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1. Introduction

This paper is concerned with the existence of solutions, for initial value
problems, for first and second order semilinear neutral functional differen-
tial equations with impulsive effects, in Banach spaces. More precisely, in
Section 3, we consider first order impulsive semilinear neutral functional
differential equations of the form

d

dt
[y(t)− g(t, yt)] = Ay(t) + f(t, yt),

t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,
(1.1)

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . ,m, (1.2)

y(t) = φ(t), t ∈ [−r, 0], (1.3)

where A is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators T (t) in E, f , g : J × C([−r, 0], E) −→ E are
given functions, φ ∈ C([−r, 0], E), (0 < r < ∞), 0 = t0 < t1 < . . . <

tm < tm+1 = b, Ik ∈ C(E,E) (k = 1, 2, . . . ,m), are bounded functions,
∆y|t=tk

= y(t+k )− y(t−k ), y(t−k ) and y(t+k ) represent the left and right limits
of y(t) at t = tk, respectively and E a real Banach space with norm | · |.

For any continuous function y defined on [−r, b]− {t1, . . . , tm} and any
t ∈ J , we denote by yt the element of C([−r, 0], E) defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t − r, up to the
present time t.

In one sense, these first order results extend to the semilinear case some
recent work by the authors [2], while in another sense, this work is also an
extension to neutral functional differential equations of the results in [3] and
[4].

In Section 4 we study second order impulsive semilinear neutral func-
tional differential equations of the form

d

dt
[y′(t)− g(t, yt)] = Ay(t) + f(t, yt),

t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,
(1.4)

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . ,m, (1.5)

∆y′|t=tk
= Ik(y(t−k )), k = 1, . . . ,m, (1.6)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η, (1.7)

where A is the infinitesimal generator of a strongly continuous cosine family
C(t), t ∈ R, of bounded linear operators in E, f, g, Ik, and φ are as in
problem (1.1)–(1.3), Ik ∈ C(E,E) and η ∈ E.

For the second order results of this paper, they constitute extensions of
[2] to the semilinear setting.



108

The study of impulsive differential equations arises as a useful mathemat-
ical machinery in the modeling of many processes and phenomena studied
in physics, chemical technology, population dynamics, medicine, mechanics,
biotechnology and economics. That is why, in recent years they are an ob-
ject of investigations. We refer to the monographs of Bainov and Simeonov
[1], Lakshmikantham et al [10], and Samoilenko and Perestyuk [12] and the
references cited therein.

The results of this paper also generalize to the impulsive case other results
on neutral semilinear functional differential equations in Banach spaces in
the literature; see, for instance, the monographs of Erbe et al [5], Hale and
Verduyn Lunel [8], Henderson [9], and the survey paper of Ntouyas [11].
Our approach here is based on a fixed point theorem due to Schaefer [13]
(see also Smart [14]).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper.

C([−r, 0], E) is the Banach space of all continuous functions from [−r, 0]
into E with the norm

‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}.

By C(J,E) we denote the Banach space of all continuous functions from
J into E with the norm

‖y‖J := sup{|y(t)| : t ∈ J}.

B(E) is the Banach space of all linear bounded operator from E into
E. A measurable function y : J −→ E is Bochner integrable if and only if
|y| is Lebesgue integrable. (For properties of the Bochner integral, see for
instance, Yosida [17]).

L1(J,E) denotes the Banach space of functions y : J −→ E which are
Bochner integrable normed by

‖y‖L1 =

∫ b

0

|y(t)|dt for all y ∈ L1(J,E).

Our main results are based on the following:

Lemma 2.1 ([13], see also [14], p. 29). Let X be a Banach space, N :S −→
S be a completely continuous operator, and let

Φ(N) = {y ∈ S : y = λN(y) for some 0 < λ < 1}.

Then either Φ(N) is unbounded or N has a fixed point.
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3. First Order Impulsive Neutral Functional Differential

Equations

In order to define the concept of mild solution of (1.1)–(1.3) we shall
consider the following space

Ω = {y : [−r, b] −→ E : yk ∈ C(Jk, E), k = 0, . . . ,m and there exist y(t−k )

and y(t+k ), with y(t−k ) = y(tk), k = 1, . . . ,m, y(t) = φ(t), ∀t ∈ [−r, 0]}

which is a Banach space with the norm

‖y‖Ω = max{‖yk‖Jk
, k = 0, . . . ,m},

where yk is the restriction of y to Jk = [tk, tk+1], k = 0, . . . ,m. So let us
start by defining what we mean by a mild solution of problem (1.1)–(1.3).

Definition 3.1. A function y ∈ C([−r, b], E) is said to be a mild solution
of (1.1)–(1.3) if y(t) = φ(t) on [−r, 0], ∆y|t=tk

= Ik(y(t−k )), k = 1, . . . ,m,
for each 0 ≤ t < b the function AT (t− s)g(s, ys), s ∈ [0, t) is integrable and

y(t) = T (t)[φ(0)− g(0, φ)] + g(t, yt) +

∫ t

0

AT (t− s)g(s, ys) ds+

+

∫ t

0

T (t− s)f(s, ys) ds+
∑

0<tk<t

Ik(y(t−k )), t ∈ J.

We are now in a position to state and prove our existence result for the
problem (1.1)–(1.3). For the study of this problem we first list the following
hypotheses:

(H1) A is the infinitesimal generator of a compact semigroup of bounded
linear operators T (t) in E such that

|T (t)|≤M1, for some M1≥1 and |AT (t)|≤M2, M2≥0, t∈J.

(H2) there exist constants 0 ≤ c1 < 1 and c2 ≥ 0 such that

|g(t, u)| ≤ c1‖u‖+ c2, t ∈ J, u ∈ C([−r, 0], E);

(H3) there exist constants dk such that |Ik(y)| ≤ dk, k = 1, . . . ,m for
each y ∈ E;

(H4) |f(t, u)| ≤ p(t)ψ(‖u‖) for almost all t ∈ J and all u ∈ C([−r, 0], E),
where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is continuous and
increasing with

∫ b

0

m̂(s)ds <

∫
∞

c

dτ

τ + ψ(τ)
;

where

c =
1

1− c1

{
M1(‖φ‖+ c1‖φ‖+ c2) + c2M2b+ c2 +

m∑

k=1

dk

}
;
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and

m̂(t) =
1

1− c1
{M2c1,M1p(t)}.

(H5) the function g is completely continuous and for any bounded set
D ⊂ Ω the set {t→ g(t, yt) : y ∈ D} is equicontinuous in Ω.

We need the following auxiliary result. Its proof is very simple, so we
omit it.

Lemma 3.2. y ∈ Ω is a mild solution of (1.1)–(1.3) if and only if y ∈ Ω
is a solution of the impulsive integral equation

y(t) = T (t)[φ(0)− g(0, φ)] + g(t, yt) +

∫ t

0

AT (t− s)g(s, ys) ds+

+

∫ t

0

T (t− s)f(s, ys) ds+
∑

0<tk<t

Ik(y(t−k )), t ∈ J.

Theorem 3.3. Assume that hypotheses (H1)–(H5) hold. Then the IVP
(1.1)–(1.3) has at least one mild solution on [−r, b].

Proof. Transform the problem into a fixed point problem. Consider the
operator, N : Ω −→ Ω defined by:

N(y)=





φ(t), t∈ [−r, 0],

T (t)[φ(0)− g(0, φ)] + g(t, yt) +

∫ t

0

AT (t− s)g(s, ys) ds+

+

∫ t

0

T (t− s)f(s, ys)) ds+
∑

0<tk<t

Ik(y(t−k )), t∈J. �

Remark 3.4. Clearly from Lemma 3.2 the fixed points of N are mild
solutions to (1.1)–(1.3).

We shall show that N satisfies the assumptions of Lemma 2.1. Using
(H5) it suffices to show that the operator N1 : Ω −→ Ω defined by:

N1(y)=





φ(t), t∈ [−r, 0],

T (t)φ(0) +

∫ t

0

AT (t− s)g(s, ys)ds+

+

∫ t

0

T (t− s)f(s, ys)) ds+
∑

0<tk<t

Ik(y(t−k )), t∈J. �

is completely continuous. The proof will be given in several steps.

Step 1: N1 maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that there exists a positive constant ` such
that for each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q} one has ‖N1(y)‖Ω ≤ `.



111

Let y ∈ Bq , then for each t ∈ J we have

N1(y)(t) =T (t)φ(0) +

∫ t

0

AT (t− s)g(s, ys) ds+

+

∫ t

0

T (t− s)f(s, ys) ds+
∑

0<tk<t

Ik(y(t−k )).

By (H1)–(H4) we have for eact t ∈ J

|N1(y)(t)| ≤M1‖φ‖+M2

∫ t

0

|g(s, ys)|ds+

+M1

∫ t

0

|f(s, ys)|ds+
∑

0<tk<t

|Ik(y(t−k ))| ≤

≤M1‖φ‖+M2b(c1q + c2) +M1 sup
y∈[0,q]

ψ(y)
(∫ t

0

p(s)ds
)

+

+

m∑

k=1

sup{|Ik(|y|)| : ‖y‖Ω ≤ q}.

Then we have

‖N1(y)‖Ω ≤ M1‖φ‖+M2b(c1q + c2) +M1 sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)

+

+
m∑

k=1

sup{|Ik(|y|)| : ‖y‖Ω ≤ q} := `.

Step 2: N1 maps bounded sets into equicontinuous sets of Ω.

Let τ1, τ2 ∈ J , τ1 < τ2 and Bq = {y ∈ Ω : ‖y‖Ω ≤ q} be a bounded set
of Ω. Let y ∈ Bq . Then

|N1(y)(τ2)−N1(y)(τ1)| ≤ |T (τ2)− T (τ1)|q +

+

∫ τ2

0

|AT (τ2 − s)− T (τ1 − s)|(c1q + c2) ds+

+

∫ τ2

τ1

|AT (τ1)|(c1q|+ c2) ds+

+

∫ τ2

τ1

|T (τ2 − s)− T (τ1 − s)M1 sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)
ds+

+

∫ τ2

τ1

|T (τ1 − s)|M1 sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)
ds+

∑

0<tk<τ2−τ1

dk.

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 is obvious.
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Step 3: N : Ω −→ Ω is continuous.

Let {yn} be a sequence such that yn −→ y in Ω. Then there is an integer
q such that ‖yn‖Ω ≤ q for all n ∈ N and ‖y‖Ω ≤ q, so yn ∈ Bq and y ∈ Bq .

We have then by the dominated convergence theorem

‖N1(yn)−N1(y)‖Ω ≤ sup
t∈J

[∫ t

0

|AT (t− s)||g(s, yns)− g(s, ys)|ds+

+

∫ t

0

|T (t− s)||f(s, yns)− f(s, ys)|ds+

+
∑

0<tk<t

|Ik(yn(tk))− Ik(y(tk))|
]
−→ 0.

Thus N1 is continuous.
As a consequence of Steps 1 to 3 and (H5) together with the Arzela-Ascoli

theorem we can conclude that N : Ω −→ Ω is completely continuous.

Step 4: Now it remains to show that the set

Φ(N) := {y ∈ Ω : y = λN(y), for some 0 < λ < 1}

is bounded.

Proof. Let y ∈ Φ(N). Then y = λN(y) for some 0 < λ < 1. Thus for each
t ∈ J

y(t) = λT (t)[φ(0)− g(0, φ)] + λg(t, yt) + λ

∫ t

0

AT (t− s)g(s, ys) ds+

+ λ

∫ t

0

T (t− s)f(s, ys))ds+ λ
∑

0<tk<t

Ik(y(t−k )), t ∈ J.

This implies by (H1)–(H4) that for each t ∈ J we have

|y(t)| ≤M1[‖φ‖+ c1‖φ‖+ c2] + c1‖yt‖+ c2 +

+M2

∫ t

0

c1‖ys‖ds+ c2M2b+M1

∫ t

0

p(s)ψ(‖ys‖)ds+

m∑

k=1

dk.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ b.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous
inequality we have for t ∈ J

µ(t) ≤M1(‖φ‖+ c1‖φ‖+ c2) + c1µ(t) + c2M2b+ c2 +

+M2c1

∫ t

0

µ(s) ds+

∫ t

0

p(s)ψ(µ(s))ds +

m∑

k=1

dk.
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Thus

µ(t) ≤
1

1− c1

[
M1(‖φ‖+ c1‖φ‖+ c2) + c2M2b+ c2 +

+M2c1

∫ t

0

µ(s) ds+

∫ t

0

p(s)ψ(µ(s))ds +

m∑

k=1

dk

]
, t ∈ J.

If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds.

Let us take the right-hand side of the above inequality as v(t), then we
have

c = v(0) =
1

1− c1

{
M1(‖φ‖+ c1‖φ‖+ c2) + c2M2b+ c2 +

m∑

k=1

dk

}
,

µ(t) ≤ v(t), t ∈ J,

and

v′(t) =
1

1− c1
[M2c1µ(t) + p(t)ψ(µ(t))], t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤
1

1− c1
[M2c1v(t) + p(t)ψ(v(t))] ≤ m̂(t)[v(t) + ψ(v(t)], t ∈ J.

This implies for each t ∈ J that

∫ v(t)

v(0)

dτ

τ + ψ(τ)
≤

∫ b

0

m̂(s)ds <

∫
∞

v(0)

dτ

τ + ψ(τ)
.

This inequality implies that there exists a constant K such that v(t) ≤
K, t ∈ J, and hence µ(t) ≤ K, t ∈ J. Since for every t ∈ [0, b], ‖yt‖ ≤ µ(t),
we have

‖y‖Ω ≤ K ′ = max{‖φ‖,K},

where K ′ depends only b and on the functions p and ψ. This shows that
Φ(N) is bounded. Set X := Ω. As a consequence of Lemma 2.1 we deduce
that N has a fixed point which is a mild solution of (1.1)–(1.3).

4. Second Order Impulsive Neutral Functional Differential

Equations

In this section we study the initial value problem (1.4)–(1.7) by using the
theory of strongly continuous cosine and sine families.

We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly
continuous cosine family if

(i) C(0) = I (I is the identity operator in E),
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R,
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(iii) the map t 7−→ C(t)y is strongly continuous for each y ∈ E; The
strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =

∫ t

0

C(s)yds, y ∈ E, t ∈ R.

The infinitesimal generator A : E −→ E of a cosine family {C(t) : t ∈ R} is
defined by

Ay =
d2

dt2
C(t)y

∣∣∣
t=0

.

For more details on strongly continuous cosine and sine families, we refer
the reader to the books of Goldstein [7] and Fattorini [6], and to the papers
of Travis and Webb [15], [16].

Definition 4.1. A function y ∈ C([−r, b], E) is said to be a mild solution
of (1.4)–(1.7) if y(t) = φ(t) on [−r, 0], y′(0) = η, ∆y|t=tk

= Ik(y(t−k )),
k = 1, . . . ,m, ∆y′|t=tk

= Ik(y(t−k )), k = 1, . . . ,m, and

y(t) = C(t)φ(0) + S(t)[η − g(0, φ)]+

∫ t

0

C(t− s)g(s, ys) ds

+

∫ t

0

S(t− s)f(s, ys) ds+
∑

0<tk<t

[Ik(y(t−k )) + (t− tk)Ik(y(tk))], t ∈ J.

We need the following auxiliary result. Its proof is very simple, so we
omit it.

Lemma 4.2. y ∈ Ω is a mild solution of (1.4)–(1.7), if and only if y ∈ Ω
is a solution of the impulsive integral equation

y(t) = C(t)φ(0) + S(t)[η − g(0, φ)]+

∫ t

0

C(t− s)g(s, ys) ds+

+

∫ t

0

S(t− s)f(s, ys) ds+
∑

0<tk<t

[Ik(y(t−k )) + (t− tk)Ik(y(tk))], t ∈ J.

Assume that:

(A1) A is the infinitesimal generator of a strongly continuous cosine fam-
ily C(t), t ∈ R of bounded linear operators from E into itself.

(A2) There exists constants c1 and c2 such that

|f(t, u)| ≤ c1‖u‖+ c2, t ∈ J, u ∈ C(J0, E);

(A3) There exist constants dk, dk such that |Ik(y)| ≤ dk, |Ik(y)| ≤ dk k =
1, . . . ,m for each y ∈ E;
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(A4) |f(t, u)| ≤ p(t)ψ(‖u‖) for almost all t ∈ J and all u ∈ C(J0, E),
where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is continuous and
increasing with

∫ b

0

m̂(s)ds <

∫
∞

c

dτ

τ + ψ(τ)
;

where

c = M‖φ‖+Mb[|η|+ c1‖φ‖+ c2] +Mc2b+

m∑

k=1

[dk + (b− tk)dk],

M = sup{|C(t)| : t ∈ J},

and

m̂(t) = max{Mc1,Mp(t)}.

(A5) The function g is completely continuous and for any bounded set
A ⊆ C(J1, E) the set {t −→ g(t, yt) : y ∈ A} is equicontinuous in
C(J,E);

(A6) C(t), t ∈ J is completely continuous.

Now, we are in a position to state and prove our main theorem in this
section.

Theorem 4.3. Assume that hypotheses (A1)–(A6) hold. Then the IVP
(1.4)–(1.7) has at least one mild solution on J1.

Proof. Transform the problem into a fixed point problem. This time define
an operator N : Ω −→ Ω by:

N(y) :=





φ(t), if t ∈ J0

C(t)φ(0) + S(t)[η − g(0, φ)]+

+

∫ t

0

C(t− s)g(s, ys) ds+

+

∫ t

0

S(t− s)f(s, ys) ds+

+
∑

0<tk<t

[Ik(y(tk)) + (t− tk)Ik(y(tk))], if t ∈ J. �

Remark 4.4. It is clear that the fixed points of N are mild solutions to
(1.4)–(1.7).

We shall show that N satisfies the assumptions of Lemma 2.1. The proof
will be given in several steps.

Step 1: N maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that there exists a positive constant ` such
that for each h ∈ N(y), y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q} one has ‖N(y)‖Ω ≤ `.
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If y ∈ B(q), then for each t ∈ J we have

N(t) =C(t)φ(0) + S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys) ds+

+

∫ t

0

S(t− s)f(s, ys)ds+
∑

0<tk<t

[Ik(y(tk)) + (t− tk)Ik(y(tk))].

By (A2)–(A4) we have for each t ∈ J

|N(y)(t)| ≤M‖φ‖+ bM(|η|+ c1q + c2) +Mb(c1q + c2) +

+M sup
y∈[0,q]

ψ(y)
(∫ t

0

p(s)ds
)

+

m∑

k=1

[dk + (b− tk)dk].

Then we have

‖N(y)‖Ω ≤M‖φ‖+ bM(|η|+ c1q + c2) +Mb(c1q + c2) +

+M sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)

+
m∑

k=1

[dk + (b− tk)dk] := `.

Step 2: N maps bounded sets into equicontinuous sets of Ω.

Let τ1, τ2 ∈ J , τ1 < τ2 and Bq be a bounded set of Ω as in Step 2.
Let y ∈ Bq . Then

h(t) = C(t)φ(0) + S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys) ds+

+

∫ t

0

S(t− s)v(s)ds +
∑

0<tk<t

[Ik(y(tk)) + (t− tk)Ik(y(tk))].

Thus

|h(τ2)− h(τ1)| ≤ |C(τ2)− C(τ1)|+ (|η|+ c1‖φ‖+ c2)|S(τ2)− S(τ1)|+

+
∣∣∣
∫ τ2

0

[C(τ2 − s)− C(τ1 − s)]g(s, ys)ds
∣∣∣ +

∣∣∣
∫ τ2

τ1

C(τ1 − s)g(s, ys)ds
∣∣∣ +

+
∣∣∣
∫ t2

0

[S(τ2 − s)− S(τ1 − s)]f(s, ys) ds
∣∣∣ +

∣∣∣
∫ τ2

τ1

S(τ1 − s)f(s, ys) ds
∣∣∣ +

+
∑

0<tk<τ2−τ1

[dk + (b− tk)dk] ≤

≤ |C(t2)− C(τ1)|+ (|η|+ c1q + c2)|S(τ2)− S(τ1)|+

+

∫ τ2

0

|C(τ2 − s)− C(τ1 − s)]|(c1q + c2)ds+

+

∫ τ2

τ1

|C(τ1 − s)|(c1q + c2)ds+
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+

∫ τ2

0

|S(τ2 − s)− S(τ1 − s)|M sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)
ds+

+

∫ τ2

τ1

|S(t1 − s)|M sup
y∈[0,q]

ψ(y)
(∫ b

0

p(s)ds
)
ds+

+
∑

0<tk<τ2−τ1

[dk + (b− tk)dk].

As τ2 −→ τ1 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 areobvious.

Step 3: N : Ω → Ω is continuous.

Let {yn} be a sequence such that yn −→ y in Ω. Then there is an integer
q such that ‖yn‖Ω ≤ q for all n ∈ N and ‖y‖Ω ≤ q, so yn ∈ Bq and y ∈ Bq .

We have then by the dominated convergence theorem

‖N(yn)−N(y)‖Ω ≤ sup
t∈J

[∫ t

0

|C(t− s)||g(s, yns)− g(s, ys)|ds+

+

∫ t

0

|S(t− s)||f(s, yns)− f(s, ys)|ds+

+
∑

0<tk<t

[|Ik(yn(tk))− Ik(y(tk))|+

+ |t− tk||Ik(yn(tk))− Ik(y(tk))]
]
−→ 0.

Thus N is continuous.
As a consequence of Steps 1 to 3 and (A6) together with the Arzela-Ascoli

theorem we can conclude that N : Ω −→ Ω is completely continuous.

Step 4: The set

Φ(N) := {y ∈ Ω : y = λN(y), for some 0 < λ < 1}

is bounded.

Proof. Let y ∈ Φ(N). Then y = λN(y) for some 0 < λ < 1. Thus for each
t ∈ J

y(t) = λC(t)φ(0) + λS(t)[η − g(0, φ)] + λ

∫ t

0

C(t− s)g(s, ys)ds+

+λ

∫ t

0

S(t− s)f(s, ys)ds+ λ
∑

0<tk<t

[Ik(y(tk)) + (t− tk)Ik(y(tk))], t∈J.

This implies by (A2)–(A4) that for each t ∈ J we have

|y(t)| ≤M‖φ‖+Mb[|η|+ c1‖φ‖+ c2] +M

∫ t

0

(c1‖ys‖+ c2)ds+
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+M

∫ t

0

p(s)ψ(‖ys‖)ds+
m∑

k=1

[dk + (b− tk)dk].

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ b.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous
inequality we have for t ∈ J

µ(t) ≤M‖φ‖+Mb[|η|+ c1‖φ‖+ c2] +Mc1

∫ t

0

µ(s)ds+Mc2b+

+M

∫ t

0

p(s)ψ(µ(s))ds +

m∑

k=1

[dk + (b− tk)dk].

If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t), then we

have

c = v(0) = M‖φ‖+Mb[|η|+ c1‖φ‖+ c2] +Mc2b+

m∑

k=1

[dk + (b− tk)dk],

µ(t) ≤ v(t), t ∈ J,

and

v′(t) = Mc1µ(t) +Mp(t)ψ(µ(t)) ≤

≤Mc1v(t) +Mp(t)ψ(v(t)) ≤ m̂(t)[v(t) + ψ(v(t))], t ∈ J.

This implies for each t ∈ J that
∫ v(t)

v(0)

du

u+ ψ(u)
≤

∫ b

0

m̂(s)ds <

∫
∞

v(0)

du

u+ ψ(u)
.

This inequality implies that there exists a constant L such that v(t) ≤ L, t ∈
J, and hence µ(t) ≤ L, t ∈ J. Since for every t ∈ J, ‖yt‖ ≤ µ(t), we have

‖y‖Ω ≤ L′ = max{‖φ‖, L},

where L′ depends on b and on the functions p and ψ. This shows that Ω is
bounded. Set X := Ω. As a consequence of Lemma 2.1 we deduce that N
has a fixed point which is a mild solution of (1.4)–(1.7).
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