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Abstract. Nonimprovable effective sufficient conditions for the existence
and uniqueness of an ω-periodic solution of the equation

u′(t) = f(u)(t),

where f : Cω(R) → Lω(R) is a continuous operator satisfying the Carathé-
odory conditions, are established.
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Introduction

Consider the problem on the existence and uniqueness of an ω-periodic
solution of the scalar functional differential equation

u′(t) = f(u)(t), (0.1)

where f : Cω(R) → Lω(R) is a continuous operator. In the case, where f

is a Volterra operator, the problem has already been studied enough (see
[1–3,6–25] and references therein). There are also a lot of interesting results
concerning the general boundary value problems even in the case, where f

is not a Volterra operator (see, e.g., [6–10,14,16–21,24]). However, in that
case only a few effective sufficient conditions of the existence and uniqueness
of ω-periodic solutions are known. In the present paper, we try to fill this
gap in a certain way. More precisely, below we establish the nonimprovable
in some sense existence and uniqueness conditions.

Along with (0.1) we will consider an important special case, where (0.1)
is the equation with deviating arguments, i.e.,

u′(t) = g(t, u(t), u(µ1(t)), . . . , u(µn(t))), (0.2)

where the function g : R×Rn+1 → R is ω-periodic with respect to the first
variable and satisfies the Carathéodory conditions, and µk : R → R k = 1, n

are measurable functions.

Throughout the paper, the following notation and terms are used.

R is the set of real numbers, R+ = [0, +∞[.

[x]+ = 1
2 (|x|+ x), [x]− = 1

2 (|x| − x).

C([a, a + ω]; R) is the Banach space of continuous functions u : [a, a +
ω] → R with the norm

‖u‖C = max{|u(t)| : a ≤ t ≤ a + ω}.

Cω(R) is the Banach space of continuous ω-periodic functions u : R → R

with the norm

‖u‖Cω
= max{|u(t)| : 0 ≤ t ≤ ω}.

Cω(R+) = {u ∈ Cω(R) : u(t) ≥ 0 for t ∈ R}.

C̃ω(R) is the set of absolutely continuous ω-periodic functions u : R → R.

C̃(I ; D), where I ⊂ R, D ⊆ R, is the set of absolutely continuous func-
tions u : I → D.

L(]a, a + ω[; R) is the Banach space of Lebesgue integrable functions
p :]a, a + ω[→ R with the norm

‖p‖L =

a+ω∫

a

|p(s)|ds.
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Lω(R) is the Banach space of ω-periodic Lebesgue integrable functions
p : R → R with the norm

‖p‖Lω
=

ω∫

0

|p(s)|ds.

Lω(R+) = {p ∈ Lω(R) : p(t) ≥ 0 for almost all t ∈ R}.
Lω(R) is the set of linear bounded operators ` : Cω(R) → Lω(R) such

that

sup{|`(v)(·)| : ‖v‖Cω
= 1} ∈ Lω(R+).

Pω(R) is the set of linear operators ` ∈ Lω(R) transforming Cω(R+) into
Lω(R+).

It is obvious that for any x ∈ [0, ω[ the operator ` ∈ Pω(R) uniquely
defines the corresponding operator

˜̀
x : {u ∈ C([x, x + ω]; R) : u(x) = u(x + ω)} → L(]x, x + ω[; R).

In the sequel, we will assume that the linear bounded operator

`x : C([x, x + ω]; R) → L(]x, x + ω[; R)

is the extension of the operator ˜̀
x. Furthermore we will assume that `x is

a nonnegative operator, i.e., it transforms C([x, x + ω]; R+) into L(]x, x +
ω[; R+).

In the case

`(v)(t)
def
=

n∑

k=0

pk(t)v(τk(t)),

we will assume that
n∑

k=0

|pk(t)| 6≡ 0 and

`1x(v)(t)
def
=

n∑

k=0

[pk(t)]+v(τkx(t)), `2x(v)(t)
def
=

n∑

k=0

[pk(t)]−v(τkx(t)),

where τkx(t) = τk(t) − ωηkx(t) for t ∈]x, x + ω[, and ηkx(t) is the integer
part of the number 1

ω
(τk(t)− x).

We say that the operator f : Cω(R) → Lω(R) satisfies the Carathéodory
conditions if it is continuous and

f∗r (·) = sup{|f(u)(·)| : ‖u‖C ≤ r} ∈ Lω(R+) for r > 0.

We say that the function g :R×Rn+1→R satisfies the Carathéodory con-
ditions if g(·, x0, x1, . . . , xn) :R→R is measurable for all (x0, x1, · · · , xn)∈
Rn+1, g(t, ·, . . . , ·) : Rn+1 → R is continuous for almost all t ∈ R, and

g∗r(·) = sup{|g(·, x0, x1, . . . , xn)| : |xi| ≤ r, i = 0, n} ∈ Lω(R+) for r > 0.
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An absolutely continuous function u : R → R is said to be an ω-periodic
solution of the equation (0.1) if it satisfies this equation almost everywhere
in R and

u(t) = u(t + ω) for t ∈ R.

Everywhere in what follows, we will assume that the operator f :Cω(R)→
Lω(R) and the function g : R×Rn+1 → R satisfy the Carathéodory condi-
tions.

The paper is organized in the following way. In the Section 1 there are
established the main results. Sections 2, 3, and 4 are devoted to auxil-
iary propositions, proofs of the main results, and examples verifying their
optimality, respectively.

1. Existence and Uniqueness Theorems

Theorem 1.1. Let i, j ∈ {1, 2}, i 6= j, and on the set Cω(R) the inequality

(−1)j [f(u)(t) + `1(u)(t)− `2(u)(t)] sgn u(t) ≤ q(t) for t ∈ R (1.1)

hold, where q ∈ Lω(R+), `1, `2 ∈ Pω(R), and

‖`j(1)‖Lω
< 1, (1.2j)

‖`j(1)‖Lω

1− ‖`j(1)‖Lω

< ‖`i(1)‖Lω
. (1.3j)

Let, moreover, for any x ∈ [0, ω[ there exist γx ∈ C̃([x, x + ω]; ]0, +∞[)
satisfying the conditions

(−1)jγ′x(t) ≥ `jx(γx)(t) + `ix(1)(t) for t ∈]x, x + ω[, (1.4)

γx(x + (2− i)ω)− γx(x + (i− 1)ω) < 2. (1.5)

Then the equation (0.1) has at least one ω-periodic solution.

Remark 1.1. Theorem 1.1 is nonimprovable in this sense that the inequal-
ity (1.4) cannot be replaced by the inequality

γx(x + (2− i)ω)− γx(x + (i− 1)ω) ≤ 2 + ε, (1.6)

no matter how small ε > 0 would be (see Example 4.1).
Furthermore, neither one of the strict inequalities in (1.2j) and (1.3j) can

be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.1. Let σ ∈ {−1, 1} and on the set Rn+1 the inequality

σ[g(t, x0, x1, . . . , xn) +
n∑

k=0

pk(t)xk ] sgnx0 ≤ q(t) for t ∈ R (1.7)

hold, where pk ∈ Lω(R), k = 0, n. Let, moreover, one of the following items

be fulfilled:
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(H1)

σpk(t) ≥ 0, k = 1, n, σp0(t) ≤ 0, for t ∈ R, (1.8)
ω∫

0

|p0(s)|ds < 1,

∫ ω

0
|p0(s)|ds

1−
∫ ω

0 |p0(s)|ds
<

n∑

k=1

ω∫

0

|pk(s)|ds, (1.9)

n∑

k=1

ω∫

0

|pk(s)| exp


σ

1+σ

2
ω∫

s

|p0(ξ)|dξ


 ds < 2; (1.10)

(H2)

σpk(t) ≤ 0, k = 1, n, σp0(t) ≥ 0, for t ∈ R, (1.11)

and either

n∑

k=1

ω∫

0

|pk(s)|ds < 1,

n∑
k=1

∫ ω

0 |pk(s)|ds

1−
n∑

k=1

∫ ω

0
|pk(s)|ds

<

ω∫

0

|p0(s)|ds < 2


1−

n∑

k=1

ω∫

0

|pk(s)|ds




(1.12)

or

ω∫

0

|p0(s)|ds < 1,

∫ ω

0
|p0(s)|ds

1−
∫ ω

0
|p0(s)|ds

<

n∑

k=1

ω∫

0

|pk(s)|ds < 2


1−

ω∫

0

|p0(s)|ds


 .

(1.11′)

Then the equation (0.2) has at least one ω-periodic solution.

Theorem 1.2. Let i, j ∈ {1, 2}, i 6= j and on the sets {u ∈ Cω(R) : u(0) =
0} and Cω(R) the inequalities (1.1) and

(−1)j [f(u)(t) + `1(u)(t)− `2(u)(t)] sgn u(0) ≥ −q(t) for t ∈ R (1.13)

be fulfilled, respectively, where q ∈ Lω(R+), and `1, `2 ∈ Pω(R) satisfy the

conditions (1.2i) and (1.3i). Let, moreover, there exist γ ∈ C̃([0, ω]; ]0, +∞[)
such that

(−1)jγ′(t) ≥ `j0(γ)(t) + `i0(1)(t) for t ∈]0, ω[, (1.14)

γ((2− i)ω)− γ((i− 1)ω) < 1. (1.15)

Then the equation (0.1) has at least one ω-periodic solution.



89

Remark 1.2. Theorem 1.2 is nonimprovable in this sense that the inequal-
ity (1.15) cannot be replaced by the inequality

γ((2− i)ω)− γ((i− 1)ω) ≤ 1 + ε, (1.16)

no matter how small ε > 0 would be (see Example 4.2).
Furthermore, neither one of the strict inequalities in (1.2i) and (1.3i) can

be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.2. Let σ ∈ {−1, 1} and on the set Rn+1 the inequalities

σ[g(t, x0, x1, . . . , xn) +
n∑

k=2

pk(t)xk ] sgnx1 ≥ −q(t) for t ∈ R, (1.17)

σ[g(t, x0, 0, . . . , xn) +

n∑

k=2

pk(t)xk ] sgnx0 ≤ q(t) for t ∈ R (1.18)

hold, where pk ∈ Lω(R), k = 2, n. Let, moreover, either

(H3)

n∑

k=2

ω∫

0

[pk(s)]+ds < 1,

n∑
k=2

∫ ω

0 [pk(s)]+ds

1−
n∑

k=2

∫ ω

0
[p0(s)]+ds

<

n∑

k=2

ω∫

0

[pk(s)]−ds, (1.19)

n∑

k=2

ω∫

0

[pk(s)]+ exp




n∑

m=2

ω∫

s

[pm(ξ)]−dξ



 ds < 1, (1.20)

(t− µk0(t))[pk(t)]− ≥ 0 k = 2, n for t ∈]0, ω[, (1.21)

or

(H4)

pk(t) ≤ 0 k = 2, n for t ∈ R, (1.22)

n∑

k=2

µi0(t)∫

t

|pk(s)|ds ≤
1

e
i = 2, n for t ∈]0, ω[. (1.23)

Then the equation (0.2) with µ1 ≡ 0 has at least one ω-periodic solution.

Theorem 1.3. Let i, j ∈ {1, 2}, i 6= j, and on the set Cω(R) the inequality

(−1)j [f(u)(t)− f(v)(t) + `1(u− v)(t)−

−`2(u− v)(t)] sgn(u(t)− v(t)) ≤ 0 for t ∈ R (1.24)

hold, where `1, `2 ∈ Pω(R) satisfy the conditions (1.2j) and (1.3j). Let,

moreover, for any x ∈ [0, ω[ there exist γx ∈ C̃([x, x+ω]; ]0, +∞[) such that

the inequalities (1.4) and (1.4) are fulfilled. Then the equation (0.1) has a

unique ω-periodic solution.
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Remark 1.3. Theorem 1.3 is nonimprovable in this sense that the inequal-
ity (1.4) cannot be replaced by the inequality (1.6), no matter how small
ε > 0 would be (see Example 4.1).

Furthermore, neither one of the strict inequalities in (1.2j) and (1.3j) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.3. Let σ ∈ {−1, 1} and on the set Rn+1 the inequality

σ[g(t, x0, x1, . . . , xn)− g(t, y0, y1, . . . , yn) +

+

n∑

k=0

pk(t)(xk − yk)] sgn(x0 − y0) ≤ 0 for t ∈ R, (1.25)

be fulfilled, where the functions pk ∈ Lω(R), k = 0, n, satisfy either the

conditions (1.8)–(1.10) or the conditions (1.11) and (1.12) ((1.11′) resp.).
Then the equation (0.2) has a unique ω-periodic solution.

Theorem 1.4. Let i, j ∈ {1, 2}, i 6= j, and on the sets {u ∈ Cω(R) :
u(0) = 0} and Cω(R) the inequalities (1.24) and

(−1)j [f(u)(t)− f(v)(t) + `1(u− v)(t)−

−`2(u− v)(t)] sgn(u(0)− v(0)) ≥ 0 for t ∈ R (1.26)

hold, respectively, where `1, `2 ∈ Pω(R) satisfy the conditions (1.2i) and

(1.3i). Let, moreover, there exist γ ∈ C̃([0, ω]; ]0, +∞[) such that the in-

equalities (1.14) and (1.15) are fulfilled. Then the equation (0.1) has a

unique ω-periodic solution.

Remark 1.4. Theorem 1.4 is nonimprovable in this sense that the inequal-
ity (1.15) cannot be replaced by the inequality (1.16), no matter how small
ε > 0 would be (see Example 4.2).

Furthermore, neither one of the strict inequalities in (1.2i) and (1.3i) can
be replaced by the nonstrict one (see Examples 3.2 and 3.3 in [8]).

Corollary 1.4. Let σ ∈ {−1, 1} and on the set Rn+1 the inequalities

σ[g(t, x0, x1, . . . , xn)− g(t, y0, y1, . . . , yn) +

+

n∑

k=2

pk(t)(xk − yk)] sgn(x1 − y1) ≥ 0 for t ∈ R, (1.27)

σ[g(t, x0, 0, . . . , xn)− g(t, y0, 0, . . . , yn) +

+

n∑

k=2

pk(t)(xk − yk)] sgn(x0 − y0) ≤ 0 for t ∈ R (1.28)

be fulfilled, where the functions pk ∈ Lω(R), k = 2, n, satisfy either the

conditions (1.19)–(1.21) or (1.22) and (1.23). Then the equation (0.2) with

µ1 ≡ 0 has a unique ω-periodic solution.
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2. Auxiliary Propositions

First we formulate in a suitable for us form two lemmas from [4] and [19],
respectively.

Lemma 2.1. Let a ∈ [0, ω[, ˆ̀ : C([a, a+ω]; R) → L(]a, a+ω[; R) be a linear

bounded operator transforming C([a, a+ω]; R+) into L(]a, a+ω[; R+). Let,

moreover, there exist a function γ ∈ C̃([a, a + ω]; ]0, +∞[) such that

γ′(t) ≥ ˆ̀(γ)(t) for t ∈ ]a, a + ω[.

Then for any g ∈ L(]a, a + ω[; R) the Cauchy problem

u′(t) = ˆ̀(u)(t) + g(t), u(a) = 0

has a unique solution1 and, moreover, the inequalities

v(t) ≥ 0, v′(t) ≥ 0 for t ∈ ]a, a + ω[

are fulfilled whenever the function v ∈ C̃([a, a+ω]; R) satisfies the conditions

v′(t) ≥ ˆ̀(v)(t) for t ∈ ]a, a + ω[, v(a) ≥ 0.

Lemma 2.2. Let there exist a positive number ρ and an operator ` ∈
Lω(R) such that the homogeneous equation

u′(t) + `(u)(t) = 0 (2.1)

has only the trivial ω-periodic solution and for every λ ∈]0, 1[ an arbitrary

ω-periodic solution of the equation

u′(t) + `(u)(t) = λ[f(u)(t) + `(u)(t)] (2.2)

admits the estimate

‖u‖Cω
≤ ρ. (2.3)

Then the equation (0.1) has at least one ω-periodic solution.

Definition 2.1. We say that the operator ` ∈ Lω(R) belongs to the set Ai
ω,

i ∈ {1, 2}, if there exists a positive number r such that for any q ∈ Lω(R+)

every function u ∈ C̃ω(R) satisfying the inequality

(−1)i+1[u′(t) + `(u)(t)] sgnu(t) ≤ q(t) for t ∈ R, (2.4)

admits the estimate

‖u‖Cω
≤ r‖q‖Lω

. (2.5)

1Under a solution of this problem we understand a function u ∈ C̃([a, a + ω];R)
satisfying the corresponding equation almost everywhere in ]a, a + ω[ and the initial
condition.



92

Definition 2.2. We say that the operator ` ∈ Lω(R) belongs to the set Bi
ω,

i ∈ {1, 2}, if there exists a positive number r such that for any q ∈ Lω(R+)

every function u ∈ C̃ω(R) satisfying the inequalities

(−1)i+1[u′(t) + `(u)(t)] sgnu(0) ≥ −q(t) for t ∈ R if u(0) 6= 0

and

(−1)i+1[u′(t) + `(u)(t)] sgnu(t) ≤ q(t) for t ∈ R if u(0) = 0,

admits the estimate (2.5).

Lemma 2.3. Let i ∈ {1, 2} and there exist ` ∈ Ai
ω and q ∈ Lω(R+) such

that for any u ∈ Cω(R) the inequality

(−1)i+1[f(u)(t) + `(u)(t)] sgnu(t) ≤ q(t) for t ∈ R (2.6)

is fulfilled. Then the equation (0.1) has at least one ω-periodic solution.

Proof. First note that due to the condition ` ∈ Ai
ω, the homogeneous

equation (2.1) has only a trivial ω-periodic solution.
Let r be the number appearing in Definition 2.1. Put

ρ = r‖q‖Lω
.

Now assume that u is an ω-periodic solution of the equation (2.2) for
some λ ∈]0, 1[. Then due to (2.6) u satisfies the differential inequality (2.4).
Hence by the condition ` ∈ Ai

ω and the definition of the number ρ we get
the estimate (2.3).

Since ρ depends neither on u nor on λ, from Lemma 2.2 it follows that
the equation (0.1) has at least one ω-periodic solution.

Lemma 2.4. Let i ∈ {1, 2} and there exist ` ∈ Bi
ω and q ∈ Lω(R+) such

that on the sets {u ∈ Cω(R) : u(0) = 0} and Cω(R) the inequalities

(−1)i+1[f(u)(t) + `(u)(t)] sgnu(t) ≤ q(t) for t ∈ R

and

(−1)i+1[f(u)(t) + `(u)(t)] sgnu(0) ≥ −q(t) for t ∈ R

are fulfilled, respectively. Then the equation (0.1) has at least one ω-periodic

solution.

This lemma can be proved analogously to Lemma 2.3.

Lemma 2.5. Let i ∈ {1, 2} and there exist ` ∈ Ai
ω and q ∈ Lω(R+) such

that for any uk ∈ Cω(R), k = 1, 2, the inequality

(−1)i+1[f(u1)(t) − f(u2)(t) +

+`(u1 − u2)(t)] sgn(u1(t)− u2(t)) ≤ 0 for t ∈ R (2.7)

is fulfilled. Then the equation (0.1) has a unique ω-periodic solution.
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Proof. From (2.7) it follows that the operator f for any u ∈ Cω(R) satisfies
the inequality (2.6), where q(t) = |f(0)(t)| for t ∈ R. Consequently, the
assumptions of Lemma 2.3 are satisfied and this guarantees that the equa-
tion (0.1) has at least one ω-periodic solution. It remains to show that the
equation (0.1) has at most one ω-periodic solution.

Let u1 and u2 be arbitrary ω-periodic solutions of the equation (0.1).
Put u(t) = u1(t)− u2(t) for t ∈ R. Then by (2.7) we get

(−1)i+1(u′(t) + `(u)(t)) sgn u(t) ≤ 0 for t ∈ R.

This together with the condition ` ∈ Ai
ω results in u ≡ 0. Consequently,

u1 ≡ u2.

The following lemma can be proved analogously.

Lemma 2.6. Let i ∈ {1, 2} and there exist ` ∈ Bi
ω and q ∈ Lω(R+) such

that for any uk ∈ Cω(R), k = 1, 2, the inequalities

(−1)i+1[f(u1)(t) − f(u2)(t) +

+`(u1 − u2)(t)] sgn(u1(t)− u2(t)) ≤ 0 for t ∈ R if u1(0) = u2(0)

and

(−1)i+1[f(u1)(t) − f(u2)(t) +

+`(u1 − u2)(t)] sgn(u1(0)− u2(0)) ≥ 0 for t ∈ R if u1(0) 6= u2(0)

are fulfilled. Then the equation (0.1) has a unique ω-periodic solution.

2.1. On the sets A
i

ω
and B

i

ω
, i = 1,2.

Lemma 2.7. Let i, j ∈ {1, 2}, i 6= j, `1, `2 ∈ Pω(R), and the conditions

(1.2j) and (1.3j) be fulfilled. Then there exists a number r0 > 0 such that

for any σ ∈ {−1, 1} and q ∈ Lω(R+) every function u ∈ C̃ω(R) satisfying

the inequality (2.4) with ` = `1 − `2 and the condition

σu(t) ≥ 0 for t ∈ R

admits the estimate

‖u‖Cω
≤ r0‖q‖Lω

. (2.8)

Proof. We will prove the lemma for i = 1 and j = 2. The case i = 2 and
j = 1 can be proved analogously.

Let u ∈ C̃ω(R) satisfy the assumptions of the lemma. Put

m = min{|u(t)| : 0 ≤ t ≤ ω} (2.9)

and choose t1 ∈ [0, ω[, t2 ∈]t1, t1 + ω[ such that

|u(t1)| = m, |u(t2)| = ‖u‖Cω
. (2.10)
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Taking into account that `1, `2 ∈ Pω(R), from (2.4) it immediately follows
that

|u(t)|′ ≤ ‖u‖Cω
`2(1)(t)−m`1(1)(t) + q(t) for t ∈ R. (2.11)

The integration of this inequality from t1 to t2 in view of (2.9) and (2.10)
yields

‖u‖Cω
−m ≤ ‖u‖Cω

‖`2(1)(t)‖Lω
+ ‖q‖Lω

. (2.12)

On the other hand, integrating (2.11) from 0 to ω, we obtain

m‖`1(1)‖Lω
≤ ‖u‖Cω

‖`2(1)‖Lω
+ ‖q‖Lω

. (2.13)

Now from (2.12) and (2.13), on account of (1.32), we get the estimate (2.8),
where

r0 =
1 + ‖`1(1)‖Lω

‖`1(1)‖Lω
(1− ‖`2(1)‖Lω

)− ‖`2(1)‖Lω

.

Lemma 2.8. Let i, j ∈ {1, 2}, i 6= j, and `1, `2 ∈ Pω(R) satisfy the con-

ditions (1.2j) and (1.3j). Let, moreover, for any x ∈ [0, ω[ there exist

γx ∈ C̃([x, x + ω]; ]0, +∞[) such that the inequalities (1.4) and (1.4) are

fulfilled. Then

`1 − `2 ∈ Ai
ω .

Proof. We will prove the lemma for i = 1. The case i = 2 can be proved
analogously.

Let q ∈ Lω(R+), and u ∈ C̃ω(R) satisfy the inequality

[u′(t) + `1(u)(t)− `2(u)(t)] sgnu(t) ≤ q(t) for t ∈ R. (2.14)

Show that the estimate (2.5) is valid with

r = r0 + r̃

(
1− ‖`2(1)‖Lω

)
−1

, (2.15)

where r0 is the number appearing in Lemma 2.7 and

r̃ = max

{
3

1− 1
4 (γx(x + ω)− γx(x))2

: 0 ≤ x ≤ ω

}
. (2.16)

If the function u does not change sign, then the validity of the estimate
(2.5) follows from Lemma 2.7.

Suppose now that u changes sign. Put

m = −min{u(t) : 0 ≤ t ≤ ω}, M = max{u(t) : 0 ≤ t ≤ ω} (2.17)

and choose tm, tM , x ∈ [0, ω[ such that

u(tm) = −m, u(tM ) = M, u(x) = 0. (2.18)
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According to (2.14), it is clear that

u′(t) = `2x(u)(t)− `1x(u)(t) + hx(t) for x < t < x + ω, (2.19)

hx(t) sgnu(t) ≤ q(t) for x < t < x + ω, (2.20)

where

hx(t) = u′(t) + `1x(u)(t)− `2x(u)(t) for x < t < x + ω.

From (2.19), in view of (2.20) we obtain

[u(t)]′+ ≤ `2x([u]+)(t) + `1x([u]−)(t) + q(t) for x < t < x + ω, (2.21)

[u(t)]′
−
≤ `2x([u]−)(t) + `1x([u]+)(t) + q(t) for x < t < x + ω. (2.22)

Denote by αx, βx, and vx, respectively, the solutions of the problems

α′

x(t) = `2x(αx)(t) +
1

M
`1x([u]+)(t), αx(x) = 0, (2.23)

β′

x(t) = `2x(βx)(t) +
1

m
`1x([u]−)(t), βx(x) = 0, (2.24)

v′x(t) = `2x(vx)(t) + q(t), vx(x) = 0. (2.25)

The existence and uniqueness of these solutions are guaranteed by the con-
dition (1.4) and Lemma 2.1. From (1.4), (2.23)–(2.25) we get

(mβx(t) + vx(t)− [u(t)]+)′ ≥ `2x(mβx + vx − [u]+)(t) for x<t<x + ω,

(Mαx(t) + vx(t)− [u(t)]−)′ ≥ `2x(Mαx + vx − [u]−)(t) for x<t<x + ω,

(γx(t)− αx(t)− βx(t))′ ≥ `2x(γx − αx − βx)(t) for x<t<x + ω.

The last inequalities, according to Lemma 2.1, imply

[u(t)]+ ≤ mβx(t) + vx(t) for x < t < x + ω, (2.26)

[u(t)]− ≤ Mαx(t) + vx(t) for x < t < x + ω, (2.27)

γ′x(t) ≥ (αx(t) + βx(t))′ for x < t < x + ω. (2.28)

From (2.26) and (2.27), in view of (2.18) and the fact that the functions
αx, βx and vx are nondecreasing it immediately follows

M = [u(tM )]+ ≤mβx(x + ω) + vx(x + ω),

m = [u(tm)]− ≤αx(x + ω) + vx(x + ω).

Hence we get

M(1− αx(x + ω)βx(x + ω)) ≤ (βx(x + ω) + 1)vx(x + ω), (2.29)

m(1− αx(x + ω)βx(x + ω)) ≤ (αx(x + ω) + 1)vx(x + ω). (2.30)

On the other hand, the integration of (2.28) from x to x + ω yields

αx(x + ω) + βx(x + ω) ≤ γx(x + ω)− γx(x).
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From (2.29) and (2.30), on account of the last inequality, (1.4), and the fact
that 4αx(x + ω)βx(x + ω) ≤ (αx(x + ω) + βx(x + ω))2 we obtain

M ≤ [1−
1

4
(γx(x + ω)− γx(x))2]−1(1 + γx(x + ω))vx(x + ω),

m ≤ [1−
1

4
(γx(x + ω)− γx(x))2]−1(1 + γx(x + ω))vx(x + ω).

Consequently,

‖u‖Cω
≤ r̃vx(x + ω), (2.31)

where r̃ is defined by (2.16).
Now the integration of (2.25) from x to x + ω together with ‖vx‖C =

vx(x + ω) and ‖`2x(1)‖L = ‖`2(1)‖Lω
< 1 results in

vx(x + ω) < (1− ‖`2(1)‖Lω
)−1‖q‖Lω

. (2.32)

According to (2.32), (2.31), (2.15), and (2.16), we have the estimate (2.5).

Lemma 2.9. Let i, j ∈ {1, 2}, i 6= j, and `1, `2 ∈ Pω(R) satisfy the con-

ditions (1.2j) and (1.3j). Let, moreover, there exist γ ∈ C̃([0, ω]; ]0, +∞[)
such that the inequalities (1.14) and (1.15) are fulfilled. Then

`1 − `2 ∈ Bi
ω.

Proof. We will prove the lemma for i = 1 and j = 2. The case i = 2 and
j = 1 can be proved analogously.

First assume that u ∈ C̃ω(R) is such that u(0) = 0 and the inequality
(2.14) is fulfilled. Obviously, u satisfies also the inequality

[u′(t) + `10(u)(t) − `20(u)(t)] sgnu(t) ≤ q(t) for 0 < t < ω. (2.33)

By virtue of Lemma 2.1, (1.14), and (1.15), without loss of generality we
can assume that

γ(ω) ≤ 2. (2.34)

Therefore, according to (1.14), (2.33), (2.34), and Lemma 2.9 and Definition
2.1 in [5], there exists a number ρ0, not depending on u, such that

‖u‖Cω
≤ ρ0‖q‖Lω

.

Assume now that u(0) 6= 0 and

[u′(t) + `1(u)(t)− `2(u)(t)] sgnu(0) ≥ −q(t) for t ∈ R. (2.35)

Put ũ(t) = u(t) sgnu(0) for t ∈ R. Due to (2.35), it is clear that

ũ′(t) ≥ `20(ũ)(t)− `10(ũ)(t)− q(t) for 0 < t < ω. (2.36)

Denote by v the solution of the problem

v′(t) = `20(v)(t) + q(t), v(0) = 0. (2.37)
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The existence and uniqueness of v is guaranteed by (1.14) and Lemma 2.1.
Using Lemma 2.4 in [5], there exists a number ρ1, not depending on v, such
that

‖v‖C ≤ ρ1‖q‖Lω
. (2.38)

From (1.14), (2.36), and (2.37) we find

(‖ũ‖Cω
γ(t) + v(t) + ũ(t))′≥`20(‖ũ‖Cω

γ + v + ũ)(t) for 0<t<ω. (2.39)

Since ‖ũ‖Cω
γ(0) + v(0) + ũ(0) > 0, in view of (2.39) and Lemma 2.1 we

have

ũ′(t) ≥ −‖ũ‖Cω
γ′(t)− v′(t) for 0 < t < ω. (2.40)

Put

m = −min{ũ(t) : 0 ≤ t ≤ ω}, M = max{ũ(t) : 0 ≤ t ≤ ω}. (2.41)

Obviously, M > 0. Choose t1, t2 ∈ [0, ω[, t1 6= t2 such that

ũ(t1) = −m, ũ(t2) = M. (2.42)

First assume that m > 0. Then either M = ‖ũ‖Cω
or m = ‖ũ‖Cω

. If
t2 < t1, then the integration of (2.40) from t2 to t1 in view of the fact that
the functions γ and v are nondecreasing (see Lemma 2.1) yields

M + m ≤ ‖ũ‖Cω
(γ(ω)− γ(0)) + v(ω) (2.43)

and, consequently, on account of (1.15) and (2.38),

‖ũ‖Cω
≤ [1− γ(ω) + γ(0)]−1v(ω) ≤ [1− γ(ω) + γ(0)]−1ρ1‖q‖Lω

. (2.44)

If t1 < t2, then the integration of (2.40) from 0 to t1 and from t2 to ω,
respectively, results in

m + ũ(0) ≤‖ũ‖Cω
(γ(t1)− γ(0)) + v(t1),

M − ũ(ω) ≤‖ũ‖Cω
(γ(ω)− γ(t2)) + v(ω)− v(t2).

Summing the last two inequalities and taking into account the monotonicity
of the functions γ and v, we get (2.43) and, consequently, in view of (1.15)
and (2.38) we obtain the inequality (2.44).

Assume now that m < 0. Then sgnu(t) = sgnu(0) and due to (2.35) the
assumptions of Lemma 2.7 are fulfilled with i = 2, j = 1 and σ = sgnu(0).
Consequently, there exists a number r0, not depending on u, such that the
estimate (2.8) holds. By virtue of all the estimates obtained above, it can
be easily seen that the estimate (2.5) holds, where r = ρ0 + r0 + ρ1(1 −
γ(ω) + γ(0))−1 does not depend on u.
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3. Proof of the Main Results

Theorem 1.1 follows from Lemmas 2.3 and 2.8, Theorem 1.2 follows from
Lemmas 2.4 and 2.9, Theorem 1.3 follows from Lemmas 2.5 and 2.8, and
Theorem 1.4 follows from Lemmas 2.6 and 2.9.

Proof of Corollaries 1.1 and 1.3. We will prove the corollaries for the case
σ = 1. The case σ = −1 can be proved analogously.

Put

f(u)(t) = g(t, u(t), u(µ1(t)), u(µ2(t)), . . . , u(µn(t))) (3.1)

and

`1(u)(t) =

n∑

k=1

pk(t)u(µk(t)), `2(u)(t) = −p0(t)u(t) (3.2)

if the hypothesis H1 are fulfilled, and put

`1(u)(t) = p0(t)u(t), `2(u)(t) = −

n∑

k=1

pk(t)u(µk(t)) (3.3)

if the hypothesis H2 are fulfilled. Then the condition (1.7) (the condition
(1.25)) can be written as (1.1) (as (1.24)), and the conditions (1.9) and
(1.12) can be written as (1.22), (1.32). By Theorem 1.1 (Theorem 1.3),
to prove Corollary 1.1 (Corollary 1.3) it is sufficient to show that for each

x ∈ [0, ω[ there exists a function γx ∈ C̃([x, x + ω]; ]0, +∞[) satisfying the
inequalities (1.4) and (1.4) with i = 1 and j = 2.

Let the hypothesis H1 be fulfilled. Put

γx(t) =


ε +

t∫

x

exp


−

s∫

x

|p0(ξ)|dξ




n∑

k=1

pk(s)ds


×

× exp




t∫

x

|p0(s)|ds



 for t ∈]x, x + ω[, (3.4)

where ε > 0 is such that

ω∫

0

exp




ω∫

s

|p0(ξ)|dξ




n∑

k=1

pk(s)ds<2− ε


exp




ω∫

0

|p0(s)|ds


− 1


 . (3.5)

By (3.2), (3.4), and (3.5), it is clear that γx(x + ω)− γx(x) < 2 and

γ′x(t) = |p0(t)|γx(t) +
n∑

k=1

pk(t) = `2x(γx)(t) + `1x(1)(t).

Therefore the conditions (1.4) and (1.4) with i = 1 and j = 2 are fulfilled.
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Now suppose that the hypothesis H2 hold. By the latter inequality in
(1.12), we can choose ε > 0 such that

ω∫

0

|p0(s)|ds ≤ 2



1−

n∑

k=1

ω∫

0

|pk(s)|ds



− ε. (3.6)

Put

γx(t) = 2

n∑

k=1

t∫

x

|pk(s)|ds +

t∫

x

|p0(s)|ds + ε. (3.7)

Due to (3.6) and (3.7), it is evident that γx is a nondecreasing function,
γx(x + ω)− γx(x) < 2, and

γ′x(t) = 2

n∑

k=1

|pk(t)|+ |p0(t)| ≥

≥
n∑

k=1

|pk(t)|γx(µkx(t)) + |p0(t)| = `2x(γx)(t) + `1x(1)(t).

Therefore the conditions (1.4) and (1.4) with i = 1 and j = 2 are ful-
filled.

Proof of Corollaries 1.2 and 1.4. We will prove the corollaries for the case
σ = 1. Let f be the operator defined by the equality (3.1), where µ1 ≡ 0.
Put

`1(u)(t) =

n∑

k=2

[pk(t)]+u(µk(t)), `2(u)(t) =

n∑

k=2

[pk(t)]−u(µk(t)) (3.8)

if the hypothesis H3 are fulfilled, and put

`1(u)(t) ≡ 0, `2(u)(t) =

n∑

k=2

|pk(t)|u(µk(t)) (3.9)

if the hypothesis H4 are fulfilled. Then the conditions (1.17) and (1.18)
(the conditions (1.27) and (1.27)) can be written as (1.13) and (1.1), resp.
(as (1.26) and (1.24), resp.) with i = 1, j = 2. By Theorem 1.2 (Theorem
1.4), to prove Corollary 1.2 (Corollary 1.4) it is sufficient to show that there

exists a function γ ∈ C̃([0, ω]; ]0, +∞[) satisfying the inequalities (1.14) and
(1.15) with i = 1 and j = 2.



100

Let the hypothesis H3 be fulfilled. Put

γ(t) =


ε +

n∑

k=2

t∫

0

[pk(s)]+ exp


−

n∑

m=2

s∫

0

[pm(ξ)]−dξ


 ds


×

× exp




n∑

k=2

t∫

0

[pk(s)]−ds


 for t ∈ [0, ω], (3.10)

where ε > 0 is such that

n∑

k=2

ω∫

0

[pk(s)]+ exp




n∑

m=2

ω∫

s

[pm(ξ)]−dξ



 ds <

< 1− ε



exp




n∑

k=2

ω∫

0

[pk(s)]−ds



− 1



 . (3.11)

By (3.8), (3.10), (3.11), and (1.21) it is clear that γ(ω)− γ(0) < 1 and

γ′(t) ≥
n∑

k=2

[pk(t)]−γ(µk0(t)) +
n∑

k=2

[pk(t)]+ = `20(γ)(t) + `10(1)(t).

Therefore the conditions (1.14) and (1.15) with i = 1 and j = 2 are fulfilled.
Let now the hypothesis H4 hold. Put

γ(t) = exp



e

n∑

k=2

ω∫

t

pk(s)ds



 . (3.12)

By (1.22), (1.23), (3.9), and (3.12) we obtain γ(ω)− γ(0) < 1 and

γ′(t) ≥
n∑

k=2

|pk(t)|γ(µk0(t)) = `20(γ)(t).

Therefore the conditions (1.14) and (1.15) with i = 1 and j = 2 are ful-
filled.



101

4. Examples

Example 4.1. Let ε > 0, δ ∈]0, 1[ be such that δ < ε, ω = 4,

τ(t) =

{
3 for t ∈ [4ν, 4ν + 2− δ

2 ] ∪ [4ν + 3, 4ν + 4]

1 for t ∈ ]4ν + 2− δ
2 , 4ν + 3[

,

p(t) =

{
1 for t ∈ ]4ν, 4ν + 1[∪]4ν + 2− δ

2 , 4ν + 3[∪]4ν + 4− δ
2 , 4ν + 4[

0 for t ∈ ]4ν + 1, 4ν + 2− δ
2 [∪]4ν + 3, 4ν + 4− δ

2 [
,

h(t)=






0 for t∈]4ν, 4ν + 1[∪]4ν + 2− δ
2 , 4ν + 3[∪]4ν + 4− δ

2 , 4ν + 4[
1

2−t
for t ∈]4ν + 1, 4ν + 2− δ

2 [
1

4−t
for t ∈]4ν + 3, 4ν + 4− δ

2 [

,

where ν is an integer, and put

`2(v)(t)
def
= 0, `1(v)(t)

def
= p(t)v(τ(t)) for t ∈ R,

γx(t)
def
= δ +

2 + ε

2 + δ

t∫

x

p(s)ds for x ∈ [0, ω[, t ∈ [x, x + ω].

Then, obviously, the conditions (1.2j), (1.3j), and (1.4) are fulfilled for i = 1,
j = 2, and

γx(x + ω)− γx(x) = 2 + ε.

On the other hand, the problem

u′(t) = −p(t)u(τ(t)) − h(t)u(t), u(0) = u(ω)

has a nontrivial solution

u(t) =





t for t ∈ [0, 1[

2− t for t ∈ [1, 3[

t− 4 for t ∈ [3, 4]

.

Therefore, according to the Riesz–Schauder theory there exists q0 ∈ Lω(R)
such that on the interval [0, ω] the problem

u′(t) = −p(t)u(τ(t)) − h(t)u(t) + q0(t), u(0) = u(ω)

has no solution. In other words, the equation (0.1) with

f(v)(t)
def
= −p(t)v(τ(t)) − h(t)v(t) + q0(t) for t ∈ R

has no ω-periodic solution although the operator f satisfies the condition
(1.1) with q ≡ |q0|.
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This example shows that the condition (1.4) in Theorems 1.1 and 1.3
cannot be replaced by the condition

γx(x + (2− i)ω)− γx(x + (i− 1)ω) ≤ 2 + ε,

no matter how small ε > 0 would be.

Example 4.2. Let ε > 0 be an arbitrarily fixed number. Choose an integer
n > 1 and ε0 ∈]0, n−1

n(n+1) [ such that

1

n2
<

ε

2
, (n + 1)ε0 <

ε

2

and put

δ =

(
1 + n +

1

n2ε0
+

1

ε0

)
−1 (

ε−
1

n2
− (n + 1)ε0

)
, t1 = (n + 1)ε0,

t2 = 1 + (2n + 1)ε0, t3 = 1 + (3n + 1)ε0 +
1

n
, ω = 2 + 2nε0,

c1 =

(
1−

δ

ε0

)
t1 + δ, c2 =

(
δ

ε0
−

δ + (n + 1)ε0

nε0

)
t2 + c1,

c3 =

(
δ + (n + 1)ε0

nε0
− 1

)
t3 + c2.

Consider the equation

u′(t) = p(t)u(τ(t)). (4.1)

Here

p(t) =





−1 for t ∈ [νω, t1 + νω[ ∪ [t3 + νω, (ν + 1)ω]
1
ε0

for t ∈ [t1 + νω, t2 + νω[
1

nε0
for t ∈ [t2 + νω, t3 + νω[

,

τ(t) =






t2 for t ∈ [νω, t1 + νω[ ∪ [t3 + νω, (ν + 1)ω]

0 for t ∈ [t1 + νω, t2 + νω[

t1 for t ∈ [t2 + νω, t3 + νω[

,

where ν is an integer. Obviously, τ0(t) = τ(t) for t ∈]0, ω[ and

∫ ω

0 [p(s)]−ds

1−
∫ ω

0 [p(s)]−ds
= n− 1,

ω∫

0

[p(s)]+ds = 1 + n +
1

ε0
+

1

n2ε0
> n− 1.

Further put

`1(v)(t)
def
= [p(t)]−v(τ(t)), `2(v)(t)

def
= [p(t)]+v(τ(t)) for t ∈ R.
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Define the function γ as follows:

γ(t) =





t + δ for t ∈ [0, t1[
δ
ε0

t + c1 for t ∈ [t1, t2[
δ+(n+1)ε0

nε0
t + c2 for t ∈ [t2, t3[

t + c3 for t ∈ [t3, ω]

.

It is easy to verify that

γ′(t) = [p(t)]+γ(τ0(t)) + [p(t)]− for t ∈]0, ω[,

i.e., the inequality (1.14) is satisfied with i = 1, j = 2, and

γ(ω)− γ(0) = 1 + ε.

On the other hand, equation (4.1) has a nontrivial ω-periodic solution

u(t) =





t− ε0 − νω for t ∈ [νω, t1 + νω[

−t + (2n + 1)ε0 − νω for t ∈ [t1 + νω, t2 + νω[

t− 2− (2n + 1)ε0 − νω for t ∈ [t2 + νω, (ν + 1)ω]

,

where ν is an integer. Therefore, according to the Riesz–Schauder theory
there exists q0 ∈ Lω(R) such that the equation

u′(t) = p(t)u(τ(t)) + q0(t)

has no ω-periodic solution. In other words, the equation (0.1) with

f(v)(t)
def
= p(t)v(τ(t)) + q0(t) for t ∈ R

has no ω-periodic solution although the operator f satisfies the conditions
(1.1) and (1.13) with q ≡ |q0|.

This example shows that the condition (1.15) in Theorems 1.2 and 1.4
cannot be replaced by the condition

γ((2− i)ω)− γ((i− 1)ω) ≤ 1 + ε,

no matter how small ε > 0 would be.
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19. I. Kiguradze and B. Půža, On boundary value problems for

functional differential equations, Mem. Differential Equations Math. Phys.

12(1997), 106–113.
20. I. Kiguradze and B. Půža, On periodic solutions of nonlinear

functional differential equations, Georgian Math. J. 6(1999), No. 1, 47–66.
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