N. Izobov and E. Krupchik

THE DESCRIPTION OF THE ARBITRARY LOWER BOUNDARY DEGREE SET OF THE LINEAR PFAFF SYSTEM SOLUTION

(Reported on June 17, 2002)

Consider the linear Pfaff system

$$\partial x/\partial t_i = A_i(t)x, \quad x \in \mathbb{R}^n, \quad t = (t_1, t_2) \in \mathbb{R}^2_{>1}, \quad i = 1, 2,$$
 (1)

with continuously differentiable matrix functions $A_1(t)$ and $A_2(t)$ bounded in $R_{>1}^2$ and satisfying the complete integrability condition [1, pp. 16–26] $\partial A_1(t)/\partial t_2 + A_1(t)A_2(t) = \partial A_2(t)/\partial t_1 + A_2(t)A_1(t)$, $t \in R_{>1}^2$.

Let p=p[x] be a lower characteristic vector [2] of a nontrivial solution $x:R_{>1}^2\to R^n\setminus\{0\}$ of the system (1), and let P_x be the lower characteristic set [2] of x(t). The notion of the lower characteristic degree $d=d_x(p)\in R^2$ of x(t) associated with the lower characteristic vector $p\in P_x$ was defined in [3] by the conditions

Existic vector
$$p \in T_x$$
 was defined in [5] by the conditions
$$\underline{\ln_x(p,d)} \equiv \lim_{t \to \infty} \frac{\ln||x(t)|| - (p,t) - (d,\ln t)}{\|\ln t\|} = 0, \ \ln t \equiv (\ln t_1, \ln t_2) \in R_+^2, \tag{2}_1$$

$$\underline{ln}_x(p,d+\varepsilon e_i)<0,\quad e_i=(2-i,i-1)\in R^2,\quad \forall \varepsilon>0,\quad i=1,2. \tag{22}$$

The union $\underline{D}_x(p) \equiv \cup d_x(p)$ of all lower characteristic degrees $d_x(p)$ is referred to as the lower degree set of the solution x(t) corresponding to the lower characteristic vector p. The lower degree set $\underline{D}_x(p)$ is referred to as an interior lower degree set if the point $p \in P_x$ is an interior point of the lower characteristic set P_x and as a left (respectively, right) boundary lower degree set if p is a "left" (respectively, "right") boundary point of the lower characteristic set.

An arbitrary nonempty interior lower degree set of a nontrivial solution x(t) of the system (1) is completely described in [3]. It is a line of the form $d_1 + d_2 = c_x(p)$ on the plane R^2 .

Let the lower characteristic set P_x consist of more than one point, and let p' be its left boundary point. Necessary properties of the boundary lower degree sets are obtained in [4]. The nonempty left boundary lower degree set of the solution x(t) is known [4] to be a closed concave monotone decreasing right and lower unbounded curve on the two-dimensional plane with negative slope > -1 of an arbitrary tangent.

We intend to establish the sufficiency of these properties for the complete description of the left boundary lower degree set $\underline{D}_x(p')$. Moreover, for any curve D on the two-dimensional plane with the above-mentioned properties we construct the linear Pfaff equation

$$\partial x/\partial t_1 = a(t)x, \quad \partial x/\partial t_2 = b(t)x, \quad x \in \mathbb{R}, \quad t \in \mathbb{R}^2_{>1},$$
 (11)

with continuously differentiable bounded coefficients a(t) and b(t) satisfying the complete integrability condition $\partial a(t)/\partial t_2 = \partial b(t)/\partial t_1, \ t \in R^2_{>1}$, such that the left boundary lower degree set $\underline{D}_x(p')$ of any nontrivial solution x(t) of this equation coincides with the curve D.

The following statement is valid.

²⁰⁰⁰ Mathematics Subject Classification. 35F99.

Key words and phrases. Pfaff system, lower characteristic vector, lower characteristic set, lower characteristic degree.

Theorem. For any closed concave monotone decreasing right and lower unbounded curve D on the two-dimensional plane with negative slope ≥ -1 of an arbitrary tangent there exists a completely integrable Pfaff equation (1_1) with infinitely differentiable bounded coefficients such that the left boundary lower degree set of any nontrivial solution $x: R_{\geq 1}^2 \to R^n \setminus \{0\}$ of this equation is the curve D.

Scheme of the proof. We intend to construct the desired Pfaff equation (1_1) by constructing a nontrivial solution of this equation.

Let us first note that the curve D has one of the following three forms: a) unbounded from the left and bounded from above; b) unbounded from the left and from above; c) bounded from the left and from above.

1. Partition of the curve D. Fix a number $\gamma>0$ and consider the cases a) and b). Let the first partition D_1 of the curve D consist of the points $\Delta(i,1)\in D,\,i=0,1,2,$ of this curve with the first coordinates $\Delta_1(i,1)=(i-1)\gamma,\,i=0,1,2,$ respectively. The second partition $D_2=\bigcup\limits_{i=0}^{2\times 2^2}\{\Delta(i,2)\}\subset D$ consists of the points $\Delta(i,2)\in D$ with the first components $\Delta_1(i,2)=(i-4)\gamma/2,\,i=0,1,\ldots,2\cdot 2^2.$ Finally, the lth partition $D_l=\bigcup\limits_{i=0}^{l\times 2^l}\{\Delta(i,l)\}\subset D$ consists of the points $\Delta(i,l)\in D$ with the first components $\Delta_1(i,l)=(i2^{1-l}-l)\gamma,\,i=0,1,\ldots,l\cdot 2^l.$ Continuing the process of the partition of the curve D indefinitely we introduce the denumerable set $D_\infty=\bigcup\limits_{l=1}^{+\infty}\bigcup\limits_{i=0}^{l\times 2^l}\{\Delta(i,l)\}\subset D.$ By construction, this set is everywhere dense on the curve D.

In the case c) where the curve D is bounded from the left by the finite point $\Delta(0,0) \in D$, the partition D_l of this curve consists of the points $\Delta(i,l) \in D$ with the first components $\Delta_1(i,l) = \Delta_1(0,0) + i\gamma 2^{1-l}$, $i=0,1,\ldots,l2^l$. Finally, as in the cases a) and b), we obtain the denumerable everywhere dense on the curve D set $D_\infty \colon \overline{D_\infty} = D$.

Let us denote by D(l) a segment of the curve D which lies between the points $\Delta(0, l) \in D_l$ and $\Delta(l2^l, l) \in D_l$ and includes these points.

2. The construction of a solution. We define the desired solution x(t) by the formula $\ln x(t) = \ln \varphi(t) + \ln \psi(t)$, where $\ln \varphi(t) = \ln (e^{-t_1} + e^{-t_2})$. The function $\psi(t)$ is constructed so that the left boundary lower degree set of the solution x(t) coincides with the curve D and the equality $P_x = P_{\varphi}$ holds.

Fix the *i*th point $\Delta(i,l) \in D$, $i \in \{0,1,\ldots,l2^l\} \equiv I_l$, of the *l*th partition, $l \in N$, and construct an arbitrary tangent to the curve $D\colon d_2 - \Delta_2(i,l) = k(i,l)(d_1 - \Delta_1(i,l))$, $k(i,l) \in [-1,0)$, which lies not lower than this curve. The existence of such a tangent follows from the concavity of the curve D. Moreover, if the point $\Delta \in D$ was already included in the partition, then we construct the same tangent at this point for all the next partitions. This assumption will be needed to guarantee the existence of a sequence realizing the lower limit in the property (2_1) of a lower characteristic degree for the point Δ

To sew the different infinitely differentiable functions together into a single infinitely differentiable function, we introduce the infinitely differentiable functions:

$$\begin{split} e_{101}(\tau;\alpha_{1},\alpha_{2},\alpha_{3}) &= e_{01}(\tau;\alpha_{2},\alpha_{3}) + [1 - e_{01}(\tau;\alpha_{1},\alpha_{2})], \\ e_{0110}(\tau;\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) &= e_{01}(\tau;\alpha_{1},\alpha_{2}) \cdot (1 - e_{01}(\tau;\alpha_{3},\alpha_{4})), \\ \alpha_{1} &< \alpha_{2} < \alpha_{3} < \alpha_{4}, \quad \tau \in R, \end{split}$$

defined on the basis of the infinitely differentiable function

$$e_{01}(\tau;\tau_1,\tau_2) = \begin{cases} 0, & \tau \in (-\infty,\tau_1], \\ \exp\{-(\tau-\tau_1)^{-2} \exp[-(\tau-\tau_2)^{-2}]\}, & \tau \in (\tau_1,\tau_2), \\ 1, & \tau \in [\tau_2,+\infty), \end{cases}$$

 $-\infty < \tau_1 < \tau_2 < +\infty.$

For each $l \in N$ and $i \in I_l$, we define the function

$$\ln \psi_{i,l}(t) \equiv (\Delta(i,l), \ln t) \cdot e_{0110}(\ln t_2 / \ln t_1; (\Theta_{i,l} - \tau_{i,l})/2, \Theta_{i,l} - \tau_{i,l}, \Theta_{i,l} + \tau_{i,l},
2(\Theta_{i,l} + \tau_{i,l})) + ||\ln t||^2 \cdot e_{101}(\ln t_2 / \ln t_1; \Theta_{i,l} - \tau_{i,l}, \Theta_{i,l}, \Theta_{i,l} + \tau_{i,l}), \quad t \in \mathbb{R}^2_{>1},
\Theta_{i,l} \equiv 1/|k(i,l)|, \quad \tau_{i,l} \equiv \min\{\Theta_{i,l}/2; 2^{-l} ||\Delta(l2^l, l) - \Delta(0, l)||^{-1}\}.$$
(3)

It is easily seen that for each $i \in I_l$, $l \in N$, there exists a number $T_{i,l} \ge 1$ such that

$$\ln \psi_{i,l}(t) - (d, \ln t) \ge 0, \quad t \in \mathbb{R}^2_{>2} \setminus S(i,l), \quad ||t|| \ge T_{i,l}, \quad \forall d \in D(l). \tag{4}$$

We choose an arbitrary number $\eta_1 \geq 2$ and set $\rho_{i,l} = 2(T_{0,l} + \dots + T_{i,l}) + (||\Delta(0,l)||^2 + \exp(6\tau_{0,l}^{-2})) \cdot \Theta_{0,l}^6(e^{3\Theta_{0,l}} + 1) + \dots + (||\Delta(i,l)||^2 + \exp(6\tau_{i,l}^{-2})) \cdot \Theta_{i,l}^6(e^{3\Theta_{i,l}} + 1), \ \alpha_{i,l} = (\eta_l + \rho_{i,l})2^i, \ \beta_{i,l} = \alpha_{i,l} \cdot 2, \ \eta_{l+1} = \beta_{l2^l,l} + 2^{l+1}, \ i \in I_l, \ l \in N, \ \text{and define the "basic" strips } \Pi(i,l) = \{t \in R_{\geq 1}^2 : \beta_{i,l} \leq t_1 + t_2 \leq \alpha_{i+1,l}\}, \ i = 0,1,\dots,l2^l - 1, \ \Pi(l2^l,l) = \{t \in R_{\geq 1}^2 : \beta_{l2^l,l} \leq t_1 + t_2 \leq \alpha_{0,l+1}\}, \ l \in N, \ \text{the "auxiliary" strips } \tilde{\Pi}(i,l) = \{t \in R_{\geq 1}^2 : \alpha_{i,l} < t_1 + t_2 < \beta_{i,l}\}, \ i \in I_l, \ l \in N, \ \text{and the closed triangle } T = \{t \in R_{\geq 1}^2 : t_1 + t_2 \leq \alpha_{0,1}\}. \ \text{Hence, we have divided the quadrant } R_{\geq 1}^2 \ \text{(the domain of the solution } x(t)) \ \text{into the strips } R_{\geq 1}^2 = T \cup (\bigcup_{l \in N} \bigcup_{i \in I_l} (\Pi(i,l) \cup \tilde{\Pi}(i,l))).$

We introduce the following notation: $\Pi L(i,l) \equiv \tilde{\Pi}(i,l) \cup \Pi(i,l) \cup \tilde{\Pi}(i+1,l), \ i=0,1,\dots,l2^l-1,\ l\in N,\ \Pi L(l2^l,l) \equiv \tilde{\Pi}(l2^l,l) \cup \Pi(l2^l,l) \cup \tilde{\Pi}(0,l+1),\ l\in N,\ \text{and}\ S\Pi(i,l) \equiv S(i,l) \cap \Pi L(i,l),\ i\in I_l,\ l\in N.$ Since $||t|| \geq (t_1+t_2)/2 \geq T_{i,l}$ in each strip $t\in \Pi L(i,l),\ i\in I_l,\ l\in N,\ \text{from}\ (4)$ we conclude that

$$\ln \psi_{i,l}(t) - (d, \ln t) \ge 0, \quad \forall t \in \Pi L(i, l) \setminus S\Pi(i, l), \quad \forall d \in D(l).$$
 (5)

We are now in a position to construct the auxiliary function $\tilde{\psi}(t)$. We set $\ln \tilde{\psi}(t) = 0$, $t \in T$. In each "basic" strip $\Pi(i,l), \ i \in I_l, \ l \in N$, we define this function by $\ln \tilde{\psi}(t) = \ln \psi_{i,l}(t)$. Thus, in all "basic" strips the function $\ln \tilde{\psi}(t)$ is defined on the basis of the ith point $\Delta(i,l)$ of the lth partition. In each "auxiliary" strip $\tilde{\Pi}(i+1,l), \ i=0,1,\dots,l2^l-1, \ l \in N$, we define the function $\ln \tilde{\psi}(t)$ by the formula $\ln \tilde{\psi}(t) = \ln \psi_{i,l}(t) + [\ln \psi_{i+1,l}(t) - \ln \psi_{i,l}(t)] \cdot e_{01}(\ln(t_1+t_2); \ln \alpha_{i+1,l}, \ln \beta_{i+1,l})$, and in the strip $\tilde{\Pi}(0,l+1), \ l \in N$, we set $\ln \tilde{\psi}(t) = \ln \psi_{l2^l,l}(t) + [\ln \psi_{0,l+1}(t) - \ln \psi_{l2^l,l}(t)] \cdot e_{01}(\ln(t_1+t_2); \ln \alpha_{0,l+1}, \ln \beta_{0,l+1})$. Finally, we set $\ln \tilde{\psi}(t) = \ln \psi_{0,l}(t) e_{01}(\ln(t_1+t_2); \ln \alpha_{0,1}, \ln \beta_{0,1})$, in the strip $\tilde{\Pi}(0,1)$.

In the cases a) and b) where the curve D is unbounded from the left and right, we define the desired function $\psi(t)$ by $\psi(t) = \tilde{\psi}(t)$, $t \in R_{>1}^2$. In the case c), we define this function by the formula $\ln \psi(t) = \ln \tilde{\psi}(t) + [(\Delta(0,0), \ln t) - \ln \tilde{\psi}(t)] \cdot e_{01}(\ln t_2 / \ln t_1; 3/|k(0,0)|, 3/|k(0,0)| + 1)$, $t \in R_{>1}^2$. Note that for each point $d \in D$ the function $\ln \psi(t)$ coincides with the scalar product $(d, \ln t)$ in the direction $\ln t_2 / \ln t_1 = 1/|k(d)|$.

- 3. Evaluation of the lower characteristic set Note that the lower characteristic set of the solution x(t) of the equation (1_1) coincides with the lower characteristic set $P_{\varphi} \equiv \{p \in R^2_{-}: p_1 + p_2 = -1\}$ of the function $\varphi(t)$. This follows from the existence of the limit $\lim_{t \to \infty} (\ln \psi(t)) / ||t|| = 0$.
- **4.** Evaluation of the left boundary lower degree set. We take an arbitrary point $\tilde{d} = (\tilde{d_1}, \tilde{d_2}) \in D$ of the curve D. Since the partition is everywhere dense on the curve D, for this point there exists a sequence of the points $\{d(n)\}_{n \in N}, d(n) \in D_{\infty}$, of the partition tending to the point \tilde{d} . But if we prove the inclusion $d(n) \in \underline{D_x}(p')$, than we obtain that $\tilde{d} \in \underline{D_x}(p')$. This follows from the closedness of the left boundary lower degree set

Let us now choose an arbitrary point $d=(d_1,d_2)\in D_{\infty}$ of the partition and show that it belongs to the left boundary lower degree set.

We will denote by $\beta(d) \equiv \lim_{t \to \infty} [\ln x(t) + t_1 - (d, \ln t)] / ||\ln t||$ the lower limit from the condition (2_1) , where p' = (-1, 0) is the left boundary point of the lower characteristic set of x(t). Let us show that $\beta(d) = 0$.

We first prove that $\beta(d) \leq 0$. Since the point $d \in D_{\infty}$ belongs to the denumerable partition of the curve D and each new finite partition contains all points of the previous finite partition, it follows that there exists a number $l(d) \in N$ such that $d \in D_l$, $\forall l > l(d)$, and $d \notin D_l$, $\forall l \leq l(d)$. If $d = \Delta(0,0)$ (in the case c)), we set l(d) = 0. We suppose that the point d is the i_1 th point of the (l(d)+1)th partition, the i_2 th point of the (l(d)+2)th partition and, finally, the i_m th point of the (l(d)+m)th partition. Note that we construct the same tangent at the point d with the slope k(d) for all finite partitions of the curve D, namely $\Theta_{i_1,l(d)+1} = \Theta_{i_2,l(d)+2} = \cdots = 1/|k(d)|$. In each strip $\Pi(i_m,l(d)+m), m \in N$, where the function $\ln \psi(t)$ is defined on the basis of the point $d \in D$, we choose a point $\tau(m)$ on the segment $\ln t_2/\ln t_1 = 1/|k(d)|$. We thus get the sequence $\{\tau(m)\} \uparrow +\infty$ such that $\ln \psi(\tau(m)) = (d, \ln \tau(m))$ and $\lim_{m \to \infty} [\ln x(\tau(m)) + \tau_1(m) - (d, \ln \tau(m))]/||\ln \tau(m)|| = 0$. From this we deduce that $\beta(d) < 0$.

Let us denote by $\{t(m)\} \uparrow \infty$ the sequence realizing the lower limit $\beta(d)$. Without loss of generality, let all terms of this sequence belong to the strips of $R_{>1}^2$ with the different numbers l_m , $l_m > 1$, $l_{m+1} > l_m \to +\infty$ as $m \to +\infty$. We can certainly assume that

$$d \in D(l_m), \quad m \in N.$$
 (6)

Let us prove that $\beta(d) \geq 0$. If the sequence $\{t(m)\}$ has an infinite subsequence $\{t(m_j)\}$ such that $\ln \psi(t(m_j)) - (d, \ln t(m_j)) \geq 0$, $\forall t(m_j)$, then the desired inequality holds. Therefore, without loss of generality, we can assume that $\ln \psi(t(m)) - (d, \ln t(m)) < 0$, $\forall m \in \mathbb{N}$

Let us consider the cases a) and b) and regard $m \in N$ as fixed. If $t(m) \in \Pi(i_m, l_m)$ (the "basic" strip), we will have the inequality $\ln \psi_{i_m, l_m}(t(m)) - (d, \ln t(m)) < 0$. This, together with (5) and (6), implies the inclusion $t(m) \in S\Pi(i_m, l_m)$. By the definition of the sector $S\Pi(i_m, l_m)$, we conclude the estimates

$$|\ln t_2(m)/\ln t_1(m) - \Theta_{i_m,l_m}| \le \tau_{i_m,l_m} \le 2^{-l_m} ||\Delta(l_m 2^{l_m}, l_m) - \Delta(0, l_m)||^{-1}.$$
 (7)

Let us now write the equation of the tangent to the curve D at the point $\delta = \Delta(i_m, l_m)$: $\delta_2 - \Delta_2(i_m, l_m) = k(i_m, l_m)(\delta_1 - \Delta_1(i_m, l_m))$. From the concavity of the curve D, it follows that the point $d \in D$ lies not above the tangent and hence,

$$\Delta_1(i_m, l_m) - d_1 + \Theta_{i_m, l_m}(\Delta_2(i_m, l_m) - d_2) \ge 0.$$
(8)

We estimate the difference $R(m,d) \equiv \ln \psi(t(m)) - (d, \ln t(m))$ from below. From the inclusion $t(m) \in S\Pi(i_m, l_m)$ and (3), (7), (8) we have the estimates: $R(m,d) = \ln \psi_{i_m, l_m}(t(m)) - (d, \ln t(m)) \geq (\Delta(i_m, l_m) - d, \ln t(m)) = (\Delta_1(i_m, l_m) - d_1) \ln t_1(m) + (\Delta_2(i_m, l_m) - d_2) \ln t_2(m) = \ln t_1(m) [\{(\Delta_1(i_m, l_m) - d_1) + \Theta_{i_m, l_m}(\Delta_2(i_m, l_m) - d_2)\} + (\Delta_2(i_m, l_m) - d_2)(\ln t_2(m) / \ln t_1(m) - \Theta_{i_m, l_m})] \geq -|\Delta_2(i_m, l_m) - d_2| \cdot |\ln t_2(m) / \ln t_1(m) - \Theta_{i_m, l_m}| \cdot \ln t_1(m) \geq -2^{-l_m} (|\Delta_2(i_m, l_m) - d_2| / ||\Delta(l_m 2^{l_m}, l_m) - \Delta(0, l_m)||) \ln t_1(m) \geq -2^{-l_m} \times (|\Delta_2(i_m, l_m) - d_2| / ||\Delta(i_m, l_m) - d||) \ln t_1(m) \geq -2^{-l_m} ||\ln t(m)||.$

In a similar way (with the only difference that one must write the equation of the tangent to the curve D at a different point), we can show in all possible cases that $R(m,d) \geq -2^{-lm}||\ln t(m)||, \ \forall m \in N, \ l_m > 1, \ l_m \to +\infty \ \text{as} \ m \to \infty.$ We have thereby derived the necessary property $\beta(d) = \lim_{m \to \infty} [\ln(1+e^{-t_2(m)+t_1(m)})+\ln \psi(t(m))-(d,\ln t(m))]/||\ln t(m)|| \geq \lim_{m \to \infty} -2^{-l_m} = 0.$ The second determining property (2_2) is realized by the sequence $\tau(m)$ constructed above. We have thus proved the inclusion $D \subset \underline{D}_x(p')$, and by the construction of the solution, we have $\underline{D}_x(p') = D$.

5. The construction of the equation. The above-constructed function x>0 is a solution of the Pfaff equation (1_1) with coefficients $a(t)=x^{-1}(t)\partial x(t)/\partial t_1=\partial \ln x(t)/\partial t_1$ and $b(t)=x^{-1}(t)\partial x(t)/\partial t_2=\partial \ln x(t)/\partial t_2$, $t\in R_{>1}^2$ satisfying the complete integrability condition, since $\ln x(t)$ is infinitely differentiable in $R_{>1}^2$. These coefficients are easily seen to be bounded.

The proof of the theorem is complete.

REFERENCES

- 1. I. V. Gaishun, Linear total differential equations. (Russian) $\it Nauka~i~Tekhnika, Minsk, 1989.$
- 2. N. A. Izobov, The existence of the linear Pfaff systems with the lower characteristic vectors' set of positive plane measure. (Russian) *Differentsial'nye Uravneniya* 33(1997), No. 12, 1623–1630.
- 3. E. N. Krupchik, Lower characteristic degrees of nontrivial solutions of Pfaff systems. (Russian) Differentsial'nye Uravneniya 35(1999), No. 7, 899-908.
- 4. N. A. IZOBOV AND E. N. KRUPCHIK, Necessary properties of boundary degree sets of solutions to linear Pfaff systems. (Russian) *Differentsial'nye Uravneniya* 37(2001), No. 5, 616-627.

Authors' addresses:

N. Izobov Institute of Mathematics National Academy of Sciences of Belarus 11, Surganova St., Minsk 220072 Belarus

E. Krupchik Belarusian State University Skariny Avenue 4, Minsk 220050 Belarus