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Abstract. Nonimprovable effective sufficient conditions for the existence
and uniqueness of an w-periodic solution of the equation

' (t) = f(u)(t),
where f: C,(R) — L, (R) is a continuous operator satisfying the Carathé-
odory conditions, are established.
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INTRODUCTION

Consider the problem on the existence and uniqueness of an w-periodic
solution of the scalar functional differential equation

u'(t) = f(u)(t), (0.1)

where f : C,(R) — Ly(R) is a continuous operator. In the case, where f
is a Volterra operator, the problem has already been studied enough (see
[1-3,6-25] and references therein). There are also a lot of interesting results
concerning the general boundary value problems even in the case, where f
is not a Volterra operator (see, e.g., [6-10,14,16-21,24]). However, in that
case only a few effective sufficient conditions of the existence and uniqueness
of w-periodic solutions are known. In the present paper, we try to fill this
gap in a certain way. More precisely, below we establish the nonimprovable
in some sense existence and uniqueness conditions.

Along with (0.1) we will consider an important special case, where (0.1)
is the equation with deviating arguments, i.e.,

u'(t) = g(t u(t), u(pa (1)), -, u(pn (1)), (0.2)

where the function g : R x R"*! — R is w-periodic with respect to the first
variable and satisfies the Carathéodory conditions, and py : R — Rk=1,n
are measurable functions.

Throughout the paper, the following notation and terms are used.

R is the set of real numbers, Ry = [0, +oo].

(2l = L(lel +2), 2] = 1(Jo] - 2).

C(Ja,a + w]; R) is the Banach space of continuous functions v : [a,a +
w] — R with the norm

lulle = max{lu(t)| : @ <t < a+w}.

C,,(R) is the Banach space of continuous w-periodic functions v : R — R
with the norm

ullc,, = max{|u(t)| : 0 <t < w}.

(Ry) ={u e Cy(R) : u(t) >0 for t € R}.
C. (R) is the set of absolutely continuous w-periodic functions  : R — R.
C (I; D), where I C R, D C R, is the set of absolutely continuous func-
tions u: I — D.
L(Ja,a + w[; R) is the Banach space of Lebesgue integrable functions
p :]a,a + w[— R with the norm

Co

a-+w

lpllz = / 1p(s)ds.

a
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L, (R) is the Banach space of w-periodic Lebesgue integrable functions

p: R — R with the norm
Iplle. = [ In(s)ds,
0

L,(Ry)={p€ L,(R) :p(t) >0 for almost all ¢ € R}.
L, (R) is the set of linear bounded operators ¢ : C,,(R) — L, (R) such
that
sup{[€(v) ()] : lvllc, = 1} € Lu(Ry).
P.,(R) is the set of linear operators ¢ € L,,(R) transforming C,, (R4 ) into

L,(R:).
It is obvious that for any x € [0,w[ the operator ¢ € P, (R) uniquely
defines the corresponding operator

Uy {uc C(z,2 +w|;R) : u(z) = u(z + w)} — Lz, + w[; R).
In the sequel, we will assume that the linear bounded operator
ly: C([z,x +w]; R) — L(Jz,z + w[; R)

is the extension of the operator Zz Furthermore we will assume that ¢, is
a nonnegative operator, i.e., it transforms C([z,z + w]; R1) into L(]z, z +

wl; Ry).
In the case

we will assume that > |pr(t)| Z 0 and
k=0

l1a(v defZka Nav(mia(t),  Los(v defZka V(T (1)),

where T, (t) = Ti(t) — wni(t) for t €]z, x + w|, and Nk, (¢) is the integer
part of the number (7 (t) — z).

We say that the operator f : C,(R) — L, (R) satisfies the Carathéodory
conditions if it is continuous and

i) =sup{|f(u)()] : lullc <7} € Lu(Ry) for r > 0.

We say that the function g: Rx R"t' — R satisfies the Carathéodory con-
ditions if g(-, g, x1,...,2Zn): R— R is measurable for all (zg,x1,- - ,2,) €
R™1 g(t,-,...,-) : R""' — R is continuous for almost all ¢t € R, and

g:() - sup{|g(~,xo,:c1, s amn)| : |:Cz| < :()7_”} € Lw(R+) for r > 0.
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An absolutely continuous function u : R — R is said to be an w-periodic
solution of the equation (0.1) if it satisfies this equation almost everywhere
in R and

u(t) = u(t +w) for t € R.

Everywhere in what follows, we will assume that the operator f:C,,(R) —
L, (R) and the function g : R x R"*! — R satisfy the Carathéodory condi-
tions.

The paper is organized in the following way. In the Section 1 there are
established the main results. Sections 2, 3, and 4 are devoted to auxil-
iary propositions, proofs of the main results, and examples verifying their
optimality, respectively.

1. EXISTENCE AND UNIQUENESS THEOREMS
Theorem 1.1. Leti,j € {1,2}, i # j, and on the set C,(R) the inequality

(=1 [f(uw)(®) + b(u)(t) = L2(u) ()] sgnu(t) < q(t)  for te R (L1)
hold, where q € L,(R+.), ¢1,¢2 € Py,(R), and

16z, <1, (1.25)
14z, _ .
1 _ ||£](1)||Lw < ||€1(1)||Lw (13])

Let, moreover, for any x € [0,w| there exist v, € C([z,z + w];]0,+00[)
satisfying the conditions

(%) 2 La(1) () + Lia(D)(t)  for telwzt+w],  (14)
Yo (2 + (2 = w) —yg(x + (1 — Dw) < 2. (1.5)
Then the equation (0.1) has at least one w-periodic solution.

Remark 1.1. Theorem 1.1 is nonimprovable in this sense that the inequal-
ity (1.4) cannot be replaced by the inequality

Yo+ (2 —w) —yu(xz+ (i — Nw) <2 +¢, (1.6)

no matter how small € > 0 would be (see Example 4.1).
Furthermore, neither one of the strict inequalities in (1.2;) and (1.3;) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.1. Let 0 € {—1,1} and on the set R"! the inequality

olg(t,zo,z1,...,2n) + Zpk(t)fﬂk] sgnwog < q(t)  for te R (1.7)
k=0

hold, where py € L,(R), k = 0,n. Let, moreover, one of the following items
be fulfilled:
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(H1)
ope(t) >0, k=1,n, opo(t) <0, for tER, (1.8)
7 “ Ipo(s)|ds no
[imotoas <1, OS2 [ s, )
) ~ I polds )
w HTGW
> [nsles o [ il | ds <2 (1.10)
k=17 s
(Hz)
opp(t) <0, k=1,n, opo(t) >0, for tER, (1.11)
and either
> [ molds <1,
k:lo
LA (1.12)
> Jo Ipe(s)lds © no Y
=l < [ Ipo(s)|ds < 2 172/|pk(s)|ds
1- ¥1f0 Ip(s)lds g k=17
or
[ miolas < 1.
0
(1.11")
R po(s)lds & /
< Ipr(s)|ds < 2 17/|p0 )|ds | .
1= J% po(s)lds Z_:

Then the equation (0.2) has at least one w-periodic solution.

Theorem 1.2. Leti,j € {1,2}, i # j and on the sets {u € C,(R) : u(0) =
0} and C,(R) the inequalities (1.1) and

(=17 [F(w)(t) + Lr(w)(t) = L2(u)(t)] sgnu(0) > —q(t) for t€ R (1.13)

be fulfilled, respectively, where ¢ € Ly,(Ry), and €1, € Pu,(R) satisfy the

conditions (1.2;) and (1.3;). Let, moreover, there existy € C(]0,w];]0, +00])

such that
(=14 (t) = Lio()(t) + Lio(1)(t)  for t €]0,w], (1.14)
(2= i)w) — (i — 1)) < 1. (1.15)

Then the equation (0.1) has at least one w-periodic solution.
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Remark 1.2. Theorem 1.2 is nonimprovable in this sense that the inequal-
ity (1.15) cannot be replaced by the inequality

Y((2=dw) —v((i - Dw) < 1+e¢, (1.16)

no matter how small € > 0 would be (see Example 4.2).
Furthermore, neither one of the strict inequalities in (1.2;) and (1.3;) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.2. Let o € {—1,1} and on the set R™! the inequalities

O'[g(t,l’o,l'l,...,Zn)+zpk(t)xk] Sgn Ty Z 7‘]@) fOT’ te R7 (117)
k=

[ V)

olg(t, x0,0,...,2,) + Zpk(t)a?k] sgnxg < q(t) for t€R (1.18)

hold, where py € L, (R), k =2,n. Let, moreover, either
(Hs)

Z/[pk(s)]+ds <1, k=2 < Z/[pk(s)]_ds, (1.19)

> /[pm(i)]_dg ds <1, (1.20)

kE=2n  for t€]0,w], (1.21)

pr(t) <0 k=2n for teR, (1.22)
n Hio(t)

Z / Ipk(s)|ds < % i=2,n  for te€j0,wl. (1.23)
k=2

Then the equation (0.2) with py =0 has at least one w-periodic solution.
Theorem 1.3. Leti,j € {1,2}, i # j, and on the set C,(R) the inequality
(=17 [F(u)(t) = f(0)(t) + a(u —v)(t) =
—lo(u—v)(t)] sen(u(t) —v(t)) <0 for t€R (1.24)

(t)
hold, where £1,4> € P,(R) satisfy the conditions (1.2;) and (1.3;). Let,

moreover, for any x € [0,w] there exist v, € C([z, x4 w];]0, +00[) such that
the inequalities (1.4) and (1.4) are fulfilled. Then the equation (0.1) has a
unique w-periodic solution.
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Remark 1.3. Theorem 1.3 is nonimprovable in this sense that the inequal-
ity (1.4) cannot be replaced by the inequality (1.6), no matter how small
e > 0 would be (see Example 4.1).

Furthermore, neither one of the strict inequalities in (1.2;) and (1.3;) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.3. Let o € {—1,1} and on the set R™! the inequality

U[g(t,l‘Q,Il,. "7x71) _g(t7y05y17" 7y71) +

+ Zpk(t)(xk —yr)]sgn(zo —yo) <0 for t € R, (1.25)
k=0

be fulfilled, where the functions px € L,(R), k = 0,n, satisfy either the
conditions (1.8)~(1.10) or the conditions (1.11) and (1.12) ((1.11") resp.).
Then the equation (0.2) has a unique w-periodic solution.

Theorem 1.4. Let i,j € {1,2}, i # j, and on the sets {u € C,(R) :
u(0) = 0} and C,(R) the inequalities (1.24) and

(=17 [F(w)(t) = f(0)(t) + a(u —v)(t) —
—Lly(u —v)(t)] sgn(u(0) —v(0)) >0 for t€R (1.26)

hold, respectively, where £1,02 € P,(R) satisfy the conditions (1.2;) and
(1.3;). Let, moreover, there exist v € C([0,w];]0,+00[) such that the in-
equalities (1.14) and (1.15) are fulfilled. Then the equation (0.1) has a
unique w-periodic solution.

Remark 1.4. Theorem 1.4 is nonimprovable in this sense that the inequal-
ity (1.15) cannot be replaced by the inequality (1.16), no matter how small
e > 0 would be (see Example 4.2).

Furthermore, neither one of the strict inequalities in (1.2;) and (1.3;) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.4. Let o € {—1,1} and on the set R"™! the inequalities

J[g(ta‘TO;mla' "7xn) 7g(tay0ay17" 7yn) +

n

+Zpk(t)(xk —yr)]sgn(zy —y1) >0 for t€R, (1.27)
k=2

J[g(ta‘TOaOa"'axn) 7g(tay0703' 7yn) +

n

+ Zpk(t)(xk —yk)]sen(zo —yo) <0 for t€R (1.28)
k=2

be fulfilled, where the functions pr. € Ly,(R), k = 2,n, satisfy either the
conditions (1.19)—(1.21) or (1.22) and (1.23). Then the equation (0.2) with
w1 =0 has a unique w-periodic solution.
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2. AUXILIARY PROPOSITIONS

First we formulate in a suitable for us form two lemmas from [4] and [19],
respectively.

Lemma 2.1. Leta € [0,w[, £ : C([a, a4w]; R) — L(a,a+w[; R) be a linear
bounded operator transforming C([a,a+ w]; R4) into L(Ja,a +w[; Ry). Let,
moreover, there exist a function v € C([a, a + w];]0, +00[) such that

Yty i) for telaatwl
Then for any g € L(Ja,a + w[; R) the Cauchy problem
(1) = Lu)(t) +g(t),  ula) =0
has a unique solution' and, moreover, the inequalities
v(t) >0, V() >0 for t€la,a+w|
are fulfilled whenever the functionv € é([a, a+w); R) satisfies the conditions
V' (t) > L) (t)  for t € la,a+wl, v(a) > 0.

Lemma 2.2. Let there exist a positive number p and an operator { &
L, (R) such that the homogeneous equation

u'(t) + L(u)(t) =0 (2.1)

has only the trivial w-periodic solution and for every X\ €]0, 1] an arbitrary
w-periodic solution of the equation

/() + £(u)(t) = ALf (u)(t) + €(u)(t)] (2.2)
admits the estimate
lullc, < p. (2:3)
Then the equation (0.1) has at least one w-periodic solution.

Definition 2.1. We say that the operator £ € L, (R) belongs to the set A
i € {1,2}, if there exists a positive number r such that for any q € L,(Ry)
every function u € C,(R) satisfying the inequality

(=) () 4+ £(w) (t)] sgnu(t) < q(t) for t € R, (2.4)
admits the estimate

lulle, < rllallz.- (2.5)

1Under a solution of this problem we understand a function u € 5([a,a + w]; R)
satisfying the corresponding equation almost everywhere in Ja,a + w[ and the initial
condition.
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Definition 2.2. We say that the operator £ € L, (R) belongs to the set Bl
i € {1,2}, if there exists a positive number r such that for any q¢ € L,(Ry)
every function u € C,(R) satisfying the inequalities

(=)' (t) 4+ £(u)(t)] sgnu(0) > —q(t) for te R if u(0)#0
and

(=1)" 1 [u! (t) 4 £(u)(t)] sgnu(t) < q(t) for te R if u(0)=0,
admits the estimate (2.5).

Lemma 2.3. Let i € {1,2} and there exist £ € A’ and q € L,(R;) such
that for any u € C,(R) the inequality
(D)™ f(w)(@) + L) ()] sgnu(t) < q(t)  for te R (2:6)
is fulfilled. Then the equation (0.1) has at least one w-periodic solution.

Proof. First note that due to the condition ¢ € A!, the homogeneous
equation (2.1) has only a trivial w-periodic solution.
Let r be the number appearing in Definition 2.1. Put

p=rlqlL,-

Now assume that u is an w-periodic solution of the equation (2.2) for
some A €]0,1[. Then due to (2.6) u satisfies the differential inequality (2.4).
Hence by the condition £ € A%, and the definition of the number p we get
the estimate (2.3).

Since p depends neither on uw nor on A, from Lemma 2.2 it follows that
the equation (0.1) has at least one w-periodic solution. [

Lemma 2.4. Let i € {1,2} and there exist £ € B!, and q € L,(Ry) such
that on the sets {u € Cy,(R) : u(0) = 0} and C,,(R) the inequalities

(D)™ [f(u)(t) + £(u) ()] sgnu(t) < q(t)  for t€R
and
(D)™ f(u)(t) + L(u)(t)] sgnu(0) > —q(t)  for teR

are fulfilled, respectively. Then the equation (0.1) has at least one w-periodic
solution.

This lemma can be proved analogously to Lemma 2.3.

Lemma 2.5. Let i € {1,2} and there exist £ € A, and q € L,(Ry) such
that for any uy, € C,(R), k = 1,2, the inequality

(=D [f(ur)(t) — flu2)(t) +
+0(ur — u2)(t)] sgn(ui(t) —ua(t)) <0 for te R (2.7)

is fulfilled. Then the equation (0.1) has a unique w-periodic solution.
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Proof. From (2.7) it follows that the operator f for any u € C,,(R) satisfies
the inequality (2.6), where ¢(t) = |f(0)(¢)| for ¢ € R. Consequently, the
assumptions of Lemma 2.3 are satisfied and this guarantees that the equa-
tion (0.1) has at least one w-periodic solution. It remains to show that the
equation (0.1) has at most one w-periodic solution.

Let u; and wuy be arbitrary w-periodic solutions of the equation (0.1).
Put u(t) = ui(t) — ua(t) for t € R. Then by (2.7) we get

(—1)" (! (t) 4+ L(u)(t)) sgnu(t) <0 for t€ R.

This together with the condition ¢ € A’ results in u = 0. Consequently,
U =ug. O

The following lemma can be proved analogously.

Lemma 2.6. Let i € {1,2} and there exist { € B, and q € L,(Ry) such
that for any u, € C,(R), k = 1,2, the inequalities

(=D [f (un)(t) — flu2)(t) +
+o(uy — u2)(t)]sgn(ui(t) —ua2(t)) <0 for t€ R if u1(0) =usz(0)
and
(=D (wa)(t) = fluz)(t) +
+l(u1 —u2)(t)] sgn(ui(0) —uz(0)) >0 for t€ R if u1(0) # uz2(0)
are fulfilled. Then the equation (0.1) has a unique w-periodic solution.

2.1. On the sets Al and Bi,, i=1,2.

Lemma 2.7. Let i,j € {1,2}, i # j, £1,02 € P,(R), and the conditions
(1.2;) and (1.3;) be fulfilled. Then there exists a number ro > 0 such that

for any o € {—1,1} and q¢ € L,(Ry) every function u € C., (R) satisfying
the inequality (2.4) with ¢ = €1 — {5 and the condition

ou(t) >0 for teR
admits the estimate
[ulle. < rollgllz.. (2.8)

Proof. We will prove the lemma for i = 1 and j = 2. The case i = 2 and
J =1 can be proved analogously.
Let u € C,,(R) satisfy the assumptions of the lemma. Put

m = min{|u(t)] : 0 < ¢ < w} (2.9)
and choose t1 € [0,w][, t2 €]t1,t1 + w|[ such that

lut)] =m,  |u(t)] = [lullc. (2.10)
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Taking into account that £1, ¢ € P,(R), from (2.4) it immediately follows
that

()| < l|ulle,b(1)(t) — mb(1)(¢) +q(t)  for te R, (2.11)

The integration of this inequality from ¢; to t5 in view of (2.9) and (2.10)
yields

lullc, —m < ulle,lle2(D@)l. + llgllL.- (2.12)

On the other hand, integrating (2.11) from 0 to w, we obtain

mlbW)r. < llullo €Dz, + llallz. - (2.13)

Now from (2.12) and (2.13), on account of (1.32), we get the estimate (2.8),

where
L+ 6Dz

T M (= (M)lz) — [z,

Lemma 2.8. Let i,j € {1,2}, i # j, and £1,¢2 € P,(R) satisfy the con-
ditions (1.2;) and (1.3;). Let, moreover, for any = € [0,w| there exist
Ye € C([z, 2 + w];]0,400]) such that the inequalities (1.4) and (1.4) are
fulfilled. Then

To O

b1 —4ly € Ai)

Proof. We will prove the lemma for ¢ = 1. The case ¢ = 2 can be proved
analogously. B
Let ¢ € L,(R+), and u € C,(R) satisfy the inequality

[u'(t) + €1 (u)(t) — L2(u)(t)] sgnu(t) < q(t) for te R. (2.14)

Show that the estimate (2.5) is valid with

r=r0+$(1 - ||£2(1)||Lw)_1, (2.15)

where r( is the number appearing in Lemma 2.7 and

- 3
7 = max
{ 1= 1(ve(@ +w) = 72(2))?
If the function u does not change sign, then the validity of the estimate

(2.5) follows from Lemma 2.7.
Suppose now that u changes sign. Put

:ogxgw}. (2.16)

m=—min{u(t) : 0 <t <w}, M=max{u(t):0<t<w} (2.17)
and choose tp,, trr, x € [0,w[ such that

u(ty,) = —m, u(tyr) = M, u(z) = 0. (2.18)
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According to (2.14), it is clear that

' (t) = logp(u)(t) — l1o(u)(t) + he(t)  for z<t<z4w, (2.19)
ha(t) sgnu(t) < q(t) for v <t<zr+w, (2.20)

where
ha(t) = ' (8) + £14(w)(t) — loz(u)(2) for x <t<z+w.
From (2.19), in view of (2.20) we obtain
WO} < (W] )(0) + Lra(fu] )(E) +4t) Tor & <t<z+w, (221)
[w(t)]” < log([u]=)(t) + 1o ([u]£) () + q(t) for z<t<z4w. (2.22)

Denote by a.., 0:, and v,, respectively, the solutions of the problems

o () = Lax () (1) + %ﬁu([uh)(t), ag () =0, (2.23)
B (t) = Lax (Ba) () + %ﬁu([u]f)(t), Be(z) =0, (2.24)
vl () = oz (va)(t) + q(t), vz(x) = 0. (2.25)

The existence and uniqueness of these solutions are guaranteed by the con-
dition (1.4) and Lemma 2.1. From (1.4), (2.23)—(2.25) we get

(mBe(t) + v (t) — [w(t)]1+) > lox(mBe + vy — [u]4)(t) for z<t<z+ W,
(Mo (t) + v (t) — [u(t)] =) > lox(May + v, — [u]-)(t) for z<t<z+w,
(V2 (t) — ax(t) — ﬂm(t))/ > low(Yo — i — B2)(t) for z<i<z+w.

The last inequalities, according to Lemma 2.1, imply

[u®)]+ < mB(t) +vy(t) for z<t<z+w, (2.26)

[u(®)]- < Mag(t) +vy(t) for z<t<z+w, (2.27)

v (t) > (aw(t) + Be(t)) for x <t<z+w. (2.28)

From (2.26) and (2.27), in view of (2.18) and the fact that the functions

g, B, and v, are nondecreasing it immediately follows

M = [u(tan)]s <mBa(s +) +v(z + ),
m = [u(tm)]- <az(z+w) + v, (z + w).

Hence we get

M1 —az(z+w)be(z+w)) < (Bolz+w)+ v (x+w), (2.29)
m(l — az(z +w)bs(z +w)) < (ag(x+w)+ v (x +w). (2.30)

On the other hand, the integration of (2.28) from x to z + w yields

oz (T +w) + fo(r +w) < 2@ +w) = 12(2).
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From (2.29) and (2.30), on account of the last inequality, (1.4), and the fact
that 4o, (2 + w) Bz (7 + w) < (z (2 + w) + Bz (7 + w))? we obtain

M < [1- i(%(w +w) = 7(@)’] 7 1+ e (2 + w))ve (@ +w),

m < (1= 0@+ @) = @)+ e+ @) o).

Consequently,
lullc, < vl +w), (2.31)

where 7 is defined by (2.16).
Now the integration of (2.25) from z to = + w together with |jvz]|c =
Vg (z + w) and ||[loz(1)||z = [|€2(1)||z,, < 1 results in

(e +w) < (1= [[(D)]2.) " gl .- (2.32)
According to (2.32), (2.31), (2.15), and (2.16), we have the estimate (2.5). O
Lemma 2.9. Let i,j € {1,2}, i # j, and ¢1,02 € P,(R) satisfy the con-

ditions (1.2;) and (1.3;). Let, moreover, there exist v € C([0,w];]0,4+00])
such that the inequalities (1.14) and (1.15) are fulfilled. Then
b1 —4ly € BZJ

Proof. We will prove the lemma for ¢ = 1 and j = 2. The case ¢ = 2 and
J =1 can be proved analogously.

First assume that u € C,(R) is such that u(0) = 0 and the inequality
(2.14) is fulfilled. Obviously, v satisfies also the inequality

[t/ (t) + L1o(w)(t) — lao(u)(t)] sgnu(t) < q(t) for 0 <t<w.(2.33)

By virtue of Lemma 2.1, (1.14), and (1.15), without loss of generality we
can assume that

Y(w) < 2. (2.34)

Therefore, according to (1.14), (2.33), (2.34), and Lemma 2.9 and Definition
2.1 in [5], there exists a number pg, not depending on u, such that

lullc. < pollglr.-
Assume now that u(0) # 0 and
[ (t) + €1 (u)(t) — lo(u)(t)] sgnu(0) > —q(t) for te R. (2.35)
Put u(t) = u(t) sgnu(0) for t € R. Due to (2.35), it is clear that
' (t) > lao(0)(t) — Lro(w)(t) — q(t)  for 0<t<w. (2.36)
Denote by v the solution of the problem
V(1) = bao(0)(D) + alt),  v(0) =0, (2.37)



97

The existence and uniqueness of v is guaranteed by (1.14) and Lemma 2.1.
Using Lemma 2.4 in [5], there exists a number p1, not depending on v, such
that

[olle < prllgllL.- (2.38)

From (1.14), (2.36), and (2.37) we find
(lalle,y(@) +v(t) + a(t) >lao(|ullc,y +v+u)(t) for 0<t<w. (2.39)

Since ||u||c,v(0) + v(0) + w(0) > 0, in view of (2.39) and Lemma 2.1 we
have

~

' (t) > —|[ullc, v (t) — ' (t) for 0 <t <w. (2.40)
Put

m = —min{u(t): 0 <t <w}, M =max{u(t) : 0 <t <w}. (241)
Obviously, M > 0. Choose t1,ts € [0,w][, t1 # t2 such that
u(ty) = —m, u(ta) = M. (2.42)

First assume that m > 0. Then either M = |||, or m = ||u]lc,. If
to < t1, then the integration of (2.40) from ¢5 to ¢; in view of the fact that
the functions v and v are nondecreasing (see Lemma 2.1) yields

M +m < lulle, (v(w) =~(0) + v(w) (2.43)

and, consequently, on account of (1.15) and (2.38),

[allc, < 1 =v(w) +5(0)] v(w) < [1=v(w) +7(0)] ' prllalr,. (2.44)

If ¢; < tg, then the integration of (2.40) from 0 to ¢; and from t5 to w,
respectively, results in

m+u(0) <[[ulle, (v(t1) = 7(0)) + v(t1),
M —u(w) <[[ullc, (v(w) —7(t2)) + v(w) — v(t2).

Summing the last two inequalities and taking into account the monotonicity
of the functions v and v, we get (2.43) and, consequently, in view of (1.15)
and (2.38) we obtain the inequality (2.44).

Assume now that m < 0. Then sgnu(t) = sgnu(0) and due to (2.35) the
assumptions of Lemma 2.7 are fulfilled with i = 2, j = 1 and o = sgnu(0).
Consequently, there exists a number r(, not depending on u, such that the
estimate (2.8) holds. By virtue of all the estimates obtained above, it can
be easily seen that the estimate (2.5) holds, where r = pg + 19 + p1(1 —
y(w) +v(0))~! does not depend on u. [
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3. PROOF OF THE MAIN RESULTS

Theorem 1.1 follows from Lemmas 2.3 and 2.8, Theorem 1.2 follows from
Lemmas 2.4 and 2.9, Theorem 1.3 follows from Lemmas 2.5 and 2.8, and
Theorem 1.4 follows from Lemmas 2.6 and 2.9.

Proof of Corollaries 1.1 and 1.3. We will prove the corollaries for the case
o = 1. The case 0 = —1 can be proved analogously.
Put

Fu)(t) = g(t; ut), u(pa (1)), upz(t), - - ulpn(t))) (3.1)

and

n

O(u)(t) = D pe(@ului(®),  L(u)(t) = —po(thu(t) (3.2)

k=1

if the hypothesis Hy are fulfilled, and put

G(u)(t) =po()ult), L)) =— pbu(u()  (3.3)
k=1

if the hypothesis Hy are fulfilled. Then the condition (1.7) (the condition
(1.25)) can be written as (1.1) (as (1.24)), and the conditions (1.9) and
(1.12) can be written as (1.22), (1.32). By Theorem 1.1 (Theorem 1.3),
to prove Corollary 1.1 (Corollary 1.3) it is sufficient to show that for each
z € [0,w[ there exists a function v, € C([z,z + w];]0, 400|) satisfying the
inequalities (1.4) and (1.4) with ¢ =1 and j = 2.

Let the hypothesis H; be fulfilled. Put

vz (t) = E—i—/exp —/|p0(§)|d§ Zpk(s)ds X
x T k=1

t
X exp /|p0(s)|d8 for t €lx, x4+ wl, (3.4)

where € > 0 is such that

w
n

/exp /|p0(§)|d§ Zpk(s)ds<2fs exp /|p0(s)|ds —11.(3.5)
0 s k=1 0
By (3.2), (3.4), and (3.5), it is clear that v,(x + w) — 7, (z) < 2 and

n

Vo) = [po®)7a(t) + D pr(t) = Loz (v2) () + 12 (1)(2).

k=1

Therefore the conditions (1.4) and (1.4) with ¢ = 1 and j = 2 are fulfilled.
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Now suppose that the hypothesis Hs hold. By the latter inequality in
(1.12), we can choose € > 0 such that

/ polds <2 (1-% / Ipi(s)lds | — <. (3.6)
0 k=17

Put
2(1) =2 |pk(s)|ds + [ |po(s)|ds + e. (3.7)
. ;l/pk x/po €

Due to (3.6) and (3.7), it is evident that 7, is a nondecreasing function,
Yz (T + w) — 72(x) <2, and

Yolt) =2 Ipe(®)] + Ipo(t)] =

k=1

> (e (e (D) + [P0 ()] = oo (72) (1) + £12(1)(2).
k=1

Therefore the conditions (1.4) and (1.4) with ¢ = 1 and j = 2 are ful-
filled. O

Proof of Corollaries 1.2 and 1.4. We will prove the corollaries for the case
o = 1. Let f be the operator defined by the equality (3.1), where u; = 0.
Put

O(u)(t) = D Ik ru(ue(t),  La(u)(t) = D lpe(D)]-u(u(t)  (3.8)

k=2 2

if the hypothesis Hs are fulfilled, and put

() =0, L)) = |pu(t)|u(ux(t) (3.9)
k=2

if the hypothesis Hy are fulfilled. Then the conditions (1.17) and (1.18)
(the conditions (1.27) and (1.27)) can be written as (1.13) and (1.1), resp.
(as (1.26) and (1.24), resp.) with ¢ = 1, j = 2. By Theorem 1.2 (Theorem
1.4), to prove Corollary 1.2 (Corollary 1.4) it is sufficient to show that there
exists a function v € C([0,w];]0, +-00[) satisfying the inequalities (1.14) and
(1.15) with ¢ = 1 and j = 2.
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Let the hypothesis Hs be fulfilled. Put

&+Z/m wm(};ﬁ% ))x

k=27

X exp (Z/pk ) for ¢ € [0,w], (3.10)

k=27

where € > 0 is such that

;Jm wm(njm )@<
<l-¢ (exp (io/w[pk ) 1) . (3.11)

By (3.8), (3.10), (3.11), and (1.21) it is clear that y(w) —v(0) < 1 and

023 k] A (ro(0) +

k=2

k
Therefore the conditions (1.14) and (1.15) with ¢ = 1 and j = 2 are fulfilled.
Let now the hypothesis H4 hold. Put

w(gf)

k=27

l\?

NIE

[ (0)]+ = L20(7)(£) + L20(1)(D).-

||
N

By (1.22), (1.23), (3.9), and (3.12) we obtain y(w) —v(0) < 1 and

£) = > kB (ro (1) = Lao(7) (D).

k=2

n
Therefore the conditions (1.14) and (1.15) with ¢ = 1 and j = 2 are ful-
filled. O
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4. EXAMPLES

Example 4.1. Let ¢ > 0, § €]0, 1 be such that § < e, w =4,

Y

) 3 for t€ v, dv+2—SJU[dv +3,4v +4]
(1) =
1 for t€]4y—|—2—%,41/+3[

Y

(t) = 1 for t€ldv,dv+1[UMdr +2 — $,4v + 3[UJdv + 4 — £, 4v + 4]
P = 0 for t€]4y—|—1,4y—|—2—g[u]4y+3,4y—|—4—%[

0 for teldv, dv+1[Uldv +2 — $,4v + 3[UMdv + 4 — 2 4v + 4]
for te€ldv+1,4v 42—
for t €ldv +3,4v +4 —

Y

N
=

-
O[S D[

IS
|
o~

where v is an integer, and put

L)) Lo, o)) Cpw(rt)  for teR,

def 2+¢
=(t) = 6
Velt) =0+ 575

/p(s)ds for z €[0,w], te€[zr,z+w].

xT

Then, obviously, the conditions (1.2;), (1.3;), and (1.4) are fulfilled for i = 1,
j =2, and

Yol +w) —72(2) =2 +¢.
On the other hand, the problem

has a nontrivial solution

t for t€[0,1]
u(t)=q¢2—t for te[1,3] .
t—4 for te[3,4]

Therefore, according to the Riesz—Schauder theory there exists ¢ € L, (R)
such that on the interval [0,w] the problem

u'(t) = —p(Wu(r(t)) — h(t)u(t) + go(t),  u(0) = u(w)
has no solution. In other words, the equation (0.1) with
FO)0) % —p(t)o(r(®) - h(t)o(t) + aolt)  for te R

has no w-periodic solution although the operator f satisfies the condition
(1.1) with g = |qo].
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This example shows that the condition (1.4) in Theorems 1.1 and 1.3
cannot be replaced by the condition

Yo+ (2 —Dw) —Yu(x+ (1 — Dw) <2+¢,
no matter how small € > 0 would be.

Example 4.2. Let € > 0 be an arbitrarily fixed number. Choose an integer
n > 1 and gy €]0, n(”n—:_ll)[ such that

1 € €
= 1 h
—= <3 (n+1)ep < 5
and put
5 1+n+ ! +1 - € ! (n+1)e t1=(Mn+1)e
= n J— _ — = , = ,
n2€0 €0 n? 0 ! 0

1
to =14 (2n + 1)eg, t3:1+(3n+1)50+g, w =2+ 2neo,

Cl<1£)t1+5, CQ<EM)1§2+617

€0 €o néeo
oo (O Do Y
néeo '

Consider the equation

Here
-1 for t€ vw,t1 +vw[ U [t3 +vw, (v + 1)w]
pt) =< L for te [ty +vw,ty +vw] ,
L for t€ [ty +vw,tz +vw]
to for t € vw,t1 +vw| U [tz +vw, (v + 1)w]
T(t) =<0 for te€t; +vw, ts+vw| ,
t1 for ¢ € [ta +vw,ts +vw]

where v is an integer. Obviously, 7o(t) = 7(t) for ¢ €]0,w[ and

o p(s)-ds [ _ 1,1
W—”-L O/[p(S)]+d5—1+n+€O+n2€O>n—1.

Further put

b)) E pO)v(r®),  L)6) = pE)o(rt)  for te R
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Define the function v as follows:

t+5 for t€[0>t1[

(t) %t +c for t e [tht?[
V(t) = n+1)e

%prq for t € [ta,ts]

t+ c3 for t e [t37w]

It is easy to verify that

V() = [p®)]+v (o) + [p(H)]-  for t€]0,w],
i.e., the inequality (1.14) is satisfied with ¢ = 1, j = 2, and
A(w) =7(0) = 1+ <.
On the other hand, equation (4.1) has a nontrivial w-periodic solution
t—ep—vw for ¢ € [pw,t1 + vw|

ut) =< —t+(2n+1)egg—wvw  for t €[t +vw,ta+vw|
t—2—(2n+1)gg —vw for t € [ta +vw, (v + 1)w)

where v is an integer. Therefore, according to the Riesz—Schauder theory
there exists qo € L, (R) such that the equation

() = p(t)u(r(t)) + qo(t)
has no w-periodic solution. In other words, the equation (0.1) with

F)@) L pt)u(r(t) + qo(t)  for t€R

has no w-periodic solution although the operator f satisfies the conditions
(1.1) and (1.13) with g = |qo].

This example shows that the condition (1.15) in Theorems 1.2 and 1.4
cannot be replaced by the condition

N2 = w) =7((i = Dw) <1 +¢,

no matter how small € > 0 would be.
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