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ADJOINT VARIABLES:
A COMMON WAY TO FIRST
INTEGRALS AND INVERSE PROBLEMS



Abstract. We obtain a type of first integrals for ODE by using a gen-
eralization of the method of adjoint variables to higher-order systems. A
generalization of the harmonic oscillator and a classical spinning particle is
completely discussed in order to solve the associated inverse problem.
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INTRODUCTION

Until now, the method of adjoint (or added) variables was used only for
systems of differential equations which involve the derivatives of first and
second order. So, for second order ODE see [6], [7] and for second order
PDE see [1], [2]. A geometrical framework of this method for first and
second-order ODE can be found in [8]. For other applications about this
approach see [10, chapter 3].

The aim of the present paper is to extend this method to higher-order
ODE. This generalization appears in the first section via the usual notion
of adjoint for a linear operator. While the first section deals with implicit
systems, in the next section systems in kinematical form are considered.
The results of that section are generalizations of similar results from [6].
The linear case, and more particularly, the linear autonomous case are also
studied. Another important part of the paper is Section 4 in which the
inverse problem yields the Helmholtz equations as characterization of self-
adjoint systems. As an example, a system generalizing both the harmonic
oscillator and a spinning particle is given. Using the obtained first integrals
the corresponding inverse problem is solved. A short version of this paper
is [3].

1. THE ADJOINT VARIABLES APPROACH

Let us consider a general system of kth order ODE, with k and n two
natural numbers:

Fit,z,z1,...,25) =0, 1<j<n, (1.1)
with the unknow function z = (2%)1<;<n and

. déat
A first integral (or conservation law or conserved quantity) for the system
(1.1) is a function F = F(¢,z,z1,... ,Zp—1) satisfying:
dF
where mod(1.1) means “along the solutions of (1.1)” and £ denotes the

total differentiation with respect to t: & = & + 2t 2 +... + i 8—:0?—.
k—1

For £ = (fi)ISiSn define a point-transformation by
F =g+t (1.4)
with € a real npmber with sufficiently small absolute value. The Fréchet
derivative of F7 is:
dF7(z)(¢) = lim 1(FJ' - F9), (1.5)

e—0¢&
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where FV = Fi(t,%,... ,#). Then

k+1 j —a 4
dFi(z)(¢) = oF d" _Hf. (1.6)

Oz, dtb—etl

a=1
We search for (1.1) a first integral in the form

f—k 1)e+iT, deg K 1.7
_Z(_) (a)z dth—o - ()

a=1

with % =fand K = K(t,z,... ,25—1). We require that:

k41 k—a+1 g
d Z 8Fi d ¢ dK
—H 19}

= " g (18)

xk a+1

with g = (pj)1<j<n-
dge—atlgi

From (1.7) and (1.8) it results by comparing the coefficients of 2 et

Tiwi = =T + (=), 4j 1<a<k, Tp; =0, (1.9
)i 1)i 3 ’ = = Ny 0) ’ .
() dt ( ) ]a.’l,'k 1 ©)

and we obtain the main result of the paper:

Theorem. If the functions &€ = (£%), u = (u;) of (t,x) satisfy the system:

d OFj
ET(k)i (=1 =~ oz O (1.10a)
k+1
OFi dh-otigi gk
/J,]Za tk ol E (110b)

k a+1
along the solutions of (1.1) with K = K(t,z,... ,25—1) a given function,
then F given by (1.7) is a first integral for (1.1).

Remarks. (i) If F7 does not depend on z, then (1.10a) becomes T(x); =
const .
(if) The relation (1.10b) is exactly:

dK

wdFi@)(©) = (111)

and then the equations (1.9) + (1.10a) are:

(dF(2)); (1) =0, (1.12)
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where (dF'(z)); (i) is the adjoint to the linear operator dF(z):

d¥ (OF3 dF-1 ( OF3
—1)* * = — (=) = .
(~D)*(@dF (2)); (1) dtk( o u]) T (w;_ﬂf)* +

0 8 () + s (113)
(ii) For k = 2, i.e., for system
Fit,z,&,%) =0
the equations (1.10) read ([6, p. 2])

4ra( .3_F") _ .3_F"] P
dt Lag \Mi 9% Hj Py Higg —
OFi ¢t OFidet  OFI ,\ dK
(PEIEE ORI 0Py di
o3t dt o3t dt Oz dt
and . . . .
OFidgi  d, OF OFiq
= ; - — | = i ] — i - ' — K.
F=h ozt dt [dt (,u] (%’) K 9t ]f

2. SYSTEMS IN KINEMATICAL FORM

Since the expression of the adjoint operator is more complicated com-
paring with the expression of the direct operator, an interesting question
appears: Under what conditions on the system (1.1) there exists a system
G’ = 0 such that the adjoint (dF(z))} () is exactly dGY (z)(u) ?

. . d=1y; .
By comparing the coefficients of “xZ, we obtain

oG i, d (OF7 k1 OF7
dzi_, (=1) dt ( Bx}c) (1) ozt |’
that is,
d (OF] 11 OF7 k 8GI
E(axi) N E[ax;_l (=1 Bx};_l]'

But the right hand side of the last relation contains at most % and then

i .
gfi must depend on (¢,z,... ,2p—1) i.e. we need:

Definition 1. The system (1.1) is said to be in principal form if
Fi = Ag(t,x,. e Tpo1)h + Bit,x,. .. ,xp_1).

The dependence of F/ by z; implies that the matrix A = (Af ) is non-

degenerate, i. e. det A # 0. Since the systems F/ =0 and A~ - F/ =0
have the same solutions, we need
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Definition 2. The system (1.1) is said to be in kinematical form if
Fi =gl — fi(t,z,21,...,25-1). (2.1)

Then, along solutions of (1.1) the total differentiation operator % is

reduced to the vector field D% = % + m{% +---+ xi_lﬁ + f 8w§:_1
and the theorem becomes
Proposition 1. If £ and u satisfy
D afi
D_tT(k)i = (‘U’ija (2:2a)
Dhei ML §fi  pE-etlg DK
uj( _ ) = S5 (2.2b)

Dtk 4= Oz, Dtb-ot+l

where
(i) K =K(t,z,... ,xx—1) 18 a given function,
(ii) T(l)i = M and

of!
Kj ozl 2<a<k, (2.2a)

D [s4
Tteyi = py La-1yi + (=1) »

then F given by (1.5) is a first integral for (2.1).

Using the relations

8 D1 8fi 0 5
[ax’a’ Dt] Ozt Ozt | Ozt .’ Osas ’ (2:6)

it results in

Proposition 2. If 71, Fe are first integrals of (2.1), then

0F>
i = : 2.7
2 F1 3%_1 (2.7)
satisfy (2.2a) + (2.24').
Proof. By induction we get
o OF.
Ty = (-1)*1' A o 2, 0<ac<k (2.8)

Indeed, for o = 1 we have (2.7) from T{;); = p; (cf. Proposition 1) and
(2.7). Let us suppose that we have (2.8) for a fixed a. Then, using (2.2a'),

D 0F;

— (_petip, DO _

T(a—i—l)z ( 1) 71Dt6.’152:_a+( 1)
_0n

‘%i—(aﬂ)

afi (2.6
a+l,, . i
Yoai_,

(2:6) (_1)a+2f1

?
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which is what we require. Then T(y); = (-1)*1F %{; , which gives

Do g DOFa@e) ke OF OF
DtT(k)l_( 1) j:lDt Ozt = (=1 flax" axi_l

afi
—(_1\k,, .2
_( ) :u’]axia

hence the conclusion of the proposition. O
In particuler, by putting 773 = 1 we obtain

Proposition 3. A first integral Q of (2.1) gives rise to a new one:

k .
60 Dk—afz
== —_— Y — 2.
Fa s 9gi_, DtF=e (29)
where £ = £(t, x) satisfy:
80 (Dkgl L gfi  ph-etigiy DK
: ( - ) it (2.10)
Oz, Dt

Dtk 4= Ox_ ., Dttt

Let us consider the particular case where the functions (f7) does not
depend on time, that is, the considered system is autonomous (or time-
independent). Then a straightforward calculus gives that £ = z¢ (although
we require only £ = £(t,z) 1) satisfy (2.2b) with K = 0. Hence

Proposition 4. If fi = fi(z,... ,zx_1) and p = u(t,z) satisfy (2.2a) +
(2.2a"), then:

k
Fu= :u'ifi + Z(_l)a—i_lT(a)ixi:—a-i-l (2.11)
a=2
is a first integral for (2.1).

3. THE LINEAR CASE

Let us suppose that F7 is linear:

Fi(z) = Al 2} + - - + Afjy,0° (3.1)
with A{a)i = A{a)i(t), 1<i,5 <n,0<a<k. Therefore
OFj j

and then dF7(z)(¢) = FJ(£). One obtains

. . dk . dk—l .
(=DM (AR @)); (1) = (~DVFF ()= (Al o= s (Al pg) + - +
d )
+ (_1)k ! %(Azk—m:“j) + (_1)kA€k)i:u’j7 (3.3)

and then, for linear systems the theorem becomes
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Proposition 5. If £ and u satisfy

F} () =0, (3.42)
piF (€) = %, (3.4b)

then F given by (1.7) is a first integral for (3.1). For K = 0, it follows from
(3.4b) the solution £ = z.

More specifically, if the coefficients A{a)i are constants, that is, in the
case of linear autonomous systems, we have

Corollary. If u satisfy:

A{o)i% - A{l)i% +...+ (—1)k_1A{k—1)i% *
+(=1)k A =0, .
then F given by
b
F = (-1)*" Tzt _g &0
a=1

is a first integral for (3.1).

4. SELF-ADJOINT SYSTEMS AND HELMHOLTZ EQUATIONS

Recall that the vector operator F' = (F7) is called self-adjoint if the
Fréchet derivative of F is self-adjoint and this property is a necessary and
sufficient, condition for the system F’/ = 0 to be obtained by a variational
principle, i.e., for a Lagrangian L to exist such that the given system is
exactly the Euler-Lagrange system for L.

Comparing the relations (1.6) and (1.13), we see that the given system
is self-adjoint if and only if

OF OFi k\ d* (OF7
_1 k I3 = _1 a.— — I3 -
- Oz _q = 0}, (a) dte (8%)
k—1\ d*! ; OFi
B (a - 1) die—1 (3962_1) Tt (4.1)

for 0 < a < k. For example, if & = 2, we obtain the classical Helmholtz
equations [4]

F' _ 9Fi
) 8w;‘ Ozl ‘
BFi | 8F! _ od {9F?
ool 1 Bzt 2dt(8w’2) : (4.2)

OF _ 9F _ 14 (6F _ &F’
E Ozt — 2dt dz? oz}
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The reader is invited to compare our equations (4.1) with the relations
(5.5) from [11, p. 1186].

5. A GENERALIZATION OF THE HARMONIC OSCILLATOR AND A
SPINNING PARTICLE

Let us consider the system of order k = 2m:
Fi=gi +ai ,=01<i<3, (5.1)

which is a linear system and so the above corollary works. For m =1
this system describes the harmonic oscillator and for m = 2 a spinning
particle([5]). The associated system (3.5) is

iU TER S TR

g T gpme = (5.2)
and we have two solutions
Wi = cost, (5.3a)
i =sint (5.3b)
with the corresponding first integrals (3.6)
Fige=aby | sint —zb, , cost, (5.4a)
Fi s =z, cost+xb, ,sint. (5.4b)

Note that from Proposition 3 we have Fz, ., = Feost and Fr,.., = Fsint-
The system (5.1) is self-adjoint and then we are interested in finding the

associated Lagrangian. Also, from (5.1) we have the first integral

int

Cl=gi  +ab . (5.5)
which, in order to eliminate the variable ¢, yields the first integral
U= (002 - (A1)~ (F)™ (5.6)
A straightforward computation gives:
U = (250-3)% — (@hy_0)” + 285, 385, (5.7)

and then we have the first integral

H= %(\Iﬂ + 0%+ 0% =
13 13 3 .
=3 > (@am-s)” - 3 > @am2)®+ ) Thn 3T, (5.8)
i=1 i=1 i=1
which is exactly the Hamiltonian for (5.1). The associated Lagrangian is
1N, 1N,
L= 33 @) - 5 Y, (59)
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a result very important from the point of view of Inverse Problem of Ana-
lytical Mechanics ([9]). Thus we solve in this way the inverse problem for
the harmonic oscillator and a spinning particle.

10.

11.
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