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Consider the linear Pfaff system
dz/dt; = A;()z, =€ R", t=(t,t2) € R%Z,, i=1,2, (1)
with continuously differentiable matrix functions A1(t) and Az(t) bounded in R, and
satisfying the complete integrability condition [1, pp. 16-26] A1 (¢)/0t2 + A1(t)A2(t) =
DAs(t)/0t1 + A2(8)A1(t), t € RZ .

Let p = p[x] be a lower characteristic vector [2] of a nontrivial solution z : R%, —
R™ \ {0} of the system (1), and let P, be the lower characteristic set [2] of #(¢). The
notion of the lower characteristic degree d = d(p) € R? of (t) associated with the lower
characteristic vector p € P, was defined in [3] by the conditions

. In|lz@) - (p,t) — (d,In¢)
In d)= lim
In(p,d) = lim |
In,(p,d+ee;) <0, e=(2—i,i—1)€R? Ve>0, i=1,2 (22)

=0, Int = (Inty,Intx)eRE,  (21)

The union D_(p) = Ud;(p) of all lower characteristic degrees d(p) is referred to as
the lower degree set of the solution z(t) corresponding to the lower characteristic vector
p. The lower degree set D_(p) is referred to as an interior lower degree set if the point
p € P is an interior point of the lower characteristic set Pr and as a left (respectively,
right) boundary lower degree set if p is a "left” (respectively, ”right”) boundary point of
the lower characteristic set.

An arbitrary nonempty interior lower degree set of a nontrivial solution z(t) of the
system (1) is completely described in [3]. It is a line of the form di + d2 = cz(p) on the
plane R2.

Let the lower characteristic set P, consist of more than one point, and let p’ be its
left boundary point. Necessary properties of the boundary lower degree sets are obtained
in [4]. The nonempty left boundary lower degree set of the solution xz(¢) is known [4]
to be a closed concave monotone decreasing right and lower unbounded curve on the
two-dimensional plane with negative slope > —1 of an arbitrary tangent.

We intend to establish the sufficiency of these properties for the complete description
of the left boundary lower degree set D _(p’). Moreover, for any curve D on the two-
dimensional plane with the above-mentioned properties we construct the linear Pfaff
equation

Az /0t = a(t)x, Oz/Bty =b(t)z, xz E€R, t€ R2>1, (11)
with continuously differentiable bounded coefficients a(t) and b(t) satisfying the complete
integrability condition da(t)/8t; = 8b(t)/8t1, t € RZ,, such that the left boundary
lower degree set D_(p') of any nontrivial solution z(t) of this equation coincides with the
curve D.

The following statement is valid.
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Theorem. For any closed concave monotone decreasing right and lower unbounded
curve D on the two-dimensional plane with negative slope > —1 of an arbitrary tan-
gent there exists a completely integrable Pfaoff equation (11) with infinitely differentiable
bounded coefficients such that the left boundary lower degree set of any nontrivial solution
@: R%2| — R™\ {0} of this equation is the curve D.

Scheme of the proof. We intend to construct the desired Pfaff equation (1) by
constructing a nontrivial solution of this equation.

Let us first note that the curve D has one of the following three forms: a) unbounded
from the left and bounded from above; b) unbounded from the left and from above; c)
bounded from the left and from above.

1. Partition of the curve D. Fix a number v > 0 and consider the cases a) and
b). Let the first partition D; of the curve D consist of the points A(4,1) € D,i=10,1,2,

of this curve with the first coordinates A(%,1) = (i — 1), ¢ = 0,1, 2, respectively. The
2

2x2
second partition Dy = |J {A(¢,2)} C D consists of the points A(4,2) € D with the

first components Al(i,22)=i (@ —4)y/2, i = 0,1,...,2 - 22, TFinally, the Ith partition

D, = lﬁl{A(i,Z)} C D consists of the points A(i,I) € D with the first components

Al(z',Z)ZZ:O(nl—’ —1)v,i=0,1,...,1-2". Continuing the process of the partition of the

curve D indefinitely we introduce the denumerable set Do, = ijjlﬁ(:{A(i,l)} C D. By
=1 i=

construction, this set is everywhere dense on the curve D.

In the case ¢) where the curve D is bounded from the left by the finite point A(0,0) €
D, the partition D; of this curve consists of the points A(i,1) € D with the first compo-
nents A1(i,1) = A1(0,0) +iv2'~!,i = 0,1,...,12!. Finally, as in the cases a) and b), we
obtain the denumerable everywhere dense on the curve D set Doo: Do = D.

Let us denote by D(l) a segment of the curve D which lies between the points A(0,1) €
Dy and A(121,1) € D; and includes these points.

2. The construction of a solution. We define the desired solution z(¢) by the
formula In z(t) = In p(t) + In1(t), where Inp(t) = In(e~%1 + e~?2). The function ¥(t) is
constructed so that the left boundary lower degree set of the solution z(t) coincides with
the curve D and the equality P = P, holds.

Fix the ith point A(i,1) € D, i € {0,1,...,12'} = Ij, of the Ith partition, [ € N,
and construct an arbitrary tangent to the curve D: da — A2(4,1) = k(4,1)(d1 — A1(3,1)),
k(i,1) € [-1,0), which lies not lower than this curve. The existence of such a tangent
follows from the concavity of the curve D. Moreover, if the point A € D was already
included in the partition, then we construct the same tangent at this point for all the
next partitions. This assumption will be needed to guarantee the existence of a sequence
realizing the lower limit in the property (21) of a lower characteristic degree for the point
A.

To sew the different infinitely differentiable functions together into a single infinitely
differentiable function, we introduce the infinitely differentiable functions:

e101(T; a1, a2, 03) = €01(7; a2, 03) + [1 — e01(7; a1, 2],
eo110(T; a1, @2, a3, 4) = e01(T; 01, 02) - (1 — e01(T; a3, 04)),
ar<az<az<a4, TER,

defined on the basis of the infinitely differentiable function

07 TE (_0077-1]7
eo1(T;71,72) = exp{—(7 — 1) % exp[—(7 — 72)7?]}, T € (71,7),
1, T € [72,+00),

—00 <71 < T2 < +00.
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For each I € N and ¢ € I}, we define the function
In ;1 (t) = (A3, 1), Int) - eor10(Inte/Inty; (051 — 75,0)/2, 050 — 75,1, ©4.1 + 7 1
2(@2-,[ —+ Ti,l)) —+ || In t”2 © €101 (lntz/ Intg; ei,l — Tl @i,l, @i,l + T’i,l)y t e R2>1,
©iy = 1/|k(i, D), 75y = min{0; /227 |A@2,1) — A0, D)7}
It is easily seen that for each ¢ € I}, I € N, there exists a number T} ; > 1 such that
Ingi(t) - (d,Int) >0, t€RE,\S(i,0), [>T, Vde D). C)
We choose an arbitrary number n1 > 2 and set p; ; = 2(To,; + -+ +T;,1) + (|| A0, D] |2 +
exp(6757)) - €8 (3901 + 1) + -+ + (|[AG, D||? + exp(67, 7)) - ©F (€301 + 1), @y =
(e + pi)2%, Biy = @iy -2, Mg = By + 271, i € I, 1 € N, and define the “basic”
strips TI(i,0) = {t € RZ, : By < t1 +t2 < @}, 6 =0,1,...,02 — 1, TI(I2L, 1) = {t €
R2>1 tBppty Lt +t2 S apyya}, L €N, the “auxiliary” strips I:I(i,l) ={te R2>1 togy <
t1 +t2 < B}, i € I;; 1 € N, and the closed triangle T = {t € R, : t1 +t2 < a0,1}.
Hence, we have divided the quadrant R%, ( the domain of the solution x(t)) into the
strips R2; =T U (, u.Ly (H(z’,l) U TI(4,1))).

(3)

We introduce the followmg notation: IIL(3,{) = (1) U TG, U TG + 1,0), i =
0,1,...,12' —1,1 e N, TIL(I2}, 1) = (24, Hu @2, Hu ﬁ(o I+1),l € N,and STI(i,1) =
S(i,1) NIIL(4,1), i € I;, I € N. Since ||t|| > (t1 + t2)/2 > T;; in each strip ¢t € IIL(i,1),
i€ I;, 1 € N, from (4) we conclude that

Inw; ;(8) — (d,Int) >0, VteTL3E,1)\ST(4,1), VYde D(). (

ot
o

We are now in a position to construct the auxiliary function 4 (t). We set In¢(t) =
t € T. In each ”basic” strip II(4,!), ¢ € I;, I € N, we define this function by In 1/7(1&) =
In; ;(t). Thus, in all "basic” strips the function In 1(t) is defined on the basis of the ith
point A(i, 1) of the Ith partition. In each ”auxiliary” strip TI(i +1,1),4 =0,1,...,12! — 1,
l € N, we define the function In 1/7(1&) by the formula In 1/7(1&) = In; 1 (t) + [In4p;4q,4(t) —
In; ()] - eor(In(ts + t2);lneyy ;,In 8541 ), and in the strip (0,1 + 1), I € N, we
set In¢(t) =1In Pyt ,l(t) + [In %0141 (t) —In Pyt ,l(t)] ~eo1(In(t1 + t2);1n Qo i41,1n [30,[4_1).
Finally, we set In 1/7(1&) = Ino,1(t)eo1 (In(¢1 + t2);1na,1,1n Bo,1), in the strip 1:[(0, 1).

In the cases a) and b) where the curve D is unbounded from the left and right, we de-
fine the desired function 1(t) by 1(t) = (t), t € RZ2 . Tn the case c), we define this func-
tion by the formula In () = In () + [(A(0,0), Int) — In ¢ (t)] - eo1 (In t= / In ¢1;3/|k(0, 0)],
3/|k(0,0)| 4+ 1), t € R% . Note that for each point d € D the function In(t) coincides
with the scalar product (d,In¢#) in the direction In¢s/Int; = 1/|k(d)|.

3. Evaluation of the lower characteristic set Note that the lower characteristic
set of the solution xz(t) of the equation (11) coincides with the lower characteristic set
P, ={p € R2 : p1 + p2» = —1} of the function ¢(t). This follows from the existence of
the limit lim (In¢(2))/[[¢l] = 0.

4. Evaluation of the left boundary lower degree set. We take an arbitrary
point d = (d1,d2) € D of the curve D. Since the partition is everywhere dense on the
curve D, for this point there exists a sequence of the points {d(n)}nen, d(n) € Do, of
the partition tending to the point d. But if we prove the inclusion d(rn) € D_(p’), than
we obtain that d € D, (p'). This follows from the closedness of the left boundary lower
degree set.

Let us now choose an arbitrary point d = (d1,d2) € Do of the partition and show
that it belongs to the left boundary lower degree set.

We will denote by 8(d) = lim [lnxz(¢) + ¢1 — (d,1nt)]/||Int|| the lower limit from the

t—o00

condition (21), where p’ = (—1,0) is the left boundary point of the lower characteristic
set of z(¢). Let us show that 5(d) =
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We first prove that 8(d) < 0. Since the point d € Do belongs to the denumerable
partition of the curve D and each new finite partition contains all points of the previous
finite partition, it follows that there exists a number I(d) € N such that d € Dy, VI > I(d),
and d ¢ Dy, VI <l(d). If d = A(0,0) (in the case c)), we set [(d) = 0. We suppose that
the point d is the 41th point of the (I(d) + 1)th partition, the i2th point of the (I(d) + 2)th
partition and, finally, the 4,,th point of the (I(d)+m)th partition. Note that we construct
the same tangent at the point d with the slope k(d) for all finite partitions of the curve D,
namely ©;, y(d)+1 = Oiy,i(d)+2 = *** = 1/|k(d)|. In each strip Il(im,i(d) + m), m € N,
where the function In 1(¢) is defined on the basis of the point d € D, we choose a point
7(m) on the segment In ¢y /Int; = 1/|k(d)|. We thus get the sequence {7(m)} 1 +oc0 such
that In¢(r(m)) = (d,1ln 7(m)) and mli_r’noo[ln z(r(m))+71(m) — (d,In 7(m))]/|| In 7(m)|| =
0. From this we deduce that 5(d) < 0.

Let us denote by {#(m)} 1 oo the sequence realizing the lower limit 3(d). Without loss
of generality, let all terms of this sequence belong to the strips of R2>1 with the different
numbers Iy, Iy > 1, lpmy1 > lin — 400 as m — 4o0o0. We can certainly assume that

d€ D(ly), meN. (6)

Let us prove that 3(d) > 0. If the sequence {t(m)} has an infinite subsequence {t(m;)}
such that In(t(m;)) — (d,Int(m;)) > 0, Vt(m;), then the desired inequality holds.
Therefore, without loss of generality, we can assume that ln¢(¢(m)) — (d,Int(m)) < 0,
Ym e N.

Let us consider the cases a) and b) and regard m € N as fixed. If ¢(m) € I(im,lm)
(the “basic” strip), we will have the inequality In4; , .. (t(m)) — (d,Int(m)) < 0. This,
together with (5) and (6), implies the inclusion ¢(m) € ST(im,lm). By the definition of
the sector ST(im,{m ), we conclude the estimates

|Int2(m)/ I t1(m) = O3, 1| < ot < 27 ALM2™ 1) = A In)[7L (7)

Let us now write the equation of the tangent to the curve D at the point § = A(im,lm):
82 — Az(im,lm) = k(im,lm)(01 — A1(im,lm)). From the concavity of the curve D, it
follows that the point d € D lies not above the tangent and hence,

Atlim;lm) — di + Oy, 1, (A2(im; lm) — d2) > 0. (8

We estimate the difference R(m, d) = In¢(¢(m))—(d, In ¢(m)) from below. From the inclu-
sion t(m) € STI(im,lm ) and (3),(7),(8) we have the estimates: R(m,d)=Inv;  ;  (t(m))—
(d,Int(m)) > (Alim;lm) — d,Int(m)) = (A1(im,lm) — d1)Int1(m) + (Az(im,lm) -
d2) Intz(m) = Inti (M)[{(A1(im, lm) — d1) + Oy, 11, (A2(imn, U ) — d2)} + (A2 (im, lm) —
dz)(Int2(m)/Int1(m) — Oy, 1,,.)] > —|A2(im,lm) — d2| - |Intz(m)/Inti(m) — O, 1,
Intr(m) > 27" (|As(im, lm) — d2|/|AUTR2™ I ) — A0, )|} Inty (m) > —27Im x
(A2 (im, bm) — del/l|A(im, b)) — dl]) Ints (m) > —2=tm Inty (m) > —2=0m | Int(m)].

In a similar way (with the only difference that one must write the equation of the
tangent to the curve D at a different point), we can show in all possible cases that
R(m,d) > —27'=||lnt(m)||, Ym € N, I, > 1, L, — +oo as m — co. We have
thereby derived the necessary property 8(d) = lim [In(14e~t20m)+£1(m)y 4 n p(t(m)) —
(d,Int(m))]/||Int(m)|| > n}gnw —27tm = 0. The second determining property (22) is
realized by the sequence 7(m) constructed above. We have thus proved the inclusion
D C D, (p'), and by the construction of the solution, we have D_(p') = D.

5. The construction of the equation. The above-constructed function z > 0 is a
solution of the Pfaff equation (11 ) with coefficients a(t) = z=1(t)0z(t)/8t1 = 8ln z(t)/dt,
and b(t) = 71 (t)8z(t)/8t2 = dlnx(t)/Ot2, t € R2 | satisfying the complete integrability
condition, since In z(¢) is infinitely differentiable in R2>1. These coefficients are easily

seen to be bounded.
The proof of the theorem is complete.
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