R. KOPLATADZE

COMPARISON THEOREMS FOR DIFFERENTIAL EQUATIONS WITH SEVERAL DEVIATIONS. THE CASE OF PROPERTY B.

(Reported on February 4, 2002)

1. Introduction

In the present paper we consider the following differential equations

$$u^{(n)}(t) = \sum_{i=1}^{m} p_i(t)u(\tau_i(t)), \tag{1.1}$$

$$v^{(n)}(t) = \sum_{i=1}^{r} q_i(t)v(\sigma_i(t)), \tag{1.2}$$

where $n,\ m,\ r\in N,\ n\geq 3,\ p_i,\ q_j\in L_{\mathrm{loc}}(R_+;R_+),\ au_i,\ \sigma_j\in C(R_+;R_+),\ \lim_{t\to +\infty} au_i(t)=0$ $\lim_{t\to+\infty}\sigma_j(t)=+\infty\;(i=1,\ldots,m;\,j=1,\ldots,r).$

Definition 1.1. We say that the equation (1.1) has Property B if any of its proper solutions either is oscillatory or satisfies

$$|u^{(i)}(t)| \uparrow +\infty$$
 for $t \uparrow +\infty$ $(i=0,\ldots,n-1),$ (1.3)

when n is odd, and either is oscillatory or satisfies either (1.3) or

$$|u^{(i)}(t)| \downarrow 0$$
 for $t \uparrow +\infty$ $(i = 0, \ldots, n-1),$

when n is even.

Below we give comparison theorems allowing to deduce Property B of the equation (1.1) from Property B of the equation (1.2). The results obtained here generalize those of [1]. The result obtained in [1] is a generalization of a theorem of T. Chanturia (see [2], Theorem 1.5) even in the case of ordinary differential equations $(\tau_i(t) \equiv \sigma_j(t) \equiv t,$ $i=1,\ldots,m,\,j=1,\ldots,r$). For analogous results concerning Property A see [3].

2. General Comparison Theorems

Let $\varphi \in C([t_0, +\infty), (0, +\infty))$. Below we use the following notation

$$p_{\tau_{i},\varphi}(t) = \begin{cases} p_{i}(t), & \text{if } \varphi(t) \leq \tau_{i}(t), \\ 0 & \text{if } \varphi(t) > \tau_{i}(t), \ t \in [t_{0}, +\infty), \ (i = 1, \dots, m), \end{cases}$$

$$q_{\sigma_{i},\varphi}(t) = \begin{cases} q_{i}(t), & \text{if } \varphi(t) \leq \sigma_{i}(t), \\ 0 & \text{if } \varphi(t) > \sigma_{i}(t), \ t \in [t_{0}, +\infty), \ (i = 1, \dots, r). \end{cases}$$

$$(2.1)$$

$$q_{\sigma_i,\varphi}(t) = \begin{cases} q_i(t), & \text{if } \varphi(t) \le \sigma_i(t), \\ 0 & \text{if } \varphi(t) > \sigma_i(t), \ t \in [t_0, +\infty), \ (i = 1, \dots, r). \end{cases}$$
 (2.2)

²⁰⁰⁰ Mathematics Subject Classification. 34K15.

Key words and phrases. Adanced differential equation, Property B, comparison theorem.

Theorem 2.1. Let

$$\tau_i(t) \le t$$
, if $t \in R_+$ $(i = 1, \dots, m)$,
$$(2.3)$$

$$\int_{i=1}^{+\infty} \sum_{i=1}^{m} p_i(t) \tau_i^{n-1}(t) dt = +\infty,$$
 (2.4)

and there exist natural numbers $k \in N$, m_j , $r_j \in N$ (j = 1, ..., k) and nondecreasing functions $\varphi_j \in C(R_+; (0, +\infty))$ (j = 0, ..., k-1) such that

$$1 \le m_1 < m_2 < \dots < m_k = m, \quad 1 \le r_1 < r_2 < \dots < r_k = r,$$
 (2.5)

$$\lim_{t \to +\infty} \varphi_j(t) = +\infty \quad (j = 0, \dots, k-1), \tag{2.6}$$

the below inequality (2.7_{n-2}) holds when n is even,

$$\int_{t}^{+\infty} s^{n-l-1} \sum_{i=m_{j}+1}^{m_{j}+1} \tau_{i}^{l-1}(s) \left(p_{\tau_{i},\varphi_{j}}(s) + \frac{\tau_{i}(s)}{\varphi_{j}(s)} (p_{i}(s) - p_{\tau_{i},\varphi_{j}}(s)) \right) ds \ge \\
\ge \int_{t}^{+\infty} s^{n-l-1} \sum_{i=r_{j}+1}^{r_{j}+1} \sigma_{i}^{l-1}(s) \left(q_{i}(s) - q_{\sigma_{i},\varphi_{j}}(s) + \frac{\sigma_{i}(s)}{\varphi_{j}(s)} q_{\sigma_{i},\varphi_{j}}(s) \right) ds \qquad (2.7_{l}) \\
if \quad t \ge t_{0} \quad (j = 0, \dots, k-1),$$

and (2.7_1) and (2.7_{n-2}) hold when n is odd, where t_0 is sufficiently large, $m_0 = r_0 = 0$, the functions p_{τ_i,φ_j} and q_{σ_i,φ_j} are defined by (2.1) and (2.2), respectively. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 2.2. Let

$$\tau_i(t) \ge t \quad \text{if} \quad t \in R_+ \ (i = 1, \dots, m),$$
 (2.8)

and there exist natural numbers k, m_j , $r_j \in N$ $(j=1,\ldots,k)$ and nondecreasing functions $\varphi_j \in C(R_+;(0,+\infty))$ $(j=0,\ldots,k-1)$ satisfying (2.5) and (2.6) such that the below inequality (2.7₂) and (2.9) hold,

$$\int_{-\infty}^{+\infty} t^{n-1} \sum_{i=1}^{m} p_i(t) dt = +\infty$$
 (2.9)

when n is even and (2.4) and (2.7_1) hold when n is odd, where the functions p_{τ_i,φ_j} and q_{σ_i,φ_j} are defined by (2.1) and (2.2), respectively. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 2.3. Let the conditions (2.3) and (2.4) be fulfilled, and for sufficiently large t_0 there exist $t_1=t_1(t_0)\geq t_0$, natural numbers $k,\ m_j,\ r_j\in N\ (j=1,\ldots,k)$ and nondecreasing functions $\varphi_j\in C(R_+;(0,+\infty))\ (j=0,\ldots,k-1)$ satisfying (2.5) and (2.6) such that the below inequality (2.10_{n-2}) holds when n is even,

$$\int\limits_{t_{0}}^{t}s^{n-l}\sum_{i=m_{j}+1}^{m_{j+1}}\tau_{i}^{l}(s)\bigg((p_{i}(s)-p_{\tau_{i},\varphi_{j}}(s))+\frac{\varphi_{j}(s)}{\tau_{i}(s)}p_{\tau_{i},\varphi_{j}}(s)\bigg)ds\geq$$

$$\geq \int_{t_{0}}^{t} s^{n-l} \sum_{i=r_{j}+1}^{r_{j}+1} \sigma_{i}^{l}(s) \left(q_{\sigma_{i},\varphi_{j}}(s) + \frac{\varphi_{j}(s)}{\sigma_{i}(s)} (q_{i}(s) - q_{\sigma_{i},\varphi_{j}}(s)) \right) ds$$

$$if \quad t \geq t_{1} \quad (j = 0, \dots, k-1),$$

$$(2.10_{l})$$

and (2.10_1) and (2.10_{n-2}) hold when n is odd, where the functions $p_{\tau_i,\varphi}$ and $q_{\sigma_i,\varphi}$; are defined by (2.1) and (2.2) respectively. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 2.4. Let (2.8) be fulfilled, and for sufficiently large t_0 there exist $t_1 = t_1(t_0) \ge t_0$, natural numbers k, m_j , $r_j \in N$ (j = 1, ..., k) and nondecreasing functions $\varphi_j(t)$ (j = 0, ..., k-1) satisfying (2.5) and (2.6) respectively, such that the inequalities (2.9) and (2.10₂) hold when n is even and (2.4) and (2.10₁) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

3. Effective Comparison Theorems

Everywhere below we assume that $\sigma_i(t)$ $(i=1,\ldots,r)$ are nondecreasing functions.

Theorem 3.1. Let m = r, the conditions (2.3) and (2.4) be fulfilled, the below inequality (3.1_{n-2}) hold, when n is even

$$\int_{t}^{+\infty} s^{n-l-1} \tau_{i}^{l-1}(s) \left(p_{\tau_{i},\sigma_{i}}(s) + \frac{\tau_{i}(s)}{\sigma_{i}(s)} (p_{i}(s) - p_{\tau_{i},\sigma_{i}}(s)) \right) ds \ge$$

$$\ge \int_{t}^{+\infty} s^{n-l-1} \sigma_{i}^{l-1}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{0} \quad (i = 1, \dots, m)$$
(3.1_l)

and the inequalities (3.1_1) and (3.1_{n-2}) hold when n is odd, where t_0 is sufficiently large and the functions p_{τ_i,σ_i} are defined by (2.1).

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.1. Let the conditions (2.3), (2.4) be fulfilled, m=r, $\sigma_i(t) \leq \tau_i(t)$ $(i=1,\ldots,m)$ the below inequality (3.2_{n-2}) hold, when n is even

$$\int_{t}^{+\infty} s^{n-l-1} \tau_{i}^{l-1}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} s^{n-l-1} \sigma_{i}^{l-1}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{0} \ (i = 1, \dots, m), \ (3.2_{l})$$

and the inequalities (3.2_1) and (3.2_{n-2}) hold when n is odd, where t_0 is sufficiently large. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.2. Let the conditions (2.3), (2.4) be fulfilled, m=r, $\sigma_i(t) \geq \tau_i(t)$ $(i=1,\ldots,m)$ the below inequality (3.3_{n-2}) hold, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}\tau_{i}^{l}(s)}{\sigma_{i}(s)} p_{i}(s) ds \geq \int_{t}^{+\infty} s^{n-l-1}\sigma_{i}^{l-1}(s) q_{i}(s) ds \quad \text{if} \quad t \geq t_{0} \ (i=1,\ldots,m), \quad (3.3_{l})$$

and the inequalities (3.3_1) and (3.3_{n-2}) hold when n is odd, where t_0 is sufficiently large. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.2. Let m=r, the inequality (2.8) be fulfilled, the conditions (2.9) and (3.1_2) hold when n is even and the conditions (2.4) and (3.1) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.3. Let m=r, the inequality (2.8) be fulfilled, $\sigma_i(t) \leq \tau_i(t)$ $(i=1,\ldots,m)$, the conditions (2.9) and (3.2₂) hold when n is even and the conditions (2.4) and (3.2₂) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.4. Let m=r, the inequality (3.8) be fulfilled, $\sigma_i(t) \geq \tau_i(t)$ $(i=1,\ldots,m)$, the conditions (2.9) and (3.3₂) hold when n is odd and the conditions (2.4) and (3.3₁) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.3. Let m=r, the conditions (2.3) and (2.4) be fulfilled and for any sufficiently large t_0 there exist $t_1=t_1(t_0)\geq t_0$ such that the below inequality (3.4_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \tau_i^l(s) \left((p_i(s) - p_{\tau_i, \sigma_i}(s)) + \frac{\sigma_i(s)}{\tau_i(s)} p_{\tau_i, \sigma_i}(s) \right) ds \ge$$

$$\ge \int_{t_0}^{t} s^{n-l} \sigma_i^l(s) q_i(s) ds \text{ for } t \ge t_1, \quad (i = 1, \dots, m), \tag{3.4}_l)$$

and the inequalities (3.4_1) and (3.4_{n-2}) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.5. Let m=r, the conditions (2.3), (2.4) be fulfilled, $\sigma_i(t) \leq \tau_i(t)$ ($i=1,\ldots,m$), and for any sufficiently large t_0 there exist $t_1=t_1(t_0)\geq t_0$ such that the below inequality (3.5_{n-2}) holds, when n is even

$$\int_{t_0}^t s^{n-l} \tau_i^{l-1}(s) \sigma_i(s) p_i(s) ds \ge \int_{t_0}^t s^{n-l} \sigma_i^l(s) q_i(s) ds, \quad \text{if } t \ge t_1 (i = 1, \dots, m), \qquad (3.5l)$$

and the inequalities (3.5_1) and (3.5_{n-2}) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.6. Let m=r, the conditions (2.3), (2.4) be fulfilled, $\sigma_i(t) \geq \tau_i(t)$ ($i=1,\ldots,m$), and for any sufficiently large t_0 there exist $t_1=t_1(t_0) \geq t_0$ such that the below inequality (3.6_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \tau_i^l(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sigma_i^l(s) q_i(s) ds \quad \text{if} \quad t \ge t_1 \quad (i = 1, \dots, m), \quad (3.6l)$$

and the inequalities (3.6_1) and (3.6_{n-2}) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.4. Let m=r, the inequality (2.8) be fulfilled, and for any sufficiently large t_0 there exist $t_1=t_1(t_0)\geq t_0$ such that the conditions (2.9) and (3.4_2) hold when n is even and the conditions (2.4) and (3.4_1) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.7. Let m=r, the inequality (2.8) be fulfilled, $\sigma_i(t) \leq \tau_i(t)$ ($i=1,\ldots,m$), the conditions (2.9) and (3.5₂) hold when n is even and the conditions (2.4) and (3.5₁) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.8. Let m=r, the inequality (2.8) be fulfilled, $\sigma_i(t) \geq \tau_i(t)$ $(i=1,\ldots,m)$, the conditions (2.9) and (3.6₂) hold when n is even and the conditions (2.9) and (3.6₁) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Below we use the following notation

$$au_*(t) = \min\{ au_i(t) : i = 1, \dots, m\}, au^*(t) = \max\{ au_i(t) : i = 1, \dots, m\},$$

$$\sigma_*(t) = \min\{\sigma_i(t) : i = 1, \dots, r\}, au^*(t) = \max\{\sigma_i(t) : i = 1, \dots, r\}.$$

Theorem 3.5. Let $\tau^*(t) \leq t$ for $t \in R_+$, the condition (2.4) be fulfilled, the below inequality (3.7_{n-2}) hold, when n is even

$$\int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{m} \tau_{i}^{l-1}(s) \left(p_{\tau_{i},\sigma^{*}}(s) + \frac{\tau_{i}(s)}{\sigma^{*}(s)} (p_{i}(s) - p_{\tau_{i},\sigma^{*}}(s)) \right) ds \ge \\
\ge \int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{r} \sigma_{i}(s)^{l-1} q_{i}(s) ds \quad \text{if} \quad t \ge t_{0}, \tag{3.7}_{t}$$

and the inequalities (3.7_1) and (3.7_{n-2}) holds when n is odd, where t_0 is sufficiently large and the functions p_{τ_i,σ^*} are defined by (2.1). Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.9. Let $\tau^*(t) \leq t$ for $t \in R_+$ and the condition (2.4) be fulfilled along with one of the following four conditions (t_0 is sufficiently large):

1) $\tau_*(t) \geq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.8_{n-2}) holds, when n is even

$$\int_{-L}^{+\infty} s^{n-l-1} \sum_{i=1}^{m} \tau_i^{l-1}(s) p_i(s) ds \ge \int_{-L}^{+\infty} s^{n-l-1} \sum_{i=1}^{r} \sigma_i^{l-1}(s) q_i(s) ds \quad \text{if} \quad t \ge t_0, \quad (3.8_l)$$

and the inequalities (3.8_1) and (3.8_{n-2}) hold when n is odd;

2) $\tau_*(t) \leq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.9_{n-2}) holds, when n is even

$$\int_{-\infty}^{+\infty} s^{n-l-1} \frac{\tau_*(s)}{\sigma^*(s)} \sum_{i=1}^{m} \tau_i^{l-1}(s) p_i(s) ds \ge \int_{-\infty}^{+\infty} s^{n-l-1} \sum_{i=1}^{r} \sigma_i^{l-1}(s) q_i(s) ds \quad \text{if } t \ge t_0, \quad (3.9_l)$$

and the inequalities (3.9_1) and (3.9_{n-2}) hold when n is odd;

3) $\tau^*(t) \geq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.10_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}}{\tau^{*}(s)} \sum_{i=1}^{m} \tau_{i}^{l}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{r} \sigma_{i}^{l-1}(s) q_{i}(s) ds, \quad \text{if} \quad t \ge t_{0}, \quad (3.10_{l})$$

and the inequalities (3.10_1) and (3.10_{n-2}) hold when n is odd;

4) $\tau^*(t) \leq \sigma^*(t)$ for $t \in R_{+}$, the below inequality (3.11_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma^{*}(s)} \sum_{i=1}^{m} \tau_{i}^{l}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{r} \sigma_{i}^{l-1}(s) q_{i}(s) ds, \quad \text{if } t \ge t_{0}, \quad (3.11_{l})$$

and the inequalities (3.11_1) and (3.11) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.6. Let $\tau^*(t) \leq t$ for $t \in R_+$, the condition (2.4) be fulfilled, the below inequality (3.12_{n-2}) hold, when n is even

$$\int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{m} \tau_{i}^{l-1}(s) \left(p_{\tau_{i},\sigma_{*}}(s) + \frac{\tau_{i}(s)}{\sigma_{*}(s)} (p_{i}(s) - p_{\tau_{i},\sigma_{*}}(s)) \right) ds \ge \\
\ge \int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{0}, \tag{3.12}_{t}$$

and the inequalities (3.12_1) and (3.12_{n-2}) holds when n is odd, where t_0 is sufficiently large and the functions p_{τ_i,σ_*} are defined by (2.1). Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.10. Let $\tau^*(t) \geq t$ for $t \in R_+$ and the condition (2.4) be fulfilled along with one of the following four conditions (t_0 is sufficiently large):

1) $\tau_*(t) \geq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.13_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} s^{n-l-1} \sum_{i=1}^{m} \tau_{i}^{l-1}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{0}, \quad (3.13_{l})$$

and the inequalities (3.13_1) and (3.13_{n-2}) hold when n is odd;

2) $\tau^*(t) \leq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.14_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}\tau_{*}(s)}{\sigma_{*}(s)} \sum_{i=1}^{m} \tau_{i}^{l-1}(s) p_{i}(s) ds \geq \int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad \text{if} \quad t \geq t_{0}, \quad (3.14_{l})$$

and the inequalities (3.14_1) and (3.14_{n-2}) hold when n is odd;

3) $\tau^*(t) \geq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.15_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}}{\tau_{0}^{*}(s)} \sum_{i=1}^{m} \tau_{i}^{l}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{0}, \quad (3.15_{l})$$

and the inequalities (3.15_1) and (3.15_{n-2}) hold when n is odd;

4) $\tau^*(t) < \sigma_*(t)$ for $t \in R_+$, the below inequality (3.16_{n-2}) holds, when n is even

$$\int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{m} \tau_{i}^{l}(s) p_{i}(s) ds \ge \int_{t}^{+\infty} \frac{s^{n-l-1}}{\sigma_{*}(s)} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad if \quad t \ge t_{0}, \quad (3.16_{l})$$

and the inequalities (3.16_1) and (3.16_{n-2}) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.7. Let $\tau_*(t) \geq t$ for n, the conditions (2.9) and (3.7₂) be fulfilled when n is even and the conditions (2.4) and (3.7₁) holds when n is odd. Let, moreover, the equation (1.2) have Property **B**. Then the equation (1.1) also has Property **B**.

Corollary 3.11. Let $\tau_*(t) \geq t$ for $t \in R_+$ and one of the following four conditions be fulfilled:

- 1) $\tau_*(t) \leq \sigma^*(t)$, the conditions (2.9) and (3.9₂) hold when n is even and the conditions (2.4) and (3.9₁) hold when n is odd;
- 2) $\tau_*(t) \ge \sigma^*(t)$, the conditions (2.9) and (3.8₂) hold when n is even and the conditions (2.4) and (3.8₁) hold when n is odd;
- 3) $\tau^*(t) \leq \sigma^*(t)$, the conditions (2.9) and (3.11₂) hold when n is even and the conditions (2.4) and (3.11₁) hold when n is odd;
- 4) $\tau^*(t) \geq \sigma^*(t)$, the conditions (2.9) and (3.10₂) hold when n is even and the conditions (2.4) and (3.10₁) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.8. Let $\tau_*(t) \geq t$, the conditions (2.9) and (3.12₂) be fulfilled when n is even and the conditions (2.4) and (3.12₁) hold when n is odd. Let, moreover, the equation (1.2) have Property **B**. Then the equation (1.1) also has Property **B**.

Corollary 3.12. Let $\tau_*(t) \geq t$ for $t \in R_+$ and one of the following four conditions be fulfilled:

- 1) $\tau_*(t) \leq \sigma_*(t)$, the conditions (2.9) and (3.14₂) hold when n is even and the conditions (2.4) and (3.14₁) hold when n is odd;
- 2) $\tau_*(t) \ge \sigma_*(t)$, the conditions (2.9) and (3.13₂) hold when n is even and the conditions (2.4) and (3.13₁) hold when n is odd;
- 3) $\tau^*(t) \geq \sigma_*(t)$, the conditions (2.9) and (3.15₂) hold when n is even and the conditions (2.4) and (3.15₁) hold when n is odd;
- 4) $\tau^*(t) \leq \sigma_*(t)$, the conditions (2.9) and (3.16₂) hold when n is even and the conditions (2.4) and (3.16₁) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.9. Let $\tau^*(t) \le t$, the condition (2.4) be fulfilled and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \ge t_0$ such that the below inequality (3.17_{n-2}) holds, when n is even

$$\int_{t_{0}}^{t} s^{n-l} \sum_{i=1}^{m} \tau_{i}^{l}(s) \left((p_{i}(s) - p_{\tau_{i},\sigma^{*}}(s))) + \frac{\sigma^{*}(s)}{\tau_{i}(s)} p_{\tau_{i},\sigma^{*}}(s) \right) ds \ge
\ge \int_{t_{0}}^{t} s^{n-l} \sigma^{*}(s) \sum_{i=1}^{r} \sigma_{i}^{l-1}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{1},$$
(3.17_l)

and the inequalities (3.17_1) and (3.17_{n-2}) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.13. Let $\tau^*(t) \leq t$, the condition (2.4) be fulfilled and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

1) $\tau_*(t) \leq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.18_{n-2}) holds, when n is even

$$\int_{t_0}^t s^{n-l} \tau_*(s) \sum_{i=1}^m \tau_i^{l-1}(s) p_i(s) ds \ge \int_{t_0}^t s^{n-l} \sigma^*(s) \sum_{i=1}^r \sigma_i^{l-1}(s) q_i(s) ds \quad \text{if} \quad t \ge t_1, \ (3.18_l)$$

and the inequalities (3.18_1) and (3.18_{n-2}) hold when n is odd;

2) $\tau_*(t) \geq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.19_{n-2}) holds, when n is even

$$\int_{t_0}^t s^{n-2} \sigma^*(s) \sum_{i=1}^m \tau_i^{l-1}(s) p_i(s) ds \ge \int_{t_0}^t s^{n-l} \sigma^*(s) \sum_{i=1}^r \sigma_i^{l-1}(s) q_i(s) ds \quad \text{if} \quad t \ge t_1, \ (3.19_l)$$

and the inequalities (3.19_1) and (3.19_{n-2}) hold when n is odd;

3) $\tau^*(t) \leq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.20_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \sum_{i=1}^{m} \tau_i^l(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{l-1}(s) q_i(s) ds \quad if \quad t \ge t_1, \qquad (3.20l)$$

and the inequalities (3.20_1) and (3.20_{n-2}) hold when n is odd;

4) $\tau^*(t) \geq \sigma^*(t)$ for $t \in R_+$, the below inequality (3.21_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \frac{\sigma^*(s)}{\tau^*(s)} \sum_{i=1}^{m} \tau_i^l(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{l-1}(s) q_i(s) ds \quad \text{if} \quad t \ge t_1, \quad (3.21_l)$$

and the inequalities (3.21_1) and (3.21_{n-2}) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.10. Let $\tau^*(t) \leq t$, for $t \in R_+$ the condition (2.4) be fulfilled and for any sufficiently large t_0 there exist $t = t_1(t_0) \geq t_0$ such that the below inequality (3.22_{n-2}) holds, when n is even

$$\int_{t_{0}}^{t} s^{n-l} \sum_{i=1}^{m} \tau_{i}^{l}(s) \left((p_{i}(s) - p_{\tau_{i},\sigma_{*}}(s) + \frac{\sigma_{*}(s)}{\tau_{i}(s)} p_{\tau_{i},\sigma_{*}(s)} \right) ds \ge \\
\ge \int_{t_{0}}^{t} s^{n-l} \sum_{i=1}^{r} \sigma_{i}^{l}(s) q_{i}(s) ds \quad \text{if} \quad t \ge t_{1}, \tag{3.22}_{l}$$

and the inequalities (3.22_1) and (3.22_{n-2}) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.14. Let $\tau^*(t) \leq t$, for $t \in R_+$ the condition (2.4) be fulfilled and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

1) $\tau_*(t) \leq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.23_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \tau_*(s) \sum_{i=1}^{m} \tau_i^{l-1}(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sum_{i=1}^{r} \sigma_i^{l}(s) q_i(s) ds \quad if \quad t \ge t_1, \quad (3.23_l)$$

and the inequalities (3.23_1) and (3.23_{n-2}) hold when n is odd;

2) $\tau_*(t) \geq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.24_{n-2}) holds, when n is even

$$\int\limits_{t_0}^t s^{n-l} \sigma_*(s) \sum_{i=1}^m \tau_i^{l-1}(s) p_i(s) ds \geq \int\limits_{t_0}^t s^{n-l} \sum_{i=1}^r \sigma_i^l(s) q_i(s) ds \quad \text{if} \quad t \geq t_1, \quad (3.24_l)$$

and the inequalities (3.24_1) and (3.24_{n-2}) hold when n is odd;

3) $\tau^*(t) \leq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.25_{n-2}) holds

$$\int_{t_0}^{t} s^{n-l} \sum_{i=1}^{m} \tau_i^l(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sum_{i=1}^{r} \sigma_i^l(s) q_i(s) ds \quad \text{if} \quad t \ge t_1,$$
 (3.25_l)

when n is even and the inequalities (3.25_1) and (3.25_{n-2}) hold when n is odd;

4) $\tau^*(t) \geq \sigma_*(t)$ for $t \in R_+$, the below inequality (3.26_{n-2}) holds, when n is even

$$\int_{t_0}^{t} s^{n-l} \frac{\sigma_*(s)}{\tau^*(s)} \sum_{i=1}^{m} \tau_i^l(s) p_i(s) ds \ge \int_{t_0}^{t} s^{n-l} \sum_{i=1}^{r} \sigma_i^l(s) q_i(s) ds \quad \text{if} \quad t \ge t_1, \quad (3.26_l)$$

and the inequalities (3.26_1) and (3.26_{n-2}) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.11. Let $\tau_*(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that the conditions (2.9) and (3.17₂) are fulfilled when n is even and the conditions (2.4) and (3.17₁) hold when n is odd. Let, moreover, the equation (1.2) have Property **B**. Then the equation (1.1) also has Property **B**.

Corollary 3.15. Let $\tau_*(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

- 1) $\tau_*(t) \leq \sigma^*(t)$, the conditions (2.9) and (3.18₂) hold when n is even and the conditions (2.4) and (3.18₁) hold when n is odd;
- 2) $\tau_*(t) \ge \sigma^*(t)$, the conditions (2.9) and (3.19₂) hold when n is even and the conditions (2.4) and (3.19₁) hold when n is odd;
- 3) $\tau^*(t) \leq \sigma^*(t)$, the conditions (2.9) and (3.20₂) hold when n is even and the conditions (2.4) and (3.20₁) hold when n is odd;
- 4) $\tau^*(t) \geq \sigma^*(t)$, the conditions (2.9) and (3.21₂) hold when n is even and the inequalities (2.4) and (3.21₁) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.12. Let $\tau_*(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that the conditions (2.9) and (3.22₂) are fulfilled when n is even and the conditions (2.4) and (3.22₁) hold when n is odd. Let, moreover, the equation (1.2) have Property **B**. Then the equation (1.1) also has Property **B**.

Corollary 3.16. Let $\tau_*(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 = t_1(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

- 1) $\tau_*(t) \leq \sigma_*(t)$, the conditions (2.9) and (3.23₂) hold when n is even and the conditions (2.4) and (3.23₁) hold when n is odd;
- 2) $\tau_*(t) \ge \sigma_*(t)$, the conditions (2.9) and (3.24₂) hold when n is even and the inequalities (2.4) and (3.24₁) hold when n is odd;
- 3) $\tau^*(t) \le \sigma_*(t)$, the conditions (2.9) and (3.25₂) hold when n is even and the inequalities (2.4) and (3.25₁) hold when n is odd;
- 4) $\tau^*(t) \geq \sigma_*(t)$, the conditions (2.9) and (3.26₂) hold when n is even and the conditions (2.4) and (3.26₁) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

References

- R. KOPLATADZE, Comparison theorems for deviated differential equations with Property B. Mem. Differential Equations Math. Phys. 13(1998), 143-147.
- I. KIGURADZE AND T. CHANTURIA, Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
- R. KOPLATADZE, Comparison theorems for differential equations with several deviations. The case of Property A. Mem. Differential Equations Math. Phys. 24(2001), 115-124.

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 380093 Georgia