory can be introduced as in [47]. Several important results of Fredholm
structures theory have direct analogs for structures over A. In particular, a
family of A-Fredholm operators parameterized by points of a manifold M
defines an A-Fredholm structure on M.

Applying this result to our restricted Grassmanian Gr, (H 4), one obtains
an A-Fredholm structure on it. Moreover, the Birkhoff strata B,g are
Fredholm submanifolds with respect to this structure, and following [38] one
can introduce their Chern classes and express them as pull-backs of universal
classes carried by the classifying bundle for A-Fredholm structures. Some
results in this direction were obtained in [87].

4. RIEMANN—HILBERT PROBLEMS IN HIGHER DIMENSIONS

Since holomorphic functions can be considered as solutions to the Cauchy-
Riemann system in the plane, a natural way of introducing multi-dimensio-
nal generalizations of the classical Riemann—Hilbert problems is related with
considering elliptic first order systems of differential equations with constant
coefficients on Euclidean spaces of higher dimension [162]. For brevity, such
systems will be called simply elementary elliptic systems (EES).

Given such a system S one can take a smooth domain D, in the source
space of the system, choose a matrix function G (of proper size) on the
boundary 8D, and look for couples X4 of solutions to the system S in
domains D, and D_ (the complement of D, ) satisfying the linear conju-
gation condition of the form (1.1). This gives a natural analogue of the
Riemann—Hilbert problem considered as a problem of linear conjugation.
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In many cases it is also important to consider a more general type of
(local) boundary value problems for EES which, by a slight abuse of termi-
nology, are also called Riemann-Hilbert problems for EES [151], [84]. Linear
conjugation problems appear to be a particular case of such problems [151],
[84]. In multi-dimensional setting, those generalized Riemann-Hilbert prob-
lems exhibit more complicated behaviour than linear conjugation problems.
In particular, a longstanding problem was to characterize those EES which
posses elliptic Riemann—Hilbert problems [152], while for linear conjugation
problems this issue is substantially more simple (see Theorem 4.8 below).

For these reasons in the sequel we pay main attention to generalized
Riemann-Hilbert problems. They possess a number of remarkable proper-
ties and have gained considerable attention [17], [125], [31]. In particular,
such problems for Euclidean Dirac operators play significant role in Clifford
analysis [31], [27], [62], [125].

In many situations it is desirable that such problems could be described
by Fredholm operators in appropriate functional spaces. The general theory
of elliptic boundary value problems indicates a natural approach to this
topic [162], [27]. In particular, they can be reduced to a system of integral
equations on the boundary [162] and this approach appeared quite effective
in the case of linear conjugation problems for EES defining quaternionic
regular functions [142].

However this approach does not automatically lead to effective conditions
of Fredholmness and there does not seem to exist a version of Fredholm
theory for Riemann—Hilbert problems applicable in the case of an arbitrary
EES. Actually, it is well known that such systems do not always possess
local elliptic boundary value problems [17] and some natural boundary value
problems fail to be Fredholm.

In line with the discussion in previous sections, we will only deal with
Fredholm boundary value problems for a class of especially well-behaved
EES called generalized Cauchy-Riemann systems (GCRS) which were in-
troduced by E.Stein and G.Weiss [150]. Even for such systems, the problem
of describing those of them which possess elliptic Riemann—Hilbert problems
is quite non-trivial and remained unsolved for a long time (for a compre-
hensive review of the topic see [151]). A good understanding of this issue
would open a way of generalizing many results of previous sections to higher
dimensions so it is of a major importance for our approach and we will con-
sider it in some detail.

More precisely, we discuss the Riemann—Hilbert problems for generalized
Cauchy-Riemann systems. In order to provide a visual description of the
class of GCRSs let us first present some basic results about the structure of
such systems. The results presented below are scattered in several sources
[150], [62], [151], [152] so bringing them together seemed to be reasonable.

It should be also noted that at present there exist two approaches to
the Fredholm theory of Riemann-Hilbert problems for GCRS. The first one
is direct and uses an explicit form of the Shapiro-Lopatinski condition for
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GCRS obtained in [152]. The second approach used in the author’s papers
[91], [93] is more sophisticated. It relies on some recent results about elliptic
operators and K-theory [10], [71].

The direct approach permits a self-contained exposition of many aspects
of Fredholm theory for GRHPs so we present the main results available
within approach of [151], [152]. However the second approach is indispens-
able in order to complete the list of GCRS possessing elliptic GRHP (see
Theorem 4.6, 4.7 below) but it uses rather complicated topological machin-
ery in the spirit of K-homology approach to boundary value problems [10],
[71]. It would be hardly possible to give a reasonable exposition of this
topic in a paper of such length so we just present the main results and
briefly mention the related concepts.

To begin with, consider a general homogeneous elliptic first order system
with constant coefficients of the form

(EES) S M ow _y,

ja—
.
=0 J

.

where M; are constant complex (m x m)-matrices and w is a differentiable
mapping from R*+1 to C™.

Definition 4.1 ([150]). If for every differentiable solution w of the system
(EES) all of its components w;, j = 1,...,m, are harmonic functions, then
(EES) is called a generalized Cauchy—Riemann system.

The ellipticity of such an (EES) becomes an easy consequence [150].

Theorem 4.1. Every generalized Cauchy—Riemann system of the form
(EES) is elliptic, i.e.,

det (i)\ij) #0
=0

for all A= (Xo,...,An) € R*1\ {0}.

Indeed, if this is not so, then there would exist two vectors A # 0 as
above, and v # 0, v € C™, such that

(i )\ij) v=20.
j=0

From that one can conclude by straightforward calculations that the vector-

function
w(z) = (exp Z )\jxj) v
=0

is a non-harmonic solution and therefore (EES) is not a generalized Cauchy—
Riemann system.

Remark 4.1. If (EES) is elliptic, then every matrix M; is necessarily
invertible. By a left multiplication by M " the system (EES) is transformed
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to
ow a_w ow

Ea_x()+A13x1+”'+AnE:0 (4.1)
with A; = My'M;, 5=0,...,n, Ay = E = identity.

In the sequel we always consider generalized Cauchy—-Riemann systems
which are already of the form (4.1, which apparently does not cause the
loss of generality. The following two theorems characterize GCRS by the
properties of their coefficient matrices.

Theorem 4.2 ([151]). Let the system 4.1 be a generalized Cauchy—
Riemann system, then the coefficient matrices satisfy the relations

AY=-E, j=1,...,n,

4.2
AiAj-i-Ain:O, i,j=1,...,n, i#]j. ( )

Proof. The proof is direct and instructive so we present it following [151].
Putting Ag = FE consider the function

w(z) = 2z;3;b — (A7 A; + x?Aj_lAi)b, i # 7,
where b is an arbitrary vector from C™. Then w is a solution of 4.1 because
we have
8 8 8 8
B+ M G+ + A B = A Je + Ay B =
= Ai(2.’l:j - inAi_lAj)b + Aj(?.’l:i - ijAJTlAi)b =0
Furthermore, one has
Aw = —2(A;"A; + A7 A)b.
Agsuming (4.1) to be a generalized Cauchy—Riemann system means that

Aw = 0 must hold. This and the fact that b can be chosen arbitrarily,
yields

A7VA + ASTA =0, 6,5=0,...,n, i#]. (4.3)
Putting ¢ = 0 we obtain
Aj_1 =—-A; and A? =—F for j=1,...,n.
This combined with 4.3 gives
AA; +A;A, =0, 4,5=1,...,n, i#].
So the desired relations are verified. O

Theorem 4.3 ([151]). Let w be a solution of the system (4.1) from
the Sobolev space W2 (G) and let the coefficient matrices of (4.1) satisfy the
relations

AiAj + A]Al = —2(51']'E, ,7=1,...,n. (4.4)

Then w 1s a harmonic vector in the domain G.
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Proof. For a twice continuously differentiable solution w we have

7] ~ 7] 7] = 7]

E—-Y Aj— ||E—-) A — =0.

( 0z ]2:; I axj) ( Oz ]2:: I ij)w(x)

A formal calculation using 4.4 shows that the second-order operator is just
the Laplacian and so w € C?(G) has to be harmonic. Now, assuming
that w € W; (G), the Weyl lemma [162] can be used in a standard way to
complete the proof. O

Remark 4.2. The above algebraic relations are of course the the famous
relations for the generators of a Clifford algebra Cl,, [62]. The generalized
Cauchy-Riemann systems are often defined by postulating the algebraic
relations 4.4 so they can be interpreted in the context of Clifford analysis
[31]. Thus A; are often consider not as matrices but as so-called hyper-
complex units (generators of a Clifford algebra). Here we work exclusively
with matrices because this permits to apply the same considerations to
more general systems. Hyper-complex systems can of course be transformed
into matrix notation by writing every hyper-complex component as a single
equation. The dimension of the obtained coefficient matrices is always of
power of two.

Thus in the sequel we deal with systems of the form

Ow Ow Ow
E6—%+A16—m+"'+A"E_O’
AiAj + AjAj = —2(5ijE,
where A; are constant complex (m x m)-matrices and w is a vector-function
with values in C™.

In fact, by taking a closer look at the coefficient matrices one can specify
all generalized Cauchy—Riemann systems explicitly. A natural way to do
that is by referring to the representation theory of Clifford algebras [62].
Indeed, it is easy to see that such matrices A; define a representation of a
Clifford algebra Cl, of an n-dimensional vector space V [62]. This inter-
pretation of matrices A; leads to an explicit description of their structure
since representations of Clifford algebras are completely known.

We do not reproduce here the general definition of a Clifford algebra [62].
For our purposes it is sufficient to recall that by choosing an orthonormal
basis e; in V one can describe Cl,, as the associative algebra generated by

(4.5)

eo=1, e1,e2...,6,

with the following properties:

(a) ef=-1, j=1,...,n,
(b) €i€; = €5€; = 0, ] 7é j, i,j = 1, ceay Iy (4.6)
(©) (eiej)er = eilejer).
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Generators e; are sometimes called hyper-complex units [62]. Obviously,
each product of generators can be (up to a sign) transformed to one of the
following expressions:

1, e1,...,6n, €1€2,€1€3,...,€1€2€3,...,€1€2 " En. (4.7)

These products are linearly independent and provide a basis for Cl,, and
for this reason it is sometimes said that Cl,, is generated by hyper-complex
units e;.

Thus the matrices A;, j = 1,...,n, in the system 4.5, can be considered
as a generating system of Cl,, because they satisfy the relations 4.6. Now
we recall some notions and results from the theory of representations which
can be found in [1], [62].

In order to formulate an explicit description of matrices A;, recall that
apart of the usual matrix sum and product two other operations over ma-
trices are used in the theory of representations. We denote these operations
by + and x respectively. Let A and B be two square matrices of dimension
p and q respectively, then one defines:

A 0 AxB 0,11.B a12B e alpB
0 B)’ e

ALB = (
(J,plB G,I,QB e appB

The matrix A x B is called the Kronecker product of matrices A and B

[1]. It is obtained by multiplying each element of A with each element of B.

For the operations just defined the following computational rules are valid:

(a)  (A1+A42) + (B1+B2) = (A1 + B1)+ (42 + By),

(b) A(A1+45) = A1 +2As,

(c) (A1+A42)(B1+Bs) = A1 B +A45Bs, (4.8)
(d) A X (By +Bs)=AX B, + AX By,

(e) (A1 X A9)(By X Bs) = A1 By X A3Bs.

For a finite dimensional vector space V denote by L(V) the associative
algebra of linear transformations of V.. A representation of Cl,, is defined as
any homomorphism of associative algebras D : Cl,, — L(V). After fixing a
base in V each element s € Cl,, becomes represented by a matrix which we
again denote by D(s). Thus we do not distinguish between a representation
and its matrix realization.

The dimension of the space V is called the degree of the representation.
A representation is called ezact if its kernel is trivial. Two representations
A(s) and B(s) of the same degree are called equivalent, if there exists a
non-singular (m x m) matrix P such that

A(s) = PE(s)P™! Vs € Cl,.
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In other words we are allowed to perform a coordinate transformation P
in V under which the system of matrices D(s) becomes PD(s)P~!, which
also defines a representation. Thus an equivalent system of matrices is
nothing else than the same system of linear transformations expressed in
another coordinate system. Representation D is said to be reducible, if
there exists a proper subspace of V invariant under D, i.e., every vector of
this subspace is mapped onto a vector of the same subspace by every linear
transformation D(s), for s € Cl,,. Otherwise D is called irreducible.

Choosing the coordinate system suitably, a reducible representation can
be brought to the form

oo = (73? 5%) -

If V is the direct sum of two invariant subspaces, then in an appropriate
base we have

D(s) = (D10(S) D20(s)) = D1 (s)+Ds(s).

D, (s) and D5(s) describe the transformations taking place in the both sub-
spaces. We say that the system D(s) splits .

A representation is called completely reducible, if it is irreducible or it
splits into direct sum of several irreducible representations. As is well known
that each representation of a Clifford algebra is completely reducible [62].
From these definitions it is clear that in order to completely determine a
representation of Cl,,, it is sufficient to specify only the matrices representing
the generators of Cl,,.

As is also well known, when considering the representations of Cl,, it is
reagonable to distinguish two cases depending on whether n is even or odd.

Case (a): n = 2k

Define the following matrices:

(i 0 (0 i (0 1 (01
P=V\o —i)» 27 \i o) T7\=1 0/ E7\1 o)’
and for j =1,...,k put:

Pi =1 - TX " XTXPXEX-"-XE

y ’ (4.9)
Oj =1 TX - XTXOXEX " XE,
where the factors p and o appear at the jth position and the Kronecker
product contains k factors. Using 4.8(e) one can easily prove that the 2k
matrices 4.9 satisfy conditions 4.6. Therefore

€251 —* Pj, €25 — 0j (4.10)
is a representation of Cla;, of degree 2F. We have the following

Proposition 4.1. The above representation of Clay is irreducible and
isomorphic to the matrix algebra Myx. Moreover, each irreducible represen-
tation of Caoy, is equivalent to irreducible representation (4.10) so it is also
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isomorphic to Myn. Every representation of Cloy, is exact and its degree is
a multiple of 2%.
Case (b): n =2k +1
Put
To=t6-7TX7Tx---x7 (kfactors),

and define the matrices representing generators by setting:
€1 — pj, €25 =05, Wp —T0, j=1,...,k, (4.11)
and
esj_1 — —pj, €25 = —0j, wWp— —To, j=1,...,k. (4.12)

It is straightforward to see that both these assignments define represen-
tations of Clagy1.

Proposition 4.2. The above representations of Clagi1 are both irre-
ducible and non-equivalent. Both the irreducible representations (4.11) and
(4.12) are of degree 2%, and Clay, 1 is isomorphic to the direct sum of two
matriz rings Mor. A representation of Clapy1 is exact if and only if its
decomposition into o sum of irreducible representations contains both (4.11)
and (4.12) at least once. The degree of each representation is a multiple
of 2%.

Let us also explain how the matrices p;, o; and 79 may be constructed
recursively. Let p}, o and 7 be the representation matrices of degree 2k—1,
then for matrices p;, o; and 79 of degree 2¥, one has:

. (0 iE (0
Pr=p XE= iE 0 y Pj+1 =T X p; = 0 _pllg,

—_— I.
alza{xe:(g OE), 0’j+1:7’><0';~:(0(-)] 0,), (4.13)

_o-j

!
TO=TXT)= (7(—)" _(:_,), j=1,...,k—1.
0

We note that
,0; = —Pj, 0-; = —0j, TS =-79, j=-1,...,k, (4'14)

i.e., all matrices are simultaneously unitary and skew-hermitian. The proof
can easily be performed by induction over k using the recurrent representa-
tions (4.13).

At this point there naturally arises a question what is a way to find out
how many times each of irreducible representations (4.11) and (4.12) is con-
tained in any given representation of the Clifford algebra Claogy1 (the order
of the irreducible representations in the direct sum is of course unimportant
because a change of the order corresponds to an equivalent representation).
An answer to this question will enable us to determine below the discrete
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invariants of a given GCRS. The solution can be given in terms of charac-
ters of representations [1]. Recall that the character of representation D is
defined as the function

x(s) = trace D(s).

As is well known, characters enable one to distinguish between non-
equivalent representations [1]. Let us use characters to determine the num-
ber of irreducible components into which a representation of Clagy1 can be
splitted.

Note first that the base element ejes - - - €, is mapped through (4.11) to
the matrix

41
P101p202 - - progTo = i* T E

and through (4.12) to the matrix
—pP101P202 " PLOLTH = —ik—HE,

In the first case the trace equals i*+1-2% and in the second —i*+1-2%. Now
let D be a representation of Cogy 1 of degree m = 2% - I. The representation
generated by (4.11) may appear in D(s) l;-times and the one generated by
(4.12) l,-times. Then the following relations are valid for the unknown I
and [s:

=0 +1,

trace D(ejeq---e,) = (I — Ip) - iF+1 . 2%,

From this we can directly obtain Iy and l5. Hence we see it is sufficient
to compute the trace of a single matrix to identify the representation D of
degree 2% - 1 of Clag, ;.

Thus we have specified all possible representations of the Clifford algebra
Cl,, and the way to their identification. Therefore we now know in principle
the explicit shapes of all generalized Cauchy—Riemann systems.

Before passing to boundary value problems let us state another character-
istic property of generalized Cauchy—Riemann systems. About the classical
two-dimensional Cauchy-Riemann system we know that it is invariant with
respect to a rotation of the coordinate system, i.e., if D = (d;;) is a proper
orthogonal matrix and w(z) represents a holomorphic function then w(Dxz)
is also holomorphic. Generalized Cauchy-Riemann systems possess a sim-
ilar property. If w(z) is a solution and D an orthogonal transformation,
then Mw(Dz) is also a solution, where M is a certain non-singular matrix
depending on D. This can be seen in the following way.

Let w be a solution of the system (4.5), which is defined in the whole
space R*1 | ie.,

Ow(z)

A
J ij

=0 with Ay =E.

n
=0
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If D = (d;;) is a proper orthogonal matrix, then for y = Dz we have

— , dw(y) dw(y) dw(y)

g:k

with djk = % .
M

Defining

A = E, j=0,
7 -4, j=1,...,n,

and multiplying the system of differential equations by 3" d;oA; we obtain
J

zn:gk Ow(Dx) _0

=0 a.’l,'k
with
Zk = ( Z djoz‘ij) (Z djkAj) .
J J
It is B B
AiAj + A]Al = 2(51']'E, 1,7 =0,1,...,n, (415)
and hence Zo = E. Let us show that matrices gk, k=1,...,n, represent a

generating system of the Clifford algebra C),:
A, + A4, = (Z d,.o,a,.) [(Z d,.ij) (Z djo,aj) (Z dquj) +
J J J J
+ (Z dquj) (Z djofij) ( > dijj)] =
J J J
= (Z djoz‘ij) [ Z djpdjoqu (AZA]Ak —+ AkA]Al)] .
J

i,k
Taking into account that

2Ak7 1= j7
T T 2A17 j = ka
A A A + AgA; A = AR
2Aj7 i=k,i#7,
0, otherwise,
we can conclude that
gpgq + gqu =
=2. ( > djoAj) ( > dipdiodrgAr+ Y dipdjodipAi—> dipdjodiqu) =
J i,k i g
i#j i#d

=2 (Z djofij) ( = " dipdjodjqAr— _ djo(dpg — djpdjq)Aj) =
7 7 7
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=-2. (Zdjo,ij) (ZdjoAj) cdpg = —20,,E.
J J

Notice that only the orthogonality of the matrix (d;;) was used in these
transformations.

If n is even, we already obtain the desired result. Since in this case there
exists only one representation of the algebra Cl,, of a given degree up to
equivalence, there exists a non-singular matrix M such that

A, =M'"AM, k=0,1,...,n.

So we get

= OwDz) . o OM w(Dzx)
o_kgoAkiam =M ’;:%Akiam

and therefore

n
ZAk OM w(Dzx) _o.
aflik
This means that M w(Dz) is a solution of the same generalized Cauchy—
Riemann system. _
If n is odd, the equivalence of the two representations A; and A; can be
proved using characters. By a direct computation one can verify that

glgg"'gn :AlAgAn
Hence we get
trace (glﬁg e Zn) = trace (A1 4y - - Ap),

which implies the equivalence of both representations. Now the proof can
be completed in the same way as in the case of even n.

Remark 4.3. E. M. Stein and G. Weiss defined generalized Cauchy-
Riemann systems by the property of rotational invariance [150]. In this
way they arrived to the same systems as presented here.

The development of functional-analytic methods for elliptic first order
systems has shown that a big part of the classical two-dimensional theory
can be generalized to higher-dimensional GCRS [31], [62]. Unfortunately
this is no longer the case if one tries do study boundary value problems for
such systems. In principle the Plemelj-Sokhotsky formulas can be used to
transform boundary value problems into systems of singular integral equa-
tions but this does not lead to any effective criteria of solvability or Fred-
holmness.

Recently I.Stern [151] succeeded to obtain an explicit criterion of Fred-
holmness using some general results of the theory of elliptic boundary value
problems in Sobolev spaces [162]. This enabled her to obtain an exten-
sive list of GCRS possessing elliptic boundary value problems of Riemann—
Hilbert type [152]. Recall that the problem of deciding which GCRS possess
elliptic local boundary value problems attracted considerable attention in
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last three decades [17], [9]. The progress achieved by I.Stern enabled the
present author to guess the topological mechanism which caused the exis-
tence of elliptic Riemann—Hilbert problems, which eventually led to further
progress in this topic [90].

We present below the main results of [152] and [90] and outline their
proofs. In those papers were basically studied boundary value problems
which were slightly different from the linear conjugation problems which
are in the focus of interest in the present paper (however they were still
called Riemann-Hilbert problems). As was explained in [90], the linear
conjugation problems for GCRS appear as a particular case of the boundary
problems studied in [152]. Actually, the question about the existence of
Fredholm boundary problems is much more interesting for general boundary
value problems of Riemann—Hilbert type so we accept below the setting of
[152], [90].

Let us now describe the boundary value problems we wish to deal with.
To this end let us consider again a generalized Cauchy—Riemann system

ow ow ow

o0 B T g, T f (4.16)
in a domain G with complex (m x m)-coeflicient matrices and the 4;, j =
1,...,n, satisfying the relations

AiAj +A]Al = —2(51']'E, ,7=1,...,n.

Notice that in contrast to Definition 4.1 we have added a lower order term
with a view to greater generality. This is reasonable because the function-
analytic methods used in the sequel are related essentially with the principal
part of the operator. From now on we consider the inhomogeneous system
of differential equations because it is intrinsically involved in the definition
of Fredholm property.

Together with the system of differential equations we investigate a bound-
ary value problem arising by imposing boundary conditions of the form

(B1Bs) -w=g on 0G, (4.17)

where B; and B, are complex matrices of dimension m/2 depending on
the boundary points, and g is a vector function with values in C™/2. This
always makes sense since, as we have seen m is always even for a GCRS.
In line with terminology of [151], [152], and [90], the problem (4.16, 4.17)
is called a Riemann—Hilbert problem for a given GCRS (4.16).
Notice that an equivalent problem could be formulated in the form:

Re[Cw]=h on OG. (4.18)

Here C denotes a complex (m X m)-matrix, and h is a vector with values in
R™. As is easy to see, both definitions of boundary value problem may be
transformed to each other.

We will always assume that the rows of the matrix (B (z) Ba2(z)) are
linearly independent in every boundary point z € dG. Then they can be
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orthonormalized by a formal application of the Schmidt algorithm, which
does not change regularity (continuity, smoothness) of the matrix elements.
Therefore we can always consider boundary conditions with orthonormal
rOws.

The following theorem gives an explicit criterion of Fredholmness for
Riemann-Hilbert problems.

Theorem 4.4 ([152]). Let G C R**', n > 2, be a bounded domain of
class C*, k > 1. Consider the Riemann—Hilbert boundary value problem

Ow Ow Ow
E—+A —+--4+4A4,— +Dw= ] , 4.1
B0 + A4 B, +- 4+ oz, +Dw=f in G (4.19)
AiAj +A]Al = —2(51']'E, ,7=1,...,n,
(B1,B2)-w=g on 0G, (4.20)

and assume the (m x m)-matrices A; to be unitary:
A;:—Aj, j:l,...,n.

Let the rows of the ' x m)-matriz (B, Bs) be orthonormal. Furthermore,

assume that D € C*~1(G) and By, Bs € C*(8G).

Then the Riemann—Hilbert boundary value problem (4.19), (4.20) is
Predholm for w € Wi(G), f € Wi Y(G), and g € Wi '/%(8G), 1 <1<k,
l € Z, if and only if the following relation is valid for oll x € 0G:

det (3132)(§n:aj,4;) (Xn:tjAj) (gi) _iE| £0.  (421)
=0 =0 2

Here a = (ay,...,a,) denotes the vector of the inner normal at point x €
0G and t = (to,...,tn) runs through all unit vectors which are tangent to
OG at the same point x.

The proof makes use of the following lemma which was also established
in [152]. For completeness we also include the proof of the lemma.

Lemma 4.1. Let (m x m)-matrices A;, j =1,...,n, satisfy
AiAj +A]Al = —2(51']'E, ,7=1,...,n.

Then the matriz

iy GA; with €= (&,...,&) € R"\ {0}

j=1
has ezactly the eigenvalues A = £|€|, and all eigenvectors with the eigenvalue
+|¢| have the form

n
v= (:I: H +iZngj) ¢ with ceC™.
=1
If ¢ runs through all vectors in C™, then v is either an eigenvector or it is the
zero vector. For every eigenvalue there are ezactly m /2 linearly independent
etgenvectors.



66 G. Khimshiashvili

Proof. Let
det (z D gGA; - ,\E) =0,
j=1

then we have A = £|¢|. Indeed, it is

n n
(iZngj + )\E) (iZngj - )\E) = (2 =22 -E
j=1 j=1

and the propositions is obvious.

Now we show that the matrices (i ) &; A; = |{|E) have the rank > m/2.
By an equivalence transformation the matrices A; take the form indicated
above, i.e., the matrices (i > §;A; = |¢|E) are equivalent to matrices of block
structure, where every block is of the form

L|E|B +i- isfjAg_Q (&1 +iE)E
]:
(=& +i&)E |¢|E - 2351'14}—2
]:

and the dimension 2F (m = 2* -1, n = 2k or 2k + 1). Obviously, the 2*~1-
dimensional submatrices (—¢&; + i&s)E are of maximal rank, if £ + ¢2 # 0.
Otherwise, i.e., if & = & = 0, we have to demonstrate that the other two
submatrices both have the rank > 2¢=2. We restrict ourselves to the left
upper submatrix, because the other is constructed quite analogously. Again
using the recursive representation 4.13 gives us

n LIS E +i- Eni & A7 4 —(& + i) E
B +i- Y gAj ., = = o
i=3 (=& +i&)E HENE - - 3§47
]:

If ¢2 4+ ¢2 # 0, then we see that the rank of this matrix is not less than 2F=2.
In the case of & = £, = 0 we split up the submatrices again and prove that
they have the rank not less that one half of the dimension.

This procedure either leads us to a pair of numbers (€2;_1,&;) with
fgj_l + fgj # 0, where the proposition is obvious, or finally we obtain the
2 x 2-matrices

( <l —&n—1 — Wn

. fi
1 it gl ) or 1 even

and

ilfl - fn _fn—2 - ifn—l)
. for n odd
(_fn—2 + én—1 | +&n
whose rank equals 1.

By this inductive procedure it follows that the block matrices of dimen-
sion 2% have the rank > 2%~1. So the whole matrix has the rank not less
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than 2!~!) where [ = m/2. Since

(iijAj ¥ |€|E) . (iZngj + |5|E) e=0, VeeC™,

the vectors (i) &;A; = |€|E)c # 0 are eigenvectors of the eigenvalue A =
+|€]. So the rank of the matrices (i > &;A; £ |¢|E) must be equal to m/2,
because the number of linearly independent eigenvectors cannot exceed m.
Furthermore, there cannot exist any other eigenvectors besides the ones
indicated above. This obviously completes the proof of lemma. O

Proof of Theorem 4.4. As is well known, the fredholmness is equivalent to
the ellipticity of the boundary value problem [162]. The ellipticity of the dif-
ferential operator in question was already established above. So it remains
to prove that the relation (4.21) is equivalent to the Shapiro-Lopatinski
condition.

Let z° € G be any boundary point. We choose a local coordinate system
X1,X1...,X, in the following way:

The origin lays in z°.

The Xy-axis coincides with the direction of the inner normal.
The X4,...,X,-axis lay in the tangential plane.

The local X1, X3,...,X,-system is obtained from the global
Z1,%1,---,Zy-System by a translation and a rotation, i.e.,

n n
T; = Zdinj + .’IJ?, X; = Zdz](fl;z - .’L'?),
3=0 J=0

with a proper orthogonal matrix (d;;)%;—o-

W N

Therefore we have
0 0
Oz; Z % 5%, 0X;

7=0

and
ZA ZAd” 3%, ]ZO(Zd”A)

Because of the rotational invariance of the system of differential equations
which was established above, by putting

A; = (Z dioA;‘) (Z diin)

we obtain a new generalized Cauchy—Riemann system

n

Z (ZdloA)Dw_(ZdloA)

The matrices A/j are also unitary: j;‘ = _Zj, i=1...,n
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The principal part of this differential operator is
n
~ 0
> i gx
0X;
Let us now apply to it the Fourier transform with respect to the tangen-

tial coordinates X1,...,X,,. Putting Xy = ¢, we have the corresponding
homogeneous system of ordinary differential equations for ¢ > 0:

dv(t) | . N~y
Vd—t +1- j;fjAjl/(t) =0.

Freezing the coefficients of the boundary condition at the origin of the local

coordinate system, the homogeneous boundary condition is transferred by

the above Fourier transform into the homogeneous initial value condition
(B1Ba)v(0) =0, B;=B;(0), i=1,2.

The Shapiro-Lopatinski condition at boundary point z° € 8G can be formu-
lated as the requirement that the initial value problem has only the trivial
solution in the space of stable solutions for all £ = (&,...,&,) #0.

Making the substitution

v(t)=eM ¢
we have
n ~
(,\E+i : Zngj) c=0.
j=1
In virtue of Lemma 4.1 there are exactly the two eigenvalues A = £[§].

Only for A = —|¢| do we get stable solutions the corresponding m /2 linearly
independent eigenvalues are of the form

c= (lflE"‘i'ijZj) -d, deCm™
=1

So the space of stable solutions of the system of ordinary differential equa-
tions is constitutes by all function vectors

) =en(-ilo)- (B +i-367) ¢, ¢ eCm.
=1

The matrix i - Y. &;A; is hermitean, because the 4; are unitary. Hence we
can perform a diagonal transformation

i 6=1ap (g Sp) P P= P )

Jj=1

with a unitary matrix P. We obtain

o) = 2iglessl-lgloP (§ ) P
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and by substituting

(A P . o
P_(P3 P4)’ dim P; = m/2,

and
P = (x) , z,yeCm?,
Y
we get
v(t) = 2|€| exp(—|€|t) (P ) z, x€C™? arbitrary,

for the stable solutions. The initial value condition is stated as
P,
(B15:)u(0) = 24l(BiB) (1 ) £ =0,

Obviously, there is v(t) = 0 if and only if z = 0. So demanding that the
initial value problem has got only the trivial solution is equivalent to the
condition

det [(BlBg) GZ;)] £0. (4.22)
Put for short (Q1Q2) := (B1B2)P. Then (4.22) means
det Ql 75 0.

This is equivalent to
det Q1 AT # 0.
Using the equation
Q1Q7 + Q205 =E

201Q7 = (@1Q2) (? 0 ) (8:) +E=
oo (5 () s

= (i) |£|Zf’ (51) +2

we have

Furthermore, there is
fo = (deA;)(Z ’d”A)
2 ¢l 2 €]

The vector (dy) describes the inner normal (a;)%, and the vector

(Z € d”)
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is a tangential vector (¢;)7, of unit length. Therefore we write

and obtain the relation equivalent to (4.22)

det (BlBg)(iajA;) (itjAj) (gi:) —iE| #0,
=0 =0

which completes the proof of the theorem. O

The above results about the structure of GCRS and explicit criterion of
fredholmness enabled I.Stern to show that certain GCRS do not possess any
elliptic boundary value problems of Riemann—Hilbert type. We present here
the main result of [152] without proof which is quite technical and lengthy.
Actually, below we present a more precise result from [90] which is more
relevant for describing the state of the art in this topic.

However we would like to add that up to our mind an amazing feature of
the proof from [152] was that, using the above criterion of fredholmness, the
desired conclusion was derived from a famous result of of J.Adams, P.Lax,
and R.Phillips about the amount of matrices of given size all of whose real
combinations are non-singular [2].

Theorem 4.5. If the space dimension n+1 is even and the representation
of Cl,, defined by the coefficient matrices A; contains an odd number of
irreducible components (i.e., its degree is of the form m = 2% with | odd),
then the corresponding GCRS does not possess any elliptic Riemann—Hilbert
problems.

L.Stern also proved that in R* there exist no elliptic Riemann-Hilbert
problems for GCRSs which contain only one of the two possible irreducible
representations. On the other hand, it was shown in [152] that for an odd n
elliptic Riemann—Hilbert problems exist if both irreducible representations
appear in the same amount. It should be noted that these results covered
all results of this type which were previously proved for various concrete
systems (a review of those concrete results is contained in [152]).

Analyzing these results of I.Stern the present author noticed that they
find a nice explanation in terms in the modern approach of K-homology
developed by P.Baum, R.Douglas, and M.Taylor [10]. More precisely, it
turned out that for GCRS one can compute the K-homological obstruction
to the existence of elliptic boundary value problems suggested in [10] and
determine all cases when it is vanishing. Combining this fact with some
recent results of G.Gong [71] it became possible to show that these, and
only these, GCRS possess elliptic Riemann—Hilbert problems.

The main results of [90] can be conveniently formulated in terms of the
discrete invariants of GCRS which are yielded by a Clifford algebra inter-
pretation described above. Recall that each such system is characterized by



GEOMETRIC ASPECTS OF RIEMANN-HILBERT PROBLEMS 71

natural numbers n and m. One can equivalently substitute m by the num-
ber [ of irreducible components in the associated representation of Clifford
algebra Cl,,. For an odd n = 2k + 1, there also appear multiplicities I1,ls of
each of the two irreducible representations of CI,, (i.e., m = 2F,1 = I; +1).

Theorem 4.6 ([90]). If n is odd and l; # lo then there do not exist
elliptic Riemann—Hilbert problems for a given GCRS. If I, = lo then there
ezist elliptic Riemann—Hilbert problems for the given system.

Theorem 4.7 ([84]). If n is even, n # 4,6, then there exist elliptic
boundary problems with a boundary condition of the form (Bor)w = g, where
B is a zero order pseudo-differential operator between sections of appropriate
Hermitian bundles on the boundary, and r is the usual trace (restriction to
the boundary) map.

It should be added that for even n we are not yet able to show the
existence of elliptic Riemann—Hilbert problems as they were defined above.
Besides being interesting by its own, this issue is important for our approach
to hyper-holomorphic cells discussed in the last section. In fact, this can be
shown for many concrete systems (in particular, for “self-conjugate systems”
appearing in the Section 6) so the author’s feeling is that elliptic Riemann—
Hilbert problems exist for all even n.

Ag to linear conjugation problems for GCRS, here situation is much sim-
pler and this can be established using the same ideas and techniques.

Theorem 4.8. Elliptic linear conjugation problems exist for all general-
ized Cauchy-Riemann systems.

We do not attempt to describe proofs of these results because they use
rather delicate topological concepts and technical tools. Let us only mention
that the existence of elliptic linear conjugation problems actually follows
from the same considerations.

For example in the case when the domain is the unit ball B C R*t!, one
just transforms a linear conjugation problem to a Riemann—Hilbert problem
for a GCRS of double size. This can be done by means of substituting the
outer component X_ by the vector function Y, which is the inversion of
X _ in the unit sphere B. Then it is easy to check that the new unknown
vector (Xy,Y,) satisfies a GCRS of the double size in the ball B. Since
the new system is of a very special kind, it becomes possible to show that
the Baum-Douglas obstruction vanishes for this system, hence it possesses
elliptic Riemann—Hilbert problems which can be transformed backwards to
give elliptic linear conjugation problems for the original GCRS.

5. NONLINEAR RIEMANN-HILBERT PROBLEMS FOR ANALYTIC
FuNCTIONS

In course of a long historical development, the Riemann—Hilbert problem
became an “organizing center” for a number of important topics of complex
analysis, differential equations, topology, operator theory, and nonlinear
analysis. Most of these topics are developing quite actively and continue
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suggesting new interesting problems and interrelations. In particular, there
exists vast literature devoted to nonlinear versions of Riemann—Hilbert prob-
lem (see, e.g., [159]).

In this section we discuss some nonlinear problems of such kind closely
related to the concept of analytic disc which plays significant role in various
modern topics of complex analysis and symplectic geometry [16], [54], [55],
[72].

In light of our discussion the problem we wish to study may be considered
as a direct generalization of a transmission problem (1.1). One looks again
for two functions ®_ and &, which are holomorphic in an interior and
an exterior domain, respectively, but now they should satisfy a nonlinear
coupling condition on the common boundary I' of the two domains. More
precisely, we admit nonlinear conditions of the form

3, (t) = G(t, ®_(t)),Vt € T. (5.1)

From the operator theoretic point of view, the linear transmission prob-
lem is related to Toplitz operators, i.e., to the interaction of multiplication
with the Riesz projection, while the nonlinear problem concerns interaction
of the Riesz projection with superposition. The operator theory approach
appears helpful also for dealing with nonlinear transmission problems.

Following [160] we introduce a special class of nonlinear transmission
problems and obtain a rather complete description of their solutions. More-
over, we discuss some relations between nonlinear transmission problems
and the existence problem for so-called attached analytic discs [16]. Since
this subject is a relatively recent one, we only present some sample results
without trying to reach maximal possible generality.

More precisely, for a given continuously differentiable function G: T x
C — C, we consider a nonlinear transmission problem

o, (t) =G(t,®_(t)), vt € T. (5.2)

It is supposed that the unknown functions ¢, and ®_ extend holomor-
phically from the complex unit circle T into its interior D and its exterior
E, respectively, and that &_ vanishes at infinity.

If G is linear in z and Z, G(., 2) = go+ g1z + g2Z, we get a linear transmis-
sion problem with conjugation [61], [112]. The “holomorphic case” 8,G = 0
was studied by L. von Wolfersdorf [165].

The nonlinear problem 5.2 is said to be elliptic if

6.G(t,2)| < |8.G(t,2)|,  V(t,z) €T xC. (5.3)

Another case of particular interest corresponds to real-valued G, pertaining
to the “parabolic case”, since then |8,G| = |0,G|. In this situation &, must
be holomorphic in I and real-valued on T and hence (5.2) is equivalent to
a scalar Riemann—Hilbert problem of the form

G(t,®_(t)) = const, (5.4)
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which is discussed in many places (see, e.g., [61], [112], [159]). It should
be added that, in contrast to the general nonlinear transmission problem
(5.2), there exists a rather complete geometric theory of Riemann—Hilbert
problem (5.4) [159].

We say that (5.2) has a solution in W}!, if the functions ®_ and &, have
boundary functions in the Sobolev space W!(T). The following existence
theorem which was established in [160]. Notice that it also covers the linear
elliptic case with continuously differentiable coefficients and index zero.

Theorem 5.1. Let G: T x C — C be continuously differentiable with
uniformly bounded first derivatives.

(i) If there exist a positive constant & and a smooth unimodular function
g: T — T with winding number zero, wind g =0, such that

|0.G(t,2)| = 10:G(t,2)| >8>0 V(t,2) € T xC, (5.5)
Re (g9(t) 8,G(t,2)) >6 >0 V(t,2) € TxC, (5.6)
then the transmission problem (5.2) has a solution in W} for each
r € (1,00).
(ii) The solution is unique if, in addition to the above assumptions,
Re (g(t) 0,G(t,2)) — 10,G(t,2)| >8>0 V(t,z) €T xC. (5.7)

We reproduce here the proof from [160]. It is based on several observa-
tions. First of all, we remark that the function g in the condition 5.6 admits
a factorization g = gir/gr, where gg and gg are smooth functions on T, gr
is real and strictly positive and gy extends to a holomorphic function in I
without zeros. This allows to rewrite the boundary relation as

T, :=gu-® =gr-g-G(,9_) = G(,8_).

If G satisfies 5.5, 5.6 (and 5.7), then G satisfies the same conditions with
g = 1. Consequently we can assume that g = 1.

The following constructions serve to transform the transmission problem
5.2 into a fixed-point equation for a compact operator K. The idea is to
differentiate the boundary relation along T (cf. [166]), which gives rise to
a quasi-linear transmission problem with conjugation. The main ingredient
of the operator K is a primitive of an appropriate solution of this auxiliary
problem.

Fix s € (1,00). For a given scalar complex valued function ¢ € W}(T),
we define

a(t) == 0.G(t, (1)), b(t):=0,G(t,pt), ct) =it8G(t (1)), (5.8)

where 1t 0; = 0, denotes the derivative with respect to the polar angle 7 of
= ¢el™ € T. Note that a, b, and ¢ are continuous functions.
We denote by HY (resp. H”) the Hardy spaces of functions ¢ which
extend holomorphically into D (resp. in E with ¢(c0) = 0), and let HY :=
HY x H'.
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Lemma 5.1. Let G be subject to the assumptions of Theorem 5.1 with
g=1, firr,s € (1,00), let ¢ € W], and let a, b, and c be given by (5.8).
(i) For each ¢ € WX(T), the linear transmission problem

5+:a5_+bi+c (5.9)

has a unique solution ® := ($+,<~I>_) € HE.

(ii) For each value of the constant § in Theorem 5.1, there exists an
r > 1 such that the H' -norm of the solution &= (d,,%_) to (5.9)
is bounded by a constant not depending on the choice of .

Proof. 1. Existence and uniqueness of the solution follow, e.g., from [159].
2. In order to prove (ii), we derive a representation of the solutions which
involves the inverses of a certain Toeplitz operator.
The function w defined on T by w(t) := (®_(¢t)/t, ®+(t)) extends holo-
morphically into . With the definitions f := —(Rec¢,Im¢), and

| a+b -1 t 0
A‘_[i(a—b) i ]'[0 1]’ (5.10)
the problem 5.9 is equivalent to
Rw:=ReAw={. (5.11)

Let P: L™ — HY denote the Riesz projection of L"(T) onto the Hardy space
HY along H”. We introduce the “adjoint Riemann-Hilbert operator”

S: L" - HY, v+ PtA 'Rex. (5.12)

A straightforward verification shows that SR is a Toeplitz operator, 2SR =
T := PBP. The symbol B := {A~'A of T has the representation B =
L J B, where

—| 0 -1 e
I T L e

Since |a| > [b] and wind @ = 0, the Toeplitz operator T is invertible, which
implies that the solution of 5.11 admits the representation

w=2T"1Sf. (5.14)

3. Remember that S and T depend on the choice of ¢ in 5.8. It is
obvious that the norm of S is bounded by a constant not depending on
the choice of ¢ in 5.8. In what follows, we prove that the norms of the
inverse T—' € L(HY/("=1)  H") are also uniformly bounded with respect to
, provided that » > 1 is sufficiently small. Since J is constant, we can
replace T by T := P(1)BP.

4. Because Re(Bz,2) = (|a|? — [b]2) |z1]% + |22]® > m||2|/%, for some
positive number m = m(4), Lemma 1 of [11] shows that the inverses of
the Toplitz operators Tg := PBP: H} — H3 are uniformly bounded,
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IT5* || € 1/m. The invertibility of Tz implies that the (continuous) sym-
bol B admits a generalized Wiener-Hopf (Birkhoff) factorization (canoni-
cal factorization) B = B_B,, where B_, B,, B~*', B_T_l € LP for each
p < oo ([1], Section 5.5, see also [3], [7]). Since Tp' = B;'PBZ'P and
B{'PB”' = B;'PB~'P on L?, the multiplication operator

f— B{'PB_'f (5.15)

is bounded on L? (uniformly with respect to ¢ € W}).

5. The function a is continuous and its range lies in a compact subset
of the right-half complex plane (independent of ). Consequently a admits
a Wiener-Hopf factorization ¢ = ay - a_, where a; = exp(Ploga) and
a_ =exp((I — P)loga). Since |Im loga| < v(8) < 7/2, Zygmund’s lemma
applied to estimate the norms of the factors a; and a_ in L?*¢ (recall that
P = L(-iH + I + Ry), where H denotes the conjugation operator). The
result is

lasllzse <CG)s  llallose < C(), (5.16)

for some sufficiently small positive € = &(4).
6. So far we have the equality (1/a) B = a:lB_BJrajrl almost every-
where on T. Using 5.15 and 5.16, we get that the operator

HYC™D L H: weay,B'PB la_w (5.17)
is bounded (uniformly with respect to ¢). O

In order to prove that (5.17) is the inverse of f, we remark that Tw =
Pa:lB_BJra;lw = f is equivalent to B+ajrlw = PB~'a_w (note that
B+ajrlw € Hi_s with £ > 0), which implies that w = a+B;1PB:1a_f
almost everywhere on T.

After establishing these technical facts we continue the construction of
the fixed point equation. For any scalar complex valued function ¢ € W},
we denote by 5+, &_ the solution of the associated transmission problem

d, =ad_ +b€+c, (5.18)
with a, b, and ¢ from (5.8). With
~ T ~ 1 [ .
d_(e') ::/ ®_(e'7) da, Py®_ = — ®_(e'%) do,
0 27 Jo

the operator K: W! — W} is given by K¢ := ®_ — P,®_. The definition
of _ makes sense since P0<~I>_ =0.
Lemma 5.2.
(i) The operator K: Wl —W} is compact for any r,s€ (1,00).
(ii) The image of K: W}! — W] is bounded if r > 1 is sufficiently
small.
(iii) The pair (®,,®_) € W]} is a solution of the transmission problem
5.2 if and only if K®_ = ®_ and &, = G(,,D_).
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Proof. 1. The embedding W} (T) — C(T) is compact, and hence (i) follows
once it is shown that K: C(T) — W}(T) is continuous. The superposition
operators ¢ — a = 8,G(.,p), ¢+ b:=38,G(,,p), p— f:=1it-8G(.,p)
are continuous in C(T), and thus the associated Toeplitz operators T :=
PBP with B := LJB with J and B from 5.13, and the ‘adjoint Riemann—
Hilbert operators’ S from 5.12 depend continuously on . Since all these
operators are invertible, the solutions in H to the transmission problems
(5.9) also depend continuously on ¢ (cf. 5.14). Integrating these solutions
along T proves the continuity of K: C(T) — W}(T).

2. If r > 1 is sufficiently small, then according to Lemma 5.1, the solu-
tions & of (5.9) are bounded in HY uniformly with respect to the choice
of ¢ € W}, and hence the Kw are uniformly bounded in W}!.

3. Let ® = (,,9_) € W} be a solution of &, = G(.,®_). Differen-
tiating this boundary relation with respect to the polar angle 7, we obtain
that ® := 8,% = itd;® is a (unique) solution of the auxiliary transmission
problem 5.9. Consequently,

Kd_(e7) = const+/ $_(9) do =
0

.
= const +/ 9;®_(e!) do = const + ®_(e'").
0

The constant on the right-hand side vanishes, since Py K&_ = 0 and
Fy®_ =0.
4. Conversely, let ®_ € W}, K&_ = &_, and &, := G(.,®_). We prove
that ¢, and ®_ are holomorphic in ) and E, respectively, and Fy®_ = 0.
First of all, 8,9_ = &_. Since ®_ is holomorphic in E, so ¢_ is also
holomorphic. Further, Pp®_ = Fy K&_ = 0. Inserting d_ = 0, ®_ into
(5.9) shows that

6_’_ :(16_ +b€+c: iC;((,(ﬁ_) :a.,-é_;,_.

dr
Consequently, ®, is holomorphic in D and ® := ($,,®_)eW} solves (2)
which completes the proof of the lemma. O

By virtue of Lemma 5.2, the existence result (i) of Theorem 5.1 becomes
a consequence of Schauder’s fixed-point principle.

It remains to prove that the solution of (5.2) is unique under the as-
sumption (5.7). Let ®1), &) € HP N W/ be two solutions of (5.2). The
difference A® = (A®,,Ad_) := &@ — &) golves the homogeneous linear
transmission problem

Ad, =a-A®_ +b-AD_, (5.19)

where

1 1
a::/ 8,G(, AW +(1-1)8P)a, b::/ 3.G(, 20W+(1-08P)a,
0 0



GEOMETRIC ASPECTS OF RIEMANN-HILBERT PROBLEMS 77

and A®_(c0) = 0. The assumption (5.7) on 8,G and 3,G (with g = 0)
ensures that

Rea—|b|>6>0 on T, (5.20)

and hence (5.19) has only the trivial solution. Thus the proof of uniqueness
is also complete.

It is instructive to compare our formulation of the nonlinear transmis-
sion problem with the so-called Bishop’s problem [16] which is related to a
number of fundamental topics of multi-dimensional complex analysis [54],
[65]. As is well-known, the Bishop’s problem can be reformulated in terms
of analytic discs.

Recall that an analytic disc in C" is defined as a continuous (or smooth)
mapping ¢ : D = {|z| < 1} = C" which is holomorphic inside the unit disc
D, i.e., it is defined by n functions ¢, € A(D). If M C C" is a submanifold
and ¢ is an analytic disc with ¢(8D) C M then ¢ is called an analytic disc
attached to M.

In various problems of complex analysis one it is important to construct
analytic discs attached to so-called totally real submanifolds and there exist
some deep results on the existence and structure of such analytic discs [16],
[54], [55], [66], [67], [72]. This topic is closely related to Riemann-Hilbert
problem because structural properties (dimension, stability) of the family
of analytic discs attached to M close to a given one ¢g, can be expressed in
terms of the partial indices of matrix functions defining the pullback bundle
95 (TM) [55], [72].

These results about attached analytic discs are widely used in complex
analysis and exhibit a spectacular type of application of Riemann—Hilbert
problems and Birkhoff factorization. Moreover, they can be visually inter-
preted in the case of nonlinear Riemann—Hilbert problem considered above
so it seems appropriate to recall some related constructions and concepts.

Let M be a mazimal real (i.e. totally real of maximal possible dimension
n) submanifold of C" and let f be an analytic disc attached to M. Assume
that in a neighbourhood V of f(8D) we have M NV = {z € V : g(z) = 0},
where g is a smooth (it is sufficient to require that g € C?) function on
V having no critical points on V. We wish to investigate the existence of
nearby analytic discs attached to M. It turns out that this issue can be
studied in terms of certain analytic invariants of f(0D) in M.

For each z € T' = 9D, let T'(z) be the tangent plane of M at f(z). Since f
is regular on D there is a smooth map A : T — GL(n, C) such that for each
z € T the columns of A(z) for m a basis of T'(z). Let B(z) = A(z)A(z)~!
where the bar denotes complex conjugation.

Since the spaces T'(z) are maximal real, the map B has some remarkable
properties which justify the constructions to follow, so we now establish
those properties of B.

Let L be a maximal real subspace of C*. Then of course L & iL = C".
To any such subspace L one can associate an R-linear map Ry, on C*, called
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the reflection in L, defined by z =  + iy — x — iy, where we use the above
decomposition into direct sum.

The mapping Ry, is also C-antilinear, i.e., Ry (iv) = —iRy(v) for each
v € C". Let us denote by Ry the reflection about the maximal real subspace
R™ C C"*. In the standard notation, Ry is just the ordinary conjugation on
C" and for any n x n complex matrix A one has the identity A = RyAR,.
Now it is easy to establish the following well known algebraic lemma, which
is crucial for next considerations.

Lemma 5.3. Let L be a mazimal real subspace of C* and let x,,...,z,
be any basis of L. let A be the matriz whose columns are the given wvec-
tors zj,j = 1,...,n and let B = AA-T. Then B = RpRy, in particular,
the matriz B does not depend on the basis of L. Moreover, B = B7!,
|det B| = 1.

Proof. Obviously, A is a C-linear automorphism of C* which maps R™ onto
L. Consider now the following composition of automorphisms of C", S =
RyA'R;A. Then S is a C-linear automorphism of C* which coincides with
the identity on R™. Since R" is a maximal real subspace of C*, S is the
identity on C". Hence RyA™! = A~'Ry,. Since B = AA-1 = ARyA 'Ry,
we obtain B = AA"'R; Ry = Ry Ry, as claimed, and the rest becomes
obvious. O

Thus the matrix B is uniquely determined by the bundle T'(z) and this
enables one to extract from it the crucial invariants of this bundle using
Birkhoff factorization theorem. Indeed, one can write

B(z) = By (z)diag(2*)B-(2),

with the factors having the same meaning as in Section 1. It follows that
the (left) partial indices k; are determined by the bundle T'(z). They are
called partial indices of M along f|T and their sum K is called the total
index of M along f|T (or the Maslov index of M along f|T [54], [159]).

This construction becomes quite transparent for n = 2 and using a well
known description of nearby analytic discs in terms of the Bishop equation
[16] or nonlinear Riemann-Hilbert problems [159], one can obtain some
conclusions about the structure of attached analytic discs. For example, in
the situation considered above it is easy to see that all partial indices of M
along the boundary of an attached analytic disc are equal to zero. At the
same time, the boundaries of these discs give a foliation of M so the family
of such analytic discs is locally two-dimensional.

Also, it was shown in [54] (cf. [159]) that if both partial indices of M
along f|T' are nonnegative then the family of nearby analytic discs depends
on K + n real parameters and the same holds for small perturbations of M
(or equivalently of its defining function g).

A general result on the structure of attached analytic discs was proved
by J.Globevnik [67]. In order to give a precise formulation of that result we
need to introduce some functional spaces adapted to the situation.
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Denote by C?(V) the Banach space of all real valued functions of class
C? with the standard sup-norm. Let 0 < s < 1. Denote by H® the Ba-
nach algebra of all real valued functions on T with finite Lipschitz norm of
exponent s, i.e.,

|f(z) = F ()|

bl bl €T7
e—yp 7Y

|I£1ls = sup | f| + sup
by H¢ the algebra of all complex valued functions on T with finite H*-norm,
and by A, the closed subalgebra of all ¢ € HE which extend holomorphically
to D. The Banach space A? is the space of analytic discs convenient to
work with. For each r € (C%(V))" sufficiently close to g put M, = {z € V :
r(z) = 0}.

Assume now that f € A7 satisfies f(T') C M, that is g(f(¢)) = 0 for
eacht € T. f U C A7 is a neighbourhood of f so small that A(T) C V
for each h € U the the analytic disc ¢ is attached to M if and only if
g(¢(t)) = 0 for each t € T'. Consider the map ¢ which sends ¢ € U to the
map t — g(¢(t)). Tt is easy to see that Q is (at least) a C'-map from U
into (H*)"™ and X = {¢ € U : Q(¢) = 0} is precisely the set of all analytic
discs in U attached to M. Our goal now is to understand its structure, and
the first step is to find conditions when it is a finite dimensional smooth
manifold because then one can hope to find a reasonable parametrization
of nearby attached analytic discs.

Taking into account the implicit function theorem, we conclude that X
will be a Cl-manifold if DQ(f) maps A? onto (H®)" and if the kernel of
ker DQ(f) is complemented in A%. As was established by J.Globevnik this
is equivalent t requiring that all partial indices of M along f|T" are not less
than —1. Moreover, one can explicitly compute its dimension.

Theorem 5.2 ([67]). Let M, f,Q be as above. Let k; be the partial indices
of M along f|T and let K be the total index. Then DQ(f) is surjective if
and only if k; > —1,i = 1,...,n. If this is the case, then there exist a
neighbourhood P C (H*)" of g and a neighbourhood W C A? of f such
that:

1) {(r,¢) € Px W : ¢(T) C M.} is a C' submanifold of P x W, and

2) for each r € P the set {p € W : ¢(T) C M.} is a C* submanifold of
W of dimension K + n.

It is remarkable that this important result can be proved using only
Birkhoff factorization and implicit function theorem in functional spaces.
It seems also worthy of noting that in the situation of Theorem 5.1 the
condition (i) implies that all partial indices of emerging attached analytic
discs are equal to zero, so Theorem 5.2 guarantees that family of such discs
is smooth and their boundaries cover the target manifold in the “Schlicht”
manner (cf. [159]). In other words, the target manifold is foliated by the
boundaries of attached analytic discs even without assumption (ii) of The-
orem 5.1, which answers a question posed in [160].
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The aforementioned Bishop’s problem is concerned with constructing an-
alytic discs attached to explicitly given submanifolds of complex Euclidean
spaces. In the original formulation of [16] the target manifold is just a graph
of a function C — C. For simplicity we only discuss the case when n = 2
which corresponds to the original Bishop’s problem and to the transmission
problem studied above.

E.Bishop considered a differentiable function f : C — C and its graph
Iy C € and looked for analytic discs in C* attached to I'y. A minute
thought shows that our Theorem 5.1 gives a solution to Bishop’s problem
for a class of functions f specified in its formulation. Notice that we have
actually obtained a complete description of all attached analytic discs in
this case.

Nowadays there exist a lot of papers devoted to solving the Bishop’s
problem for various classes of functions [56]. For example, E.Bishop himself
established the existence of such analytic discs in a number of cases and
described their structure in neighbourhoods of so-called elliptic complex
points (we present the definition below) of the graph [16]. Since then, the
problem of proving existence and counting complex points of various types
attracted considerable attention (for an updated review of the topic see
[56]).

The problem has a special flavour in the case when components of f are
polynomials because one would like then to have some effective methods
for counting complex points and establishing existence of attached analytic
discs. An approach to this problem based on the so-called signature tech-
nique for counting real roots [94] was recently suggested in a joint paper of
E.Wegert and the present author [96]. We describe below some essential in-
gredients of that approach since up to our mind it suggests some interesting
viewpoints and perspectives.

Following [96] we prefer to treat the problem in terms of smooth trans-
formations (self-mappings) of the plane C = R?. We only consider transfor-
mations with polynomial components and call them planar endomorphisms
(plends).

We are interested in counting the complex points of such maps, in par-
ticular we would like to find the number of elliptic complex points [16].

In many situations it is sufficient to consider only generic planar en-
domorphisms which are proper and satisfy some additional transversality
condition in the spirit of [76], [95]. More precisely, the Gauss map of the
graph of such an endomorphism should be transversal to the subset G¢ of
all complex lines in Grg(2,4). This condition holds on a dense open sub-
set of plends and it implies that the graph has only isolated complex points
hence finite amount of those. For brevity such plends will be called excellent
(by analogy with “excellent maps” of H. Whitney [70]).

It can be shown that an arbitrary plend admits excellent deformations
and a well known paradigm of singularity theory [70] suggests that it is
reasonable to count complex points in nearby excellent deformations of a
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given plend. Thus one comes to the problem of counting complex points of
an excellent plend which is our main concern in the sequel. A local version
of such strategy was applied in [76], [95] and it turned out that the so-called
signature formulae for topological invariants [94] are quite effective in this
context. In line with that we outline below how one can apply signature
formulae in global setting.

Denote by Ry the algebra of real polynomials in two variables and by
P, the subset of polynomials of algebraic degree not exceeding d. Let F =
(f,9), f,g € Ra be a planar endomorphism (plend) with the components f
and g.

Identify R? x R? with C? in the usual way then the graph I'r of F becomes
a smooth (C™) two-dimensional surface in C2. This enables us to study '
using some concepts of complex geometry. A natural step in this direction
is to look at tangent planes to the graph.

Consider the Grassmanian G = Grg(2,4) of oriented two-planes in R*
identified with C2. As usual one can distinguish between complez lines and
totally real planes [16].

The Gauss map T : I'r — G sends each point ¢ = (p, F'(p)) € I'r to the
tangent plane T,'r. A well known strategy of singularity theory suggests
to consider first objects satisfying appropriate transversality conditions.

Recall that a point p is called a complex point of F' (and its graph I'g) if
the tangent plane T,,I'r at this point is a complex line [16]. Generically, in
particular for excellent plends defined above, a complex point can be either
elliptic or hyperbolic depending on the geometric properties of I'r at this
point [16].

Denote by

5 0 1,0 0
=5 2(8x “ay)
the usual 8-bar operator in the plane and write F5 for the plend obtained
by applying 8 to both components of F. Then one can give a simple char-
acterization of complex points in terms of .

Lemma 5.4. A point p is a complezx point of F if and only if Fz(p) = 0.

We now follow the pattern suggested by E.Bishop [16]. Namely, one
first establishes the existence of elliptic complex points and then applies
the fundamental result of Bishop about the existence of attached analytic
discs in a vicinity of an elliptic complex point [16]. As is well known, this
approach yields a lot of results about the existence of complex points on
immersed compact surfaces which were basically established by topological
methods [56]. In our setting, considerable information about the existence
and amount of complex points can be obtained using the aforementioned
signature formulae for topological invariants [94].

Notice that applying the linking number construction from [76] (cf. [95])
to sufficiently big circles in the plane one obtains a natural integer valued
invariant of a proper plend which may be called its (global) Maslov index



82 G. Khimshiashvili

M(F). According to formulae from [76] and [95] one can calculate M (F')
by properly counting complex points of nearby excellent deformations of
F. It turns out that the same can be done without examination of nearby
deformations.

Theorem 5.3. The Maslov index is algorithmically computable from the
coefficients of a given planar endomorphism.

This follows from an explicit algebraic formula for the topological degree
[94] which implies effective computability of mapping degrees of explicitly
given polynomial mappings. Notice that by virtue of the above lemma, the
Maslov index is just the topological degree of the endomorphism defined by
partial derivative OF/0z.

The Maslov index alone is not sufficient for our purposes. So we consider
also the numbers C(F') and C, (F') of the complex points and elliptic complex
points respectively. The total amount C(F) of complex points can be also
expressed in terms of mapping degree.

Theorem 5.4. The total amount of complex points of a perfect pla-
nar endomorphism is algorithmically computable from the coefficients of its
components.

This follows from a general signature formula for the Euler characteristic
of a compact algebraic subset ([94], Theorem 8.2). For a perfect plend F,
the set of complex points is the finite algebraic subset of R? defined as the
zero-set of the polynomial system %—g(x,y) = 0. Thus this number can be
computed as the local topological degree of an auxiliary endomorphism of
R® which is given by simple explicit formulae [94].

Let us now explain how one can compute the exact amount of elliptic
complex points. The trick is to represent the subset C.(F) as a semi-
algebraic subset of the plane. Then it can be effectively computed using the
results of Ch.9 of [94].

In other words, we only need to indicate explicit algebraic conditions
which characterize elliptic complex points. To this end we use the geometric
interpretation in terms of Gaussian curvature K,(I'r) [56]. Namely, from
the normal form of a generic complex point [16] it follows that the elliptic
points are exactly those complex points p where K,(I'r) is positive. Now it
is not difficult to show that this condition can be expressed as a polynomial
inequality.

Indeed one can use an explicit expression for the Gaussian curvature
of a parameterized 2-surface in R*. It comes as no surprise that such an
expression can be derived from general formulae for the first fundamental
form and curvature tensor of a parameterized submanifold, which directly
leads to the desired conclusion [96].

Proposition 5.1. The set of elliptic complez points of a perfect plend F
coincides with the finite semi-algebraic subset of the plane defined as

OF
{p= @y e B|5 = 0,K(2,y) >0},
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where K (z,y) is the Gaussian curvature of T'r at the point
(@,y,f(,9),9(z,y))-

Combining this with the results of Chapter 9 of [94] it is not difficult to
obtain an effective algorithm for computing the number of elliptic complex
points.

Theorem 5.5. The number of elliptic complezx points of an excellent
planar endomorophism can be effectively computed by a finite number of
algebraic and logical operations over its coefficients.

This follows from Theorem 9.1 of [94] which establishes the effective
computability of the cardinality of a finite semi-algebraic subset.

It should be added that using a computer program for calculating topo-
logical degree developed by A.Lecki and Z.Szafraniec [107] one can easily
count complex points for plends of not very high degree (everything de-
pends just on the capacity of a computer at hand). After determining the
bifurcation diagram along the standard lines of singularity theory [70], this
in principle enables one to find all possible values of the above invariants
for plends of fixed bi-degree, say, for elements of (P;)2. Using the results
of [45], [96] it is also possible to calculate the average number of complex
points of a random polynomial endomorphism of the plane with rotation
invariant Gaussian distribution of coefficients introduced in [144].

6. HyrPErR-HoLOMORPHIC CELLS AND RIEMANN-HILBERT PROBLEMS

The classical boundary value problems (BVPs) for holomorphic func-
tions, in particular the linear conjugation problem and the Riemann-Hilbert
problem whose comprehensive theory owes so much to the works of N.
Muskhelishvili and his followers (see, e.g., [122], [157], [158], [98], [100]),
can be described by linear operators in appropriate function spaces (cf. the
abstract operatorial setting developed in [20], [68], [135], [24]). Nowadays
there also exist several interesting non-linear versions of these classical prob-
lems (see, e.g., [143], [159]).

One of the most spectacular generalizations of this kind was developed
in the seminal paper of M. Gromov concerned with the pseudo-holomorphic
curves [72]. Gromov’s approach involves, in particular, two important new
aspects: generalizing the equation satisfied by functions (which in in some
sense equivalent to working with solutions of the Bers—Vekua equation [14],
[157]) and consideration of non-linear boundary conditions in the spirit of
”holomorphic discs attached to a totally real submanifold” [16].

All these results are concerned with functions which locally depend on
two real variables and one may wonder if similar results can be obtained for
functions of several real variables satisfying some elliptic system of equa-
tions. Such generalizations do not seem to have attracted much attention up
to now, but the existing results about linear BVPs for elliptic systems (see
[27], [151], [86]) suggested that some results of this type should be available
for systems of Dirac type [62].
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In this section we describe some steps in this direction. To be more
precise, we discuss some geometric properties of families of solutions to
certain elliptic first order systems of linear partial differential equations
with constant coefficients [162] (cf. EES of Section 4; such systems are
also called “canonical first order systems” (CFOS) [9]). Such systems were
studied in many papers and they remain an object of a permanent interest
(see [152] for a recent review of the topic).

An especially important class of such systems is provided by the so-called
”generalized Cauchy-Riemann systems” (GCRS) [150] which were already
discussed in Section 4. Solutions to generalized Cauchy—Riemann systems
are often called hyper-holomorphic mappings [142] and in many problems it
is necessary to consider images of some standard domains (e.g., balls) under
such mappings. Standard examples of such systems in low dimensions are
the clagsical Cauchy—-Riemann system in the plane, the Moisil-Theodoresco
system in R® [17], and Fueter system for functions of one quaternionic vari-
able [31]. There exists a vast literature devoted to such equations (see
references in [17] and [31]). In particular, some important results about the
so-called generalized analytic vectors were obtained by georgian mathemati-
cians [17], [125]. Similar systems emerged in the theory of para-analytic
functions developed by M. Frechet [57].

The main paradigm we follow in the sequel, has its origin in the theory
of analytic (holomorphic) discs attached to a totally real submanifold [16]
which was already discussed above. One takes a smooth bounded domain
homeomorphic to a ball of appropriate dimension and considers its images
under solutions to a given CFOS. Such images (we call them elliptic cells)
are our main concern in this paper.

More concretely, inspired by the theory of attached analytic discs [16],
[566] we consider elliptic cells with boundaries in a fixed submanifold M of
the target space of the elliptic system in question. They are called elliptic
cells attached to M. For our purposes it appears useful to regard them as
solutions of non-linear boundary value problems of Riemann—Hilbert type
[159]. Accepting terminology from [159], M will be called a target manifold
(for attached elliptic cells).

Actually, we only consider hyper-holomorphic cells, i.e., those which are
defined by solutions to a given GCRS. Notice that except the aforementioned
theory of attached analytic discs [16], there also exist important generaliza-
tions of this classical example in the framework of symplectic geometry [72].

Recently, similar situations were discussed in mathematical physics in
relation with so-called D-branes. D-branes have already found interesting
applications in topological field theory and string theory [15], [60]. It is
worthy of noting that in those physical contexts there also appear manifolds
with boundaries attached to certain submanifolds. This confirms our trust
that such objects deserve some attention by their own.

With this in mind, we investigate some situations where families of at-
tached hyper-holomorphic cells can be locally described as kernels of some
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(non-linear) Fredholm operators. Such a phenomenon is well known in the
case of analytic discs [6] and it plays an important role in M. Gromov’s
studies on pseudo-holomorphic curves [72]. In particular, one becomes able
to use the well known concepts and techniques of Fredholm theory, which re-
veals some important topological aspects of the situation. We closely mimic
Gromov’s approach and establish some properties of emerging non-linear
operators using the Fredholm theory of elliptic Riemann—Hilbert problems
(RHPs) for GCRS discussed in the Section 4 (cf. also [151], [84]).

In particular, we show that, for certain values of dimensions n, k, and m,
there exist non-compact k-submanifolds in affine m-space such that fami-
lies of hyper-holomorphic n-cells attached to such submanifolds are locally
described by Fredholm operators. Borrowing again terminology from [159],
such submanifolds are called admissible targets (for a given GCRS). Exis-
tence of admissible targets and Fredholmness of arising non-linear operators
are derived from the recent results on the existence of elliptic boundary value
problems for GCRS [152], [86] (cf. also [142]).

Such aspects of generalized Cauchy—Riemann systems seem to have never
been discussed in the literature, so we pursue but a modest goal of describing
and illustrating the framework which naturally stems from our previous
results on generalized Cauchy—Riemann systems. We proceed by presenting
some notions from [150] and [162] in the form adjusted to our purposes.

Definition 6.1 ([150], cf. [62]). An elliptic system of first order with con-
stant coefficients is called a generalized Cauchy-Riemann system (GCRS)
if it is invariant under the natural action of the orthogonal group on the
source space and all components of its differentiable solutions are harmonic
functions. Solutions of such systems are called hyper-holomorphic (hh)
mappings. For a given such system S, its solutions will be also called S-
mappings.

As was explained above (cf. [151]), without loss of generality, one may
always assume that such a system in R"t! may be written in a canonical
form described in the Section 4:

Ow Ow Ow
8x0+ 18x1+ * "axn+ w={ (6.1)
where A;, D are constant complex (m x m) matrices, E = Ay is the identity
matrix, and for all i,5 = 1,...,n, one has:
AiAj + A]Al = —2(51']'E. (62)

We consider such a system in a smooth domain U € R**! and assume
that the unknown vector-function w belongs to class C1(U,C™).
As was also shown, system 6.1 is elliptic, in the usual sense [162], i.e.,

det(toE +t A+ + tnAn) #0,

for all (to,...,t,) € R* — {0}.
As we have seen above, such a system defines a representation of Clifford
algebra Cl,, on C™ [62]. So the (complex) target dimension m, being the
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sum of dimensions of irreducible representations of Cl,,, is an integer mul-
tiple of 2[7/2] [27]. If for a given system S this dimension is the minimal
possible, m(n) = 2["/2], we will say that system S is irreducible. In many
situations it is sufficient to consider only irreducible GCRSs.

For the sake of visuality, we explicitly write down some examples of such
systems in low dimensions. For n = 1, one has m(1) = 1 and the corre-
sponding irreducible system is just the classical Cauchy—Riemann system
for two real functions u(z,y),v(z,y) of two real variables:

Uy — vy =0,
Uy +v; = 0.

For n = 2, one has m(2) = 2, and the corresponding irreducible systems
for four real functions s,u,v,w of three real variables is the well-known
Moisil-Theodoresco system which may be written using standard operators
on vector-functions in R® [62]:

div (u,v,w) =0,
grad s + rot (u, v, w) = 0.

For n = 3, one has m(3) = 2, and the corresponding irreducible system
is the so-called Fueter system for four real functions f; of four real variables
Zj [62]:

ofo [ 0f _0fr  0fs

6x1 + 6.’1}0 6.’1}3 + a.’IJQ -
Ofo , 05  Ofs Ofs _
a.’IJQ + 6.’1}3 + 6.’1}0 6x1 o 0,

0fo O0fi O0fs  Ofs

0,

6.’1}3 6.’1}2 6x1 6.’1}0 =0
Asis well known, this system is a natural counterpart of Cauchy—Riemann
system for a function of one quaternionic variable. Its solutions, called
quaternionic-regular functions, have many interesting properties similar to
those of usual holomorphic functions of one complex variable [62], [142].
The general theory of PDE yields that one can formulate various reason-
able boundary value problems (BVPs) for such systems in bounded domains
[162], [153]. For our purposes are relevant the classical local boundary value
problems of Riemann—Hilbert type introduced in Section 4. In other words,
one looks for solutions of (6.1) satisfying a boundary condition of the form:

(B1Bs) -w =g, (6.3)

where By, B, are continuous complex (% x %)-matrix-functions on bU such
that the rows of (% x m)-matrix-function (B;, By) are linearly independent
at every boundary point, and g is a continuous vector-function with values
in C™.
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For our purposes especially appropriate are those RHPs which are elliptic
in the usual sense (i.e., satisfy Shapiro-Lopatinski condition [162]) because
then the problem 6.1, 6.3 is described by a Fredholm operator in appropriate
function spaces [162]. It is well-known that not all systems of the type
6.1 admit elliptic boundary conditions 6.3 [17], [162], so the first natural
problem is to investigate which GCRSs possess elliptic RHPs. The answer
to this question given in Section 4 enables us to indicate cases in which
hyper-holomorphic cells are described by Fredholm operators.

Remark 6.1. An important class of GCRS is associated with Euclidean
Dirac operators [27]. The corresponding systems of the first order are called
systems of Dirac type and their solutions are called monogenic mappings
[62].

For notational convenience, in the sequel we denote by V the target space
C™ of system (6.1). We fix now a GCRS of the form (6.1) and denote by
B a (n + 1)-ball in its source space. We also take some submanifold M in
V and refer to it as a target.

Definition 6.2. A hyper-holomorphic (hh) cell attached to M is defined
as (the image of) a hyper-holomorphic mapping u : B — V such that
u(bB) € M. For a fixed GCRS S, we will speak of S-cells attached to M.

The usual way of dealing with hh cells attached to a given submanifold
is to consider families of cells attached at a given point. Such families
may be described by certain non-linear operators in appropriate function
spaces and if these operators appear to be Fredholm, then one may obtain
a reasonable structural theory of such cells, as it happens, for example,
for pseudo-holomorphic discs and curves [72], [6]. So it is natural to begin
with looking for such situations where hh cells may be related to Fredholm
operators. In order to make this idea precise, we need some constructions
and definitions.

To this end, consider an irreducible GCRS S in R"t! with values in V.
Consider also some smooth (C*°) submanifold M of V' of the real dimension
equal to the complex dimension m(n) of V' (in such case we speak of a
submanifold of middle dimension). Let B denote an (n + 1)-ball centered
at the origin of the source space of S and let ¢ be some fixed point on its
boundary n-sphere bB. Furthermore, we fix a point p € M and a non-
integer positive number » > 1, and let H" denote the class of all maps
such that all of [r]th order partial derivatives of their components belong to
Holder class (cf. [6]).

Let F be the space of H™! maps f : (B,bB,q) — (V, M, p) which are
homotopic to the constant map f, = p in 741 (V, M, p) (such maps will
be called homotopically trivial). In a standard way one checks that F is a
smooth Banach manifold (cf. [6]). Let G be the complex Banach space of
all H™ maps g : B — V. Define also a submanifold in F x G by putting

H={(f,9) € F x G: D(f) = g}, (6.4)
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where by D is denoted the matricial partial differential operator defined by
the left-hand-side of (6.1).

Then it is easy to see that H is a connected submanifold of F x G and
one may define the projection map L, : H — G given by L,(f,g9) = g.
It is also easy to check that L, is a differentiable map of H into Banach
space G. Recall that a differentiable map F : X — Y between Banach
manifolds X, Y is called a Fredholm map if, for each point p of the source
X, the derivative T F at point p defines a Fredholm operator T, X — Tr(,)Y
between the tangent spaces [46].

Definition 6.3. Mapping L, is called the Gromov’s operator of pair
(S, M) at point p. Manifold M is called an S-admissible target if Gromov’s
operator L, (S, M) is a (nonlinear) Fredholm operator for every p € M.

Similar operators were introduced by M. Gromov for analytic discs [72]
(cf. also [6]). General techniques of functional analysis (Fredholm theory,
Sard-Smale theorem, theory of Fredholm structures) suggest that if this
operator appears to be Fredholm, one may count for a reasonable structural
theory for attached elliptic cells. In some sense this is the most natural way
of formulating a version of Fredholm theory for elliptic cells.

We now present a typical result of this type available in our context. We
are especially interested in those targets M for which L, is Fredholm at any
point p € M, so we introduce a short-hand admissible targets for the targets
possessing this property.

Recall that we are given an irreducible GCRS S in R*+! with values in
V. Construct another GCRS D(S) with values in W = V x V which is
a sort of a “double” of S. If n is even, than D(S) simply consists of two
identical copies of S. If n is odd, then one adds to S the canonical GCRS
corresponding to the second irreducible representation of Cl,,. Thus the
complex dimension of the target space of D(S) is 2m(n).

Remark 6.2. Consideration of such “doubles” is suggested by the results
of Section 4. From the viewpoint of K-theory this may be considered as a
sort of “stabilization” and it is quite natural that this operation improves
certain properties of the system (see [27]).

We construct now non-compact admissible targets M in W as images of
appropriate embeddings of R2"") . We assume that all spaces of smooth
mappings are endowed with Whitney topology [73].

Theorem 6.1. There exists an open set of embeddings f : R2™(") — W
such that, for every point p of M = f(R>™™), Gromov’s operator of the
pair (D(S), M) at point p is a (non-linear) Fredholm operator of index zero.

In other words, non-compact admissible targets exist for systems of the
form D(S). At the moment we do not have any general existence results
for compact admissible targets. Notice that for every (compact or non-
compact) admissible target, fredholmness of Gromov’s operators combined
with a standard application of implicit function theorem for Banach spaces
in the spirit of [73] implies that the homotopically trivial families of attached
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elliptic cells are locally finite-dimensional. Notice that here one need not
restrict himself to systems of the form D(S).

Corollary 6.1. If M is a S-admissible target, then the family of ho-
motopically trivial S-hyper-holomorphic cells attached to M at p is finite-
dimenstonal.

This result can be considered as a description of the subset of all hh cells
attached to M which are close to a “degenerate” cell f, = p. One obtains
its natural generalization by considering the subset of all hh cells attached
to M which are sufficiently close to an arbitrary given cell g attached to M.
One need not even assume vanishing of the class of g in 7,1 (V, M).

Corollary 6.2. For a given S-cell g attached to an S-admissible target
M, the set of all S-cells attached to M near g is finite-dimensional.

In both these cases one encounters a natural problem of computing the
“virtual dimension of nearby attached hh cells” (see [73]) in terms of S, M,
and of the given cell g. Such formulae are available for (pseudo-)analytic
discs (or Cauchy—Riemann cells, in our terminology) and they involve the
notion of Maslov index of a curve along a totally real submanifold M [56],
[72].

Up to the author’s knowledge, in the general case this is an unsolved
problem. As one can see from the discussion presented in the next section,
progress in this problem depends on the availability of explicit index formu-
lae for elliptic linear Riemann—Hilbert problems for GCRSs. Apparently in
concrete cases one can successfully apply the analytic formulae for indices of
elliptic boundary value problems in Euclidean space obtained by A.Dynin
[44] and B.Fedosov [52].

We present below an outline of the proof of Theorem 6.1. Using a natural
linearization procedure it can be derived from general results on existence of
elliptic boundary value problems for GCRSs which were presented in Section
4. An examination of the proofs of those results shows that for GCRSs in
spaces of odd dimension (in our notation this means that n should be even)
the same result can be obtained without passing to doubles, which yields
the second main result of this section.

Theorem 6.2. For every irreducible GCRS on a space of odd dimension
different from 5 and 7, there exists an open set of embeddings of R™(™ into
C™") sych that their images are admissible targets for attached S-cells.

As was explained in Section 4, with every GCRS S there are associated
integers m and l. For odd n, there also appear integers I1,lo (I +1o = 1)
showing how many irreducible representations of each of the two possible
non-isomorphic types do participate in the direct sum decomposition of the
representation defined by system S. As was shown these discrete parameters
completely determine existence of elliptic BVPs. For the purposes of this
section we need stronger versions of the main results of Section 4. They
follow easily from the results of Section 4 ”by general principles”.
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Proposition 6.1. Suppose that n is odd and n > 3. Ifl is also odd, then
there exist no elliptic RHPs for the given GCRS. If | is even, then elliptic
RHPs exist if and only if Iy = ly. In the latter case, the set of elliptic
boundary conditions is open in the space of all local boundary conditions of
the form (6.3).

Proposition 6.2. If n > 2 is even, n # 4,6, then there always exist
elliptic RHPs for GCRS of the form D(S) and the set of elliptic boundary
conditions is open in the space of all local boundary conditions of the form
(6.3).

Remark 6.3. The restriction that n # 4,6 results from the method of
proof used in [86]. It comes from the paper [71] and it is related to some
delicate questions of K-theory. At the moment it still remains unclear for
us if this restriction is essential indeed.

Taking into account these results we can now prove Theorem 6.1 and in
course of proving it we will also see the way of generalizing it to arbitrary
GCRSs on odd-dimensional spaces, which is the second main result of this
section.

Proof of Theorem 6.1. Let us first determine the derivative (differential) of
L, at some point (fo, go) and show that it may be interpreted as a boundary
value problem 6.1,6.3 for system D(S), i.e., that it is an RHP for the GCRS
D(S).

Using the standard description of the tangent space to a manifold of
mappings in terms of vector fields along a given mapping, it is easy to see
that Ty, 4,)H may be identified with the space

Z={f:B—-W:feH (B,W),f(z)€ Ty )M, Vz € bB, f(q) = p}.

Granted that, it becomes clear that the derivative of L, at (fo, go) may
be identified with the map § : Z — G given by 6(f) = Df.

Let Ny denote the (geometric) normal bundle of M. This is a real
vector bundle with fibre dimension & = 2m(n). Consider its pull-back
Ey = (fo | bB)*(Npr). From the homotopy condition in the definition of F
it follows that FEy is a trivial bundle over bB, generated by k global sections,
say, p1,...,pp. Using P; as rows we may form the (k x 2k)-matrix-function
p € H™'(bB). By the very construction of P, TgyyM = {w € W :
P(z)w = 0} and one immediately observes that matrix P has exactly the
same form as the matrix of boundary condition (6.3) for system D(S).

Let us set X = H™TY(B,W),Y = H"(B,W) x H™'(bB,C™") and
define a map R: X =Y by R(f) = (D(f), (Pf)|bB). It is obvious that R
is exactly the operator of a Riemann-Hilbert problem (6.1,6.3) for system
D(S).

Our next goal is to understand under which conditions one may guarantee
that R is a Fredholm operator. Notice that if the corresponding RHP is
elliptic (i.e., satisfies the Shapiro-Lopatinski condition [162]), then R is a
Fredholm operator in virtue of the general theory of elliptic linear boundary
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value problems [162]. So we should only arrange that matrix P defines an
elliptic boundary condition for D(S).

Proposition 6.2 shows that in our situation (this is the crucial place where
it is important that D(S) is a ”double”) there are a plenty of elliptic bound-
ary conditions. In particular, there exist constant matrices Py which define
elliptic RHPs (6.1, 6.3). Let us embed R*™™ in W in such a way that
the normal space of the image M is orthogonal to the subspace spanned
by rows of such a F. For such target M, R is obviously Fredholm, so Ly,
is also Fredholm at any p € M. Taking into account the stability of Fred-
holm property under small perturbations, we see that all sufficiently small
perturbations of M will be admissible targets. The homotopy invariance of
the Fredholm index implies that the index vanishes, which completes the
proof. O

Remark 6.4. We used the fact that systems of the form D(S) possess ellip-
tic boundary conditions (6.3) defined by constant matrix-functions B, Bs.
This fact is not self-evident but it follows from the results of [88]. The “rai-
son d’étre” of this result is the fact (see [88]) that, as was already mentioned,
RHPs for systems of the form D(S) are equivalent to linear conjugation
problems for system S [88].

Existence of elliptic linear conjugation problems was established in [88].
For n = 1 this is just a trivial consequence of the classical theory of lin-
ear conjugation problems for holomorphic functions [122] (actually every
non-degenerate constant matrix generates an elliptic conjugation problem
because its partial indices obviously vanish). For irreducible systems with
n = 2 (Moisil-Theodoresco system) and n = 3 (Fueter system), existence
of constant elliptic transmission conditions follows from the criteria of fred-
holmness for such problems obtained in [142] (cf. [153]).

Remark 6.5. The situation with compact admissible targets remains
unclear. It is well known that there might be topological obstructions to
existence of such targets, which happens already for the classical Cauchy-
Riemann system [56]. In order to clarify this issue it is necessary to achieve
better understanding of geometric conditions on admissible targets, which
can be hopefully done in terms of transversality to certain subspace of the
Grassmanian G(2m(n),4m(n)). This may be done in some simple cases, for
example, the necessary “algebraic analysis” of the Moisil-Theodoresco sys-
tem is presented in [140]. In the general case this seems to be quite difficult
and it is even unclear what is the dimension of the subset of ”prohibited”
2m(n)-subspaces. This point of view is related to some other approaches to
the construction of admissible targets which will be briefly discussed below.

Analyzing the proof of Theorem 6.1 and taking into account the previous
remark, one sees that it may be extended to certain irreducible systems
which leads to the desired result. We would like to point our that despite
certain analogies with analytic discs, the situation with hh cells is much



92 G. Khimshiashvili

more subtle. In particular, the restriction to systems of the D(S) type
cannot be just omitted.

For example, the most straightforward generalization of analytic discs
attached to totally real surfaces [56] would be to consider the Fueter system
in R* = H (quaternionic regular functions [62]) and try to construct Fueter
cells attached to 4-dimensional submanifolds in R®. However, it turns out
that in this way one cannot obtain a reasonable Fredholm theory for such
cells, since in this situation Gromov’s operator is never Fredholm. The latter
fact follows directly from Proposition 6.1 because the resulting system has
2=0 #1,=0.

We conclude the section by mentioning some geometric problems sug-
gested by our approach.

A natural problem raised by our results is to understand how can one
characterize admissible targets geometrically. Gromov’s general approach
to solving of under-determinate systems [73], suggests that this issue should
be related to certain special subsets of appropriate Grassmanians. Indeed,
some first steps in this direction can be done in a quite natural way and we
proceed by a brief discussion of these matters.

Actually, a more comprehensive investigation of these connections shows
that they may be conveniently described in terms of so-called Grassmanian
geometries and calibrations, in the sense of [74]. We do not discuss relations
to calibrated geometries but some of those ideas are implicitly present in
the comments to follow.

For a given GCRS, it is also interesting to investigate what can be the
minimal possible dimensions k of target manifolds for which one can de-
rive Fredholmness of Gromov’s operators. Gromov’s h-principle suggests
that admissible targets should satisfy some transversality condition with
respect to certain special subset of Grassmanian Gr(k,2m) defined by the
characteristic matrix of the system in question.

In order to make this idea more precise let us first reexamine the classical
case of analytic discs. Results of Gromov [73] and Alexander [6] translated
to our language mean that admissible targets for analytic discs are precisely
totally real submanifolds of C*¥. For k = 2, the condition of total reality
means that the image of Gauss mapping I'ys of a submanifold M does not
intersect the subset of complex lines in Grg(2,4). Since target M is in this
case two-dimensional, this suggests to consider generic targets M such that
T'as is transversal to the two-dimensional subset of complex lines Gre(1,2)
in four-dimensional real Grassmanian Grg(2,4).

For such generic targets, their tangent planes can coincide with complex
lines only at isolated points and one may wish to eliminate these points
by deforming M. For compact M, it is well known [16] that the only
obstruction for elimination of points with complex tangencies is given by
the Euler characteristic x(M). It may be also shown that, for non-compact
contractible M homeomorphic to R?, the set of embeddings into R* without
complex tangencies is open and dense in the set of all such embeddings. The
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latter statement is exactly the special case of Theorem 6.1 for the classical
Cauchy—Riemann system in R2.

Thus it becomes clear that admissible targets may admit characterization
by some genericity conditions like transversality, and in order to find such
conditions one should try to describe the subset of n-planes in C* which can
be represented as images of differentials of solutions to system S. Notice
first that this is exactly what happens in the classical case, since for the
usual Cauchy-Riemann systems these images are the complex lines.

Indeed, it is immediate to see that the most general form of a Jacobian
matrix of a CR-solution (analytic disc) with values in C? is:

a —b
b a
c —d ’
d c

where a,b,c,d are arbitrary real numbers. It is also clear that a vector
expressed by the second column of this matrix is equal to ¢ times the vector
expressed by the first column. So the image of the corresponding operator
is a complex line and it is clear that every complex line may be obtained
in this way. Of course the same holds for arbitrary value of the complex
dimension k: the set of tangent planes to analytic discs coincides with the
subset of complex lines in Grr(2, 2k).

Admissible targets in this case coincide with totally real (2k-dimensional)
submanifolds. Notice that they are not generic 2k-dimensional manifolds
because those may have complex tangencies and actually homological prop-
erties of the set of complex tangencies are closely related to the topology of
the target submanifold [56].

Similar considerations can be performed for the Fueter system. It is also
instructive to have a look at the first irreducible system with non-equal
(real) dimensions of the source and the target (i.e., n+ 1 # 2m in our
notation). This is of course the Moisil-Theodoresco system (n = 2, m = 2).
A simple calculation shows that tangents to its solutions are precisely the
3-dimensional subspaces in R* generated by columns of matrices of the form

a b e—k
—l-r e f
k l a+g¢q
b+f ¢ r

Now it is quite simple to verify that every 3-dimensional subspace in
R* may be obtained as the tangent space of a MTS-solution. Obtaining
a precise description of MTS-tangents in R** for k > 2 is a more delicate
task. A further analysis of this problem shows that explicit description
of this subset is closely related to certain homological problems. Similar
problems were considered in [140] where Grébner bases and syzygies for
the Moisil-Theodoresco system are computed using computer programme
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CoCoA (cf. [3] where the same problems are studied in the case of Fueter
system).

As was already noticed, for n = 2,3 one can indicate explicit geometric
conditions on T, M for a target manifold M to be admissible. This follows
from explicit criteria of Fredholmness for RHPs for Moisil-Theodoresco and
Fueter systems obtained in [142]. It would be interesting to obtain similar
results for general GCRSs.

We would also like to mention the general problem of computing the
index of an elliptic RHP for GCRS. In principle this is possible using gen-
eral results of Atiyah and Bott, which should lead to explicit formulae of
Dynin-Fedosov type [44], [52], but it does not seem that somebody have
ever written down those explicit formulae in terms of the characteristic ma-
trix and boundary condition. Thus it would be illuminating to obtain an
exact recipe, or even an algorithm applicable in concrete situations. In low
dimensions, some useful preparatory work for developing such an algorithm
was done in [142].

We conclude the section by mentioning another promising perspective
which emerges from the aforementioned connection between special Grass-
manians and calibrated geometries. It is concerned with finding a proper
calibration for a given GCRS. For the classical Cauchy-Riemann system
this may be worked out in full detail and it turns out that the desired cal-
ibration is provided by the properly normalized Kéhler form on the target
space [74]. In fact, many properties of families of analytic discs may be
derived directly from this interpretation, so one may hope that finding a
proper calibration will be useful for achieving further progress in the theory
of hyper-holomorphic cells.

7. RIEMANN-HILBERT MONODROMY PROBLEM

As was mentioned in the introduction, the Riemann-Hilbert transmis-
sion problem (or the linear conjugation problem for holomorphic functions)
is closely related to another problem studied by the same two great math-
ematicians, namely, the so-called Riemann—Hilbert monodromy problem (or
Hilbert’s 21st problem, or else Hilbert problem 21) [7]. The latter problem is
formulated in terms of systems of ordinary differential equations with the
so-called regular singular points [36], [7]. For brevity, such systems will be
called regular systems.

Regular systems are interesting from many points of view and their theory
is rich with deep analytic and geometric results [36], [7], [34]. For example,
there exist a lot of interesting results about the behaviour of solutions of
such equations in a neighborhood of a singular point [36], [7]. Recently, in-
tensive study has begun of global solutions of regular systems, i.e. solutions
continued to the whole domain of definition of the equation. This domain
is usually an algebraic or analytic variety whose topological invariants (e.g.,
homology or homotopy groups) influence the form of global solutions.
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We only consider the case when the domain is a compact manifold of com-
plex dimension one, which amounts to discussing regular systems on com-
pact Riemann surfaces. This case is most closely related to the Riemann—
Hilbert transmission problem and these interrelations were actively studied
(see, e.g., [139], [36], [7]). It should be noted that some interesting geometric
aspects appear already in the case of the Riemann sphere when solutions
may be constructed in terms of Birkhoff factorization of piecewise constant
matrix functions [139], [7], [149].

In the sequel we discuss some known results about the Riemann—Hilbert
monodromy problem and their connections with Birkhoff factorization and
transmission problems. Our presentation of the background and main re-
sults concerned with the Riemann—Hilbert monodromy problem is based on
[63], [64], [65] and several useful discussions with G.Giorgadze. The point of
view and setting is aimed at revealing new connections between Riemann—
Hilbert transmission problem and the Riemann-Hilbert monodromy prob-
lem, especially the ones between the GRHP for compact Lie groups consid-
ered in Section 2 and regular G-systems studied by G.Giorgadze. It is the
author’s belief that further exploration of interrelations between these two
topics may lead to new interesting developments in the spirit of geometric
approach of preceding sections.

We recall first a precise formulation of the Riemann-Hilbert monodromy
problem (RHMP). Fix a compact Riemann surface X together with a dis-
crete subset S of it. Assume also that a representation of its fundamental
group g : 71 (X \ S, 29) = GL(n,C) is given. The problem then consists in
constructing such a system df = wf of differential equations on X whose
singular set coincides with S, while the monodromy group induced by this
system is G = im ¢ C GL(n,C).

Some agsumptions about the nature of singular points are usually made
in this setting. The two most important cases are when all points of S are
assumed to be regular singular points [7] or they are all assumed to be of
the Fuchs type [7]. Correspondingly, one speaks of the monodromy problem
for regular or Fuchsian systems.

We will be basically concerned with regular systems but it should be
noted that Fuchsian systems have always been an object of special in-
terest. One of the reasons is that by Lappo-Danilevsky theorem [106]
such a system can be explicitly constructed from the monodromy matrices
My, Ms,...,M,, € GL(n,C). It is also remarkable that Hilbert problem 21
in its original formulation refers to Fuchsian systems.

The monodromy representation g enables one also to construct a holo-
morphic bundle E' —+ X \ S on the noncompact Riemann surface X \ S
for which V! = d — w is a holomorphic connection. There exists a well
known construction [36], [7] which permits to extend the bundle (E’, V')
to a holomorphic bundle (E,V) with a regular connection on X. Such
an extension is not unique, but there exists a so-called canonical extension
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(E°,V°) whose holomorphic triviality for X = CP! is a sufficient condition
for the solvability of the Hilbert problem 21 [25].

Another sufficient condition for the existence of a system of Fuchs type
is the irreducibility of representation g [25]. Holomorphic classification of
holomorphic bundles on compact Riemann surfaces has a long history, it
arose in several contexts and after the works of G.Birkhoff, A.Grothendieck,
H.Rohrl, M.Atiyah, D.Mumford, R.Narasimhan and T.Seshadri became a
classical and well understood topic. In the case of the Riemann sphere, the
classification is given by the following synthesis of theorems of Birkhoff and
Grothendieck which is usually called the Birkhoff-Grothendieck theorem.

Birkhoff-Grothendieck theorem. FEach holomorphic bundle E —
CP' on the Riemann sphere CP' decomposes into a sum of line bundles:
O(k) @ ---® O(ky,), the integers ki > - -+ > ky,, being the Chern numbers
of those line bundles.

Classification of holomorphic bundles on Riemann surfaces of genus g >
1 has been accomplished with the aid of holomorphic connections by M.
Atiyah, who assigned to each bundle E — X an element b(E) € H'(X;Q!)
of the cohomology group H'(X;Q!). Vanishing of this element b(E) is
necessary and sufficient for the existence of a holomorphic connection on
E - X.

D.Mumford determined an important subclass of holomorphic bundles
E — X, g > 2, the so-called semistable bundles, while R.Narasimhan and
T.Seshadri showed that a bundle is semistable if and only if it is induced by
an irreducible unitary representation g : m (X \ {zo}; 20) = U(n,C) of the
fundamental group of the surface X \ {zo}, where zy € X is some point.
They also obtained a criterion of stability for such bundles. A new elegant
proof of the latter result was given by S.Donaldson and we reproduce here
the formulation of this criterion given in [40].

Stability criterion (Narasimhan, Seshadri, Donaldson). An indecom-
posable holomorphic bundle E — X is semistable if and only if there exists
a unitary connection V on E having constant central curvature xFy =
—2miu(E)1, where u(E) = degree(E)/rank(E), x is a Hodge operator, and
1 is the identity matrix.

This result relates to the Riemann—-Hilbert monodromy problem as fol-
lows: for a representation g : m1 (X \ {zo}, 20) — U(n) there exists a system
df = wf of differential equations on X for which zy is a regular singular
point and its monodromy coincides with . Thus V = d — w will be a
connection with a regular singularity on the holomorphic bundle E, — X,
and since *Fy is constant, one has Dy * Fy = 0, which means that V is a
Yang-Mills connection [8]. A wider class of Yang-Mills connections can be
obtained from a linear elliptic system % f(z) = A(2)f(2), where % is the
derivative in the Sobolev sense, A(z) is a square matrix function of rank n
with entries of class L, [64], [65]. This obviously brings us in the situation
of the Riemann—Hilbert transmission problem for elliptic system which was
studied in previous sections.
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As was already mentioned, the latter problem can be solved with the aid
of the Birkhoff factorization of the coefficient matrix function g(t), which
means that g(¢f) can be represented in the form g(t) = g4 (t)dk(t)g—(t),
where g4 (t) are holomorphic, respectively, on By and g_ vanishes (or sat-
isfies a finiteness condition) at co. As usual, di (t) = diag(t*,...,t*=) is a
diagonal matrix function with some integers k; > ko > --- > k.

An explicit connection between the Riemann—Hilbert monodromy prob-
lem and the Riemann—Hilbert transmission problem can be obtained by
taking in the role of the coefficient g(¢), a piecewise constant function

which relates to the monodromy matrices M,..., M,, via the equality
g(t) = M;--- M, for t belonging to the arc (s;,s;y1), where s; € S,
7 =1,...,m. Traditionally such a problem is reduced to a problem with

the coefficient of the Hélder class and is then solved using the Birkhoff fac-
torization [113], [149]. While dealing with the monodromy problem for the
system % f(z) = A(2)f(2), and replace the Birkhoff factorization by the
so-called ®-factorization [113], [65].

As was mentioned, according to Lappo-Danilevsky [106] it is possible to
express analytically coefficients of a Fuchsian system by the monodromy
matrices, provided these matrices satisfy certain conditions. Questions of
analytic solvability of the corresponding differential equations appear to be
related with the differential Galois theory [7], [146].

An algebraic version of the Riemann-Hilbert monodromy problem is
known in the differential Galois theory under the name of inverse prob-
lem which is formulated as follows. Let k be a differential field with the
field of constants C and D(y) = y™ 4+ a1y Y +--- +a,_19’ + any be a
differential operator with coefficients in K. To the operator D one assigns
the so-called Picard-Vessiot field K, whose automorphism group G is the
Galois group of the equation D(y) = 0, isomorphic to some subgroup of
GL(n,C).

Inverse problem of differential Galois theory. Given a group G,
find an extension of k& with Galois group G.

This problem can be investigated by the methods similar to the ones used
in the study of the Riemann-Hilbert monodromy problem [7]. As is well
known this problem is closely related to the Riemann—Hilbert monodromy
problem for Fuchsian equations. For the sake of completeness we present
below the definitions of regular singular points and Fuchsian systems [36],
[7]-

Consider a system of ODE on a small disk U C € with center 0,

¥ a0, (r1)

where A(z) is a holomorphic matrix function on U* = U\{0} and

@) =(1(2),....f") €C"

is the unknown vector function.
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Let p: U* — U* be the universal covering of U* and let £ and z denote
the local coordinate on U* and U *, respectively.

The system (7.1) has n linearly independent holomorphic solutions in a
small neighbourhood of 2y € U*. Denote the space of solutions by ®. If
f € R, then f is a holomorphic function on U*.

Definition 7.1. A multivalued function f has moderate growth if for any
sector ¥ = {2|6p < argz < 61,0 < |z| < €}, where € is small, there is an
integer k > 0 and a constant C' > 0 such that

1
£ < O
for all z € X.

A point zg is called a regular singular point of a system of differential
equation if in any punctured angular sector around zg the local holomorphic
solutions have moderate growth. The system (7.1) is called Fuchsian if 0 is
a pole of order one for the matrix valued function A(z).

Analogously one defines the regular singularity of the n-th order differ-
ential equation

F() ™ (2)+a1(2) F(2) "V (@) + - Fan-1(2) F(2) (2)+an(2) f(2) = 0. (7.2)
Let I' be the group of deck transformations of the covering
p:U* = U™
If a € T, then a defines the automorphism a* : 8 — R of the solution
space in such manner:

a'f =foa™l, ie (@' f)(€) = f(a7'¥).
Clearly, o* f is also a solution to (7.1) and therefore a map
p:T' - GL(n,C), ar— a*. (7.3)

can be defined. If 8 € T is another element, then (a8)* = o*8*, i. e. the
map (7.3) is a homomorphism. Thus

f=({fea)p(a). (7.4)

The homomorphism p is called the monodromy representation corre-
sponding to the system (7.1).

Let ®(z) be a fundamental system of solutions to (7.1) and let ®;(2)

be any invertible matrix function satisfying the following matrix differential

equation:

% = A(2)®1(2).

Then &, (2) = ®(z)G with some constant matrix G € GL(n,C). Instead of
(7.4) we get then ®4(2) = (®1 o a)p1(a) with some
p1: I'—> GL(n, C)

So
®(2)G = (2(2)G o a)p1 (@) = (2 0 2)Gp1(a).



GEOMETRIC ASPECTS OF RIEMANN-HILBERT PROBLEMS 99

But &(z) = ( ( ) o a)p(a), thus (®(2) o a)p(a)G = (®(2) 0 )Gp1(a).
Hence p;1(a) = G 1p(a)G, where G is the same for all a. We see that to a
system (7.1) there corresponds a class of mutually conjugate representations
p: T = GL(n,C).

This conjugacy class is also called the monodromy representation or sim-
ply monodromy. The group of deck transformations I' is now the infinite
cyclic group generated by the deck transformation a which corresponds to
one trip around 0 counterclockwise. Clearly, In ¢ is a holomorphic function
on U* and In(a€) =In ¢ + 2mi. Let G = p(a™') so that

8(ag) = B()C. (7.5)

Let E = 1 ;InG, so that if A; are eigenvalues of G and u; of E, then

1 = 5 1n )\ Denote 7; = Re p; and normalize the choice of In demanding
that 0 < 73 < L.

Introduce the function £¢¥ = e

(Olf)E — eE(1n§+27ri) — EEG

EIng (which is holomorphic on I/*):

Then by (7.5)
®(ag)(ag)™" = B(OGGTIET = 2(g)¢".

Hence ®(£)¢~* can be considered as a single-valued holomorphic function
on U*.
The following result was established by H.Poincaré (see [7]).

Theorem 7.1. Let f(z) be some solution of the system (7.1). Then f(z)
can be represented in the form

where Z is holomorphic on U*.

Proposition 7.1 ([7]). Every coordinate function f;(€) of a solution
f(&) has the form

= &rhy(z)In' ¢, (7.6)
P.q
0<Rer, <Ll €Z,l;>0.
For a Fuchsian system (7.1) let
A = Res,—oA(z),
then one has i A
dz = 21
It is a classical observation that Fuchsian systems form a subclass of
regular systems.
Proposition 7.2 (see, e.g., [139]). 1) Every Fuchsian system is regular.
2) 0 is a regular singular point for the equation (7.2) if and only if the
functions z7a;(z) are holomorphic at 0.



100 G. Khimshiashvili

Remark 7.1. The ordinary differential equation (7.2) is regular if and
only if it is Fuchsian.

From the above proposition it follows that, for a Fuchsian equation, the
coefficients a; (z), az(z),. . ., a,(2) are holomorphic in some punctured neigh-
borhood of 0 and @, (z) has there at most a pole of the 1-st order, ..., a;(2)
at most a pole of the i-th order, ..., a,(z) at most a pole of the n-th order.

It turns out that (7.2) is regular at 0 if and only if the corresponding
system for the vector

(P 7 = (al), B, L2y,

i.e., the system

0 -1 0
df (z)
dz 0 0 L. |f@
—an(2) —ap-1(2) ... —ai(2)

is regular at 0.

The systems d’;(:) = A(2)f(z) and % (z) = B(2)g(z) are holomorphically
(meromorphically) equivalent if there ex1sts a holomorphic (meromorphic)
at 0 matrix function H : V — GL(n,C) such that the transformation

(z, f(2)) = (2, H(2) f(z)) maps one equation to another, i.e.
dH (2)
dz

If two systems of equations are equivalent then their monodromy groups
are conjugate. Moreover, if 0 i 1s a regular singular point for the system, this
system is equivalent to df = f (z), where A is a constant matrix.

A meromorphic connectzon at the point 0 is, by definition, a pair (F, V),
where F is an n-dimensional vector space over the field K = K[1], whereas
V : F — F is an operator which satisfies the Leibniz rule

B(z) = H'(2) + H(2)A(z) H ' (2).

V(h,s) = %s + hVs,

for each function f € K and s € F.
Let ey, eq,...,e, be a basis of F' and let Ve; be expressed in this basis
in the following manner:

Vei = - Z eij (z)ej,
=1
where 8 = (6;;(2)) € End(n, K). Then for s = 377, s;(2)e; we obtain
ds;(z
Vs = Z ( Z% ei(2))ei
=1

From the last formula it follows that Vs = 0 is equivalent to & & =#6s,0r
(d — 6)s = 0. Let us denote the matrix-valued 1-form #dz by w, then the
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system will be (d — w) = 0 and the connection will be V = d — w. Two
connections are gauge equivalent if and only if corresponding systems of
equations are equivalent.

Let X be a Riemann surface of genus g and S = {s1,82,...,8n} be a
set of marked points on X. Denote by X,, = X \ S. Let X = X,, be the
universal covering map of X,,. It is a bundle with fibre 7, (X,,, z0), where
z0 € X, Also, m1 (X, 20) is isomorphic to the group of deck transforma-
tions of this covering and therefore acts on X.

Let

p: 71 (Xm, 20) = GL(n,C) (4.1)
be some representation.

Consider a trivial principal bundle X x GL(n,C) — X (or vector bundle
X x C* — X). The quotient space X x GL(n,C)/ ~ gives a locally trivial
bundle on X,,, where ~ is an equivalence relation identifying the pairs
(%,9) and (0%, p(0)g),for every & € X,g € GL(n,C) (or g € C*). Denote
the obtained bundle by P, — X,;, (or E, = X,;) and call it the bundle
associated with the representation p. In obvious form this bundle according
to the transformation functions may be constructed in the following manner.

Let {U,} be a simple covering of X,,, i. e. every intersection Uy, NUgy, N
-++N Uy, is connected and simply connected. For each U,, we choose a
point 2z, € U, and join z¢ and z, by a v, starting at zp and ending at z4.
For a point 2 € U, N Ug we choose a path 7, C U, which starts at z, and
ends at z. It is well known that one can obtain a cocycle [139] by setting

95 (2) = p (Yara () 75 ()5 - (4.2)
Indeed, it is immediate that
Jory (2) = gga (2)
and
90p9sy (2) = oy (2)
on U, NUgNU,.
The cocycle {gas (2)} does not depend on the choice of 2. Hence from

this cocycle we obtain a flat vector (or principal) bundle [36], [7], which is
denoted by E/, (P;,). Let {to (2)} be a trivialization of our bundle, i. e.

te : p ' (Uy) = GL(n,C)
is a holomorphic mapping. Consider the matrix valued 1-form {w,}:
Wo = —t,  dt,.

{9ap (2)} are constant on the intersection U, NUg and go5(2)ts (2) = to (2),
so on Uy N Ug the identity wy, = wg holds. Indeed, replacing £z by t;l Jas
in the expression wg = —tgldtﬁ, we obtain

wg = —t3"gus (z)dtaggé (2) = —t; dt,.
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So, w = {wq} is a holomorphic 1-form on X, and therefore is a connection
form of the bundle P;, — X,,. The corresponding connection is denoted
by V’. One can now extend the pair (P;,,V’ ) to X. As the required
construction is of local character, we extend P:, — X, to the bundle PZ —
Xm U {s;}, where s; € S.

First consider the extension of the principal bundle P;, — X,,. Let a
neighbourhood V; of the point s; meet Uy, ,Ups, . ..Uy, . As we noted when
constructing the bundle from transition functions (4.1) only one of them is
different from identity. Let us denote it by gi1%, then g1 = G;, where G; is
the monodromy which corresponds to the singular point s;. Mark a branch
of the multi-valued function (£ — ;)" containing the point §; € U; (where
E; = ;2 InG;). Thus the marked branch defines a function

27
gor = (2 — s;) 7.
Denote by go2 the extension of gg1 along the path which goes around s;
counterclockwise, and similarly for other points. At last on U; NU,, NUy,
we shall have:
9or(2) = g1 (2)Gi = go1(2)gor(2)-

The function gox : V; = GL(n, C) is the one defined at the point s;, and
takes there value coinciding with the monodromy matrix. It means, that
we made extension of the bundle to the point s;. In a neighbourhood of s;

one has
dz

z—8;

Thus we obtain the holomorphic principal bundle P, — X on surface X.
The vector bundle associated to P, — X, which we denote by E, — X and
call canonical, need not be topologically trivial. Denote by V a connection
on this bundle. The holomorphic sections of E, are solutions of the equation

V=0 < df =wf.

Theorem 7.2 ([139]). 1) The constructed system has regular singularities
at points $1,52,...,8m.
2) The Chern number c1( E,) of E, = X is equal to

w; = dgorgo, = Ei

(&1 (Ep) = i tT‘(EZ').

The triple (X, S, p) is called Riemann data, where X is a Riemann sur-
face, S C X denotes a finite subset of X, p: 71 (X \ S,20) = GL(n,C) is
any representation with trivial kernel.

We can now formulate the general monodromy problem for Riemann
surfaces.

Riemann—Hilbert monodromy problem for Riemann surfaces

It is required to construct a system of ODE

df = wf,
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on a Riemann surface X for the given Riemann data (X, S, p), where S is
the set of regular singular points of the system and its monodromy repre-
sentation coincides with p.

The following fundamental result shows that RHMP is solvable in the
class of regular systems.

Theorem 7.3 ([139], [36]). For every Riemann data there exists a so-
lution of the Riemann—Hilbert monodromy problem for ODE’s with regular
singularity.

It seems appropriate to add that in the case of Riemann sphere this result
can be derived from the theory of Riemann—Hilbert transmission problem
[139]. Correspondingly, there emerges a possibility to translate the geomet-
ric constructions of Section 1 into the language of regular systems. There
already exist some developments in this direction [63] but this possibility is
not yet sufficiently explored.

The situation with solvability of RHMP for Fuchsian systems is much
more subtle. Let us present a precise formulation of RHMP in this case.

Hilbert’s 21st problem.

Let s1,...,8, € CP! be some points, with no co among them, and let
o : m(CP'\ {s1,...,5m},2) = GL(n,C) be a representation. For the
representation g, one looks for a Fuchsian system

m

ERDY Ai g, £, (7.7)

Z— 85

=1

whose monodromy representation coincides with . In (7.7), the A; are
constant matrices satisfying the condition 37| A; = 0.

Results of A. Bolibruch revealed that there exist representations ¢ which
are not realizable for a Fuchs system in the above way (see, e.g., [25], [26],
[7]). However it is known that any irreducible representation g is realizable
by a Fuchsian system [26]. Moreover, there exists a special class of reducible
representations, which are realizable by Fuchsian systems. More precisely,
a representation ¢ is called a simple representation if the Jordan normal
forms of all the monodromy matrices G; consist of a single Jordan cell.

Theorem 7.4 ([26]). A simple representation is realizable as a mon-
odromy representation of a Fuchsian system if and only if the splitting type
of the canonical bundle induced by it (i.e. the one obtained by canonical
extension) is the vector (k,..., k).

We now concentrate on the case of a Riemann surface of genus zero, i.e.,
the Riemann sphere CP!.

As was already mentioned, a precise relation between the Riemann-—
Hilbert monodromy problem and the Riemann—Hilbert transmission prob-
lem can be established in the following way [139]. Let s1,..., sy, be points
of CP! different from oc. Let us connect these points consecutively by arcs:
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s1 with s9, s with ss, etc., s,,_1 with s,,, and s, with s;. We will ob-
tain a closed contour, on which we will define the piecewise constant matrix
function a(t) which equals the matrix Mj --- My on the interval (s;,s;11),
where Mj; is the monodromy matrix corresponding to the singular point s;
in the Riemann—Hilbert monodromy problem.

Consider now the Riemann-Hilbert transmission problem for the piece-
wise constant matrix function a(t). Traditionally this problem is reduced
[157] to the Riemann-Hilbert problem in the Holder class, which is solved by
methods developed in the theory of singular integral equations. Specifically,
the Birkhoff factorization of Holder class matrix function was used to obtain
the solution. Correspondingly, it is important to know partial indices of the
coefficient. To this end one can use the formulae and algorithm described
in Section 1. Thus we can conclude that the theories of RHTP and RHMP
in many aspects may be developed in parallel. We would also like to point
out that the RHMP has natural counterparts in higher dimensions which
can be described as follows.

Consider a matrix of holomorphic differential forms

w= Z 2;;dlog(z; — 2;) (7.8)
1<i<j<n

where the (2;;, 1 <i < j <n are m X m-matrices with entries in C.
Let
E—-X,

be a trivial vector bundle of rank m, with a frame (eq,...,e,,). Denote,
respectively, by O(E) and 2' the space of holomorphic sections of E and
the sheaf of holomorphic 1-forms on X,,. Let

V:0(E) - 2" ®0(E)
be the connection defined on the vectors e;, i = 1,...,m, in the following
way:

m
V(el) = — Zwﬁ R ey, wij € .Ql,
Jj=1

then the sections of the bundle £ — X, horizontal with respect to V will
satisfy the Fuchs type equation on X,,:

df =wf,
where w has the form (7.8).
Proposition 7.3. The system of differential equations

2
df = Z ﬁd(zi—zj) f (7.9)
1<i<jg<n

is integrable if and only if the matrices (2;; satisfy the following conditions:
[.Qij, -Qik —+ .ij] = [.Ql] —+ .ij, -sz] fO?" 1< ] < k, (710)



GEOMETRIC ASPECTS OF RIEMANN-HILBERT PROBLEMS 105

[2ij, 2] =0 forall 4,5kl withi#j#k#1L (7.11)

Let F be the fundamental matrix of solutions of system (7.9). Then for
any v € m (X,,) one has for the analytic continuation of F' along ~

~¥*F =F - o(7), where o(y) € GL(m, C).
One thus obtains a representation of the braid group
0: P, - GL(m,C), (7.12)
which is given by the Chen’s iterated integral

g(fy):l+/w+/ww+/www+---.
v v v

One can now formulate the multi-dimensional analogue of RHMP.

Riemann—Hilbert monodromy problem.

For a given representation (7.12), does there exist an integrable Fuchs
system of type (7.9) whose monodromy representation coincides with (7.12)?

The answer to this question is positive [99]. The corresponding result
can be formulated as follows. Let us introduce notation

’yij:aiai_,_l---aj_la?a;_ll---ai_l, 1<i<j<n.
Let ¢ : P, = GL(m,C) be a representation such that p(v;;) is sufficiently
close to 1 for all 1 < ¢ < j < n. Then there exist matrices 255, 1 < i <
j < n, sufficiently close to 0, satisfying the conditions (7.10), (7.11) and
moreover the monodromy matrix of the system (7.9) coincides with .

This result was formulated in [99], its complete proof is given in [108].
It would be very interesting to establish some connections between the
above problem and multidimensional Riemann—Hilbert transmission prob-
lems considered in Section 4. Up to the author’s knowledge no such relations
were ever mentioned in the literature.

Another type of generalization of RHMP is related to the problem of
explicit construction of a system of differential equations with a given mon-
odromy [106]. As was shown in [106], if the monodromy matrices My, ..., My,
are close to the identity matrix, then coefficients A; of the system of differen-

m A]‘
J=1 z—s;

tial equations of the desired Fuchs type % = (Z ) f are expressed

by the singular points s; and monodromy matrices M; via noncommutative
power series

1 - L.
Aj =5 M+ > Guls) Myt + -

T og
1<k,I<n

where £ is a function depending on the singular points which can be given
explicitly expressed through s € S, and Z\ij =M; -1

Analogous problems are considered in the differential Galois theory [146].
Recall that the inverse problem over a differential field K, with algebraically
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closed field of constants C can be formulated as a question: which linear al-
gebraic groups over C are the differential Galois groups of linear differential
equations over K? The answer for C(z) is given by the following theorem.

Theorem 7.5 ([146]). For a linear algebraic group G over the field of
complex numbers C, there exists a regular differential equation df = wf over
C(z) with differential Galois group G.

In the case of C there exists a close connection between the inverse prob-
lem of differential Galois theory and the Riemann—Hilbert monodromy prob-
lem. In particular the differential Galois group of the regular system can be
easily found from its monodromy group.

Theorem 7.6 ([146]). The differential Galois group of the regular system
df = wf coincides with the Zariski closure of the monodromy group of this
system.

Moreover, it is known that a linear algebraic group G is the differential
Galois group of a system of differential equation df = wf, where w is defined
on Riemann surface X of genus g > 1 and has a given singular set S =
{s1,.-.,8m}, if and only if there exists a homomorphism ¢ : m (X —5) = G
such that its image is dense in G for the Zariski topology. In particular,
if m > 0 then G is a differential Galois group for this system if and only
if G contains Zariski dense subgroup H generated by at most 2g + m — 1
elements.

Thus we see that there is a number of interesting connections between the
classical RHTP and RHMP. It is now natural to wonder if these connections
can be extended to the case of Riemann-Hilbert transmission problems
with coefficients in a compact Lie group G considered in Section 2. It is
quite natural that such connections should involve principal G-bundles over
Riemann surfaces. It seems remarkable that there really exist some results
in this direction and we wish to present some of them in the rest of this
section.

We have seen that on many holomorphic vector bundles there exist con-
nections which have regular singularities at given points. This result can be
generalized for holomorphic principal G-bundles. In order to explain that,
we consider systems of the form Df = af, where a there is g-valued 1-form
defined on the manifold M, and f :— G is G-valued unknown function.

Expression of the form Df = af is called a G-system [63]. Regular sin-
gular points and monodromy representations of such systems can be defined
by analogy with the classical case corresponding to G = U(n) (cf. [63]).

Having all these concepts at hand, we can eventually formulate the mon-
odromy problem for G-systems in the form which was suggested in [63].

Riemann—Hilbert monodromy problem for G-systems.

For a given homomorphism p : m; (M —8) — G, where S is a finite subset
of a Riemann surface M, find a G-system with regular singularities on S
whose monodromy coincides with p.
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This problem appears to be non-trivial because solution does not always
exist. We only present two simplest positive results concerning this prob-
lem. It seems interesting that in the formulations one has to take into
account some topological properties of the group G. Let M be any con-
nected Riemann surface (compact or not) and let p : m (M) — G¢ be a
given homomorphism.

Theorem 7.7 ([65]). 1) If (M) is a free group and Gg¢ is connected
then p is the monodromy homomorphism of certain G-system.

2) If 71 (M) is free abelian and G is a connected compact Lie group with
torsion free cohomology, and if imp C G, then p is the monodromy homo-
morphism for some G-system.

This theorem gives a positive solution to the RHMP in the case when
M = X — {zo}. The next result is concerned with the stable principal
bundles. Recall that the notion of stability of a holomorphic principal G-
bundles can be introduced by analogy with the case G = U(n) [136].

Theorem 7.8 ([65]). For a connected compact Lie group G, each stable
holomorphic principal G-bundle has a connection with regqular singularity at
a given point.

Thus we see that for G-systems there exists a reasonable theory par-
allel to the classical theory of Riemann—-Hilbert monodromy problem. It
would be interesting to interpret the results for G-systems in the language
of Riemann-Hilbert transmission problem for group G studied in Section 2.
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