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In the present paper, on the basis of the results obtained in [1,2,3] we study the
structure of the set of solutions of the weighted initial problem

u(n)(t) = f(u)(t), (1)

lim
t→a

u(k)(t)

h(k)(t)
= 0 (k = 0, . . . , n− 1), (2)

where f ∈ Cn−1([a, b];Rm) → Lloc(]a, b]; R
m) is a continuous Volterra operator and

h : [a, b] → [0,+∞[ is an (n− 1)-times continuously differentiable function such that

h(k)(a) = 0 (k = 0, . . . , n− 2), h(n−1)(t) > 0 for a < t ≤ b.

The problem for the case n = 1 has been investigated in [1]. Therefore below we will
assume that n ≥ 2.

Throughout the paper, the use will be made of the following notation.
R is the set of real numbers, R+ = [0;+∞[ ;
R

m is the space of m-dimensional vectors x = (xi)
m
i=1 with real components xi (i =

1, . . . , m) and the norm ‖x‖ =
m
∑

i=1

|xi|;

R
m
ρ = {x ∈ R

m : ‖x‖ ≤ ρ}.
If x = (xi)

m
i=1 ∈ R

m, then sgn(x) = (sgn xi)
m
i=1.

x · y is the scalar product of the vectors x and y ∈ R
m;

Cn−1([a, b]; R
m) is the space of (n− 1)-times continuously differentiable vector func-

tions x : [a, b] → R
m with the norm

‖x‖Cn−1 = max

{

n−1
∑

k=1

‖x(k−1)(t)‖ : a ≤ t ≤ b

}

;

Cn−1
h

([a, b]; R
m) is the set of u ∈ Cn−1([a, b]; R

m) such that

sup

{

‖u(k)(t)‖

h(k)(t)
: a < t ≤ b

}

< +∞ (k = 0, . . . , n− 1);

Cn−1
h,ρ

([a, b]; R
m) is the set of u ∈ Cn−1([a, b]; R

m) satisfying the equalities

|u(k)(t)| ≤ ρh(k)(t) for a < t ≤ b (k = 0, . . . , n− 1);

If x : ]a, b] → R
m is a bounded function and a ≤ s < t ≤ b, then

ν(x)(s, t) = sup
{

‖x(ξ)‖ : s < ξ < t
}

;
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Lloc(]a, b]; R
m) is the space of vector functions x : ]a, b] → R

m which are summable on
each segment from ]a, b], with the topology of mean convergence on each segment from
]a, b].

Definition 1. f : Cn−1([a, b]; R
m) → Lloc(]a, b]; R

m) is called a Volterra operator if
the equality f(x)(t) = f(y)(t) holds almost everywhere on ]a, t0[ for any t0 ∈ ]a, b] and
any vector functions x and y ∈ Cn−1([a, b]; R

m) satisfying the condition x(t) = y(t) for
a ≤ t ≤ t0.

Definition 2. We say that the operator f : Cn−1([a, b]; R
m) → Lloc(]a, b]; R

m) satis-
fies the local Carathéodory conditions if it is continuous and there exists a nondecreasing
with respect to the second argument function γ : ]a, b] × [0,+∞[→ [0,+∞[ such that
γ(·, ρ) ∈ Lloc(]a, b]; R) for any ρ ∈ ]0,+∞[ , and the equality

∥

∥f(x)(t)
∥

∥ ≤ γ
(

t, ‖x‖Cn−1

)

is fulfilled for any x ∈ Cn−1([a, b]; R
m) almost everywhere on ]a, b[ .

Definition 3. If f : Cn−1([a, b]; R
m) → Lloc(]a, b]; R

m) is a Volterra operator and
b0 ∈ ]a, b], then:

(i) for any u ∈ Cn−1([a, b0]; R
m) by f(u) is understood the vector function given by

the equality f(u)(t) = f(u)(t) for a ≤ t ≤ b0, where

u(t) =











u(t) for a ≤ t ≤ b0
n

∑

k=1

(t − b0)k−1

(k − 1)!
u(k−1)(b0) for b0 < t ≤ b

;

(ii) the function u ∈ Cn−1([a, b0]; R
m) is called a solution of the equation (1) on the

segment [a, b0] if u(n−1) is absolutely continuous on each segment contained in ]a, b0],
and u(n)(t) = f(u)(t) almost everywhere on ]a, b0[ ;

(iii) a solution u of the equation (1) satisfying on the segment [a, b0] the initial con-
ditions (2) is called a solution of the problem (1), (2) on the segment [a, b0].

Definition 4. A solution u of the equation (1) defined on a segment [a, b0] ⊂ [a, b[
(on a semi-open interval [a, b0[⊂ [a, b[ ) is called continuable if for some b1 ∈ ]b0, b] (b1 ∈
[b0, b]) the equation (1) has on the segment [a, b1] a solution v satisfying u(t) = v(t) for
a ≤ t ≤ b0. A solution u is, otherwise, called noncontinuable.

By I∗(f ; h) we denote the set of those b∗ ∈ ]a, b] for which the domain of definition of
every noncontinuable solution of the problem contains the segment [a, b∗].

Definition 5. We say that the equation (1) has Kneser’s property if I∗(f ; h) 6= ∅,
and for every b∗ ∈ I∗(f ; h) the set of restrictions of noncontinuable solutions on [a, b∗] is
compact and connected in the topology of the space Cn−1([a, b∗]; R

m).

Theorem. Let there exist a positive number ρ and summable functions pk : [a, b] →
[0,+∞[ (k = 0, . . . , n− 1) and q : [a, b] → [0,+∞[ such that

lim sup
t→a

(

1

h(n−1)(t)

n−1
∑

k=0

t
∫

a

pk(s) ds

)

< 1,

lim
t→a

(

1

h(n−1)(t)

t
∫

a

q(s) ds

)

= 0
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and for any u ∈ Cn−1
h,ρ

([a, b]; R
m) the inequality

f(u)(t) · sgn
(

u(n−1)(t)
)

≤

n−1
∑

k=0

pk(t)ν

(

u(k)

h(k)

)

(a, t) + q(t)

is fulfilled almost everywhere on ]a, b[ . Then the problem (1), (2) has Kneser’s property.

A particular case of equation (1) is the vector delay differential equation with

u(n)(t) =

= f0

(

t, u
(

τ10(t)
)

, . . . , u(n−1)
(

τ1 n−1(t)
)

, . . . , u
(

τ` 0(t)
)

, . . . , u(n−1)
(

τ` n−1(t)
)

)

, (3)

where f0 : ]a, b] × R
`mn → R

m satisfies the local Carathéodory conditions, and τik :
[a, b] → [a, b] are measurable functions such that τik(t) ≤ t for a ≤ t ≤ b (i = 1 . . . , `;
k = 0 . . . , n− 1).

From the above theorem we arrive at the following

Corollary. Let τ` n−1(t) ≡ t and let there exist a positive number ρ, summable

functions pik : [a, b] → [0,+∞[ (i = 1, . . . , `; k = 0, . . . , n − 1) and q : [a, b] → [0,+∞[
such that the equality

f0

(

t, h
(

τ10(t)
)

x10, . . . , h(n−1)
(

τ1 n−1(t)
)

x1 n−1, . . . , h
(

τ` 0(t)
)

x` 0, . . . ,

h(n−1)
(

τ` n−1(t)
)

x` n−1

)

· sgn(x` n−1) ≤

n−1
∑

k=0

`
∑

i=1

pik(t)‖xik‖+ q(t)

is fulfilled on ]a, b]× R
`mn
ρ . Moreover, let

lim sup
t→a

(

1

h(n−1)(t)

n−1
∑

k=0

`
∑

i=1

t
∫

a

pk(s) ds

)

< 1,

lim
t→a

(

1

h(n−1)(t)

t
∫

a

q(s) ds

)

= 0.

Then the problem (3), (2) has Kneser’s property.
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