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Abstract. In this paper the question on the existence and uniqueness of a
constant sign solution of a periodic type boundary value problem is studied.
More precisely, the nonimprovable effective sufficient conditions for a linear
bounded operator £ : C([a, b]; R) = L([a, b]; R) are established guaranteeing
that the problem

u'(t) = Lu)t) +q(t),  ula)—Iu(d)=c,
where ¢ € L([a,b]; Ry), A € R, has a unique solution, and this solution
does not change its sign.
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INTRODUCTION

The following notation is used throughout.

N is the set of all natural numbers.

R is the set of all real numbers, R = [0, +0o0].

C(Ja,b]; R) is the Banach space of continuous functions u : [a,b] = R
with the norm ||ul|¢ = max{|u(t)| : @ < t < b}.

C(la,b; Ry) = {u € C([a,b]; R) : u(t) > 0 for ¢ € [a,b]}.
C ([a,b]; D), where D C R, is the set of absolutely continuous functions
u:[a,b] = D.

L([a,b]; R) is the Banach space of Lebesgue integrable functions p :

b
la,b] = R with the norm ||p||, = [ |p(s)|ds.

L([a,b]; Ry) = {p € L([a, b]; R) : p(¢) > 0 for almost all ¢ € [a,b]}.

M is the set of measurable functions 7 : [a, b] — [a, b].

Ly is the set of linear bounded operators £ : C([a, b]; R) = L([a, b]; R).

Py is the set of linear operators £ € L, transforming the set C([a, b]; Ry)
into the set L([a, b]; R4).

We will say that £ € L, is a to—Volterra operator, where ty € [a, b], if
for arbitrary ai € [a, o], b1 € [to,d], a1 # b1, and v € C([a, b]; R) satisfying
the condition

v(t) =0 for tE€a1,bi],

we have

L)) =0 for tE€ ag,bi].
1
2

2]+ = 5(I2] + 2), [2]- = 3(2] - 2).
By a solution of the equation
u'(t) = £(u)(t) + q(t), (0.1)

where £ € L, and g € L([a, b]; R), we understand a function u € 5([(1, bj; R)
satisfying the equation (0.1) almost everywhere in [a,b]. The special case
of the equation (0.1) is the differential equation with deviating arguments

u'(t) = p(t)u(r(t) — g(B)ulu(®)) + (t), (0.2)

where p, g € L([a,b]; Ry), ¢ € L([a,b]; R), 7, p € Mas.

We will consider the problem on the existence and uniqueness of a non-
negative, resp. nonpositive solution u of (0.1) with ¢ € L([a, b]; R1) satis-
fying the condition

u(a) — Au(d) = ¢, (0.3)

where A,c € R,
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Along with the equation (0.1), resp. (0.2), and the condition (0.3) we
will consider the corresponding homogeneous equation

u'(t) = L(u)(t), (0.1o)

resp.
u'(t) = p(t)u(r(t)) — g(B)u(u(t)), (0.20)

and the corresponding homogeneous condition
u(a) — Au(b) = 0. (0.30)

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [1, 2, 13]).

Theorem 0.1. The problem (0.1), (0.3) is uniquely solvable iff the corre-
sponding homogeneous problem (0.1p), (0.30) has only the trivial solution.

Introduce the definition

Definition 0.1. We will say that an operator £ € L, belongs to the set
V+(A) (resp. V~(1)), if the homogeneous problem (0.1g), (0.39) has only
the trivial solution, and for arbitrary ¢ € L([a,b]; Ry) and ¢ € R,, the
solution of the problem (0.1), (0.3) is nonnegative (resp. nonpositive).

Remark 0.1. From Definition 0.1 it immediately follows that £ € VT ())
(resp. £ € V—()N)), iff a certain theorem on differential inequalities holds for
the equation (0.1), i.e., whenever u,v € C([a, b]; R) satisfy the inequalities

w(t) <Lu)(E) +a(t),  v(E) 2 LE)E) +q) for tE€ab],
u(a) — Au(b) < v(a) — dw(b),
then u(t) < v(t) (resp. u(t) > v(t)) for t € [a, b].

Therefore theorems formulated below are, in fact, theorems on differential
inequalities. In paper [8] there are established conditions guaranteeing the
inclusion £ € VT (X) in the case A € [0, 1]. In this paper, there are established
conditions guaranteeing the inclusion £ € V~(A) in the case A € Ry and
the conditions guaranteeing the inclusion £ € V() in the case A > 1.

Another types of theorems on differential inequalities for the systems of
functional differential equations can be found, e.g., in [3-12].

Remark 0.2. Note also that if £ € P,p and £ € VT (X), then A < 1, and if
—£ € Py and £ € V7 (A), then A > 1.

In what follows if A = 1, then the operator £ € L, is supposed to be
nontrivial.
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1. ON THE SET V~(})
1.1. Main Results.

Theorem 1.1. Let A € ]0,1],

and

Then £ € V().

Remark 1.1. Theorem 1.1 is nonimprovable in the sense that the strict
inequality in (1.2) cannot be replaced by the nonstrict one and the nonstrict
inequality in (1.2) cannot be replaced by the inequality

b
/l(l)(s)ds <l+eg, (1.3)

no matter how small € > 0 would be (see Examples 4.1 and 4.2).

Theorem 1.2. Let A € 0,1], £ € Pgyp, let there exist § € 10, \] such that
LZgVT(A—0) and

/ 0(1)(s)ds < 1. (1.4)

a

Then £ € V().

Remark 1.2. Theorem 1.2 is nonimprovable. More precisely, the condi-
tion (1.4) cannot be replaced by the condition (1.3), no matter how small
g > 0 would be (see Example 4.2).

Note also that if A =1 and £ € Py, then there exist § € ]0, A] such that
£ & V(X —4). Indeed, the function

t
u(t)y =1+ /l(l)(s)ds for t € [a,b] (1.5)
a
is a nontrivial nonnegative solution of the problem
W'(t) <)),  ula)—(1-38)ud) =0, (1.6)
where 6 = ﬂ%&%ﬁ—f Since we suppose that in this case £ is a nontrivial

operator, ¢ € ]0,1], and thus, by Proposition 1.1 in [8], £ ¢ V(1 — §).
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Nevertheless, if A € ]0,1[, then the assumption é € ]0,A] in Theorem 1.2
cannot be replaced by the assumption § € [0, A] (see Example 4.3).

Corollary 1.1. Let A € ]0,1], £ € P,p, and let there exist v € 5([(1, bj; R)
satisfying

v(t) <)) for telab], (L.7)
v(a) < Xy(b), (1.8)

and
v(b) > 0. (1.9)

If, moreover, the inequality (1.4) holds, then £ € V—(A).

Remark 1.3. Corollary 1.1 is nonimprovable. More precisely, the condi-
tion (1.4) cannot be replaced by the condition (1.3), no matter how small
€ > 0 would be (see Example 4.2). Furthermore, the strict inequality (1.9)
cannot be weakened (see On Remark 1.3).

Note also that if A = 1, then there exist a function v € 5([(1, bj; R)
satisfying the conditions (1.7), (1.8), and (1.9). Indeed, in this case the
operator £ is supposed to be nontrivial and thus, the function

t
V() =1+ / (()(s)ds for € [a,l]

satisfies the inequalities (1.7), (1.8), and (1.9).
Nevertheless, if A € ]0,1[, then the strict inequality (1.8) cannot be re-
placed by the inequality

v(a) < Xy(b) (1.10)

(see Example 4.3).

Theorem 1.3. Let A € ]0,1], £ € Py be a b—Volterra operator, and let
there exist § € 10,\] such that £ & V*(\ — §). If, moreover, there exist a

function 8 € 5([(1, bl; Ry) satisfying
BE) >0 for tela,b, (1.11)
B'(&) > LB)(E) for tE€la,b], (112)

then £ € V—(A).
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Remark 1.4. Theorem 1.3 is nonimprovable in a certain sense. More
precisely, the assumption (1.11) cannot be replaced by the assumption

B(t) >0 for te€la,b], (1.13)

where a1 € ]a, b[ is an arbitrary fixed point (see Example 4.4).

Note also that if A = 1, then there exist 6 € ]0, A] such that £ ¢ V+(A—46)
(see Remark 1.2).

Nevertheless, if A € ]0,1[ then the assumption § € ]0, A] cannot be re-
placed by the assumption § € [0, A] (see Example 4.3).

Corollary 1.2. Let A €]0,1], £ € Pyp, £ be o b— Volterra operator, and let
there exist o function v € C([a,b]; R) satisfying the inequalities (1.7), (1.8),
and (1.9). If, moreover, there exists a function 8 € C([a,b]; Ry) satisfying
the inequalities (1.11) and (1.12), then £ € V—(A).

Remark 1.5. Corollary 1.2 is nonimprovable in the sense that the strict
inequality (1.9) cannot be weakened (see On Remark 1.5). Furthermore,
the assumption (1.11) cannot be replaced by the assumption (1.13), where
a1 € |a, b[ is an arbitrary fixed point (see Example 4.4).

Note also that if A = 1, then there exist a function v € 5([(1, bj; R)
satisfying the conditions (1.7), (1.8), and (1.9) (see Remark 1.3).

Nevertheless, if A € ]0,1[, then the strict inequality (1.8) cannot be re-
placed by the inequality (1.10) (see Example 4.3).

Proposition 1.1. Let A € |1, +o0[ and —£ € Pyy. Then £ € V—(A) iff the
problem

w(t) 2 L(u)(t),  u(a)— Au(d) =0
has no nontrivial nonnegative solution.

Theorem 1.4. Let A € ]1,+o00[ and — € Pap. Then £ € V= (A) iff there
exists v € C([a,b];]0,+00[) satisfying the inequalities (1.7) and (1.8).

Corollary 1.3. Let A € ]1,+00[, —£ € Pyp, and at least one of the follow-
ing items be fulfilled:

a) £ is a b— Volterra operator and

b
/ 1(1)(s)|ds < In A (1.14)

b) there exist natural numbers m,k and a constant a € ]0,1[ such that
m >k and

pm(t) < app(t) for te€]la,bl],
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where p1 =1 and

c) there exists £ € Py such that

b
%exp ( / |e(1)(s)|ds) +

b 8
+ / 7(1)(s) exp ( / |£(1)(£)|d£) ds < 1 (1.15)

and on the set {v € C([a,b]; Ry) : v(a) = Av(b)} the inequality
LD@)I()(E) — LI))(E) < Ew)(t) for t€[a,b]

holds, where

b

b
(W) (t) def —L/l(v)(s)ds - /l(v)(s)ds for te€]la,bl.
t

Then £ € V().

Remark 1.6. The conditions in Corollary 1.3 are nonimprovable. More
precisely, the assumption a € ]0,1[ cannot be replaced by the assumption
a € ]0,1], and the strict inequalities (1.14) and (1.15) cannot be replaced
by the nonstrict ones (see On Remark 1.6).

Theorem 1.5. Let \ € [1,+30[, £ € Pup, £ be a b— Volterra operator, and
let there ezist a function v € C([a, b]; Ry) such that
¥(t) >0, for te€]a,bl],
(1.16)
V() 2 y)(t) for te€ [a,b].
Then £ € V().

Remark 1.7. Theorem 1.5 is nonimprovable. More precisely, the condi-
tion (1.16) cannot be replaced by the condition

v(t) >0, for tE€]lag,b),
where a1 € ]a, b[ is an arbitrary fixed point (see On Remark 1.6).

Theorem 1.6. Let A € [1,+0[, £ € Pyp, and at least one of the following
items be fulfilled:
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a) /l % (1.17)

b) £ is a b— Volterra operator and the inequality (1.4) holds.
Then £ € V().

Remark 1.8. Theorem 1.6 is nonimprovable in the sense that the inequal-
ities (1.17) and (1.4) cannot be replaced by the inequalities

/l ds< +6

and (1.3), no matter how small £ > 0 would be (see On Remark 1.6).

Corollary 1.4. Let A € [1,+0[, £ € Pup, £ be a b— Volterra operator, and

let
b b
/ 7(1)(s) exp ( / e(l)(f)de) ds < 1, (1.18)

8

where

W) (t) = £0())() - LL)DE)(X) for t€ [a,b],

b
o)) - / (@) (s)ds for t€la,b],
t

b
3(t) “ v(t) exp (— / l(l)(s)ds) for t€lab).
t

Then £ € V~ ().

Remark 1.9. Corollary 1.4 is nonimprovable in the sense that the inequal-
ity (1.18) cannot be replaced by the inequality

/l exp(/l )ds§1+6,

no matter how small € > 0 would be (see On Remark 1.6).

Theorem 1.7. Let A € |1, +oo[ and the operator £ admit the representation
£ =10y — L1, where £y, £y € Poy. If, moreover, £y € V= (A) and —¢; € V—(A),
then £ € V—(A).
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Remark 1.10. Theorem 1.7 is nonimprovable in the sense that the as-
sumption

by € V_()\), -t € V_()\)
can be replaced neither by the assumption
(1 —6)[0 € V_()\), -4 € V_()\),

nor by the assumption
& e V7(A), -1 -y e V-(N),
no matter how small € > 0 would be (see On Remark 1.6).

1.2. Equations With Deviating Arguments. The theorems established in
Section 1.1 imply the following results for the differential equations with
deviating arguments.

Theorem 1.8. Let A € 10,1], p € L([a,b]; Ry), T € Mg, and

b
L%é</MQ®§L (1.19)

Then the operator £ defined by

£w)(t) = p(t)v(r(®)) (1.20)
belongs to the set V~(A).

Remark 1.11. Theorem 1.8 is nonimprovable. More precisely, the strict
inequality in the condition (1.19) cannot be replaced by the nonstrict one
and the nonstrict inequality in (1.19) cannot be replaced by the inequality

b
/p@MSSl+6, (1.21)

no matter how small € > 0 would be (see Examples 4.1 and 4.2).
Theorem 1.9. Let A € 10,1], p € L([a,b]; Ry), p Z0, T € Mgy, and let
there exist x € [In 5, +00[ such that

(8

ess inf /p(s)ds :t€[a,b] ) > ”px”L (m +1n %) , (1.22)

llpllz < 1. (1.23)

Then the operator £ defined by (1.20) belongs to the set V().
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Remark 1.12. Theorem 1.9 is nonimprovable in the sense that the in-
equality (1.23) cannot be replaced by (1.21), no matter how small € > 0
would be (see Example 4.2).

Corollary 1.5. Let A € 10,1[, p € L([a,b]; R4), p Z0, T € Mgy,

(t)
ess inf / p(s)ds:t € la,b] } >
t

Iplle | 1)
A" el

and the condition (1.23) hold. Then the operator £ defined by (1.20) belongs
to the set V().

Theorem 1.10. Let A € 10,1[, p € L([a,b]; Ry), T € My, 7(t) > ¢ for
t € [a,b], and let

(1)
ess sup / p(s)ds : t € [a,b] p <, (1.24)

where

1
9" = sup Eln z + ; x>0,  (1.25)

If, moreover,

b
/p(s)ds >In %, (1.26)

then the operator £ defined by (1.20) belongs to the set V—(A).

Corollary 1.6. Let X € 10,1[, p € L([a,b]; Ry), T € My, T(t) > ¢ for
t € [a,b], the condition (1.26) hold, and
7(t)
[ pleyds <

t

o | =

for t€[a,b]. (1.27)

Then the operator £ defined by (1.20) belongs to the set V().
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Remark 1.13. It is clear that for the ordinary differential equations, i.e.,
if £ is defined by

60) () Y ptyvt) for te[ab], (1.28)

where p € L([a,b]; R4), the conditions (1.24) and (1.27) are fulfilled, and
the condition (1.26) is sufficient and necessary condition for the operator
£ given by (1.28) to belong to the set V—(A) with A € ]0,1]. Thus, the
condition (1.26) in Theorem 1.10 and Corollary 1.6 cannot be weakened.

Theorem 1.11. Let A € ]1,4+00[, g € L([a,b]; R1), 1t € Mgp, and at least
one of the following items be fulfilled:
a) u(t) >t fort € la,b] and
b
/g(s)ds <lnA; (1.29)

a

b) there exists o € 10, 1] such that

b b b b
)\il—/g(s) /y(f)df d8+/g(s) /g(g)dg ds <
@ uls) t uls)

b b b
< (a— %/g(s)ds) (%/g(s)ds+/g(s)ds) for te€la,b;
a t
b
exp (/g(s)ds) +

a

b s s
+ / 4(8)a(s) / g()de | exp (/ y(n)dn) ds<1, (1.30)

@ 1(s) @
where o(t) = (1 +sgn(t — p(t))) fort € [a,b).
Then the operator £ defined by
de
@)@ < gt (u®) (1.31)
belongs to the set V—(A).

Remark 1.14. Theorem 1.11 is nonimprovable in the sense that the as-
sumption a € ]0,1[ cannot be replaced by the assumption a € ]0,1] and
the strict inequalities (1.29) and (1.30) cannot by replaced by the nonstrict
ones (see On Remark 1.6).
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Theorem 1.12. Let A € ]1,+00[, g € L([a,b]; R+), g Z0, p € My, and
let there exist x € ]0,1n \] such that

t

llgllz ( A-1=
ess sup / s)ds:t € [a,b] p < z+In .
R Nigll (e = 1)
7]

Then the operator £ defined by (1.31) belongs to the set V().

Corollary 1.7. Let A € |]1,4+00[, g € L([a,b]; Ry), g Z0, p € Mg, and
let
t

€ss sup / g(s)ds : t € [a,b] } <
#(t)

Then the operator £ defined by (1.31) belongs to the set V().

llgll , InA
In .
Inx lglle

Theorem 1.13. Let A € [1,400[, p € L([a,b]; Ry), T € Mg, and at least
one of the following items be fulfilled:

a) /p(s)ds < % ; (1.32)

b) 7(t) >t fort € [a,b] and

/ p(s)ds < 1 (1.33)
c) 7(¢) >t fort € [a,b], pZ0 and
b 7(s) 7(£)
[26) [p©ex| [ pnan | dets <1 (130

d) 7(t) > t for t € [a,b], p Z 0, and the inequality (1.24) is fulfilled,
where 9* is defined by (1.25)
(

Then the operator £ defined by (1.20) belongs to the set V().

Remark 1.15. The assumptions a), b), and c) in Theorem 1.13 are nonim-
provable. More precisely, the inequalities (1.32), (1.33), and (1.34) cannot
be replaced by the inequalities

b b
1
/p(s)ds < X + &, /p(s)ds <l+e,
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and
b 7(s) T(€)
/f@)/p@hm>(/pMMn¢E®31+a

no matter how small € > 0 would be (see On Remark 1.6).

Theorem 1.14. Let A € |1,4+00[, p,g € L([a,b]; Ry), T, € Mgy, and let
the functions p,T satisfy at least one of the conditions a), b), c) or d) in
Theorem 1.13, while the functions g, u satisfy at least one of the conditions
a), b) or ¢) in Theorem 1.11 or the assumptions of Theorem 1.12. Then
the operator £ defined by

L()(8) = p)v(r(®) — g(B)v(u(t)) (1.35)
belongs to the set V—(A).

Remark 1.16. Theorem 1.14 is nonimprovable in a certain sense (see On
Remark 1.6).

2. ON THE SET V*(}))
2.1. Main Results.
Theorem 2.1. Let A € [1,+00[, —£ € Py, and

b
A-1< /|e(1)(s)|ds <1

Then £ € VT ().

Theorem 2.2. Let A € [1,4o00[, —£ € Py, there exist 6 > 0 such that
LEV—(A+9), and
b
/|£(1)(s)|ds <L (2.1)

a

Then £ € VT(N).
Corollary 2.1. Let A € [1,400[, —f € Pup, and let there exist v €

C([a,b]; R) satisfying the inequalities

Y'(&) 2 l(v)(t) for t€(a,b], (2.2)
v(a) > Ay(b), (2.3)
v(a) > 0. (2.4)

If, moreover, the inequality (2.1) holds, then £ € V().
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Theorem 2.3. Let A € [1,400[, —€ € Pgp, £ be an a— Volterra operator,
and let there exist 6 > 0 such that £ ¢ V— (A +6). If, moreover, there exists

a function 8 € 5([(1, bl; Ry) satisfying
B(t) >0 for tea,b[, (2.5)

B'(t) <UB)E) for tE€ab], (2.6)

then £ € VT (N).
Corollary 2.2. Let )\ € [1,+oo[i —f € Py, £ be an a— Volterra operator,
and let there exist a function v € C([a, b]; R) satisfying the inequalities (2.2),

(2.3), and (2.4). If, moreover, there exists a function 8 € C([a,b); Ry)
satisfying the inequalities (2.5) and (2.6), then £ € V().

Remark 2.1. Theorems 2.1-2.3 and Corollaries 2.1 and 2.2 are nonim-
provable in a certain sense (see On Remark 2.1).

2.2. Equations with Deviating Arguments.

Theorem 2.4. Let A € [1,+00], g € L([a,b]; R}), 1t € Mgy, and

b
)\—1</g(s)ds§1.

a

Then the operator £ defined by (1.31) belongs to the set VT ()).

Theorem 2.5. Let A € |1,400[, g € L([a,b];Ry), g Z 0, p € Mgy, and
let there ezist z € [In A, 4+00[ such that

t

: llgllz ( A-1= )
ess inf / s)ds:t € [a,b] 3 > z4+In————— |, (2.7

i Mgl (e -1 ) &7
7]

llgllz < 1. (2.8)
Then the operator £ defined by (1.31) belongs to the set VT ()).

Corollary 2.3. Let A € ]1,400[, g € L([a,b; R1), g Z0, u € Mgy,
t

ess inf / g(s)ds : t € [a,b] » >
u(t)

and let the condition (2.8) hold. Then the operator £ defined by (1.31)
belongs to the set VT (N).

lgllz | InA

InA  lglle’
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Theorem 2.6. Let A € |1,400[, g € L([a,b]; R}), p € Mgy, p(t) <t for
t € [a,b], and

¢
ess sup / g(s)ds : t € [a,b] p <7, (2.9)
#(t)

where

n*zsup{11n<x+ 7 >:x>0}. (2.10)
’ exp (xfg(s)ds) -1

a

If, moreover,

b
/9(S)ds >InA, (2.11)

then the operator £ defined by (1.31) belongs to the set VT ()).

Corollary 2.4. Let A € ]1,4+00[, g € L([a,b]; Ry), p € Mg, p(t) < t for
t € [a,b], the condition (2.11) hold, and

t

[ stepas <

u(t)

Then the operator £ defined by (1.31) belongs to the set VT ()).

for t€a,bl.

o | =

Remark 2.2. Theorems 2.4-2.6 and Corollaries 2.3 and 2.4 are nonim-
provable in a certain sense (see On Remark 2.2).

3. PROOFS

Proof of Theorem 1.1. Let u be a nontrivial solution of the problem (0.1),
(0.3) with ¢ € L([a,b]; R4) and ¢ € R;. We will show that

u(t) <0 for t€]|a,b]. (3.1)
Assume that u changes its sign. Put
M = max{u(t) : t € [a,b]}, m = —min{u(t) : ¢t € [a,b]}, (3.2)
and choose tar,t,, € [a,b] such that
ulty) =M, u(ty,) = —m. (3.3)
Obviously M > 0, m > 0, and either

t <tm (34)
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or
ta >t (3.5)

First suppose that (3.4) is fulfilled. The integration of (0.1) from ¢ps to &y,
in view of (1.1), (3.2), (3.3), and the assumption ¢ € L([a,b]; Ry ), results
in

M+m=-— /l ds—/ ds<m/l ds<m/l

According to (1.2), we obtain M + m < m, a contradiction.

Now suppose that (3.5) holds. The integration of (0.1) from a to t,,
and from tp to b, on account of (1.1), (3.2), (3.3), and the assumption
q € L([a,b]; Ry), yields

/l s)ds —/ (s)ds < m/l(l)(s)ds, (3.6)

b b
M—ud)=— [ Lu)(s)ds— [ q(s)ds <m [ £(1)(s)ds. (3.7)
J Jooesn]

Multiplying both sides of (3.7) by A and taking into account (1.1) and the
assumptions A € ]0,1] and m > 0, we get

AM — \u(b) < m / 0(1)(s)ds
tm

Summing the last inequality and (3.6), on account of (0.3), (1.1), and the
assumptions ¢ € R, and m > 0, results in

)\M+m§c+)\M+m§m/l(1)(s)ds

The last inequality, on account of (1.2), yields the contradiction AM +m <
m. Therefore, u does not change its sign.
Now assume the that (3.1) is not valid. Due to above—proved we have

u(t) >0 for te€Ja,b], uZ0. (3.8)

From this inequality, (0.1), (1.1), and the assumption ¢ € L([a,b]; R4), it
follows that

W(t) >0 for t€[ab]. (3.9)
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The integration of (0.1) from a to b, in view of the assumption g € L([a, b];
R, ) implies

b b b
u(a) — u(b) = — / 0(u)(s)ds — / g(s)ds < — / 0()(s)ds.

Hence, by (0.3), (1.1), (3.9), and the assumption ¢ € R, we obtain
u(d)(A—=1) < e+ Au(b) —u(d) <

b b
< —u(a) / £(1)(s)ds < —Au(b) / £(1)(s)ds. (3.10)

Obviously, (3.8) and (3.9) imply u(b) > 0, and therefore, from (3.10) we get

b
s / £(1)(s)ds,

which contradicts the first inequality in (1.2).

We have proved that if u is a nontrivial solution of the problem (0.1),
(0.3) with ¢ € L([a,b]; R4) and ¢ € R, then the inequality (3.1) is satisfied.
Now suppose that the homogeneous problem (0.1p), (0.3g) has a nontrivial
solution ug. Obviously, —ug is a nontrivial solution of the problem (0.1p),
(0.3p), as well, and, according to above—proved, we have

up(t) <0, —ug(t) <0 for t€la,bl],
i.e., up = 0, a contradiction. [J
Proof of Theorem 1.2. Let u be a solution of the problem (0.1), (0.3) with
g € L([a,b]; R;) and ¢ € R;. We will show that (3.1) holds.
Assume that (3.1) is not valid. Analogously to the proof of Theorem 1.1,
in view of (1.4), we obtain that u does not change its sign. Therefore (3.8)

holds. From (0.1), (1.1), (3.8), and the assumption ¢ € L([a,b]; R4) it
follows that

W'(8) > 0u)(t) >0 for t € l[a,bl. (3.11)

Obviously, (3.8) and (3.11) imply u(b) > 0, and therefore, by virtue of (0.3)
and the assumptions ¢ € R4 and § € ]0, A], we have

u(a) = Au(b) + ¢ > Au(b) > (A= d)u(b) > 0. (3.12)
According to (3.11) and (3.12), we obtain
u(t) >0 for t¢e€[a,b].

From this inequality, (3.11), (3.12), and Theorem 1.1 in [8] it follows that
£ € VT (X —4§), which contradicts the assumption of the theorem.
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We have proved that if u is a solution of the problem (0.1), (0.3) with
g € L([a,b]; R4) and ¢ € Ry, then the inequality (3.1) is satisfied. Now we
will show that the homogeneous problem (0.1g), (0.3¢) has only the trivial
solution. Indeed, let ug be a solution of this problem. Obviously, —ug is a
solution of this problem, as well, and, according to above—proved, we have

uo(t) <0, —up(t) <0 for ¢ € Ja,bl].
Therefore ug = 0. 0O
Proof of Corollary 1.1. We will show that the conditions (1.7), (1.8), and

(1.9) imply £ ¢ V(X — §) for a suitable § € ]0,)]. Indeed, according to
(1.7) and (1.1), we obtain

Y& < UH)E) for t€ fa,b].
Moreover, (1.8) and (1.9) yield

[v(@)]+ < Aly(B)]+-
According to the last inequality, there exists § € ]0, A] such that

(@] = (A= 8)[v(b)]+.
Since v(b) > 0, the function [v] is a nontrivial nonnegative solution of the
problem
w'(t) <Lu)(t),  u(a)— (A—S)u(d) =0.
Thus, by Proposition 1.1 in [8], we have £ ¢ V(A — §).
Therefore the assumptions of Theorem 1.2 are fulfilled. O

Proof of Theorem 1.3. Let u be a solution of the problem (0.1), (0.3) with
g € L([a,b]; R;) and ¢ € R;. We will show that (3.1) holds.
Suppose that u(a) > 0. Then there exists ¢y € ]a, b[ such that

u(t) >0 for tE€ [a,to] (3.13)

Since £ is a b—Volterra operator, the restriction of u to the interval [to, b]
is a solution of the equation (0.1) with the condition u(ty) > 0. Moreover,
the restriction of 8 to the interval [tg, ] is a positive absolutely continuous
function satisfying the inequality

B'(t) > UB)(t) for t€ [to,bl. (3.14)

According to Theorem 1.1 in [8] (for A = 0, a = tp) and the assumptions
£ € Py, u(to) >0, and g € L([a, b]; Ry), we get

u(t) >0 for ¢ € [to,b] (3.15)
The inequality (3.15), together with (3.13), yields
u(t) >0 for t€]|a,b]. (3.16)
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In view of (0.1), (0.3), (3.16), and the assumptions ¢ € L([a,b]; R1), c € Ry,
and § €10, A], we have

u'(t) > L(u)(t) for te€ [a,b], (3.17)
u(a) > Au(d) > (A — du(d). (3.18)

However, (3.16), (3.17), and (3.18) guarantee that £ € V(A — ) (see The-
orem 1.1 in [8]), which contradicts the assumption of the theorem.

Therefore u(a) < 0. In view of (0.3) and the assumptions A > 0 and
¢ € R, the inequality

u(d) <0 (3.19)

holds. Since £ is a b—Volterra operator, according to (1.11), (1.12), (3.19),
and Theorem 1.6 in [7], the inequality (3.1) is fulfilled.

We have proved that if u is a solution of the problem (0.1), (0.3) with
g € L([a,b]; R4) and ¢ € Ry, then the inequality (3.1) is satisfied. Now we
will show that the homogeneous problem (0.1g), (0.3¢) has only the trivial
solution. Indeed, let ug be a solution of this problem. Obviously, —ug is a
solution of this problem, as well, and, according to above—proved, we have

uo(t) <0, —up(t) <0 for ¢ € Ja,bl].
Therefore ug = 0. 0O

Proof of Corollary 1.2. By the same arguments as in the proof of Corol-
lary 1.1, in view of (1.7), (1.8), and (1.9), we get £ € V+(A—4) for a suitable
6 €10, A]. Therefore the assumptions of Theorem 1.3 are fulfilled. O

Introduce the following notation. Let A € [1,400[, £ € Ly, and g €
L([a,b]; R). Let the operator % : L([a, b]; R) — L([a,b]; R) be defined by

Yw)(t)

and let ¢ be a restriction of ¢ to the space C([a, b]; R). Put ¥ = % c=

Lw)(®) E —pllp))®),  Gt) = —$(9)(t) for t€ [a,b].
It is clear that if u € C([a, b]

u'(t)
then the function v &/ »(u) is a solution of the problem
V' (t) = L)) +§t),  v(a) — () =7, (3.21)

and vice versa, if v € C([a,b]; R) is a solution of the problem (3.21), then

w(a+b—1t) for te€]a,b

>¢I<‘=

def

[a, b]; R) is a solution of the problem

(
Lu)(®) +q(8),  ula) - Au(d) =c, (3.20)

the function u »(v) is a solution of the problem (3.20). Therefore the
following proposition is valid.



ON CONSTANT SIGN SOLUTIONS 85

Proposition 3.1. £ € VT()) (resp. £ € V-(\) iff L € V—(9) (resp.
e V+(®)).

Proofs of Proposition 1.1, Theorems 1.4-1.7 and Corollaries 1.3 and 1.4.
The conditions guaranteeing the inclusion £ € V*(A) with A € [0, 1] have
been established in [8]. According to Proposition 3.1, Proposition 1.1, The-
orems 1.4-1.7 and Corollaries 1.3 and 1.4 can be immediately derived from
Proposition 1.1, Theorems 1.1-1.4 and Corollaries 1.1 and 1.2 from [8]. O

Proof of Theorem 1.8. It immediately follows from Theorem 1.1. [J

Proof of Theorem 1.9. According to (1.22), there exists € € ]1,+o0[ such
that

(8

T
/p(s)ds > Pl In cre . for te€la,b. (3.22)
/ T fplly (5 + A5
Put
ex
To= . (3.23)
Pl

Obviously, zo > 0. By (3.22), (3.23), and the assumption z € [ln §,+oo|:,
we obtain

T(t)

7(2) oo [ p(s)ds
1 o
/ p(s)ds > . In f?f for te€[a,b], (3.24)
) 0 zo [ p(s)ds e 1
e o + 4=
zolpllL > =. (3.25)

Define the function v € C([a,b]; R) by

(t) = o Al
T =e DY

for te€ [a,b)]. (3.26)

Obviously, if £ is defined by (1.20), then (1.23) implies (1.4), and, by virtue
of (3.24), (3.25), and (3.26), the function v satisfies the inequalities (1.7),
(1.8), and (1.9). Therefore, according to Corollary 1.1, £€ V= (\). O

Proof of Corollary 1.5. It immediately follows from Theorem 1.9 for z =
ni O
by
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Proof of Theorem 1.10. According to (1.24), there exists £ > 0 such that

(t)
/ p(s)ds < 9" —e for t€[a,b]. (3.27)
t

In view of (1.25) we can choose 1 > 0 and § € ]0, 1] such that

1 In <x1 + bxl(l =9) > > — e (3.28)
T
exp (x1 fp(s)ds) -(1-9)

Put
t

B(t)=exp | 71 /p(s)ds —(1-4) for te€]a,b].

a

It is not difficult to verify that 8(¢) > 0 for ¢ € [a, b] and, according to (3.27)
and (3.28), the inequalities (1.11) and (1.12) are fulfilled.

It can be easily shown that according to (1.26) and the assumption
T(t) > t for t € [a,b], the inequality (1.22) is fulfilled with z = In ;.
Therefore, analogously to the proof of Theorem 1.9, there exists a func-
tion v € C([a, b]; R) satisfying the inequalities (1.7), (1.8), and (1.9).

Therefore, the assumptions of Corollary 1.2 are fulfilled. O

Proof of Corollary 1.6. It immediately follows from Theorem 1.10. O

Proofs of Theorems 1.11-1.14 and Corollary 1.7. The conditions guaran-
teeing the inclusion £ € V() with A € [0,1] have been established in [8].
According to Proposition 3.1, Theorems 1.11-1.14 and Corollary 1.7 can be
immediately derived from Theorems 2.1-2.4 and Corollary 2.1 from [8]. O

Proofs of Theorems 2.1-2.6 and Corollaries 2.1-2.4. According to Propo-
sition 3.1, Theorems 2.1-2.6 and Corollaries 2.1-2.4 can be immediately
derived from Theorems 1.1-1.3 and 1.8-1.10 and Corollaries 1.1, 1.2, 1.5,
and 1.6. O

4. COMMENTS AND EXAMPLES

Example 4.1. Let p € L([a, b]; R;) and £ be defined by (1.20). If

b
/p(s)ds <1-=2),
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then, according to Remark 1.2 in [8], £ € V*()). Consequently, £ & V().
Therefore, suppose that

b
1-X2< /p(s)ds < u (4.1)
Define
¢
u(t) = % /p(s)ds + L/p(s)ds for t€Ja,b)].

Obviously, in view of (4.1),

b b
u(a) = 12 / pe)s <1, ulb)= 1 / p(s)ds > 1.

Consequently, there exists #g € [a,b] such that u(ty) = 1. Put 7(t) = to for
t € [a,b]. Then u is a nontrivial solution of the problem

v (t) = p(Hu(r(t)), u(a) — Au(b) = 0. (4.2)
Therefore £ ¢ V—(A).

Example 4.1 shows that the strict inequality in (1.2) in Theorem 1.1
cannot be weakened.

This example also shows that the strict inequality in (1.19) in Theo-
rem 1.8 cannot be weakened.

Example 4.2. Let A € ]0,1], € > 0, 7 = b, and let p € L([a,b]; R}) be
such that

b
/p(s)ds =1l+e.

It is clear that the operator £ defined by (1.20) satisfies
b

/l(l)(s)ds =1+e.

a

Put
t

u(t)=¢— /p(s)ds for t€Ja,b)].

a

Let § € 10, A]. Then, evidently, u is a solution of the problem
uw'(t) = £(u)(8), ula) —(A—=8)u(d) =+ X —4.
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However, u(b) = —1 < 0, therefore, £ € V(X — §). Moreover, v = —u
satisfies the inequalities (1.7), (1.8), and (1.9), and if A > %, then there
exists z € [In §, +oo[ such that the inequality (1.22) is fulfilled.

On the other hand, u is a solution of the problem

uw'(t) = £(u)(8), u(a) — Au(b) =€+ A.
Since u(a) =& > 0, we have £ ¢ V—(A).

Example 4.2 shows that the nonstrict inequality in (1.2) in Theorem 1.1
and the inequality (1.4) in Theorem 1.2 and Corollary 1.1 cannot be replaced
by the inequality (1.3), no matter how small £ > 0 would be.

This example also shows that the nonstrict inequality in (1.19) in Theo-
rem 1.8 and the inequality (1.23) in Theorem 1.9 and Corollary 1.5 cannot
be replaced by the inequality (1.21), no matter how small € > 0 would be.

Example 4.3. Let A € ]0,1[, 7 = b, and let p € L([a, b]; Ry ) be such that

b
/p(s)ds =1-A (4.3)

It is clear that the condition (1.4) is fulfilled, where £ is defined by (1.20).
Moreover, the function

¢
Bty =A+ /p(s)ds for ¢ € [a,b]

satisfies the inequalities (1.11) and (1.12), and the function v = § satisfies

the conditions (1.7), (1.9), and (1.10).

On the other hand, 8 is a nontrivial solution of the problem (0.1¢), (0.3p).
Therefore £ ¢ VT (\). However, £ &€ V= ()), as well.

Example 4.3 shows that the assumption § € ]0, A] in Theorems 1.2 and 1.3
cannot be replaced by the assumption d € [0, A]. This example also shows
that the strict inequality (1.8) in Corollaries 1.1 and 1.2 cannot be replaced
by the nonstrict one.

On Remark 1.3. We will show that the inequality (1.9) in Corollary 1.1
cannot be weakened. Indeed, let (1.4) hold and let there exist a function

v € 5([(1, b; R) satisfying (1.7), (1.8), and v(b) < 0. By virtue of (1.8), we
have

v(a) <O0. (4.4)

Put M = max{y(¢) : t € [a,b]} and choose ty € [a, b] such that u(tg) = M.
Suppose that

M > 0. (4.5)
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Then, on account of (4.4), we find ¢y # a and the integration of (1.7) from
a to tp, on account of (1.1), (1.4), and (4.5), yields

to b
M —+(a) < / 0(7)(s)ds < M / (1) (s)ds < M,

which contradicts (4.4).

Therefore M < 0 and the function —y € C([a, b;]0, +oc[) satisfies the
inequalities

(=v®)) Z &(=7)(t) for t € [a,b], (4.6)
—7(a) > A(=7(b))- (4.7)

Thus, according to Theorem 1.1 in [8], we have £ € V()\). Consequently
L V—(N).

Example 4.4. Let A € ]0,1], € > 0, and let a; € ]a, b[ be an arbitrary fixed
point. Choose p, g € L([a, b]; R;) and ¢ € R, such that p Z 0 in ]ay, a1 + o)
for some dg > 0 and

a1

/p(s)ds >1, /bp(s)ds =1,
5

a

g(t)=0 for t€a,ai1],

Q
—
v ]
N
U
v ]
Il
)

o Tp(s)ds -1 ‘
Put
0 for ¢ € [a,aq] ftp(s)ds for ¢ € [a,a1]
Bt) = 1) =94 ;

¢
aflp(s)ds for t € [a1,B] [ p(s)ds for t € [a1,B]

a

r(t) = a; for te[a,al[.
b for t€[a,!]

Let £ be defined by (1.20). Obviously, the function ~ satisfies the inequal-
ities (1.7), (1.8), and (1.9), which also implies that there exists § € 0, A]
such that £ € V(X — §) (see the proof of Corollary 1.1). It is also evident
that the operator £ is a b—Volterra operator and the function 3 satisfies the
inequality (1.12) and the condition (1.13).
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On the other hand, the function

¢
e— o [p(s)ds for t € [a,a1]
fp(s)ds—l a
u(t) = * t t
—a—— + 52 [ p(s)ds + [ q(s)ds for ¢t € [a1,D]
fp(s)ds—l a1 a1

a

is a solution of the problem (0.1), (0.3) with u(a) = & > 0. Consequently,
L V—(N).

Example 4.4 shows that the condition (1.11) in Theorem 1.3 and Corol-
lary 1.2 cannot be replaced by the condition (1.13), where a; € ]a,b[ is an
arbitrary fixed point.

On Remark 1.5. We will show that the inequality (1.9) in Corollary 1.2
cannot be weakened. Indeed, let there exist a function 8 € C([a,b]; Ry)
satisfying the inequalities (1.11) and (1.12), and let there exist a function
v € 5([(1, b; R) satisfying (1.7), (1.8), and v(b) < 0. Then the condition
(1.8) implies (4.4). Obviously, vy is a solution of the equation (0.1) with

at) =7() — €)($) <O for € [a,b]. (4.8)
It is also evident that there exists ty € ]a, b[ such that
¥(t) <0 for [a,to] (4.9)

Since £ is a b—Volterra operator, the restriction of v to the interval [to, b]
is a solution of the equation (0.1) with the condition ~(ty) < 0. Moreover,
the restriction of 8 to the interval [tg, ] is a positive absolutely continuous
function satisfying the inequality (3.14). According to (1.1), (4.8), ¥(f) <
0, and Theorem 1.1 in [8] (for A =0, @ = to), we get

v(t) <0 for ¢t € [to,b)].

This inequality, together with (4.9), yields v(¢t) < 0 for t € [a,b] and so
the function —y € C({a, b];]0, +00[) satisfies the inequalities (4.6) and (4.7).
Thus, according to Theorem 1.1 in [8], we have £ € V(). Consequently,
L V—(N).

On Remark 1.6. According to Proposition 3.1, the optimality of The-
orems 1.5-1.7 and Corollaries 1.3 and 1.4 follows from the optimality of
Theorems 1.2-1.4 and Corollaries 1.1 and 1.2 from [8], where the examples
showing the optimality of the obtained results can be found.

On Remark 2.1. According to Proposition 3.1, the optimality of The-
orems 2.1-2.3 and Corollaries 2.1 and 2.2 follows from the optimality of
Theorems 1.1-1.3 and Corollaries 1.1 and 1.2.
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On Remark 2.2. According to Proposition 3.1, the optimality of The-
orems 2.4-2.6 and Corollaries 2.3 and 2.4 follows from the optimality of
Theorems 1.8-1.10 and Corollaries 1.5 and 1.6.
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