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Abstract. In this paper the most general statements concerning steady
properties of elements in Banach spaces are stated. The paper provides
a device for research of concrete steady properties of linear operators and
linear boundary value problems. It is proved that each steady property is
generated by some positively homogeneous and nonexpanding functional.
The concept of the spectrum of an element concerning steady property is
introduced and basic statements about the spectrum are formulated.
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INTRODUCTION

In the theory of linear boundary value problems for ordinary differential
equations, partial differential equations, functional differential equations,
and as well as in the theory of integral equations, to investigate some prop-
erties (solvability, Fredholm property, and the like), an approach is pro-
ductively enough applied, the idea of which can be expressed as follows: a
modelling equation (modelling boundary value problem) is considered and
a property of this equation is established which is preserved under small
perturbations. Application of the functional analysis methods in the theory
of boundary value problems allowed to formulate the mentioned approach
in terms of additive perturbations of linear operators [1].

The analysis of known steady properties of linear operators shows that
they have a number of common properties. So there arose the idea of ax-
iomatic definition of the steady property concept of the linear operator and
study of abstract steady properties in the space of bounded linear operators.
As it turned out, the main facts about steady properties admit natural and
laconic treatment for elements of a Banach space.

In the proposed work the most general statements concerning steady
properties of elements in Banach spaces are stated. This material is de-
signed to give one an adequate background for studying steady properties
of linear operators and linear boundary value problems. Both from the the-
oretical point of view a fundamental fact is that each steady property is
generated by some positively homogeneous and nonexpanding functional.
Such a functional, named the generating one, is a quite effective tool of
studying a concrete steady property. So, for example, the study of surjec-
tivity coefficient [2] has allowed to solve the problem of the Green operator
with minimal norm. This problem for functional differential equations for
the first time was considered in the work [3].

The basic material of the paper is divided into sections. Theorems are
numbered within each section in the way that the first number corresponds
to the number of a section. The text of the paper does not contain any
references. The preliminary results used in the work can be found in [4,5].

0. NOTATION

Throughout this paper we will use the following notation and definitions.

0.1. Let R be the set of real numbers and C be the field of complex num-
bers. The field K of scalars is R or C. Below all spaces under consideration
are assumed linear and are denoted by the letters B, D, T, X,Y, Z. If not
specially otherwise mentioned, under a space we mean a Banach space, i.e.,
a complete normed linear space.

Let E be a normed space and Ey be a linear space such that Ey C E. If
we consider Ey as a subspace of E, we mean that Fy is endowed with the
norm of E. In other cases the inclusion Ey C E is understood in algebraic
sense, i.e., Ey is a subset of E which has the linear structure.
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Let E be a normed space with a norm || - ||. For a fixed element ap € E
and a positive number 7, the open ball V (ag,r) and the closed ball U(ag, )
centered at ag with radius r are defined by

V(ao,r) ={a € E: |lag — a|| <},
Ulag,7) ={a € E: |lap —al|| < r}.

0.2. Let E; and Es be subspaces of a linear space E. We say that E is
decomposed into the direct (algebraic) sum of subspaces E; and Es (and
write B = El'i‘EQ), ifE = E1 +E2 and E1 ﬁEQ = {0} In case £ = El-i'Eg
each element a € FE is uniquely presented in the form a = a; + a2, where
a; € El, as € Es.

Let E be a Banach space, E = E1+F, and E1, E, be closed subspaces
of E. Then we say that E is the direct (topological) sum of the closed
subspaces E; and Es and write £ = E; @ Es.

0.3. Let E; and E5 be linear spaces over a commonfield of scalars. The
space E; x E3, named direct (algebraic) product of the spaces E; and Es,
is defined as the set of all ordered pairs (a1,a2), a1 € Ei, as € Ey, with
component-wise operations of multiplication by a scalar and addition of
elements.

If By and E; are two Banach spaces with the norms || - ||; and || - |2
respectively, the direct product E; X E; becomes a Banach space after
endowing it with the norm

(laxllf + lla=l$)'/P, 1< p < oo,

ll(a1, a2)ll, = {

max{||ai(1,[|azll2}, p= o0,
for a fixed p.
0.4. Let R™ be an n-dimensional real linear space of vectors a =
col(ay,az, ... ,ay), a; € R, i =1,n, with one of the following norms
n n 1/2
b = Y- ladl ol = maxlail,lafs = { >a?} .
i=1 =Ln i=1

We will specify a concrete norm only in case of need.
0.5. Denote by C[a;b] the Banach space of all continuous functions
z: [a,b] = R' with the norm defined by

lello = max Ja(t)|.

1. DEFINITION OF STEADY PROPERTIES

Let E be a Banach space over the field K of reals or of complexes. Further
we denote elements of the space E by a,b,c etc., and elements of K by

a, B,7.
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Definition 1.1. A set R C F issaid to be the resolvent of a steady property
over E if the following axioms are fulfilled:

O &R,

2)if A#0, a € R, then )\a € R,

3) R is an open subset of E.
We say that the elements of the set R and only they possess the given steady
property.

We will denote steady properties by the symbols u,v,v etc. and, if
necessary, use the appropriate index in the notation of the resolvent (for
example, R,). Note that, as a rule, concrete steady properties can be
defined by a phrase (term). So, for example, further it will be shown, that
the invertibility is a steady property of invertible linear bounded operators.
The steady properties over E with the resolvents R =@ and R=FE \ {0}
are named trivial.

Axioms 1) and 2) of Definition 1.1 characterize a resolvent algebraically,
and Axiom 3) does it topologically.

Let us consider a disjunctive splitting of the space E:

E=RuUQ

produced by a resolvent R.

The set @ = E \ R has the following properties:

4) If o € @, then M\ € @, for every A € K,

5) @ is a closed set.

The set () unites all elements of space E not having the given steady
property. We can say that the elements of () have unsteady property in a
sense. If a steady property is defined over E by the resolvent, then each
element of E either has that property or has not. On the other hand, if we
fix some set ) C FE satisfying conditions 4) and 5), it generates the resolvent
R =E\ Q. The fact that R satisfies the axioms 1-3) of Definition 1.1 can
be checked directly.

Taking into account the above said, it is possible to speak about two
ways of definition of steady properties. Namely:

1) Directly due to Definition 1.1;

2) Allocation of the set having properties 4) and 5).

2. GENERATING FUNCTIONALS

In this section it will be shown that each steady property is generated by
a positively homogeneous and nonexpanding functional.

Definition 2.1. A non-negative functional u: E — R7T satisfying the con-
ditions
al) p(Aa) =|A|u(a), A€ K, a€kE,
a2) pla+b) < p(a) +pud), abé€E,
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is called the generating functional.

The condition al) implies p(a) < ||a||, @ € E, and the condition a2) is
equivalent to each of the following inequalities:

p(a) — ||bl| < p(a +b),
lu(a) — u(d)| < lla — bl|.

From the last inequality, it follows that any generating functional is con-
tinuous.

Theorem 2.1. Let a functional u: E — RT satisfy the conditions al) and
a2). Then the set

R, ={a€ E: p(a) > 0} (1)
is the resolvent of a steady property.

Proof. It suffices to show that the set defined by the equality (1) satisfies
the axioms 1)-3) of Definition 1.1.
Since

p(0) = pu(0-a) =0,
we have 8 ¢ R,,. If A #0 and a € R, (i.e., p(a) > 0), from the equality

u(ra) = Alu(a)

it follows that Aa € R,,. Thus the validity of the axioms 1) and 2) is proved.
For testing the axiom 3), let us fix ¢ € R,, and consider an e-neighborhood
V =V/{(a,¢) of the element a € E, where 0 < € < u(a). For every b € V, we
have

#(b) = pla — (a = b)) > p(a) — [b—a|| = p(a) —& > 0.

Thus each element belongs to the resolvent set along with some its neigh-
borhood and R, is the resolvent of a steady property. O

In addition to two ways of definition of a steady property in a Banach
space, Theorem 2.1 offers the third one: definition on the space E of a
positive functional with the properties al) and a2). The following theorem
represents the inverse to Theorem 2.1 statement and says that each steady
property is generated by some functional satisfying the conditions al), a2).

Theorem 2.2. Let R C E be the resolvent of a steady property. Then
there exists a functional p: E — R satisfying the conditions al) and a2)
such that

R={a€ E: p(a) > 0}.
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Proof. Restrict us to the case of a real Banach space E (K = R). Let R
be the resolvent of a nontrivial steady property. Define u: E — R by the
equality

0, if a€R,
and show that it satisfies the conditions al) and a2). If A =0 or a ¢ R,
then Aa € R and, consequently,
u(ra) = Mu(a) = 0.

Let A # 0 and a € R. Since by definition u(—a) = u(a), without less of
generality we can suppose that A > 0. The resolvent of a steady property
has the property that M C R is equivalent to the inclusion AM C R for
every A > 0. For any fixed a € E, A > 0 and r > 0, the equality

sup{r > 0: V(a,r) C R}, if a€R,
M@:{ p{ (a,7) C R}

V(a,r) = AV (a, %)

takes place.
Therefore, for any A > 0 and any element a € R, we have

p(Aa) = sup{r > 0: V(\a,r) C R} =
= (5> 0:¥ 05) € 7 =t

This finishes testing of the condition al) for the functional u. Next let
us test a condition equivalent to the condition a2):

u(a) - [|bll < wla—b), a,beE. (2)

If ||8]] < p(a), then the validity of (2) is obvious. Let a,b € E be such that
[16]] < w(a). For any ro € (||b]|, #(a)), prove the validity of the implication

z€V(a—>b,ro—||b]]) = z € V(a,m0).
Let z € V(a — b,mo — ||b]]), i-e., |la — b — z|| <79 — [|b]|- Then
lla - z|| < lla —b— z|| + [[b]| < ro.
Hence z € V(a,ro) and
Via—b,70 — ||Bl]) C V(a,ro)-
In view of this, the following estimate holds:
u(a) — [[b|l =sup{r: V(a,r) C R} —|[bl| = sup{r — [[b]|: V(a,r) C R} <

< sup{r — ||bl|: V(a — b,r — ||b]|) C R} =
=sup{ri: V(a—b,r1) C R} = p(a —b).

Thus the validity of the inequality (2), which is equivalent to the condi-
tion a2), is shown. [
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The fact that each steady property is generated by a functional with
the properties al), a2) gives a convenient enough tool for research of steady
properties. However, the answer to the question on uniqueness of generating
functional turns out to be negative. Indeed, if the functional y generates a
steady property with the resolvent R, a direct check shows that, for any
0 < a < 1, the functional

fa(a) = op(a)

also has the properties al) and a2) and generates the steady property with
the same resolvent I,. The inconvenience related to the last circumstance
may be overcome as follows.

Denote by M = M(R) the set of all functionals generating the steady
property with the resolvent R and put

k(a) = sup{u(a): p € M}. 3)

Here the supremum is taken at every fixed a € E.

Since for every fixed a € F and any g € M the inequality p(a) < |a|
holds, the functional k(a) is finite-valued. Thus, the functional k: E — R™
is determined correctly.

Theorem 2.3. Let R C E be the resolvent of a nontrivial steady property.
Then the functional determined by the equality (3) has the properties al)
and a2), and

R={a € E: k(a) > 0}. 4)

Proof. The validity of the equality (4) is obvious. Let us check up the
properties al) and a2).
al) For any A € K and a € E, we have

k(ha) =sup{p(ra): p € M} =sup{|A\|p(a): p € M} =
— N sup{u(a): 4 € M} = |AIk(a).

a2) Fix arbitrary a,b € E and consider the inequality
p(a +b) < p(a) + |10]]-

In this inequality, applying sup with respect to all 4 € M, due to prop-
erties of this operation we obtain

k(a+b) = sup{u(a +b): p € M} < sup{u(a) + [Ib]: p € M} =
= sup{u(a): p € M} + bl = k(@) + [l]. O

Definition 2.2. The generating functional determined by the equality (3)
is called canonical.
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The canonical functional not only identifies uniquely the steady prop-
erty, but also gives the maximal quantitative characteristic of the degree of
steadiness with respect to perturbations. By definition

w(a) <k(a), peM, ack. (5)

The following statement shows that the canonical functional coincides
with the functional, construction of which is used in the proof of Theo-
rem 2.2.

Theorem 2.4. For a steady property with the resolvent R C E, the canon-
ical generating functional is defined by the equality

k(a) = sup{r > 0: V(a,r) C R}, if a€ R,
“7 o, if adR.

Proof. Denote by o the functional in the right-hand side. The inequality
k(a) < wo(a) is obvious, as yg is one of the generating functionals. Prove
the inverse inequality. As k(a) = po(a) at a € gker, assume that a € R.
We have

k(a+b) > k(a) — |l0]].

From this inequality it follows that (a + b) € R for all ||b]| < k(a). This
means that
U(a,k(a)) C R.

This inclusion completes the proof of the statement.

In situations, when the exact value k(a) cannot be found, any value u(a)
in the inequality (5) gives a lower bound. Such way of research of steady
properties appears sufficiently effective.

The set S = E '\ R, being the disjunctive complement of the resolvent, is
defined by the equality

S ={a€E: k(a)=0}. (6)
Therefore we introduce the following O

Definition 2.3. The set S determined by the equality (6) is called the
quasi-kernel of the steady property with the resolvent R = {a € E: k(a) >
0} and is denoted by gker k.

3. EXAMPLES OF STEADY PROPERTIES

In this section some elementary examples of steady properties are given.
Three various ways of defining steady properties are used. All three char-
acteristics of the steady property (resolvent, quasi-kernel, generating func-
tional) are discussed.

Example 1. Let X be a one-dimensional space and zg € X be a nonzero
element of this space. Let the functional u determine a steady property in
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X such that z¢ belongs to the resolvent of the given steady property, i.e.,

p(zo) > 0.
Since any element z € X admits the presentation z = tzg, t € R, we
have

p(z) = p(tzo) = [t|u(zo) > 0.
Hence
R,={zeX:2#60}=2z\ {0}

and the appropriate quasi-kernel consists of only the zero element

Qu = {0}

Thus on a one-dimensional space it is possible to define the unique non
trivial steady property and its resolvent coincides with X \ {6}.

Example 2. Let us fix a ¢ from the interval (0;1). Extend all elements of
the space C[0;1] on [1;1 + 4] according to the equality

z(t)=—-t+z(1)+1, te[l;1+4].
Define the functional u: C[0;1] — R* by the equality

1 t+48
) = min — z(s)| ds.
u@) = min 5 [ ja(o)
This functional p satisfies the axiom al). Besides, for any z,y € C[0;1], the
inequality

t+8 t+§
[ e +yolds < [ la(e)lds + smaxly(o)
t t

holds. From here, the validity of the axiom a2) follows.

Hence the functional y generates a steady property on the space C[0;1].

Thus the resolvent of the given steady property is the set of continuous
functions such that the plot of the function has no horizontal piece of length
4 or greater.

If the plot of a function z(-) has a horizontal piece of length § or greater,
then such a function belongs to the quasi-kernel of the given steady property.

Example 3. Define the functional u: C[0;1] - R™ by the equality
1
ple) = 5 max|z(t) — 2(1 - 1)].

The validity of the axiom al) is obvious.
For any elements z,y € C[0; 1], we have

ula,y) = 5 maxa(®) + y(6) ~ 2(1 ~ 1) ~y(1 —1)| <

< g maxla(t) — (1~ 1)] + 5 max|y(s) — y(1 1)| <
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< (@) + 5 - 2maxly(8)] = @) + .

The validity of the axiom a2) is proved.

Thus the functional g defines a steady property on the space C[0;1].
The quasi-kernel of the given steady property consists of the continuous
functions z(-) such that z(¢) = z(1 — ¢) for any t € [0;1]. In other words,
the generating functional takes the zero-value on all functions with plots
having the straight line ¢ = % as an axis of symmetry.

Accordingly, all functions not having this property are elements of the
resolvent of the given steady property.

Example 4. Let E and F be Banach spaces over a common field of scalars,
and B = B(E,F) be the Banach space of all bounded linear operators
A: E— F.

Denote by R C B(E;F) the set of all invertible operators. The zero
operator is not invertible. If an operator A € B(E; F) is invertible, then
the operator A4, (A # 0) is also invertible. Besides, the operator A + B,
where B € B(E, F) and ||B|| < yz=ry, is invertible along with the operator
A. Hence the set of invertible operators satisfies the axioms 2) and 3) and
consequently it is the resolvent of a steady property.

Thus the invertibility is a steady property on the space of bounded linear
operators.

4. SPACE OF STEADY PROPERTIES

Let E be a Banach space. We will consider the set of all resolvents of
steady properties of elements of E including the trivial one i.e. open sets
R C E such that 8§ € R and Aa € R for A # 0, a € R. Denote

R(E) ={R C E: R is the resolvent of a steady property}.
Definition 4.1. The set R(E) is called the space of steady propertieson E.

To each steady property with the resolvent R, let us put in correspon-
dence the canonical generating functional k: E — Rt with

Ry =R={ac E: k(a) > 0}.

Denote by EP the set of all canonical generating functionals. By virtue
of Theorems 2.1 and 2.2 there is a one-to-one correspondence between R(E)
and EP. Therefore, sometimes instead of R(FE) it is convenient to consider
EP, examining the latter as a realization of the space of steady properties.

Define on the space of steady properties the operations of the product
and the sum of steady properties. First, we note that, if B; and Ry are
resolvents, then both R; U Ry and R N Ry also are resolvents.

Definition 4.2. The union (the sum) of two steady properties with the
resolvents R, and R is the steady property with the resolvent Ry U R,.
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Definition 4.3. The composition (the product) of two steady properties
with the resolvents R; and R, is the steady property with the resolvent
Ry N Rs.

The introduced operations are naturally extended to finite number of
steady properties.

Theorem 4.1. Let the steady properties with the resolvents Ry and Ry be
generated by the functionals 1 and uo respectively. Then
1) the sum is generated by the functional

p(a) = max{u (a), p2(a)};
2) the product is generated by the functional

v(a) = min{u (a), p2(a)}.

Proof. The functional p has the properties al) and a2), which is checked
directly. Further, we have y(a) > 0 or u2(a) >0, ie.,

Ry URQZ{(IGEIIIJ,(GI) >0}

Thus the first statement of the theorem is proved. Similar arguments con-
firm the validity of the second statement. [

To denote the sum and the product of the steady properties with the
resolvents
Ri:{aEE:,ui(a)>0}, 1=1,2,
we will write g1 + o and pq e respectively.
Let us emphasize that under conditions of Theorem 4.1 it is not supposed
that the functionals gy and pe are canonical. It is possible to specify other
functionals which generate the sum or the product of steady properties. So

the sum gy + uo is generated also by the functional
1
u(@) = 5 (m(a) + u2(a)).

The following statement may be checked directly making use of definition
of the quasi-kernel.

Theorem 4.2. There take place the following equalities:

gker(uy + pe) = (gker pq) N (g ker o),
gker(pi o) = (gker p1) U (gker p2).
On the space of steady properties, we will define the relation of order ac-

cording to the following definition. Thus R(E) becomes a partially ordered
space, since the existence of incomparable steady properties is obvious.

Definition 4.4. Let R, Rs € R(E). We say that the steady property with
the resolvent R; is a more strong steady property than the one with the
resolvent R, if Ry C Ra.
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It is easily checked that if, for generating functionals, the inequality
w1(a) < pe(a), a € E, holds, then there takes place the inclusion R,,, C R,.
The converse is formulated as

Theorem 4.3. Let R, R € R(E) and pi1,us be the corresponding cano-
nical generating functionals. If Ry C Ra, then

(a) < pa(a), ac€kE. (7)

Proof. Since u1(a) = 0 for a € Ry, it suffices to check the inequality only
for a € R;. By virtue of the theorem on representation of the canonical
functional, for every a € R; we have

Ula, p(a)) C R;.
Since R; C Ra, there take place
p2(a) =sup{r > 0: U(a,r) C R2} > p1(a). O

The statement of Theorem 4.3 conditionally allows to write the inclusion
R, C R, as the inequality u; < po (the steady property y is a more strong
steady property than pus), where yq, u2 € EP are the generating functionals
related to the resolvents Ry and R, respectively.

Theorem 4.4. For any pair 1, w2 € EP, the inequalities
prpe < gy <pa +p2, =12
hold.

Proof. As
RMNR;, CR;,CRIURs, i=1,2,

it is suffice to take advantage of Theorems 4.1 and 4.3. O

5. THEOREMS ON STEADY PROPERTIES

The statements in this section have a property in common, namely, they
allow construct new steady properties by known steady properties.
Let E and F be Banach spaces over a common field of scalars.

Theorem 5.1. Let Ry C E be the resolvent of a steady property and Ey C
E be a subspace. If Ry and Ey are disjunctive, then R = Ry + Fy is the
resolvent of a steady property.

Proof. We will show, that the set R = Ry + Ey satisfies all the resolvent
axioms (see Definition 1.1). The set R contains every possible sums of the
kind a 4+ b, where a € R and b € Ey. As R and E are disjunctive and
8 € Ry, the sum a + b, where a € Ry, b € Ey are arbitrary elements of the
correspoding sets, may not be equal to the zero element. So, § & R. Let
A#0Oand z=(a+b) € R,a € R, b € Ey. Then the element Az can be
represented if the form Az = Aa + Ab, where Aa € Ry and Ab € Ey. Hence
Az € R. Thus the validity of first two axioms is shown. To complete the
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proof we note that R is an open set, as the direct sum of the open set Ry
and the subspace Eg. 0O

In connection with the statement of Theorem 5.1 we will bring attention
to the question on possibility of representation of any resolvent R C E in
the form

R — Ro-i'Eo,
where Ry is a resolvent and Ey C E is a subspace.

If the subspace Ey in the resolvent decomposition is nontrivial, i.e., Fy #
{6}, then the corresponding steady property is characterized by that the
element a € Ry keeps its property under perturbations: (a+b) € Rp, where
b runs the space Ey.

Definition 5.1. The representation (7) is called the decomposition of the
resolvent R, if Ey is the maximal subspace. Ry is then called the main
component of the resolvent R.

Maximality of Ey is understood in the following sense: for any represen-
tation
R — R1 'i‘Eh

where R; is a resolvent, E; is isomorphic to some subspace of Ey (in par-
ticular, By C Ey).

Definition 5.2. Two steady properties on E are called similar, if the main
components of their resolvents coincide.

Remark. The analysis of the proof of Theorem 5.1 shows that the state-
ment of the theorem remains true for the direct sum Ry+R; of disjunctive
resolvents B, and Rs.

Theorem 5.2. Let the functional u generate a steady property on F with
the resolvent R, and A: E — F be a nonzero bounded linear operator. Then
the functional v: E — Rt determined by the equality

v(a) = ||Al " u(Aa),
generates on E the steady property with the resolvent
R, = A7'(R,).

Proof. Positive homogeneity of the functional v is obvious. Further, for any
a,b € E, we have

1 1
v(a+b) < m(M(Aa) + [148]) < mu(z‘la) + (bl = v(a) + |13]]-
Thus the functional v generates a steady property on E.

Since
R,={a€E:v(a) >0} ={acE: pu(da) > 0}
and p(Aa) > 0 only in the case Aa € R, we have R, = A~'(R,). O
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Let us consider a corollary of Theorem 5.2 in the case where the space
admits the representation in the form of the direct sum of subspaces.

Corollary. Assume that

1) E=Ey® E, and P: E — FE is a bounded linear projector on the
subspace E1;

2) uo: By — R is a generating functional with the resolvent Ry C E;.

Then the functional

p(a) = 1Pl po(Pa) (8)
generates on E a steady property with the resolvent R = Ey+R;.

Proof. The fact that u(-) is a generating functional follows from the Theo-
rem 5.2. Therefore it suffices to check up the equality

P™Y(Ry) = Ey+Ry. (9)

Since R; C Ey, it follows that Pa; = a; for every a; € Ry and Pay = () for
every ag € Ey. Hence

P_I(Rl):{a € FE:Pac Rl} = {0,0+0,1,0,0 € FEy, Pa; € Rl} :Eo'i'Rl. O

It should be noted that according to Definition 5.2 the steady property
generated by the functional (8) is similar to the original one. On the other
hand, it is possible to take advantage of this statement for construction of
the generating functional of a steady property if the functional of a repre-
sentative of the class of similar steady properties is known.

Let E; and Es be Banach spaces, E = E; x Es with one of the norms of
direct product. We will define projection operators Il;: £ — E;, i = 1,2,
by the equality

IIiz=a, lIaz=0b, z=/a,b).
Let us note that, at any choice of the norm on the space E; x Es, the
inequalities
||H1|| < 17 7::1727
take place.
Theorem 5.3. Let the functionals p1 and po generate on the spaces E

and E, steady properties with the resolvents Ry and Rs, respectively. Then
the functional u: E — RT,

w(2z) = min{p (I 2), 2 (Tl22) }, (10)

generates on E the steady property with the resolvent R1 X Rs.

Proof. The fact that the functional y determined by the equality (10) is a
generating one can be checked directly. The inequality p(z) > 0 holds if
and only if IIyz € Ry and Ilsz € Ry. Therefore the functional u generates
on E = E; X E; a steady property with the resolvent By X Rs. [
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In view of the isomorphism of the spaces E; X Es and E; ® Es, the
statement of Theorem 5.3 can be formulated for the case E = E; @ FEs.

Theorem 5.4. Let the functionals py and po generate on the spaces E
and E, steady properties with the resolvents Ry and Rs, respectively. Then
the functional u: E = E{ ® E; — RT defined by

p(z) = min{p1(21), pa(22)},

where z = 21 + 29, z; € E;, i = 1,2, generates on E a steady property with
the resolvent Ri+Ra.

6. CONTINUATION OF THE STEADY PROPERTY BY PARAMETER

This section consist of statements on conditions of the extension of the
steady property by a parameter. The statement of a similar sort for the
space E = B(X,Y) of bounded linear operators is known in the literature
as the Schauder theorem. Generalization of the Schauder theorem makes a
basis of the method of continuation on parameter. The most simple case
of dependence on a parameter is considered here. A confirmation of the
importance of the general statements stated below is the use of them as
applied to some concrete steady properties. We begin with the theorem,
which is an analogue of the classical Schauder theorem.

Let the functionals pq(-) and ua(-) generate steady properties with the
resolvents R; and Ry respectively.

Put p(a) = min{u: (a), p2(a)}.

Recall that the functional u(-) generates the steady property called the
product of the original steady properties and has the resolvent R = R; N R,.

Further for convenience the following notation is accepted

a(A) = (1= Nag + Aag,
where ag,a; € E are fixed elements and A € [0; 1] is a parameter.

Theorem 6.1. Suppose that

1) a €R, a1 €FE,

2) p(a) < po(a) for all a € R,

3) There is a constant m > 0 such that p1(a(N\)) > m for A € [0;1].
Then a(1) = a1 € R.

Proof. The condition 3) implies that all the elements a(A) = (1—A)ap+ Aaq,
A € [0;1], belong to R;. Will show that the same segment belongs to the
resolvent Ry. From this the required statement will follow, namely,

ai :a(l) € RN Ry =R.
Put 6§ = Z||la1 — ao||~*. For any X € [0; 0] the estimate
p2(a(A)) = po(ao + a1 — ao)) > pa(ao) — Al llar — aol|

takes place.
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Since ag € R, by virtue of the condition 2) we have

p(ao) < pa(ao).

Taking into account this inequality and the condition 3), we continue esti-
mating:
_ m m
p2(a(N) > m(ao) — dllar —aol| ™' = m — 5 =5
Thus it is proved that for any A € [0; §] the elements a(\) belong to Rs.
In case § > 1 this completes the proof of the theorem. If § < 1, we
consider the segment [§;26] for the parameter A. Preliminary note the
following. Since a(d) € Ry N Ry = R, there takes place

p2(a(9)) > p(a(8)) > m.
For A € [4;24], we have

p2(a(A)) = p2(a(d) + (A = 8)(a1 — ao)) >
m
2 p2(a(8)) = |A =6l llar = aol| 2 m — dllar — aoll = 5.
Thus a(A) € Ry for all A € [§;26]. If 26 > 1, then the statement is
proved. In case 26 < 1 we use the above procedure several times until né
becomes greater than 1. It is obvious that this will require a finite number
of steps. [

Let us emphasize that the essential role in the proof of Theorem 6.1 is
played by that the estimate 0 < m < pi(a(A)) is uniform in A € [0;1].
The analysis of the proof shows that if the condition 1) is replaced by 1a):
a(A) € R for some X € [0;1], a1 € E, then the statement of the theorem is
still true. The same remark concerns the following theorem.

Theorem 6.2. Let the functionals p1(-) and ps(-) generate steady proper-
ties corresponding to the resolvents Ry and Ry. Suppose that

1) ag € Ry, a1 € E;

2) p1(a) < p2(a), a € E;

3) There exists a constant m > 0 such that pa(a(N)) > m for all A € [0;1];

4) There exists o constant 0 < ¢ < 1 such that cus(a) < pi(a) for all
a € R,

Then a(1) = a1 € Rs.

Proof. At first note that a(l) = a1 € Rz and Ry C Ry by virtue of the

conditions 2) and 3). Put § = <%[jay — aol| ™. For any X € [0; 8], we have
p1(a(A)) = p(ao + Alar — ao)) > p(ao) — |Alllar — aol|-

From this inequality, in view of the condition 4), we obtain

em cm
pi(a(A) > em — > =3
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Thus a(A) € Ry for all A € [0;6]. Further arguments are the same as in the
proof of Theorem 6.1. [

In conclusion we formulate a corollary of Theorem 6.2 which is of interest
in comparison with the statement of Theorem 6.1.

Corollary. Let the functionals p1(-) and u2(-) generate steady properties
corresponding to the resolvents Ry and R, and R is the resolvent of the
steady property generated by the functional

(@) = min{sm (a), 12 (a)}.
Let the following conditions be fulfilled:
1) ap € R, a1 € E;
2) There is a constant 0 < ¢ < 1 such that cui(a) < p(a) for all a € R;
3) There is a constant m > 0 such that p1(a(\)) > m for all X € [0;1].
Then a(1) = a1 € R.
It is interesting that the statements of Theorem 6.1 and Corollary coin-
cide under the following condition:

p1(a) = pe(a) for a € R.
The Schauder theorem mentioned in the beginning of this section is char-
acterized just by this situation.
7. THE SPECTRUM OF AN ELEMENT WITH RESPECT TO A STEADY
PROPERTY

Let E be a Banach space over the field K, R C E be the resolvent of a
nontrivial steady property and u be the corresponding generating functional.
Let us fix an element ag € R and let us denote

o = p(ag) > 0.

Definition 7.1. The spectrum of the element a € E with respect to the
pair (ag, ) is the set

ola,p) ={A € K: u(hag —a) =0} = {A € K: Aag — a € gker u}.

In cases where the pair (ag, ) is fixed, we will use the notation o(a)
instead of o(a, p). If the complex Banach space E is a Banach algebra with
the unit e = ag and the resolvent R unites invertible elements of E, then
Definition 7.1 coincides with the classical definition of the spectrum of an
element of the Banach algebra.

Theorem 7.1. For any a € E, the inclusion
ola) C{AeK: A < |A < A2} (11)

holds, where A1 = p(a)llaol| ™", A2 = ug*lall.
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Proof. Denote the set in the right-hand side of (11) by S. Show that, for
any A € K\ 5, the inclusion a()\) = Aag — a € R takes place. Thus the
inclusion o(a) C S will be established.

Let us assume that |A\| < A1 = p(a)|lao||~t. By virtue of the properties
of the generating functional, we have

u(a(A)) = u(rao —a) > p(a) — || llaoll > p(a) — Mllaoll = u(a) — p(a) = 0.

Thus, for any |A| < A1, we have a()\) € R.
For [A| > Az = 415" [lall, we obtain u(a(A)) = u(Aao — @) > |A|u(a) —
lla|| > 0. Hence a(\) € R. O

If K=C,i.e., E is a complex space, the set S represents a circular ring
with radiuses A; and Ag. Besides A\; > 0 only in the case where a € R. If the
element a does not possess the steady property, then by Theorem 7.1 the
spectrum is a part of a circle of radius As > 0. The proved statement has
an analogue in the classical spectral theory. This is true for the following
statement as well.

Theorem 7.2. The spectrum of any element is a compact set, i.e., a boun-
ded and closed subset of K.

Proof. The boundedness of the spectrum follows from Theorem 7.1. Next
we will prove that o(a) is closed for any fixed element a € E. Define the
operator T: K — FE by the equality

Th=a(\) = Xap — a.

Since ||[TA1 — TAs|| = |M1 — Az]|lao]|, the operator T is continuous. By
definition of the spectrum

o(a) =T '(gkerp) =T '(E\ R).

Ag it was shown above, the quasi-kernel of the generating functional is
closed. Hence the spectrum o(a) is a closed set, as an inverse image of the
closed set under a continuous mapping T'. This completes the proof of the
theorem. [

Let us remind an analogous statement for the case where E = B(X, X)
is a complex Banach space of bounded linear operators L: X —- X, R C
B(X, X) is the set of all continuously invertible operators (i.e., in this case
the steady property is the invertibility of the operator) and ag = I is the
identity operator. As is known, the spectrum o(L) is a nonempty closed
bounded set.

Note that in the case of an arbitrary nontrivial steady property the state-
ment about nonemptiness of the spectrum does not take place in general.

Further we will need the following auxiliary statement.

Let M C K be a subset and € > 0. Denote by U(M,e) the e-neighbor-
hood of M, i.e.,

UM,e)={a e K: d(M,a) < &},
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where d(M, o) = inf{|a— A|: A € M} is the distance of the element a from
the set M.

Lemma. Let p be the generating functional of a steady property with the
resolvent R C E. Then for every ¢ > 0 and any a € E the inequality

0 < b(e) Y inf{u(rao — a): A e K\ U(0(a), )}

holds.

Proof. First of all, we note that the set U(o(a), ) is open as an e-neighbor-
hood of the closed set o(a). Hence K\ U(o(a),€) is closed.
Let us consider the function ¢: K — Rt determined by the equality

©(A) = p(Aao — a).
If (A\) = 0, then Aag —a C o(a). Therefore the function ¢(-) takes the zero

value only at A € o(a). Hence ¢(A) > 0 for any A € K\ U(é(a), ). Besides,
the function ¢(-) is continuous. This follows from the inequality

lo(A1) — ©(A2))| = |B(Mao — @) — p(A2a0 —a)| <
< [(A1ao — @) = (A2a0 — a)|| = [A1 — Azl [[aol|-

Finally, for the function ¢(-) the estimate ¢(A) > |A| |[[a — 0|| — ||a|| takes
place. Therefore p(A) = +00 as |A| = oo.

Thus the function ¢(-) has the following properties:

a) p(A) > 0for A €e K\ U(o(a),e),

b) (-) is continuous and

c) ¢(A) = 400 as || = oo.

Now it suffices to notice that the function with the properties a), b) and
¢) has the strictly positive infimum on the closed set K \ U(o(a),e). O

This lemma, allows us to establish the following statement describing the
property of upper semicontinuity of the spectrum with respect to a steady
property.

Theorem 7.3. For any a € E and £ > 0, there exists 6 = 6(a,e) > 0 such
that under the condition ||a — b|| < & the inclusion
a(b) CU(o(a),e) (12)
takes place.

Proof. Let us fix an arbitrary element ¢ € E and a number € > 0. To
prove the inclusion (12), it suffices to show the existence of § > 0 such that
both |ja — b|| < 6§ and A € K\ U(o(a),e) imply p(Aag — b) > 0, where p is
some generating functional of the given steady property. Let b(e) > 0 be
the number related to the given £ > 0, the existence of which is provided
by the Lemma. We make choice of § so that 0 < é < b(g). Then

p(Aao —b) = p(Aap —a+a—1b) > p(rao — a) — [la = b|| > b(e) — 6 > 0.
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Hence it follows that A € o(b). Due to the above remark, the theorem is
proved. O

Theorem 7.3 admits the following interpretation. Let 2K be the space of
closed bounded subsets of K. In situation when a concrete steady property
1 is considered with the resolvent R C E and an element ag € R is fixed,
i.e., the pair (ag, u) is fixed, the spectrum defines the multi-valued mapping

F:E— 2%, Fa=o0(a),

which, to each element a € E puts into correspondence the spectrum o(a) €
2K The theorem says that such a mapping is upper semicontinuous.

For convenience, in the following statement, a steady property and its
generating functional are denoted by the same symbol.

Theorem 7.4. Let uy and pe be steady properties on E with the resolvents
Ry and Rs, and ag € Ry N Ry. Then the following statements take place:

1) o(a, pr + p2) = o(a, p1) No(a, p2);

2) a(a, pp2) = o(a, p1) Uo(a, p2);

3) if m < po, then o(a, 1) C o(a, p2).

Proof. Prove the first statement of the theorem. Let the steady properties
{1, pe be generated by the functionals ui(-) and ua(-) respectively (not
necessary canonical). Then the sum g, + po is generated by the functional

p(a) = max{u (a), p2(a)}-
o(a, p1 + p2) ={\ € K: max{p1(Aao — a), p2(Aag —a)} =0} =
={AeK:p(ha—a)=0}N{A € K: po(Aap —a) =0} =
=0o(a, ) No(a, ps).

The first statement of the theorem is proved. The second statement can
be proved similarly. Now pass to the proof of the statement 3). Let u(:)
and po(-) be the canonical generating functionals of the steady properties
1 and pe, respectively. Then by Theorem 4.3 the inequality

pa(a) < m(a), a€E,

holds. For any A € o(a, p1), we have 0 = 3 (Aap — a) > pa(Aag — a). This
implies p2(Aag — a) =0, i.e., A € ola,u2). O

Let us note that the full description of the spectrum of an element in
concrete situations is a quite difficult problem. However, to answer some
questions, it suffices to know some bounds of the spectrum. Bounds of the
spectrum of an arbitrary element are established according to Theorem 7.1.
The unimprovable estimate of the spectrum is connected to the following
notion.

Definition 7.2. By the spectral radius of the element a € E (with respect
to the fixed pair (ag, 1)) we mean a non-negative number r(a) determined
by the following equality r(a) = max{|\|: A € (a)}.
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Thus the spectral radius of the element a € FE coincides with the minimal
radius of the closed ball in K with the center in zero which contains o(a),
therewith

llall
p(ao)’
where pu is some generating functional of the given steady property. The
number in the right-hand side of the inequality (13) is an upper estimate of
the spectral radius. This estimate becomes exact if the generating functional
is canonical.

If the spectral radius, 7(a) , is known or its upper estimate, rg, is known,
then it is possible to make the conclusion: if A is such that |A| > r(a) (or
|A| > 79), then the element (Aap — a) belongs to R, i.e., it possesses the
given steady property. This conclusion usually is useful in applications.

For concrete steady properties it is possible to establish effective formulas
for calculation of the spectral radius and its estimates which can be useful
due to specificity of the examined steady property.

If a generating functional u(-) of a steady property is known, then

r(a) = max{|A|: p(Aag — a) = 0}.

r(a) < (13)
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