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Abstract. The following problems for partial functional differential equa-
tions are considered: the Cauchy problem on the Haar pyramid for first
order equations, mixed problems on bounded domains for Hamilton—Jacobi
equations, initial boundary value problem of the Dirichlet type for nonlinear
parabolic equations. Impulses depend on functional variable and they are
given at fixed points.

The theory of functional differential inequalities is presented in the paper.
Moreover, discrete versions of theorems on differential inequalities are pre-
sented. The numerical method of lines and difference methods are examples
of applications of the theory.
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INTRODUCTION

Many real processes and phenomena studied in mechanics, theoretical
physics, population dynamics and economy are characterized by the fact
that at certain moments of their development the system of parameters
undergo rapid changes by jumps. In the mathematical simulation of such
processes and phenomena the duration of these changes is usually neglected
and the process is assumed to change its state impulsively. A natural tool
for the mathematical simulation of such processes are impulsive differen-
tial equations. The paper V. Milman and Myshkis [1] initiated the theory
of impulsive ordinary differential equations. Up to now numerous papers
were published concerning various problems for classes of equations and also
dealing with special problems appearing in this theory.

It is not our aim to show a full review of papers concerning ordinary
impulsive differential equations. We shall mention only monographs which
contain reviews. They are [2]-[5].

Partial differential equations with impulses were first treated in [6]. The
authors therein have shown that parabolic equations with impulses provide
natural framework for many evolutional processes in the population dynam-
ics. Estimates of solutions of impulsive parabolic equations and applications
to the population dynamics were considered in [7]. The first results on im-
pulsive quenching problems for reaction-diffusion equations were given in
[3].

Hyperbolic differential equations and inequalities with impulses were con-
sidered in [9]-[12]. Estimates of solutions, estimates of the difference be-
tween solutions of two problems, uniqueness theory and continuous depen-
dence on given functions were considered. The monotone iterative methods
for impulsive nonlinear hyperbolic equations were investigated in [13]. Dif-
ference methods for first order partial differential or functional differential
equations with impulses were investigated in [14]-[17]. The authors proved
that there are natural classes of difference methods for such problems. The-
orems on difference inequalities or recurrent inequalities were used in the
investigation of the stability of difference schemes.

Almost periodic solutions of hyperbolic systems were considered in [18]

Detailed bibliographical information can be found in [17], [19]. An ex-
tensive survey of developments in the area of impulsive partial differential
equations was given also in [20], [21].

The classical theory of partial differential inequalities has been developed
widely in the monographs [22]-[25]. As it is well known, they found appli-
cations in differential problems. The basic examples of such questions are:
estimates of solutions of partial equations, estimates of the domain of the
existence of solutions, criterion of uniqueness, estimates of the error of ap-
proximate solutions. Moreover discrete versions of differential inequalities
are frequently used to prove the convergence of approximation methods.
The numerical method of lines [25]-[27] and difference methods [28]-[31]



represent classical examples.

Results on parabolic differential and functional differential inequalities
with impulses can be found in [32]—[38].

The paper is intended as a self-contained exposition of partial functional
differential and difference inequalities with impulses. In the following we
describe the topics which are considered in the paper.

Chapter I deals with initial problems for functional differential equations
of the Hamilton—Jacobi type on the Haar pyramid. We begin with dis-
cussing of functional differential inequalities with impulses and applications.
The second part of the Chapter I deals with difference methods for initial
problems. The main problem in these investigations is to find a suitable
functional difference equation which satisfies a consistency condition with
respect to the original problem and it is stable. The method of difference
inequalities is used in theorems on the stability. It is important fact in our
considerations that the right hand sides of equations satisfy the nonlinear
estimates of the Perron type with respect to functional variable.

Functional differential inequalities generated by mixed problems are ex-
amined in Chapter II. Uniqueness of solutions and continuous dependence
on given functions are consequences of comparison theorems. Discrete ver-
sions of functional differential problems are considered also.

The method of lines for partial differential equations consists in replacing
spatial derivatives by difference expressions. Then the partial equation is
transformed into a system of ordinary differential equations. The numerical
method of lines for nonlinear differential problems of parabolic type were
examined in [25]-[27], [39], [40]. The method of lines is also treated as a tool
for proving of existence theorems for differential problems corresponding
to parabolic equations [41]-[43] or first order hyperbolic systems [44]. The
method of lines for nonlinear functional differential equations was considered
in [45]-[49]. The method for equations of higher orders is studied in [39]. For
further bibliography see the references in the papers cited above, especially
in papers [47]-[49].

In Chapter IT we present a theory of the numerical method of lines for
functional differential problems with impulses. The main theorems con-
cerning the numerical method of lines will be based on comparison the-
orems where a function satisfying some differential difference inequalities
with impulses is estimated by a solution of an adequate ordinary functional
differential problem with impulses. Next we prove that there are natural
classes of difference methods for mixed problems.

In Chapter III we present a theory of parabolic functional differential
problems with impulses.

Two types of results on parabolic functional differential inequalities are
taken into considerations. The first type allows to estimate a function of
several variables satisfying a functional differential inequality by means of
an other function of several variables. The second one give estimates of
functions of several variables by means of solutions of ordinary functional



differential problems.

A number of papers concerned with difference approximations for nonlin-
ear parabolic functional problems were published ([50]-[55]). The method
of difference inequalities or simple theorems on recurrent inequalities are
used in the investigation of the stability of nonlinear difference functional
problems. The authors have been assumed that given functions have par-
tial derivatives with respect to all variables except for (x,y). All the above
results deal with equations without impulses.

Our assumption are be more general. We consider nonlinear parabolic
functional differential equations with impulses and with initial boundary
conditions of the Dirichlet type. We show that there is a general class of
difference schemes for such problems. We give sufficient conditions for the
convergence of a sequence of approximate solutions under the assumptions
that given functions satisfy the nonlinear estimates of the Perron type with
respect to the functional variable. The proof of stability is based on a
theorem on nonlinear recurrent inequalities for functions of one variable.

Impulsive differential equations with a deviated argument and differen-
tial integral equations can be derived from a general model of equation by
specializing given functions.

Difference methods for impulsive partial functional differential problems
are based on general ideas for finite difference equations which were intro-
duced in [56], [57].

It should be noted that all the problems considered in the paper have
the following property: the unknown function is the functional argument in
equations. The partial derivatives appear in a classical sense. At the mo-
ment there are very few important results for functional differential equa-
tions with deviated argument at derivatives ([58]-[61]).
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CHAPTER 1
INITIAL PROBLEMS ON THE HAAR PYRAMID

1.1. FUNCTIONAL DIFFERENTIAL INEQUALITIES

For any two metric spaces X and Y we denote by C(X,Y) the class
of all continuous functions from X into Y. We will use vectorial inequali-
ties with the understanding that the same inequalities hold between their
corresponding components.

Let a > 0, 70 € Ry, Ry = [0,+0), be fixed and suppose that the
functions «, 8 : [0,a) — R", a« = (a1,...,an), B = (1,...,0n), and @&,
B [-70,0] — R™, & = (a1,...,04,), B = (51, e ,Bn) satisfy the conditions:

(i) o and (3 are of class C’1 on [0,a) and a(z) < B(z) for z € [0, a),

(i) &, B € C([~r,0], R") and a(x) < f(x) for @ € [~70,0),

(iii) 6(0) = (3(0) = b where b = (by,...,by), by > 0 for 1 < i < n, and
a(0) = a(0) = —b.

Let £= {(z,y) € R"*": x € (0,a),y = (y1,.-.,yn), ¥ € [a(z), B(2)] },

By ={(z,y) € R"*": w € [-70,0], y € [a(x), B(z)]},
E =0EN((0,a) x R"™),

where OF is the boundary of E. We will consider functional differential
problem on the set E, whereas Ey will be an initial set. Suppose that
0<ay <ag <---<ag are given numbers. Write

I=[-7,0], J=1[0,a), Jimp={a1,...,ar} (1.1)

and
Emp={(z,y) €E: € Jimp}-

Let Cimp(Eo U E, R) be the class of all functions z : Eg U E — R such that
(i) the restriction of z to the set Eo U (E\ Eimp) is a continuous function,
(ii) for each (x,y) € Eimp there exist the limits

lim z(t,s) = z(x™,y), lim 2(t,8) = z(xt,y), (1.2
(t,8)—(z,y), t<z ( ) ( y) (t,8)— (), > ( ) ( y) ( )

(111) Z(ZIZ,y) = Z(eray) for (‘Tay) € Eimp~
For a function z € Cimp(Eo U E, R) and (z,y) € Eimp we put Az(z,y) =
Z(:Ca y) - Z(xia y) Let

S, = [a(z), B(x)] for =€ [-79,0], S, =[a(z), B(z)] for x € [0,a).
Write
Q= (E\ Eimp) X Cimp(EoUE,R) x R",  Qimp = Eimp X Cimp(Eo U E, R)
and suppose that
fQ—=R, g:Qmp— R, o: Fg— R
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are given functions. In this Chapter we discuss a number of questions
referring to the Cauchy problem with impulses

sz(xay) = f(xay,Z,Dyz(xay)) on E \ Eimpa (13)
Az(z,y) = g(x,y,2) on Eimp, 2(z,y) = ¢(z,y) on Ey, (1.4)

where Dyz = (Dy, z,...,Dy, 2).

We consider classical solutions of the above problem. A function z :
EyUE — R is a solution of (1.3), (1.4) if z € Cimp(Eo U E, R), there exist
the derivatives Dz, Dyz on E \ Einp, and z satisfies (1.3), (1.4).

A function z € Cimp(Eo U E, R) will be called a function of class D if z
has partial derivatives D,, Dyz on E \ Einp and there is the total derivative
of z on (OE\ Eimp ) N ((0,a) x R™). We will consider solutions of (1.3),
(1.4) or solutions of functional differential inequalities generated by (1.3),
(1.4) which are of class D on Ey U E.

Let Cimp(I U J, R) be the class of all functions w : I U J — R such that
we C((ITUJ)\ Jimp, R) and for each = € Jiy,p there exists the limits

tﬁlgrtlﬂaw(t) =w(x™), tﬁlgxtgzw(t) =w(x™).
We assume also that w(z) = w(z™) for € Jimp.

Two different types of results on functional differential inequalities will
be considered in this Chapter. The first type allows to estimate a func-
tion of several variables by means of an other function of several variables,
while the second one, the so called comparison theorems, give estimates for
functions of several variables satisfying functional differential inequalities
with impulses, by means of functions of one variable which are solutions of
adequate initial problems with impulses. Let

E,=(EUE)N([—m0, 2] xR"), 0<z<a.
For every z € [0,a) and z € Cimp(Eo U E, R) we write
I2lle = sup{ [(¢,5)| = (t,5) € B }
and
|z|lz- = sup{ |z(¢,8)| = (t,8) € (Eg UE )N ([—70,2) X R™) }.
If w € Cimp(I U J, R) then we write also
[w]le =sup{ [w(t)] : —To<t<z} and |]z][;- =sup{|w(t)]: —mo<t<wz}.

The function f is called to satisfy the Volterra condition if for each (x,y) €
E\ Eimp there is a set E[z,y] such that

(i) Elz,y] C Ey,

(i) if 2z, Z € Cimp(Eo U E, R) and z(t, s) = Z(t, s) for (¢,s) € E[x,y] then
f(x,y,2,q9) = f(x,y,2,q), ¢ € R™.

Note that the Volterra condition means that the value of f at the point
(z,9, z,q) depends on (z,y, q) and on the restriction of z to the set F[z,y].
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The function g is called to satisfy the condition V(=) if for each (x,y) €
Eimp there is a set H[z, y] such that

(i) H[z,y] C(EoUE),N([—70,x) x R™)

(i) if z, Z € Cimp(Eo U E, R) and z(t,s) = Z(t, s) for (¢,s) € H[x,y] then
g(a?,y,z) = g(nmy,é).

We consider differential inequalities generated by (1.3), (1.4).

We define functions Iy, I+, I_ : E — {1,...,n} as follows. For each
(z,y) € E there exist sets (possibly empty) of integers Iy[z,y], I+[z,v],
I_[x,y] such that

IJr[xay] N I*[Zay] = ®7 Io[l',y] U IJr[I'ay] U I*[xay] = {13 s 7”}3
and
yi = a;(x) for i€ I_[x,y], wy;=0i(x) for ie I[x,y],
ai(r) <yi < Pi(x) for i€ lolz,y].
Let F and G be the Niemycki operators generated by the problem i. e.
Flz)(z,y) = f(2,y,2,Dyz(z,y)) on E\ Einp,
G[Z](‘Tay) :g(x,y,Z) on Eimp-

Assumption H [ f, g]. Suppose that
1) f: Q — R satisfies the Volterra condition and for (z,y,z,q) € Q, § €
R™ we have

i€l [z,y] i€l [2,y]

where ¢ = (q1,-..,qn), 7= (Q1,---,qn), and ¢; < g; for i € I_[x,y], ¢; >0
for i € I [x,y], ¢; = @; for i € Ip[z,y],
2) the function g : Qimp — R satisfies the condition V(=) and for fixed
(x,y) € Eimp the function g(z,y, -) is nondecreasing on Cimp(Eo U E, R),
3) the function f satisfies the following monotonicity condition: if (x,y) €
E, 2,Z € Cimp(Eg UE, R), 2(t,s) < Z(t,s) on E; and z(z,y) = Z(x,y) then

f(@,y,2,q) < f(z,y,2,q) for g€ R".
Remark 1.1. Suppose that the function
i (E\ Eimp) X R X Cimp(EoUE,R) x R" — R

is nondecreasing with respect to the functional variable and

f(x,y,2,9) = f(x,y,2(%,y), 2,q).

Then f satisfies the monotonicity condition 3).
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Theorem 1.2. Suppose that Assumption H [ f,g] is satisfied and
1) the functions u, v € Cimp(Eo U E, R) are of class D and

u(z,y) <w(z,y) on Eo, u(0,y) <v(0,y) for y € [=b,],
2) denoted
Ty ={(z,y) € E:
u(t,s) <w(t,s) for (t,s) € EN([0,2) x R"™) andu(z,y) =v(x,y) },
we assume that
Dyu(z, y) - Flu](@,) < Dyo(z,5) — Flv](@,5) on T \ By,
and
Au(z,y) — Glul(z,y) < Av(z,y) — G[v]|(z,y) on T+ N Eimp.
Then
u(z,y) <v(z,y) on E. (1.5)

Proof. Suppose that assertion (1.5) is false. Then the set
Ji={z€[0,a): ulz,y)>v(z,y) for some y e [a(z), Az)] }

is not empty. Defining £ = inf J, it follows that £ > 0 and that there
exists § € [a(Z), B(Z)] such that (Z,y) € Ty. There are two cases to be
distinguished.

(i) Suppose that (Z,9) € E \ Eimp. Then D, (u — v)(Z,g) > 0 for i €

I [Z, 9], Dy,(u—v)(Z,y) <0 forie I_[zZ,3], and Dy, (uv—v)(Z,7) =0 for
i € Iy[z,g]. For z € [0,Z] we put n(xz) = (n1(x),...,n(x)) where

ni(x) = ai(x) for i€l [z,y], mi(x)=pBi(x) for i€ Ii[2,y] (1.6)

UZ(I) =y; for i€ [0[53,:(]]. (17)

We consider now the composite function vy(z) = (u—v)(z,n(x)), z € |0, z].

It attains maximum at Z. Since u — v is of class D on Ey U E then we have

Dy(u—0)(Z9)+ Y, (@) Dy, (u—0)@,7)+
i€l_[z,9]
+ > Dy (u—v)(z,9) >0. (1.8)
i€l [z,7]
From Assumption H [ f, g] and condition 2) it follows that
Dm(U71})(f,g) < - Z O‘;(j)Dyi(uiv)(jag)* Z Dyl(uiv)(jag)
iel_[z,y] i€l [z,7]

which contradicts (1.8).
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(ii) Suppose now that (%, ) € Eimp. Then

w(@”,g) <v(@”,7) (1.9)

and
u(t,s) <wv(t,s) for (t,s)€(EgUE)N([-70,Z) x R™).
It follows from Assumption H [ f, g] and condition 2) that

(U_U)(jv:lﬁ <u(i‘f,g)—‘,—g(:i"g,u)—v(i‘f,g)—g(:i‘,:y,'[)) <0

which contradicts the condition (zZ,7) € T4.
Hence J; is empty and the statement (1.5) follows. O

Remark 1.3. Suppose that § : Eimp X R X Cimp(EgUE, R) — R is a given
function and g is defined by g(zx,y, z) = g(x,y, 2(z~,y), 2). Then condition
2) of Assumption H[ f, g] can be replaced by the following one:

27) the function g satisfies condition V (=), it is nondecreasing with respect
to the functional variable and for fixed (z,y, 2) € Eimp X Cimp(Eo U E, R)
the function v(p) = p + g(x,y, p, z) is nondecreasing on R.

Now we consider weak functional differential inequalities.

Assumption H [0, 0(]. Assume that

1) the functions o : (J \ Jimp ) X Ry — R4 and 0g : Jimp X Ry — R4
are continuous and o(x,0) =0 for € J \ Jimp, 0o(x,0) =0 for = € Jimp,

2) the functions o(z, -) and oo(z, -) are nondecreasing and the right
hand maximum solution of the problem with impulses

W(z)=o(z,w(x)) on J\ Jimp,
Aw(z) = oo(z,w(z™)), on Jimp, w(0)=0,
is w(z) =0 on J,
3) the estimate
f(xayaz7Q) 7f($,y,2,q) Z 70—(1’ ||272H93)
is satisfied on € for z < Z,
4) the inequality
g(xvyaz) —g(:(:,y,%) > _0'0(.17, ||2 - ZHCE* )

is satisfied on Qimp for z < z.

Theorem 1.4. Suppose that Assumptions H [ f,g] and H [o,00] are sat-
isfied and

1) the functions u, v € Cimp(Eo U E, R) are of class D and u(z,y) <
v(x,y) on Ey,

2) the functional differential inequality

Da:u(xay) - F[U](l’,y) < Dx’u(x,y) - F[U}(Z,y) on E\Eimp
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and the inequality for impulses
Au(z,y) — Glul(z,y) < Av(z,y) — G[v](z,y) on Eimp

are satisfied.
Then u(x,y) < v(z,y) on E.

Proof. Let a € (ag,a) be fixed. Consider the problem

W(z)=0(z,w(x))+e1 on [0,a)\ Jimp,
Aw(z) =oo(z,w(z™))+e2 on Jimp, w(0) = &p.
There exists £ > 0 such that for 0 < e; < &, ¢ = 0, 1, 2, there is the maximum

solution w(-,e) : [0,a) — Ry, € = (0, €1,€2), of the above problem.
We prove that

u(z,y) <wv(z,y) on EN((0,a)x R™). (1.10)

Let
o(x,y) =v(z,y) +e0 on Ey and

o(x,y) =v(z,y) +w(z,e) on EN([0,a) x R™).

Then o is of class D on (Eg U E )N ([—70,a) x R™ ) and (u —v)(z,y) <0
on Fjy.
Direct calculations give

Dazu(xay)fF[u](xay) < Dazﬁ(‘ray) 7F[’17K$,y) on

(E\ Funp) 0 ((0,8)x R")
and
Au(z,y) — Glul(z,y) < Ab(z,y) — G[?](z,y) on Eimp.
It follows from Theorem 1.2 that u(z,y) < o(z,y) on E N ((0,a) x R™).
On the other hand lim._,gw(z,&) = 0 uniformly on [0,a) which leads to

(1.10). Finally, the constant a € (a, a) is arbitrary and therefore the proof
of Theorem 1.4 is completed. O

Assumption H [5,50]. Suppose that

1) the functions & : (J \ Jimp) X R— — Ry and ¢ : Jimp X R — Ry,
R_ = (—00,0], are continuous, 6(x,0) = 0 on J \ Jimp, 6(x,0) =0 on Jimp,

2) the function f : Q — R satisfies the condition: if (x,y) € E, ¢ €
R™ 2,2 € Cimp(Eg U E,R), z(t,s) < Z(t,s) on E, and z(z,y) < Z(z,y)
then

f(xay7z7q) - f(xayaga q) S 5(3%2(3373}) - 5(337y) )a

3) if (z,y) € Eimp, 2,2 € Cimp(Eo U E, R), z(t,s) < Z(t,s) on E, and

z(x~,y) < Z(z~,y) then

g(xayaza) - g(x,y,z,) < 5'0(x72(x77y) - Z(xiay) )a
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4) the left hand minimum solution of the equation with impulses
W'(z) =d(z,w@)) on J\ Jimp, Aw(x)=do(x,w(@™)) on Jimp,
satisfying the condition lim, .- w(z) =0is w(x) =0, x € J.

Theorem 1.5. Suppose that Assumptions H [ f,g], H[&,60] are satisfied
and

1) the functions u, v € Cimp(Eo U E,R) are of class D and u(z,y) <
v(z,y) on Ey,

2) for (xz,y) € E\ Eimp we have

Dzu(xay) - F[U]((ﬂ,y) S Dzv(xay) - F[v](x,y)
and
Au(z,y) — Glul(z,y) < Av(z,y) — G[v](z,y) for (2,y) € Eimp.
Then
u(z,y) <v(z,y) on E. (1.11)

Proof. First we prove inequality (1.11) on EN([0,a —€) x R™) where 0 <
e<a—ag.
Let
0 <po < Il’liIl{’U(:L’,y) *U(Z,y) : (:c,y) € EO}
For 6 > 0 denote by w( -, d) the right hand minimum solution of the problem
W(z)=—0(z,—w(x)) =48, xz€[0,a—¢)\ Jimp,
Aw(z) = —6o(z,—w(z7)), = € Jimp, w(0)=po.
If po > 0 is fixed then to every € > 0 there corresponds Jg > 0 such
that for 0 < 0 < &g the solution w(-,d of the above problem exists and
it is positive on [0,a — €). Suppose that § > 0 is such a constant that
w( -, satisfies the above conditions. Let @(z,y) = u(z,y) + po on Ey and
u(z,y) = u(z,y) +w(z,d) on EN([0,a —e) x R™). We will prove that
(z,y) <v(z,y) on EN([0,a—¢e)x R"). (1.12)
It follows from Assumption H [&, 50 ] that
Dyu(z,y) — Fla](z,y) < Dyv(a,y) — Flv](z,y)
on (E\ Eimp)N([0,a—¢€) x R™)
Ad(z,y) — Gla](z,y) < Av(z,y) — G[v](z,y)

and

al(
on Eiyp. Since 4(x,y) < v(x,y) on Ey, we have the estimate (1.12) from
Theorem 1.2.
Since 0 < € < a — ay, is arbitrary, inequality (1.11) holds true on E. This
completes the proof of Theorem 1.5. O
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Remark 1.6. If Assumptions H [ f,g], H [0,00] are satisfied then the
Cauchy problem (1.3), (1.4) admits at most one solution v : FgUE — R of
class D.

1.2. COMPARISON RESULTS FOR IMPULSIVE PROBLEMS

We will prove a theorem on estimates of functions satisfying functional
differential inequalities with impulses by means of solutions of ordinary
equations with impulses. We will use functional differential equations as
comparison problems.

For z € Cimp(Eo U E, R) we define the function Vz : [-79,a) — R4 by

(Vz)(z) =max{|2(x,y)|: y€S:}.
Lemma 1.7. If z € Cimp(Eo U E, R) then Vz € Cimp(I U J, R).

We omit the proof of the above lemma.

Assumption H [ 9, 09 |. Suppose that

1) the function ¢ : (J \ Jimp ) X Cimp(I U J, R4) — R is continuous and
satisfies the Volterra condition,

2) the function g¢ : Jimp X Cimp({ U J,R4) — R4 is continuous and
satisfies the following condition V(7): if w, @ € Cipmp(IUJ, Ry) and w(t) =
a(t) on [~7o, ) then oo(z,w) = oo( 2, @),

3) the functions p and g¢ are nondecreasing with respect to the functional
variables and for each function n € C(I, R4 ) there exists the maximum
solution w(-,n) : [-70,a) — R4 of the Cauchy problem

W'(z)=o(z,w) on J\ Jimp, (1.13)
Aw(z) = o(z,w) on Jimp, w(x)=mn(z) for zel. (1.14)

In the sequel we will use the following lemma on functional differential
inequalities.

Lemma 1.8. Suppose that Assumption H [, 00] is satisfied and

1) the function ¢ € Cimp(I U J, Ry) satisfies the initial estimate ¢(x) <
n(x) on I withn € C(I,Ry), w(-,n) is the maximum solution of (1.13),
(1.14),

2) denoted

Ty ={z€J\ Jimp: ¢(x)>w(zmn)}

we assume that

D_¢(x) < o(x,¢), for z €T\ Jimps
and
Ap(z) < go(z,¢) for ToN Jimp.
Then ¢(x) < w(z,n) on J.
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We omit the proof of Lemma 1.8.
Assumption H [G]. Suppose that the function

G:(E\ Eimp) X Cimp(TUJ,Ry) x R — R,

is continuous and satisfies the Volterra condition,
2) the estimate

G(Jc,y,w,q) - Z Oé;(.]?) qi + Z ﬁ;(ﬂ?) qi S Q(wi)

i€l_[z,y] i€l [z,y]
is satisfied on ( E\ Eimp ) X Cimp(IUJ, Ry) x R with ¢; = 0 for i € Ip[z,y].
Remark 1.9. If E is the Haar pyramid
E={(z,y): z€(0,a), ye[-b+Mz,b— Mz}, (1.15)

where b = (by,...,by), by > 0for 1 <i <n, M = (My,...,M,) € R,
b— Ma > 0, and

G(Iay7w7q) :Q(xaw)+ZMiqi

i=1

then condition 2) of Assumption H [G] is satisfied.

Theorem 1.10. Suppose that Assumptions H [p,00], H [G] are satisfied
and

1) the function u € Cimp(Eo U E, R) is of class D and |u(z,y) | < n(z)
on Ey where n € C(I, Ry),

2) the differential inequality with impulses is satisfied

| Deu(z,y)| < G (2,9, Vu, [| Dyu(z, y) 1) on E\ Einp,
A|u(a:,y)| < QQ(J?,VU) on Eimpa

where
(| Dyu(z,y) [l = (| Dy, u(@,y) |, | Dy, u(z,y)]).

Then |u(z,y)| < w(z,n) on E where w(-,n is the mazimum solution of
(1.13), (1.14).

Proof. Let ¢ =Vuwand Z € J \ Jimp is such a point that ¢(Z) > w(Z,n).
We prove that

D_o(Z) < o(Z, ). (1.16)

There is § € Sz such that (2) p(Z) = u(z, ) or (it) p(T) = —u(Z, 7). Let us
consider the case (i). We have Dy, u(z,y) > 0 for € I.[Z, 7], Dy,u(Z,7) <0
for i € I_[Z, 9], and D,,u(Z,5) = 0 for i € Iy[Z,g]. Let n = (m,...,7n) :
[0,Z] — R™ be given by (1.6), (1.7) and v(z) = u(x,n(x)) for x € [0, 7].
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We have y(z) < p(z) for z € [0,Z] and ~(Z) = ¢(Z). It follows that
D_¢(Z) < +/(Z). The above inequality and assumption 2) imply

which proves (1.16). If the case (ii) is satisfied then (1.16) can be proved in
an analogous way. If £ € Jiy, then we have

Then ¢ satisfies all the assumptions of Lemma 1.8 and the assertion fol-
lows. O

In the case when F is the Haar pyramid (1.15) and
Eo={(z,y): v €[-7,0, ye[-bbl} (1.17)
we have the following results.

Theorem 1.11. Suppose that Assumption H [0, 00] is satisfied and

1) the function u € Cimp(Eo U E, R) is of class D and |u(z,y)| < n(z)
on Ey withn € C(I,Ry),

2) the differential inequality with impulses is satisfied

| Deu(z,y) | < oz, Vu)+ > M; |Dyu(z,y)| on E\ Einp,
i=1
A|U(£B,y)| < QO(Z,VU) on Eimp-

Under these assumptions we have |u(x,y)| < w(z,n) on E.

Now we consider problem (1.3), (1.4) on the Haar pyramid (1.15) with
the initial set (1.17). We start with the theorem on the estimate of solutions
of equations with impulses.

Theorem 1.12. Suppose that Assumption H [0, 00] is satisfied and
1) the function f : Q — R satisfies the Volterra condition and

i=1

2) the function g : Qimp — R satisfies the condition V) and
|g(£L’,y, Z) | S Qo(iﬂ, VZ) on Qimpa

3) p € C(Eo, R) and | p(z,y) | < n(z) on Eo withn € C(I, R4),
4) the function u € Cinp(EgUE, R) is the solution of problem (1.3), (1.4)
and u is of class D.
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Under these assumptions we have |u(x,y)| < w(z,n) on E.

Proof. The function u satisfies all the assumptions of Theorem 1.11 and the
statement follows. [

Let us consider now two problems: problem (1.3), (1.4) and the following
one

Dyz(x,y) = f(x,y,2,Dyz(z,y)) on E\ Eimp, (1.18)
Az(z,y) = §(x,y,2) on Eimp, 2(z,y) =¢@(z,y) on Ey, (1.19)

where f: Q — R, § : Qimp — R, ¢ : By — R. We give an estimate of the
difference for solutions of problems (1.3), (1.4) and (1.18), (1.19).

Theorem 1.13. Suppose that Assumption H [ o, 00] is satisfied and

1) the function f, f and g, § satisfy the Volterra condition and the
condition V(=) respectively,

2) the estimates

f(xayazacD *f(xayazvq) < Q(‘T,V(fo)) +ZMZ |Qi 7(jz| on Qv
i=1
and
|g(:v,y,z) —g(x,y,2)| S QO(:C;V(Z - 2)) on Qimp

are satisfied,

3)ne (I, Ry) and | (¢ — @) (x,y) | < nlz) on Ep.

4) u, @ € CimpC(EYUE, R) are solutions of (1.3), (1.4) and (1.18), (1.19)
respectively, the functions u, u are of class D.

Under these assumptions we have | (u — @)(z,y) | < w(xz,n) on E.

Proof. The function u — u satisfies all the assumptions of Theorem 1.11 and
the statement follows. [

As a consequence of the above theorem we get the following uniqueness
criterion.

Theorem 1.14. Suppose that Assumption H [0, 00] is satisfied and

1) the functions f and g satisfy the Volterra condition and the condition
V() respectively,

2) the estimates

n
| f(2,y,2,0) = f(2,9,2,0) | < o2, V(z=2))+ > M;i|g; — @ on
i=1
and
|g(ZC,y,Z) fg(x,y,2)| S QO(:C)V(Z - 2)) on Qimp
are satisfied,
3) the mazimum solution of problem (1.13), (1.14) withn =0 isw(-,0) =
0 on J.
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Then the Cauchy problem (1.3), (1.4) admits at most one solution of the
class D on Eqg U E.

Theorem 1.14 follows from Theorem 1.13 for f = f, §j = g.
Remark 1.15. Suppose that the functions
h: (J\Jimp) XR+ —>R+ and hoZJimp XR+ —>R+

are continuous and are nondecreasing with respect to the second variable.
Put
o(z,w) =h(z,||lwllz) and go(z, w) = ho(z, [wll.-).

Then
(i) assumption 2) of Theorem 1.11 has the form

| Daul, )| < e Julle) + 3 M | Dyu(z,9) | on B\ By,
i=1
and
A| u(xvy) | < ho(:ﬂ, ”u”x— ) on Eimpa
(ii) assumption 2) of Theorem 1.14 has the form

n
| f(2,y,2,0) = f(@,9,2,0] < bz, | 2= 2]) + D Milg; — G| on Q,
i=1
and
|g($,y,2§) - g(l‘,y,g) | < ho(ﬂ?, || z=Z H:Cf ) on Qimpv
(iii) the comparison problem (1.13), (1.14) is the ordinary Cauchy prob-
lem with impulses

W(z) =h(z,w(@)), ©€J\ Jimp,
Aw(z) = ho(z,w(z7)), = € Jimp, w(0)=mn,

where n € R,

1.3. DIFFERENCE EQUATIONS FOR INITIAL PROBLEMS

We denote by F(X,Y) the class of all functions defined on X and taking
values in Y, where X and Y are arbitrary sets. For F and Ej defined by
(1.15) and (1.17) we put

Q= (E \ Eimp) X Cimp(EO UE, R) X Rn, Qimp = Eimp X Cimp(E()UE,R),

and suppose that f : Q@ — R, g : Qimp — R, ¢ : By — R are given func-
tions. We take into considerations the Cauchy problem with impulses (1.3),
(1.4). We will approximate classical solutions of the problem by solutions
of adequate difference problems.

We define a mesh on the set Ey U E in the following way. Let N and
Z be the sets of natural numbers and integers respectively. For y, y €
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R y= 1, s¥n)s §= (J1,--. Un), we write y * § = (4191, .., Yn¥n)-
Suppose that (hg, h’) where h' = (hy,..., h,) stand for steps of the mesh.
For h = (ho, k') and (i,m) € Z'*™ where m = (my, ..., m,) we define nodal
points as follows:

2@ =ihg, y™ =mxh!, Yy =™, ym),
Denote by O the set of all h = (hg, k') such that there are
No€ Z, N=(Ny,...,N,) € N"

with the properties: Noho =19 and N x h/ = b. We assume that © # () and
that there is a sequence {h()}, h() € O, and lim; o, K9 = 0. For h € ©
we put |h| = hg + h1 + -+ + hy. There is Ny € N such that Nohy < a <
(No + 1)ho. For h € © we define

R}lﬁ'” = {(x(i),y(m)) : (i,m) € ZH”}

and
Eon=FENR™, E,=ENR™.

In this Section we assume that A’ < hgM. For a function z : By ,UE), — R
we write z(t™) = z(x(i), y(m)). Elements of the set Ey , UE}, will be denoted
by (z®,y(™)) or (z,y). Put

Ejp = { (@D, y™) € Byn UE), : i<j }
and
|2l = masc { |26 | (2,y™) € By }
where 0 < j < Np. Let
E,={ (x(i),y(m)) c Ey: (Jc(i) + ho,y"™) € By, 1.

The motivation for the definition of the set E}, is the following. Approximate
solution of problem (1.3), (1.4) are functions uy, defined on Ej,. We will write
difference equations generated by (1.3), (1.4) at each point of the set Ej . It
follows from condition h’' < hoM that we calculate all the values of u;, on
B

Suppose that natural numbers nq,...,n; are defined by

hon; <a; <hg(n;+1), i=1,...,k
Let
E;me:{ (D, g™y ie{ng,...,np }, (9,y™), (D M) e R, }
and

O = (E;L \ E;me) x F(EonUER, R)x R", Q™ = [} x F(Ey,UEp, R).
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For 1 < j < n we write ¢; = (0,...,0,1,0,...,0) € R", 1 standing on j-th

place. We consider difference operators dg, 6 = (d1,...,0,) given by
do2v™) = 1 LHhm) L . (z(i’erej) + z(i’mfej)> (1.20)
ho 2n 4 ,
Jj=1
. 1 _ .
§;2m) = — (z“vm“ﬂ - z@’m*eﬂ) L 1<j<n  (121)
2h;

Suppose that for h € © the functions f, : Q, — R, gp : Qiﬁnp — R,
vn : Eo.n, — R are given. The function fj is said to satisfy the Volterra
condition if for each (z(?,y(™)) € Ej there is a set E[i,m] such that

(i) E[i,m] C E; p,

(ii) for z, Z € F(Ey.p U Ep, R) such that z = Z on E[i,m] we have

fh(x(Z)ay(m)azaQ) :fh(x(Z)ay(m)azaq)a qeRn

We will approximate solutions of (1.3), (1.4) by means of solutions of the
problem

G0z = fu(a9,y™, 2,50, (@9, ) € B\ B, (1.22)
Z0rbm) —m) = g, (20, y ™ 2), (@@, y™) € B, (1.23)
2 (im) :cpg’m) on Eyy,. (1.24)

If 5, and gj, satisfy the Volterra condition and h’' < Mhg then there exists
a unique solution uy, : Egp U Ep, — R of problem (1.22)—(1.24).
Let

Ih:{x(i): i:—NO,...,—l,O},
th{x(”: i:O,l,...,NO,}, J,’L:{x(i): i:O,l,...NO—l},

and
Jh‘j:{x(i)EIhUJh: z‘gj}, 0<j<No.

We consider two comparison functions

on: (TN ) X F(I,UJy, Ry) — Ry and 6y, : ;™ x F(IL,UJy) — Ry

corresponding to fj and g respectively. For simplify notation, we write
onli,n] instead of o (2™, n)

and

Gnlj,m] instead of &4(29) 7).
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We will denote by V}, : F(Eo.p U Ep) — F(I, U Jp, Ry) the operator given
by
(Viz) (29) = max{ |26y e [—b, b] } for 2 e Iy,
(Vaz) (@9) =
= max{ |26 |y e [ b+ M2, b— Mz } for ¥ € Jj.
Assumption H [0}, 65, |. Suppose that

1) the functions op, and &, are nondecreasing with respect to the func-
tional variable and fulfill the Volterra condition,

2) o-,0,] =0 on J, \ J;™ and [-,0,] = 0 on J,™ where 9,(5) =0 for
z® el UJy,
3) the difference problem with impulses
"t =@ £ ho opld,n] for 2 e J)\ J;me, (1.25)
Y =@ £ 5,04,n] for 2D e ;™ 9D =0 on I, (1.26)
is stable in the following sense: if ny, : I, U J;, — Ry is the solution of the
problem
N =09+ ho ol i, ]+ hoy(h) for 2™ € J\ L, (1.27)
D =04 anli 0]+ A(h) for e € ™, 9D =ag(h) only, (1.28)
where v, ¥, ap : © — R4 and

lim ag(h) = lim (k) = lim 5(h) =0,
then there is a function 8 : ©® — Ry such that nﬁf) < B(h), D € J, and
Hmh_,o ﬁ(h) =0.

Assumption H [ f;,,gn]. Suppose that functions f, and gy satisfy the
Volterra condition and

1) there exist the derivatives

(DQ1fh(P)a'~-aanfh(P)) :quh(P)
and quh(x7yaza ) € C(RTL7RTL)7
2) for each P = (x,y, z,q) € Q, we have

_nho

1
h;

| Dg, fn(P)| >0, 1<j<n,

3) there are functions o, and &3, satisfying Assumption H [0, 65 ] and
such that

fh(x(l)ay(m)727Q)7fh(x(l)7y(m)72aQ)‘ So—h[iavh(zfz)} on Qha
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and
gn(z®,y™ 2) — g (2D, y™ 2)| < &40, Vi(z — 2)] on QP
Now we prove a theorem on the convergence of the method (1.22)—(1.24).

Theorem 1.16. Suppose that Assumptions H [on,n ], H [ fr,gn] are sat-
isfied and

1) the functions f € C(Q,R), g € C(Qimp, R) fulfill the Volterra condi-
tion and the condition V(=) respectively and ¢ € C(Ey, R),

2) v € Cimp(Eo U E, R) is the solution of (1.3), (1.4), the function v is
of class C? on E \ Eimp and the partial derivatives of the second order of v
are bounded on E \ Eimp,

3) un : Eo.n UER — R is the solution of (1.22)—(1.24), vy, is the restric-
tion of v to the set Ey ,UE}, and there exist functions o, (1, P2: © — Ry
such that

| Fu (D5 o, 0™ ) = F(2D, 5, 0,600 )| < By(h) (1.20)
on Ej\ B,

‘gh(x(Z)ay(m)auh) - g(anmy(m)au) ‘ < BQ(h) on E;me’ (130)

’(p(i,m) _ (ps}m) ‘ < ag(h) on Eop

and

lim ag(h) = lim Bi(h) = %LmOBQ(h) =0. (1.31)

Then there exists a function ¥ : © — Ry such that

ug,m) _ ,U}(li,m) <#(h) on E, and }llu%ry(h) =0. (1.32)

Proof. Let the function T, : E} — R be defined by
501),(j’m) = fu(zD, 4™y, (5v}(li’m) )+ f’ﬁ:’m) on Ej \E;me,

and
o T = o™ gy (20, 0 ) + T on B

It follows from the consistency conditions (1.29)—(1.31) that there exists
v : ©® — Ry such that |I~’§:m)| < ~(h) on Ej; and limj_. vy(h) = 0. Let
wy, : I U Jp, — R4 be given by

w}(j) = max{ |u§;’m) — U;j’m) | . y(m) € [71), b] } fOI‘ ’13(1) S Ih



26

and
W® = max{ ™ — &™) e [ b4 M2 b — Ma®] }
for 2 € Jh.
It follows that the function wy, satisfies the difference inequalities
w(iﬂ) < w(i) + hooli,wn |+ hoy(h), =@ € J\ J™,
(ZH) < w(z) +6nli,wn] +y(h), =@ e M.

We have also the initial estimate wh) < ag(h) on Ij. Consider the problem

)

N =0 hoowi,n] + hoy(h), = e T\ I, (1.33)
D =D 4500 1 4+y(h), 2D e T 5@ = ag(h) onI,. (1.34)

Denote by 7y, : Ip, U Jp, — Ry the solution of (1.33), (1.34). It follows that

wﬁf) < ﬁﬁf) on J, and consequently |u§fm) - vg’m)| < 77;(3) on Ej,. Now we

obtain (1.32) from condition 3) of Assumption H[op,dp ]. This completes
the proof of Theorem 1.16. [

Now we consider the condition of stability 3) from Assumption H [o, o4, |
in the case when f; and g, satisfy the Lipschitz condition. Suppose that
there are Lo, L € R4 such that

’ fh(x(l)w(m)Jﬂ) - fh($(l)7y(m)75aQ) ’ S LHZ - z”hz on Qha
and
|90, 2) (2, ), 2)| < Lollz 2 on Q.
Then problem (1.33), (1.34) is equivalent to
N =0 (1 + Lho) + hoy(h), =@ e Jj \ J,™P, (1.35)
N =00+ Lo) +3(h), 2@ € B, @ =ao(h).  (1.36)
Write ng+1 = Np. Then the solution n, of (1.35), (1.36) has the form

i—1
M = ao(h)(L+ Lho)' + hoy(h) Y_(1+ Lho)", i=0,1,...,m1,
7=0

a0 = [+ Lo +3(0) | (14 Lho )
+h0"}/(h) (]. +Lh0)‘r, 1=1,2,...,n541—n;, j= 1,...,k,
0

[V

T

where Z —0=0.

We see at once that there is 7 : © — R4 such that n(z) < 7j(h) for
1 <i < Ny and limy o 7j(h) = 0.



27

Remark 1.17. It is easy to prove a theorem on the convergence of the
difference method (1.22)—(1.24) with the operators o and 6 = (d1,...,0,)
given by

. 1 . .
(iym) _ (i+1,m) _(iym)
doz T (z z ) (1.37)
and

_ 1 _ .
§;20m) = — (z@vm“ﬂ - z@’m)) L i=1,... K, (1.38)
h;
5jz(“m) = (z(“m) — z(”m_ef)) , J=k+1,....n, (1.39)
j

where 1 < k < n is fixed. Condition 2) of Assumption H [f5, g | takes the
form

—~ 1
1*hOZF|Dijh(xay727Q)‘ Zoa
j=1""
infh(may7z7q) 20f0r 1< < R, D(hfh(may7z7q) <0 for K +1 §Z§n7
where (z,y, z,q) € Q.

Remark 1.18. All the results of this Chapter can be extended for systems
of functional differential equations with impulses

Dyzi(z,y)=fi(z,y,2(x,y), 2, Dyzi(z,y)), i=1,...,k, (z,y)€E\Einp,
Az(z,y) = 9(2,y,2(z7,y),2) on Eimp, 2(z,y) =¢(z,y) on Ey,
where z = (z1,...,2;) and
f= 1y f)  (E\ Eimp) X R* X Cimp(Eo U B, R*) x R — R*
9= 1(91,---,9%) : Eimp X RF x Cimp(Eo UR, Rk), ¢ : Ey — RF.

Some quasi monotonicity conditions are required for f and g in this case.
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CHAPTER II
INITIAL BOUNDARY VALUE PROBLEMS WITH IMPULSES

2.1. FUNCTIONAL DIFFERENTIAL INEQUALITIES GENERATED BY MIXED
PROBLEMS

We formulate the problem. Let a > 0, 79 € Ry, b = (b1,...,b,) € R"
and 7 = (71,...,7,) € R be given where b; > 0 for 1 < i < n. Suppose
that k € Z, 0 < k < n, is fixed. For each y = (y1,...,yn) € R™ we write
y=(y,y") where y' = (y1,...,¥x), ¥ = (Yx+1,--.,Yn). We have y' =y if
k=mn and y"” =y if kK = 0. We define the sets

E= (O,CL) X [71)/; bl) X (71),/7 b”]v B = [77—070] X [077—,] X [77/1,0]'
Let ¢ = (c1,...,¢,) =b+ 7 and
Eo = [-70,0] x [-V, ] x [-", b"],
OE = ((0,a) x [V, ] x [-",b"])\E, E*=FEyUEUJE.

If 70 > 0 then we put B(~) = BN ([~7,0) x R").
Suppose that 0 < a1 < ag < -+ < ar < a are given numbers. Let
I, J, Jimp be the sets given by (1.1) and

Eimp = {(37’?/) eFk: xe Jimp}7
Ei*mp = {(xvy) € Er: T e Jimp }7 aOEimp = {(a?,y) (S 80E LT e Jimp } .

We denote by Cimp(E™*, R) the class of all functions z : E* — R such that
(i) the restriction of z to the set E* \ Ej is a continuous function,
(ii) for each (x,y) € E;, there are the limits (1.2),

imp
(ili) z(z,y) = z(zT,y) for (z,y) € B,
In the same way we define the set Cimp(Eo U E, R). For a function z €
Cimp(E*, R) and a point (z,y) € Eimp we write Az(x,y) = 2(z,y)—z(z ™, y).
Suppose that we have a sequence {¢1,%s,...,tp } such that —7p < 1 <
tg <o <t, <0.Write I'; = BN ((¢;,ti41) x R*) fori=1,...,p—1 and

Io=0 if — 70 =11, FoiBﬂ((*Tg,tl)XRn) if — 7y <tq,
r,=0 if t, =0, T'y=BnN((tp,0)xR") if ¢, <0.
We denote by Cimp|B, R] the class of all functions w : B — R such that

there is a sequence {t1,...,%, } (the numbers p and ¢y, ...,t, depend on w)
such that
(i) the functions w |p,, i = 0,1,...,p, are continuous,

(ii) for every 4, j, 1 <14, j <p, (t;,8) € B, (tj,s) € B, t; > —19, t; <0,
there exist the limits

lim U}t, :wt'_757 lim U}t, :wt+757
(t,y)— (ti,s), t<t; (t.9) (tis9) (tyy)—(t;,8), t>t; (t.9) ( J )

iii) w(t;,s) = w(tf,s) for (t;,s) € B, 1 < j <p—1andfor j =pif
t, <0,
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(iv) the functions w(t1, -) and w(t,, -) are continuous if ¢; = —7y and
tp = 0.
We define also in the case 79 > 0

Cimp[B), Rl = {w |p): w € Cimp[B, R] }.

Elements of the sets Cimp[B, R] and Ciyp[B(™), R] will be denoted by the
same symbols. We denote by || - ||p and || - ||z~ the supremum norms in
the space Cimp[B, R] and Cimp [B(_)7 R] respectively.

Suppose that z : E* — Rand (z,y) € [0,a)x[~b,b]. Then z(, ) : B — R
is the function defined by

2yt 8) = 2z(x+t,y+s), (t,5) € B.

The function z(, ) is the restriction of z to the set [z — 7o, 2] x [y, ' + 7] x
[y" — 7", y"] and this restriction is shifted to the set B. If 79 > 0 then for
the above z and (z,y) we will consider also the function z(,- B&) - R
given by 2(z- ) (t,s) = z(z + t,y + ), (t,5) € B,

It is easy to see that if z € Cinp(E*, R) and (z,y) € [0,a) x [—b, b] then
Z(a,y) € Cimp[B, R] and z(,- ) € Cimp[B(’), R] in the case 79 > 0.

Put

Q= (E\ Eimp) X Cimp|B, R x R* and Qimp = Fimp X Cimp[B ), R]

) -

and suppose that f : Q@ — R, g : Qimp — R, ¢ € Cimp(EoUE, R) are given
functions. We assume that g does not depend on the functional variable
in the case 79 = 0. We take into considerations the functional differential
equations with impulses

Dzz(xa y) = f( z,Y, Z(m,y)a DyZ(ZC, y) ) on F \ Eimpa (21)
AZ(I,y) = 9(1‘7%2’(1:;,) ) on Eimp
and the initial boundary conditions
z(z,y) = p(z,y) on EgUdE. (2.3)

We consider classical solutions of problem (2.1)—(2.3). A function 2 : E* —
R is a solution of (2.1)—(2.3) if 2 € Cimp(E*, R), there are the derivatives
D.z, Dyz on E \ Einmp and Z satisfies (2.1)-(2.3).

Example 1. Suppose that f : (E\ Eimp) X RX Rx R™ — R is a given

function. Put

flx,y,w,q) :f(a?,y,w(0,0),/w(t,s)dtds,q).
B

Then equation (2.1) is equivalent to

Dyx(sy) = (2, (), / 2(ot, yts) dtds, Dyz(z,y)), (2,y) € E\ Bimp.
B



30

It is easy to see that differential equations with a deviated argument are
also particular cases of (2.1).

We prove theorems on functional differential inequalities with impulses.
Suppose that z € Cimp(E*, R) and the derivatives D;z, D,z exists on
E\ Eimp. We consider the Niemycki operators corresponding to (2.1), (2.2)

F[Z](l‘,y) = f(x7yaz(x,y)7Dyz(Iay)) on E \ Eimp7
G[Z] = g(xayaz(m—,y)) on Eimp~

Let Iy, I_, Iy : E — {1,...,n} be the functions defined in the follow-
ing way. For each (z,y) € E there are sets (possibly empty) of integers
I [z,y], I_[z,y], Io[z,y] exist such that

IJr[xay] U];[I',y] UIO[:an] = {17 . '7”}3
and
Yi = bz for i€ IJr[xay]a
gi=—b; for i€ I_[z,y], —b;<yi<b; for iée Iy[z,y].

Assumption H [ f,g]. Suppose that

1) the function f of the variables (z,y, w, q) satisfies the following mono-
tonicity condition: if w, W € Cimp[B, R], w(t,s) <w(t,s) on B and w(0,0)=
w(0,0) then f(z,y,w,q)< f(z,y,w,q),

2) the derivatives ( Dy, f,...,Dq, f) exist on  and

Dy, f(z,y,w,q) >0 on Q for 1< <k,

Dy, f(z,y,w,9) <0 on Q for k+1<i<mn,

3) the function ¢ of the variables (z,y,w) is nondecreasing with respect
to w.

Theorem 2.1. Suppose that Assumption H [ f,g] is satisfied and

1) u, v € Cimp(E*, R), the derivatives Dyu, Dgv, Dyu, Dyv exist on
E \ Eimpa

2) the differential inequality

Dxu(a:,y)—F[u](x,y) <Dx’U(I,y)—F[’U](.'IJ7y) on E\Eimp7 (24)
and the inequality for impulses
Au(z,y) — Glul(z,y) < Av(z,y — G[v](z,y) on € Einp  (2.5)

are satisfied,

3) the initial boundary inequality u(z,y) < v(z,y), (z,y) € Ey U OE
holds.

Under these assumptions we have u(x,y) < v(z,y) for (z,y) € E.
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Proof. Write
I.={z €[0,a): thereisy such that (z,y) € F and u(x,y) > v(z,y)}.

Suppose, by contradiction, that assertion fails to be true. Then I, is not
empty. Let £ = min I,. It follows that £ > 0 and there is y such that
(Z,9) € E and

u(z,y) = v(Z,9). (2.6)
First suppose that (Z,9) € E \ Eimp. Because (Z,7) & doE, we have
{1,...,6k}NI[2,9]=0 and {k+1,....,n}NI_[Z,7]=0.
According to the definition of (&, ) we have
Da(u—v)(#,§) > 0 (2.7)
and

Dy —v)(#,3) 20 for i € I,[5,7],
Dy, (u—v)(Z,9) <0 for ieI_[Z,7],
Dy,(u—v)(Z,5) =0 for i€ Ih[Z,7|.

We also have the inequality
u(z,5) (t,8) < vag)(t,s) for (t,s) € B.
Thus, from assumption 2) and from the above estimates, we deduce that

D;C(U—’l])(.’i',:lj> < f(i',?jau(i,g)aDyu(ja?j)) - f(‘%agav(a”:,g%Dyu('iag)) +
+ > Def(E,§,0,5,47) Dy, (u—v)(&,7) <0,

i€l [Z,9]VI-[Z,9]

where ¢ € R™ are intermediate points. The last inequality contradicts
(2.7) and thus the assertion follows.
Now suppose that (Z,§) € Eimp. Then we have w(Z~,9) < v(Z~,7) and

uz- g)(t,s) <wv- g (t,s) for (t,s) € B,

It follows from assumption 3) and from the monotonicity of g with respect
to the functional variable that

U’(‘ivg)_v(ivg) < U(.f_, g)_v(j_7g)+g( z, gau(i‘*,gj) )_9(557?]70(5*,@) ) <0,

which contradicts (2.6). This completes the proof of the Theorem 2.1. O



32

Remark 2.2. Assumption 2) of Theorem 2.1 can be replaced by the fol-
lowing one. Let

Ti={(z,y)€E : u(t,s)<v(t,s) on EN([0,z)xR"), ulz,y)=v(z,y)}.
Suppose that

Dyu(z,y) — Flu](z,y) < Dyv(z,y) — Flv](z,y) for (z,y) € Ty \ Eimp,
Au(xay) - G[U}(fﬂ,y) < A’U(.T,y) - G[’U](:C,y) fOT‘ (xay)a € T+ N Eimp~

The point (Z,¢) from the proof of Theorem 2.1 is an element of T.

Now we will deal with weak functional differential inequalities with im-
pulses. We need more restrictive assumptions on the functions f and g. We
will need two comparison functions: ¢ and o¢ for f and g respectively.

Assumption H [0, 0g]. Suppose that

1) the function o : (J \ Jimp) X Ry — Ry and 0g : Jimp X Ry — Ry are
continuous and o(z,0) =0 for € J \ Jimp, 0o(x,0) =0 for & € Jimp,

2) the functions o(x, -) and o¢(t, - ) are nondecreasing on R4 and the
function w(z) = 0, = € J, is the unique solution of the initial problem with
impulses

'(z) =o(x,w(z)) on J\ Jimp,
Aw(z) =oo(z,w(z™)) on Jimp, w(0)=0.
Now we formulate the main theorem of weak functional differential inequal-
ities.
Theorem 2.3. Suppose that Assumptions H [ f,g], H [o,00] are satisfied
and
1) for every w, @ € Cimp[B, R}, if 0 > w then
f(xayau_}7Q) *f(-T,y,’UJ,q) < O'(l‘, HU_) 771/”3)
where (z,y,q) € (E\ Eimp) X R",
2) for every w, w € Cimp[B7), R], if w > w, then
g(:c,y,lf)) 7g(x,va) < o’o(Z, ||7D - w”B(*) )7

where (2,y) € Eimp,

3) u, v € Cimp(E*, R), the derivatives Dyu, Dyv, Dyu, Dyv exist on
E\ Eimp and u(z,y) <v(z,y) on Ey U E,

4) the differential inequality

Da:u(xay) - F[U](l’,y) S Dx’u(x,y) - F[U}(Z,y) on E \ Eimpa
and the inequality for impulses
Au(z,y) — Glul(z,y) < Av(z,y) — Glv](z,y) on Eimp,

are satisfied.
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Under these assumptions we have

u(z,y) <wv(z,y) for (x,y) € E. (2.8)

Proof. Let a € (ag,a) be fixed. At first we prove that

u(z,y) <wv(z,y) for (z,y) € EN([0,a) x R"™). (2.9)

For € = (g9, €1, £2) we consider the maximum solution w( -, €) of the problem
W'(z) =o(z,w(z)) +eo on [0,a)\ Jimp, (2.10)

Aw(z) =og(z,w(z™))+e1 on Jimp, w(0)=eq. (2.11)

There is € > 0 such that for 0 < g; < &, 4 =0, 1,2, the solution w(-,¢) is
defined on [0,a). Let the function u() : E* — R by given by

u®(x,y) = u(z,y) —w(z,e) on (EUE)N([0,a) x R™),
u® (x,y) = u(z,y) —ea on Ep.
We prove that
u® (z,y) <v(z,y) on EN([0,a) x R"). (2.12)
It follows from the assumptions of Theorem 2.3 that
u® (2, y) <v(z,y) on EyU(BEN([0,a) x R™))
and
Dyu (2, y) — F[u® )(z,y) < Dyo(a,y) = Flv](z,y)
on (EN([0,a) x R"))\ Eimp-

Au'® (z,y) — G[u' ](z,y) < Av(z,y) — G[v](x,y) on Eimp.
Hence, an application of Theorem 2.1 shows that (2.12) is satisfied. Because
gii%w(:c, €) =0 uniformly with respect tox € [0, a),
we get the assertion (2.9). The constant a € (ak,a) is arbitrary, then (2.9)

implies (2.8). This completes the proof of Theorem 2.3. [

Remark 2.4. Assumption 4) of Theorem 2.3 can be replaced by the fol-
lowing one. Let

T={(z,y) € E: ulz,y)>v(r,y) }.
Suppose that
Dyu(w,y) — Flu](z,y) < Dyv(z,y) — Flv](z,y) on T\ Eimp
and

Au(z,y) — Glul(z,y) < Av(z,y) — G[v](z,y) on T' N Eimp.
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In this case we use Theorem 2.1 for u(¥) and v in the version given in Remark
2.2.

Remark 2.5. Let Assumptions H [ f,¢], H [0,00] and conditions 1), 2)
of Theorem 2.3 hold. Then, there is at most one solution of problem (2.1)—
(2.3).

2.2. COMPARISON THEOREMS FOR MIXED PROBLEMS

In dealing with applications of ordinary differential inequalities to partial
differential equations, we have to estimate the solutions of such equations,
which are functions of several variables, by functions of one variable. We
denote by Cimp(J, R) the class of all functions w : J — R such that the
restriction of w to the set J \ Jimp is a continuous function and for every
T € Jimp there are the limits lim; ,,+ w(t) = w(z™), lim; - w(t) = w(z ™).
We assume also that w(z) = w(z™). Put Qo = (E'\ Eimp) X Cimp(B, R) and
suppose that

0: (J\ Jimp) X Ry = Ry, 00:Jimp = Ry, A=(A1,..., ) : Qo — R"

are given functions. In this Section we consider the functional differential
inequalities of the form

Diz(xay) - Z )‘Z(xa Y, Z(z,y) ) Dylz(fca y) < 0’(’1}, ”Z(:c,y)”B )7 (213)
=1

where (x,y) € E \ Eimp, with the inequality for impulses

| Az(z,y) | < 00, 2= 3 ), (2,9) € Eimp. (2.14)

We prove a theorem which allows the estimate of a function satisfying the
above inequalities by means of the extremal solution of an adequate differ-
ential problem with impulses.

Assumption H [\, 0, 0¢]. Suppose that

1) A: Qo — R™ is the function such that

Ai(z,y,w) >0 on Qo for 1<i<k,

Ai(z,y,w) <0 on Qy for k+1<i<mn,

2) 0 : (J\ Jimp) X R+ — Ry and o0¢ : Jimp X Ry — Ry are continuous
and for every n € R, there exists on J the right hand maximum solution
w(+,n) of the problem

W'(z) =o(z,w(x)) for z € J\ Jimp, (2.15)
Aw(x) = ogp(z,w(x™)) for = € Jimp, w(0)=mn. (2.16)

3) for each x € Jimp the function vo(p) = p + oo(x,p), p € Ry, is
nondecreasing on R, and o is nondecreasing with respect to the second
variable.

In the sequel we will use the following lemma
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Lemma 2.6. Suppose that

1) the functions & : (J \ Jimp) X Ry — Ry, 60 : Jimp X Ry — Ry are
given and ¥(p) = p + 6o(x,p) is nondecreasing on R with fived x € Jimp,

2) o, B € Cimp(J, R), and a(0) < 5(0),

3) denoted by

Ty ={z€(0,a): alt) <p(t) forte[0,z)and a(z) = B(z)},
we assume that
D_a(x) —6(z,a(x)) < D_p(x) — o(x,B(x)) for x € T+ \ Jimp,
and
Aa(z) — oz, a(z™)) < AB(z) — do(z, B(x™)) for x € Jimp.
Then a(x) < B(z) for x € J.

We omit the proof of the Lemma 2.6; see [24], [25] for analogous results
for problems without impulses.

Theorem 2.7. Suppose that Assumption H [\, o, 0¢] is satisfied.
Let w € Cimp(E*, R) be a function such that
1) the derivatives Dyu, Dyu exist on E \ Eimp and

|u(z,y)| <n on EyUOE, (2.17)

2) u satisfies the differential inequality (2.13) on E \ Eimp and the esti-
mate for impulses

| Au(z,y) | < oo(z,Tug-y)) on Eimp
holds true, where
Tug- yy =@yl if 70>0 and Tug- ,y=[u(z",y)| if 70 =0.
Under these assumptions we have
|u(z,y)| <w(z,m) on E (2.18)

where w(-,n) is the right hand mazimum solution of (2.15), (2.16).
Proof. Let us define

p(x) = max{|u(t,y) |: (ty) € BN ([~mo.2] x R") }, @ € [0,0).

Then ¢ € Cimp(J, R) and estimation (16) is equivalent to p(x) < w(z,n),
x € J. Let a € (ag,a) be fixed. At first we prove that

o(x) <w(z.m) on [0,a). (2.19)



36

Let w(-,n,e), € = (0,1,&2), be the right hand maximum solution of the
problem

W'(z) =o(z,w(x)) +e¢ for € J\ Jimp, (2.20)

Aw(z) = oo(z,w(z™)) +e1 forx € Jimp, w(0) =n+e2, (2.21)

where €; > 0, ¢ = 0,1, 2. There is £ > 0 such that for 0 <e; <&,i=0,1,2,
the solution w(-,n,¢) is defined on [0,a). It is enough to show that

o) <w(z,n.e), xe€l0,a), (2.22)

because lim._,o w(x,n,&) = w(z,n) uniformly on [0,a). We will prove re-

lation (2.22) by using Lemma 2.6. It follows from assumption (2.17) that

©(0) < w(0,7,¢). Thus, put

Ty ={z€(0,a): ¢(t) <w(t,ne) fortel0,z), p)=w(wmne)}.
Let € T'y. There are two possibilities:

(a) T E T+ \ Jimp, (b) T E T+ n Jimp-

Let us consider the case (a). Then ¢(Z) > 0 and there is § such that
(Z,9) € E* and ¢(Z) = |u(Z,g)|. It follows from (2.17) that (Z,9) € E \
FEimp. Suppose that ¢(Z) = u(Z, 7). Then |luz 5l = ©(Z) and

Dy,u(@,9) 20 forie I [Z,7], Dyu(@g) <0 foriecl [,y
Dy,u(z,3)) =0 fori e Iy[Z,7].
Because (Z,9) € OoE, we have {1,..., s} NI [z, 9] =0 and {s+1,...,n}N
I_[#,9] = 0. Hence, we deduce using assumption 2) that
D_¢(z) < o(Z, |luz,pllz) +
+ Z Al(j7g’u(i7ﬂ))Dylu(‘%’g) S U(i,@(i))a
€11 [2,g]UI- [7,7]
and consequently

D_p(Z) < o(Z,p(T)) + €o. (2.23)
If o(%) = —u(Z, §) then we prove (2.23) in a similar way.

Consider the case (b). For each y such that (Z,y) € E \ Eimp we have
|uw(@™,y) | < (@) and [Jueg.y)ll g < @(@7). There is § such that (z,9) €
(E\ Eimp) and ¢(Z) = |u(Z,9)|. If ro = 0 then we have from assumption
2)

p(@) = [u(@ g) | < |u(@™,g) [+ o0(Z, (@™, 9)) < (@) +00(Z, p(Z7)),
and consequently

Ap(F) < 00(F, p(&7)) + €1. (2.24)

In a similar way we prove (2.24) in the case 79 > 0. Thus we see that all
the assumptions of Lemma 2.6 are satisfied for a(x) = o(z) and f(z) =
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w(z,m, ), x € [0,a). Then inequality (2.22) is satisfied. The constant a €
(ak,a) is arbitrary then the proof of Theorem 2.7 is completed, as observed
earlier. [

Remark 2.8. It is easy to see that assumption (2.17) of Theorem 2.7 can
be replaced by the following one. Suppose that |u(x,y)| < n for (z,y) € Ey
and |u(z,y)| < w(z,n) for (z,y) € OF where w(-,n) is the right hand
maximum solution of (2.15), (2.16).

The next theorem allows us to estimate the difference of any solution of
(2.1)—(2.3) and any solution of

sz(xvy) = f(xvyaz(x,y)vDyz(x;y)) on E‘\E‘imp7 (2.25)
Az(z,y) = §(2,Y, 2(z—y)) O Eimp, (2.26)
z(z,y) = ¢z, y) on EyUdE, (2.27)

where f Q= R, §: Qmp — R and ¢ € Cinp(Eg UHE, R) are given
functions.

Theorem 2.9. Suppose that

1) there are o and oo such that conditions 2), 3) of Assumption H
[\, 0, 00] are satisfied and

flzoy,w.q) = fla,y,w.q) | <oz, ||w—w|g) on Q,

l9(z,y,p,w) —g(2,y,p,0) | < oo(z, |w—blp— ) on Qimp,
2) f satisfies condition 2) of Assumption H| f,g] and

qu(xavav ) € C(RnaRn)
for every (z,y,w) € (E\ Eimp) X Cii, (B, R),

imp
3) the initial-boundary estimates

(e = @)@ y) | <non Eo, |(¢—@)(z,y)| <wlx,n) on dE
are satisfied, where w(-,n) is the right hand mazimum solution of (2.15),
(2.16),
4) u and v are solutions of problems (2.1)<(2.3) and (2.25)—(2.27) respec-
tively.
Then |U(Z,y) - U($,y) | < W(xﬂ]) fOT’ (‘Tay) €L

Proof. Consider the function Z = v — v. Then we have on E'\ Eimp

n

Dxi(a:,y) - Z

i=1

inf(xvya U(JJ, y)vu(x,y)a P(x7ya t))dt Dylé(xa y)

o—__

<o(z,[|Z@ylls)
where P(z,y,t) = Dyv(z,y) + t[Dyu(z,y) — Dyv(z,y)] and

| Az(z,y) | < O—O(xvré(x—,y)) for (z,y) € Eimp,



38

where I' is defined in Theorem 2.7. Hence the assertion follows from Theo-
rem 2.7 which completes the proof of Theorem 2.9. O

As an immediate consequence of Theorem 2.9, we derive uniqueness and
continuous dependence results.

Theorem 2.10. Suppose that
1) there are o and og such that condition 2), 3) of Assumption H [\, o, 0]
are satisfied and

| (@ y,w,q) = fz,y,0,q) | < o(a, [[w—wlp) on €,
l9(z,y,w) —g(z,y, )| < oo(, |lw—blp—)) on Qimp,
2) f satisfies condition 2) of Assumption H| f,g] and
Dyf(z,y,w, -) € C(R",R")
for every (z,y,w) € (E\ Eimp) X Cii\, (B, R),

imp
3) w(x,0) =0 for x € J is the right hand mazimum solution of (2.15),
(2.16) with n = 0.

Then, there is at most one solution of problem (2.1)—(2.3).
The above statement follows from Theorem 2.9 with f = f.

Remark 2.11. Suppose that the assumptions of Theorem 2.9 are satisfied
and the function w(x,0) = 0, = € J, is the right hand maximum solution of
problem (2.15), (2.16) corresponding to n = 0. Then, for every € > 0 there
is 6 > 0 such that if

f(xayawaq) - f(xayau_}7Q) < 5 on Q>
|9(337ya w) - g(x, y,ﬂ)) | <4 on Qimpa
and | (p — @)(z,y)| < § on EgUE, then |u(z,y)—v(z,y)| < € for (z,y) €
FE.
The above statement follows from Theorem 2.9.

2.3. THE LINES METHOD FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL
PROBLEMS

We define a mesh on E* with respect to the spatial variable. Assume
that for a given b’ = (hq,...,hy) where h; > 0 for 1 < i < n, there exists
(N1,...,N,) = N € Z" such that N x b’ = 7. Denote by ©’ the set of all
h' having the above property. We assume that ©’ # () and that there is a
sequence

{ B @) }jzo : B — (h(lJ)7 o hgf) ) co,
such that lim;_ h'Y) = 0. We define nodal points as follows: let m =
(m1,...,my) € Z™, then

y™ =mx«h’ and y™ = (y%ml), . ,y,(Lm")) .
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Write
R = {(2,y™): z€R, meZ"}.
We define the sets

By =BNR" Eop = EoNRUY, Ew=ENRY 00Ew=00ENRLLT,
and
Ef = Eop UEw UdoEy, EXP ={(z,y"™) € Ep : 2 € Jimp },

Elements of the set E}, will be denoted by (z,y™)) or (z,y). For a function
z: Ef, — R we write 20" (z) = z(z,y™). Let § = (61,...,8,) be the
difference operator defined by (1.38), (1.39). We denote by Cimp(E},, R)
the class of all functions z : E}, — R such that z(-,y) € Cimp(I U J, R) for
every fixed y.

Suppose that we have a sequence {t1,...,t,} such that —7p <t; <ty <
-+ <ty <0. Let P, = (t;,ti41) fori=1,...,1—1 and

PQZ(Z) if _TO:tl, PQ:(—TQ,tl)Z if —7'0<t1,
Py=0 if t,=0, P,=(t,,0) if t, <0.

We denote by Cimp[I, R] the class of all functions « : I — R for which there
is a sequence {t1,...,tp } (p and t1,...,t, depend on ) such that

(i) the functions « |p,, 0 <14 < p, are continuous;

(ii) for each 4,75, 1 <14,j <p, t; > —79, t; < 0, there exist the limits
limg oy, e<t, () = a(t;) and limyy;, 5, at) = a(t;‘);

(ili) aft;) = a(tj') for1<j<p-1andforj=pift, <O0.

Let Cimp[Bn, R] be the set of all functions w : By — R such that
w(m)( -) € Cimp|I, R] for every fixed y(™_ In the case 7 > 0 we define also

B,(LT) ={(z,y"™)eBy : —9 <z <0}

and
Cinnp[BS) Rl = {w | y-) + w € Ciump[Bur, R] }.
h’

Elements of the sets Cimp[Bn/, R] and Cimp(B;(;) , R) will be denoted by the
same symbols. For w € Cimp[Bp, R] we write

lwllz,, = sup{|w™ (@) : (2,5")) € By }.

We will denote by || - || ;) the supremum norm in the space Cimyp [B,(L, ), R]
n’!

in the case 9 > 0.
Suppose that z : £}, — R and (x,y(m)) € Ep.. We define a function
2(z,m) * Bnr — R as follows:

2wy (ty) = 2(x + 1,y +y), (t,y) € Bu.
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If 79 > 0 then we define also z(;— ) : B,(LT) — R by

2a-amy (b Y) = 2(z + 1,9 +y), (ty) € By,
Write
Qh/ = (Eh/ \E;Lrlnp) X Cimp[Bh’aR] X Rn; Qiﬁ?p = E;Lr,np X Cimp [B}(Lli); R]
Suppose that for i’ € ©’ the functions fy : Q' — R, gp : Qihrflp R
on 2 Eop UOoER — R, are given. Applying the method of lines to (2.1)—

(2.3) we obtain the system of ordinary functional differential equations with
impulses

sz(m) (:E) = fh’ ( z, y(m)7 Z(z,m)> 5Z(m) (CU) ) on Ej \ E;Lr/np (228)
Az(m) (aj) = 9w ( €T, y(m), Z(x—,m) ) on E;Lrlnp (229)
Z(m)(l‘) = Pn’ (:C, y(m)) on FEgp UdgEp. (230)

A function 2 : Ej, — R is a solution of (2.28)-(2.30) if Z € Cimp(E}/, R),
there exists the derivative D,z on Ep \ E};'* and 2 satisfies (2.28)—(2.30).

Let Fp/, Gps be the Niemycki operators corresponding to (2.28), (2.29),
ie.

Fh/[z](m)(x) = fh/(xa y(m)’ Z(x,m)s 5Z(m)(x) ) on Ejp \ E}llr/np
and .
Gh'[z](m) (33) = gh/(ﬂf, y(m)a Z(z—,m) ) on E;Lrlnp

Now we prove a comparison theorem for differential difference inequalities
with impulses. Write

Sw = (Bw \ E}i"®) X Cimp| B, R]
and suppose that
A=A, .., ) 1 S — R, 0 (J\Jimp)XRy — Ry, 00 JimpxRy — Ry

are given functions.
We deal with the differential difference inequalities

| Doz (2) =3 X2, 4™, 2(0,m)) 6:2(2) | < 02, || 20.m) I B, ) (2.31)
=1

on By \ E)Y® with the estimate for impulses
‘Az(m)(x) ‘ < ooz, f/h/z(z’m)) on E;;,np, (2.32)
where

Vh/z(x7m) = u™(z7)| ifro=0 and

Vh/z(x,m) - ” U(z—,m) ”B}(j) if 70> 0.
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We prove that the function z : E}, — R satisfying the above inequalities
can be estimated by a solution of an adequate ordinary differential equation
with impulses. Let us formulate the following assumptions.
Assumption H;;,,[ A, 0, 00]. Suppose that
1) the function A : Spr — R™ is such that
Ai(z,y,w) >0 on Sy for1<i<k and
Ai(z,y,w) <0 on Sy fork+1<i<n

2) the functions o : (J \ Jimp) X Ry — Ry and o : Jimp X R4 — R4 are
continuous and for every nn € R there exists on J the right hand maximum

solution w( -,n) of the problem
W'(2) = o(z,w(x)) on J\ Jimp,
(z) = o _( ) \ Jimp (2.33)
Aw(z) = oo(z,w(x™)) on Jimp, w(0)=n,

3) for each € J \ Jimp and ¢ € Jimp the functions o(z, -) and og(¢, -)
are nondecreasing on R .
Now we prove the following comparison theorem.

Theorem 2.12. Suppose that Assumption Himp| A, 0,00] is satisfied and

1) the function u € Cimp(E},, R) has the derwative Dyu on Eps \E;;,np,
u satisfies differential difference inequality (2.31) and the estimate for im-
pulses (2.32) holds,

2) the initial boundary estimate

‘u(m)(x) } <n on Egn UOEw, n€ Ry, (2.34)

is satisfied.
Under these assumptions we have

‘U(m)(w) ‘ <w(x,n) on Ep, (2.35)
where w( -, n) is the right hand mazimum solution of (2.33).
Proof. Consider the function

p(a) = max{ |u™(z)| : (x,y"™) € By}, x e
Then ¢ € Cimp(J, R+) and ¢(0) < n. We prove that
o(z) <w(z,n), z € J (2.36)
Let a € (ag,a) be fixed and consider the problem
W(z) =o(z,wx))+eo, € J\ Jimp,
Aw(z) = oo(z,w(z™)) + €1, T € Jimp, w(0) =n+ea.

Denote by w(-,n,¢), € = (e0,1,£2), the right hand maximum solution of
the problem. There is € > 0 such that for 0 < ¢; < &, ¢ = 0,1,2, the
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solution w(-,mn,€) exists on [0,a) and lim._,o w(z,n, ) = w(x,n) uniformly
on [0,a). We prove that for the above € we have

olx) <w(z,n,e),  €[0,a). (2.37)
We will use Lemma 2.6. It follows from (2.34) that ¢(0) < w(0,n,¢). Let
T, ={ze(0,a) : o(t) <w(t,ne) forte (0,z), ¢(x)=w(z,n,e)}
Now we prove that
D_op(z) < o(z,¢(x)) +eo for z € T4 \ Jimp. (2.38)

Let x € T4 \ Jimp- Then ¢(x) > 0 and there exists m € Z™ such that
(z,y"™) € E;, and p(z) = | ul™ (z) |. Tt follows from (2.34) that (z,y(™) €
Ep \ E;®. Suppose that ¢(z) = u(™(z). Then || u(z,m) |5, = ¢(z) and

u 1
D_p(a) Sa(w, o)) + D0 N2,y ™ ugem) 7 [0 (@) = u @) +
i=1 v

n 1 .
30 M@y )y [0 @) - w0 @) < oo ().
1=k+1 v

Thus, we get
Dyp(x) < o(z,o(x)) + 1. (2.39)

In a similar way we prove (2.39) in the case when ¢(z) = —u(™(z).
Now we show that

Ap(x) < oo(z,p(x™)) +e1 for z € T4 N Jimp. (2.40)

Let z € T4 N Jimp. We have p(x) > 0. There exists m € Z™ such that
(z,y'™) € B} and ¢(z) = |u(™ (z)|. Then we have Viyu(, m) = @(z7).
If 79 = 0 then we get

p(@) = [u™ ()] < [ (@) + ooz, ™ (@7)]) < () + oo(z, ¢(z7)),

and (2.40) is proved. If 79 > 0 the we obtain

p(a) = [u™ (@) | < Ju™ (27) [+ o0(2, | u-m) Ipc) <

< (e ,m) ||ij> +00( 2, [tz m) ||ij> ) <w(z7) +oo(x,0(x7)).

Thus, we get (2.40). We obtain (2.37) by applying Lemma 2.6. Letting ¢ —
0 in (2.37) we conclude (2.35) for z € [0,a). Since the number a € (ay,a) is
arbitrary, then Theorem 2.12 follows. [
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Now we prove a theorem on the existence of the approximate solution.
Assumption Hi,, [ frr]. Suppose that
1) the function fps : Qp — R of the variables (z,y,w,q) is continuous
and it has partial derivatives (Dg, fu/,...,Dq, fo/) on Qs satisfying the
conditions
infh/(xayapaw7Q)ZO on Qh/ for ISZSH,
infh’(may7paw7q)§0 on Qh’ for k+1<i<n,
2) the functions o : (J \ Jimp) X R+ — R4 and 0g : Jimp X Ry — R4
satisfy conditions 2), 3) of Assumption Himp[ A, 0,00 ] and
|fh'(x7yawaq) - fh’(%yaﬂhQ) | < O'(LU, H w—w ||Bh’ ) on Qh’a
|gh/(x7yaw) 7gh’(x7ya ,TI)) | S 0'0(33, || w—w ||B;7) ) on thrflp’

3) the function &(z) = 0 is the unique solution of the initial problem
with impulses

W'(z) = o(z,w(x)), x€J\ Jimp,
Aw(z) = oo(z,w(z7)), = € Jimp, w(0)=0.
Assumption Hi;,p[29]. Suppose that
1) the function zo € C(Ej,, R) is such that there exists D,zo on Ep,/\ E}'P

and zo satisfies the initial boundary condition (2.30),
2) there are function 7o,y € C(J, R4) such that

| D™ (@) = Ful 2] (@) | < 7(@) on B \ B,
‘ Az(()m)(:c) — Gp[20]™)(x) ‘ < o(z) on ETP,
and there exists on J the right hand maximum solution wq of the problem
W'(z) = o(z,w(@)) +v(x), € J\ Jimp, (2.41)
Aw(z) = oo(z,w(z™)) + (), = € Jimp, w(0)=0. (2.42)

Theorem 2.13. If Assumptions Himp|Frr] and Himpl2o] are satisfied,
then there exists exactly one solution up : Ef, — R of problem (2.28)-
(2.30).

Proof. In the first step we define the sequence {wy }3° ,, where wy, : J — R4,
in the following way: wq is given in Assumption Himp[ 2o | and
x

wna (@) = [t ®)dt, o €I\ o
0
wi41(2) = wr(z7) + oo(@, wi (7)), T € Jimp,
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where k > 0. It is easy to see that wyq1(x) < wi(x) on J and
klim wi(x) =0 uniformly on J. (2.43)
—00

In the second step we define the sequence {zx}3>,, 2r : Ej, — R, in the
following way: zp is given in Assumption Himp[ 2o |. If z) is given then 241
is a solution of the system of differential equations

Dzz(m) (’JJ) = fh’(xa y(m)’ (Zk)(:c,m)a 5Z(m) (:C) ) on Eh’ \ Elmp
with impulses given by
Az(m)(x) = gh/(x7 y(m)7 (Zk)(x*,m) ) on E;;,np
and with initial boundary condition (2.30). We prove that
| Gii = 2) (@) | < wil@) on Ew, (2.44)

for 4, j > 0. First we prove (2.44) for j = 0 and ¢ > 0. It follows that
estimate (2.44) is satisfied for j = 0, ¢ = 0. If we assume that

‘ (2 — 20)™ () ‘ <wp(x) on Ej

then using the Hadamard mean value theorem and Assumption Himp[fn’]
we conclude that the functions z;11 — 2o satisfies the differential difference
inequality

n 1
Dz@HrwwWMmeZ/‘%h/met»w&@ﬁrww<>@>s
0

=1
< o(z,wo(x)) +~(zx) on Ep \ ENP,
where
Q) = (2,97, (23) ey 026" (@) + 10(z341 — 20) " (@) ).
Now let us consider the estimate for impulses. For (z, y(m)) € E;Lr,np we have
’ A(zj41 — zo)(m) (x) ’ <
< ‘gh’(x; y™), (%) (z—m) ) — gnr (2, y™), (20) (@~ ,m) ) ‘ +
+pmwa%@mfm>fA%m@>
<oo(z,[ (2 — 20) (2~ ||B<>)+70( z) <

< ooz, wo(z™)) + vo().
By virtue of Theorem 2.12 we get

<

(231 — 20)"™ () | < wolz) on Ep.
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Thus (22) is proved for ¢ = 0 and for all j > 0. Now suppose that we have
the estimate

‘ (zj4i — 27)™ (z) ‘ <wj(z) on Ep forall i>0

with fixed j € N. Then, using the Hadamard mean value theorem and
Assumption Himp[ fas | we conclude that the function z;414; — 2,41 satisfies
the functional difference inequality

‘DI (Zj414i — Zj+1)(m) (z) —

<

- Z Dg, fr (Qm(-f, t))dt 6, (Zj+1+i—2’j+1)(m) (x)

=1

< o(x,w;(z)) on Ep \ B},
where @ is an intermediate point given by
Q@) = (2™, (21w 0211 (@) + 8321100 = 2340) ™ (@) ) -

Now, for (z,y™)) € E,ilrflp, we get

‘A (2j+it1 — Zj+1)( (x) ‘
<oo(z, | (zj+i = 2j) @ m) ||B< )) < ooz, wi(x™)).
It follows from Theorem 2.12 that
| Giravs = 240) ™ (@) | S wa(@) on En

where w, : [0,a) — R4 is the right hand maximum solution of the problem
with impulses

W'(z) =o(z,wi(x)) on J\ Jimp,
Aw(z) = oo(z,w;(z7)) on Jimp, w(0)=0.

Since w, = wjy1 then the proof of (2.44) is completed by induction. The
conditions (2.43), (2.44) and the relations

x

AT @) = 0@ + [ ety ™, () 500 dt on B\ B,

A () = 20 (7)) + g (2,9, (21) (o my) O ELP,

where k£ > 0, imply that there exists exactly one solution up : E}, — R of
problem (2.28)—(2.30). This proves the theorem. O

Now we prove the following stability property of problem (2.28)—(2.30).
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Theorem 2.14. Suppose that Assumptions Himp[ fr' ], Himp[20] are sat-
isfied and the functions vy : Ef, — R and o, 71,72 : © — Ry are such
that

‘ D™ (x) — Fy o] ‘ < (b)) on By \ EMP, (2.45)
| A0 (@) = Guolow ]| < 2() on B}, (2.46)

o (@) = o,y ™) | < 0(R) o Eou U0 Ew

and limp _o7v;(R) =0, 1=0,1,2.
Then, there exists a function w :J X ©' — Ry such that for h' € ©" we
have
‘ ugﬁ)(x) - vff,n) () ‘ <w(z, ') on Ej

where up, is the solution of problem (2.28) - (2.30) and limp ow(z,h') =0
uniformly on [0,a) with arbitrary a € (ax, a).

Proof. Let a € (ak,a) be fixed. Let w(-,h’) : J — R4 be the maximum
solution of the problem with impulses

W) =o(z,w(x))+nh), €[0,a)\ Jimp, (2.47)
Aw(z) = oo(z,w(z™)) +72(h'), =€ Jimp, w(0)=r0(h). (2.48)

There is @ > 0 such that for ||A’| € (0,a) the maximum solutions of the
above problem is defined on [0,a) and we have limp/ o w(z,h’) = 0 uni-
formly with respect to z € [0, a). The function up — vy, satisfies the differ-
ential difference inequality

n 1
D, (upr—vp) ™ (@)= > / Dy, f ( P (,8) )dt 5 (e —vn) ™ ()| <

=17
< o(x, | (un = o) em) ) + 0 (R) on B,
where
Pon(,t) = (5", (une) oy 8057 () + 10 (une = o)™ () )

and

| A (e = ow)™ (@) | < o0(, Vi (ane = on )@ my )+ (0) on ™.
Applying Theorem 2.12 we obtain

’ (uns — o)™ (@) ‘ < w(z,h') on Ep N ([0,d) x R").

This completes the proof of Theorem 2.14. J

Now we prove the following convergence theorem.
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Theorem 2.15. Suppose that the Assumptions Himp| fr ], Himpl2o] are
satisfied and

1) f € C(QR), g € C(Qmp,R) and v : E* — R is a solution of
problem (2.1)~(2.3), the function v | g\ g, is of class C* and the derivatives
Dgv, Dyv are bounded on E \ Einp,

2) there exist functions ¥o,71,72 : ©' — R4 such that

imp

‘ f(xa y(m) ('Uh’) (z,m)> 5Uh’ ( )) - Fh’[“h’ ](ma y(m) ‘ <
S 7)/1 (hl) on Eh’ \Eh’ 5 (249)
‘g(x,y(m), (1) @ m) ) — Gw v 1™ (@) ‘ < J2(h') on E}fP, (2.50)

and
[ (pn = 9)™(@) | <o) on Eon U OEwN,

where vy is the restriction of v to the set E},.
Then there exists v : J x © — R, such that

‘ (up — v )™ () ‘ <~v(xz,h") on Ep
and limp/ o y(z, h') = 0 uniformly on [0,a) with arbitrary a € (ak,a).

Proof. It follows from assumption 1) and from compatibility conditions
(2.49), (2.50) that there are functions vy, v2 : © — R, such that con-
ditions (2.45), (2.46) are satisfied and limp/_o v;(h’) = 0 for ¢ = 1,2. Then
Theorem 2.15 follows from Theorem 2.14. [

Now we give an example of the increment function f5 corresponding to
(2.1), (2.2). We define the operator Ty : Cimp[Br, R] — Cimp[B, R] as
follows. Put

Sy ={s=(s1,.-,8n): s,€{0,1} for 1 <i<n}.

Suppose that w € Cimp|[Br/, R] and (z,y) € B. There is m € Z™ such that
ym <y <yt where m +1 = (my +1,...,m, + 1) and (z,y™),
(z,y™*) € By. We define

(m) _gmN\ 1T
(Thw)(z,y) Z w(m) (z ( hg{ ) (1 - %)

seSL

<y y<m>> f[1< <mi>>“’i’

1=

my\1 o (mi) \ 1%
y—y _ yz
(oemm) i)

1=

where

—
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and we take 0° = 1 in the above formulas. It is easy to see that the function
Thw € Cimp|B, R]. Consider the system of ordinary functional differential
equations with impulses

Da.z(m)(a:) =f (x,y(m),Th/z(z’m),5z(m)(a:)) (2.51)
with initial boundary condition (2.30). It is easy to formulate assumptions
which are sufficient for the convergence of the method of lines (2.51), (2.52),

(2.30). Let us mention that our method satisfies the compatibility condition
(2.49), (2.50).

2.4. FUNCTIONAL DIFFERENCE EQUATIONS WITH IMPULSES

(2.1)—(2.3) by solutions of adequate difference problems. We formulate a
difference problem corresponding to (2.1) - (2.3). We define a mesh in E*
and B. Suppose that h = (ho,h’) where b’ = (h1,...,hy,) stand for steps
of the mesh. For (i,m) € Z'*" where m = (my, ..., m,) we define y™) by
ym) = (ym) o y(mn) ) = m x b/ and 2(¥) = ihg. Denote by © the set of
all h such that there are M = (My,...,M,) € Z™ and My € Z such that
M x h' = 7 and Mphgy = 19. We assume that © # () and that there is a
sequence {h(W)}, K9 € ©, such that lim; . h¥) = 0. Let

Ry ={ @@,y (im) € 200}
We define the sets
Eon=ENR™", By=BNR,™, Ey=ENR,"",

and
OE;, = 0gEN R}ll-"_n, E; = FEop UELUOJE,.

Elements of the set E; will be denoted by (z(,y(™) or (z,y).
For a function z : B} — R and a point (x(i),y(m)) € L} we write
26m) — 5(30), y(m) and

Izl = max{ |20 - (2),40™) € Ef, j<i}.

For the above z and for a point (x(i),y(m)) € Ej we define the function
Z(i,m) : Bh — R by

2y (t,8) = 2(2D + 1,y +5), (t,5) € Bp.

Write y(m) = (y™)" and ym") = (y™)”. The function Z(i,m) is the re-
striction of 2z to the set

([Z(i) _ To,ﬂf(i)] % [y(m/)’y(m/) + T/] « [y(m//) _ T”,y(m”)]) A R}11+n



49

and this restriction is shifted to the set Bp. Let {nq,...,n; }, n; € N, be
defined by n;ho < a; < (n; + ho, i =1,..., k. Write

EM™ = { (9, y™) e By, : i€ {n,...,n}},

B ={(z® y™)ecE,: 0<i<Ny—1}.

The motivation for the definition of the set E} is the following. Approx-
imate solutions of (2.1)—(2.3) are functions uy, defined on the mesh Ej,. For
the calculation of all values of u; on Ej we will write a difference equation
or equation for impulses at each point of the set Ej .

We define difference operators dg, 6 = (01, ...,0,) by (1.37)—(1.39). Let

Q, = (B, \ ES"P) x F(By,, R) x R", Q™ = E}™ x F(B,R)

and assume that for h € © we have f, : Qn, — R, gn : Qihmp — R, and
on : Eg.p U0ygER — R. We consider the initial boundary value problem

50Z(i7m) = fh( x(i) ’ y(m)’ Z(i,m)>» 6Z(i’m) )7 (x(i)a y(m)) € E;L \ E;mea (253)
Z(i+i,m) _ Z(i,m) + gh(x(i)ay(m)az(i,m) )’ (x(z)’y(m)) c E}lzmp’ (254)
Z(i’m) = (pg,m) on EgpUO0yEy. (255)

We will approximate solutions of (2.1)—(2.3) by means of solutions of (2.53)—
(2.55). It is evident that there exists exactly one solutions up : Ef — R of
(2.53)-(2.54).

In this Section we assume that the functions f; and gp of the variables
(z,y,w,q) and (z,y,w) respectively, satisfy some nonlinear estimates of the
Perron type with respect to the functional variables. Now we formulate
adequate comparison problems. Write

Ih:{(ﬂ(z) 7N0§Z‘§0}, Jh:{x(i): 0§Z§N0},
T ={zD e {n ... one} ), J={zD: 0<i<Ny—1},

where Noho = 70, Noho < a < (No+1)hg. For a function « : I,UJ, — R and
for 0 < i < Ny we define a function a;) : I, — R by agy(z) = a(z) +2),
x € Ij,. Suppose that

on: (Jh\ ") x F(In,Ry) — Ry,  &n: J™ x F(I, Ry) — Ry
are given functions. We consider the difference problem with impulses
N =0+ hoop (2D, ) for 2 € Jj\ TP, (2.56)
D =@ 4 5, (2D ey ) for 2@ € P D =0 on . (2.57)
For w € F(Bp, R) we define

lw]l s, = max { [w®™]: (@, y™) € By},
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and |h| = ho + h1 + -+ hy. For z: E} — R we put
Fh[(iam) ] = fh( 7y( ™) Z(i,m)aaz(m)) on E;L \E;mea
Gul(i;m), 2] = gn(2®,y"™ 200)) on B,

Assumption H [ f, gn ]. Suppose that the functions f and gy, satisfy the
conditions

1) for (z,y, w) € (Ej\E},"”)x F(By, R) we have fu(x,y,w, -) € C(R", R)
and there exist the derivatives
(DQ1fh(P)7 c '7Dan}l(P)) = quh(P)) P = (1'7va7(1) € Qha
2) Dy fn(z,y,w, -) € C(R",R") and for P € €, we have

Dy, fn(P) >0 where 1 <i<k, Dgfr(P)<0 where k+1<i<n,

n

1
1 — hozh_ |qu,fh(P)| > 0.

i=1

We prove a theorem on difference inequalities generated by (2.53)—(2.55).

Theorem 2.16. Suppose that Assumption H|[ fr,gn| is satisfied and

1) the functions fr and gp are nondecreasing with respect to the functional
variables,

2) the functions u, v : E} — R satisfy

Sou™™ — [ (4, m), u] < Sov ™ — Fy[ (i, m),v] on Ej \ E™,

w6 Gyl (6, m), u] <o0FY — ™) — B (i,m),v] on E;me,

3) the initial boundary inequality u(>™) < v(™) s satisfied on Egj U

ath.
Under these assumptions we have w@m < ylEm) on By

Proof. We prove the above inequality by induction with respect to . It
follows from assumption 3) that it is fulfilled for ¢ = 0. Suppose that @™ <
U™ for each (z\9),y(™)) € E) where 0 < j < i. Define 2 = u — v. We
prove that 2017 < 0 for (204D, (™) € B, If (), y(™) € B} \ E™
then

Fit1m) < z(m))
+ |:fh( Z(IL) ) y(m)a V(i,m)» 5u(m) ) - fh( Z(IL) ) y(m)’ U(i,m)» 5U(m) )

n
SEURERE Y ‘qu fa P‘
Jj= 1

+hth Dy Fu(PY26m ) g 3 LD, g (B stmmes),

j=r+1 J
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where P € Q, is an intermediate point. It follows from assumption 2) that
2(i+1,m) <0.

If (z(,y(™) € E™ then
2Ortm) < 20m) g (29, 4™ ugmy ) — gn(2D, 5™ vy )

It follows from the monotonicity of the function g, with respect to the func-
tional variable that 2(¢+1) < (. This completes the proof of the Theorem
2.16. O

Remark 2.17. Let T'y, : E} x F(E%, R) — R be given by

(2@, 4™, 2) = 2 4 hg Fy[(i,m), 2] on Ej, \ ™,
Lz, y™) 2) = 26m) 4 Gy [(i,m), z] on E;me.

The condition 3) of Assumption H [ f5, gn ] is equivalent to the assumption
that I'j, is nondecreasing with respect to the functional argument. Theorem
2.16 can be proved by the method used in [62].

Now we give a general theorem on the convergence of the difference
method for equations with impulses. Let V}, : F(Bp, R) — F(In, Ry) be
the operator given by

(Vaw)(z) = max{ | 2™ | (2@ ™) e By, } , 2 e,

Assumption H [0, 65 ]. Suppose that

1) the functions op, and &5 are nondecreasing with respect to the func-
tional variables and o, (x(®,60,) =0 on J} \ J}ilmp7 an(2™,6,) =0 on J,ime
where 6y, : I, — R is given by 6,,(z) =0 for z € I},

2) the difference problem with impulses (2.56), (2.57) is stable in the
following sense: if n, : I, U J;, — R4 is the solution of the problem

N = 0@ + hoow (29,06 ) + hoy(h) for 2 € Jj\ TP, (2.58)
N = 0@ 462D, 06)) +5(h)
for 2 € 7™ 7@ = ag(h) on I, (2.59)
where v, ¥, ag : © — R, and

lim (k) = lim 5(h) = lim a(h) =0,
then there exists a function 8 : © — Ry such that 775:) < B(h), 0<i< N
and limy_.o B(h) = 0.

Assumption H]| fn, g, on, &1 ]. Suppose that the functions f;, and gy, sat-
isfy the conditions: there are o}, and &y, satisfying Assumption H [op,, 6, ]
and such that

fh(x(i)ay(m)awaQ)7fh(x(i)ay(m)awaQ) So—h(x(i)avh(wfw)) on Qha
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and
gn(2, 5" w) = gn(2@,y"™ )| < G (2, Vi(w — @) on Q.
The main theorem in this Section is the following.

Theorem 2.18. Suppose that Assumptions H[on,on], H| fn,9n], H| fn,
Jh, On,0n | are satisfied and

1) feCHE,R), g€ CQmp,R), ¢ € Cimp(Eg UOWE,R) and v €
Cimp(E*, R) is the solution of problem (2.1)—(2.3),

2) the function v |p\g,,, 5 of class C? and partial derivatives of the
second order of v are bounded on E \ Einp,

3) wup: Ef — R is the solution of (2.53)-(2.55) and there exist «:© —

R, such that ‘ @lhm) — gagf’m) ‘ < a(h) on Ey , U0y Ey, and limy,_g a(h) = 0,

4) there exist functions (1,0B2 : © — Ry such that the compatibility
conditions are satisfied

| Ful iy m), on] = £ (2,5, 0ppi iy, 50 )| < B1() on ER\E™ (2.60)
and
‘ Gh[(i7m)7vh] - g( x(i)7y(m)7U(P[i,m]*) ) ‘ < 61 (h) on E;zmp (261)

where vy, is the restriction of v to the set Ef, Pli,m] = (zV,y(™) and
limp, o Bi(h) = 0, i = 1,2. The function upj;m)-y is the restriction of
u(p[m)) to the set B, Then there exists 3: © — Ry such that

uﬁf’m) - U,(Li’m) < B(h) and }LimOB(h) =0. (2.62)

Proof. Let the function I'y, : Ej — R be defined by
50v,(1i’m) = Fy[(i,m),vn | + I‘;:’m) on Ej \ B,
v,(jﬂ’m) - v;f’m) = Gpl(i,m),vp | + Fg’m) on E;me.
It follows from the compatibility conditions (2.60), (2.61) that there are
v, 4 : © — Ry such that
T [ <) on B\ B, |TE™ | <5(h) on EYP

and

lim y(h) = lim 5(h) = 0.

Write
w(z®) = max{ ‘ (up, —vp) ™ |0 (29, y™) e Ef } , 2D eI, Uy,
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Then w satisfies the difference functional inequalities

nan)) < o + hoo(x(i),w(i) ) + ho’y(h), @ S J;’l \ J}ilmp,

o) < 50 Jr(~7($(i)’u—j(i) )+ 7(h), 29 € J}ilmp
and 0@ < ag(h) on Ij.
Consider the difference problem
D = 0@+ hoow (2D, m)) + hoy(h) for 2@ € Jj \ TP,
D =00 46, (29 0 ) +7(h) =1 = lfor 2@ € J"™P,
n(z):ao(h) fOr x(z) S Ih-
Let By : 1,UJ, — R, be the solution of the above problem. Then @@ < g*

on Jy. Now we obtain (2.54) from the stability of the solution of problem
(2.56), (2.57). This completes the proof of Theorem 2.18. O

2.5. NONLINEAR ESTIMATES FOR INCREMENT FUNCTIONS

Now we consider examples of nonlinear estimates for f. We will consider
the class of operators Ty ; : F(Br,R) — F(B,R), h € ©, 0 < i < No,
which are given in the following way. Let

St ={s=(80,81,---,8n): 8 €{0, 1} for0<i<n}
and
v = {aD e ny: a0t e i i< 0,1, No.

Suppose that w € F(Bp,R), (z,y) € B and 0 < i < Ng. There exists
(j,m) € Z'*" such that (zU),y(™), (201, y(mTD) e B, where 20) <
x < Ut ym) <y < om+D) 1f 20) ¢ VP then we define

1—s

(4,m) _yUm)
(Th,iw Z w((] m)+s) (Y )}; > <]_ — %) )

seS4

RO NSO N ﬁ ve — "N\
h - ho he
¢=1

where

and

Y —yem e _z—al 1= ﬁ Cw-y y"e
h N ho h¢
¢=1
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and we take 0° = 1 in the above formulas. If z() e Y}ii—lp then there exists
¢, 1 <¢ <k such that z € [(n¢ — i)ho, (n¢ — i+ 1)ho]. We define

(Th.iw) (z,y) = (Th.sw) ((n¢ — i)ho, y) if @ € [(n¢ — i)ho, ac — ihg),
(Th.w) (z,y) = (Th.sw) ((n¢ — i+ 1)ho, y) if x€[ac — iho, (n¢ — i+ 1)hg).
Then we have
Th‘i : F(Bh, R) — Cimp[B, R]

Consider the initial boundary value problem (2.1)—(2.3) and the difference
method

50z(i’m) — f(iﬂ(i),y(m),Th.iZ(i,m), 5 (8m) ), (x(i),y(m)) €E), \E;mev
Sl+lm) _  (im) Jrg(x(i),y(m),Th.iZ(i,m)— ), (:c(i),y(ml)) c E}ilmp’
2(6m) — go(i’m) on FEy.pUOyE,
where do, § = (01,...,0,) is defined by (1.37)-(1.39) and T}, ;2(; )~ is the
restriction of T} ;2(; m) to the set B, Suppose that
0:(J\ Jimp) X Ry = Ry, &:Jimp X Ry) — R4

are given functions. We will consider the following comparison problem
n'(x) =o(z,n(z)) forx € J\ Jimp, (2.63)
n(x) =n(e”)+o(x,n(")) forz € Jimp 1(0) =po,  (2.64)

where pg € R4. Suppose that o and & satisfy the conditions

1) o and ¢ are continuous, o(x,0) =0 for € J\ Jimp and 6(x,0) =0
for £ € Jimp,

2) the function o in nondecreasing with respect to (x,p) € (J\ Jimp) X R+
and the function & is nondecreasing with respect to the second variable,

3) the function f and g satisfy the conditions

| f(2,y,w,q) = f(2,y,0,q)| < o(z,||w—-w|p) on Q  (2.65)
l9(z,y,w) —g(z,y,w)| < o(a,[|w—@lp) on Dimp.  (2.66)

We define fr, : Qn, — R and gp, Qihmp — R by

fu(@? g™ w,q) = f(a® 4™, Thw,q) on
gn(29, 4" w) = g(«@, "™, Ty sw)) on QPP

where T}, ;w(™) is the restriction of T}, ;w to the set B().
It is easy to prove by induction with respect to n that

N N
y —y y —y
S () () = sy

s'eS!,
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where
So={s"=(s1,...,8n: 8,€{0,1} for1 <i<n}.

Then we have the following estimates:

| (57w, 0) = 2D,y 0,0) | < (2, [l —]5,) on
and

‘gh(x(z),y(m)vw)—gh(x(l)vy(m)’u_))‘ < 5(55(2)7”“’*@”3;;) on Qihmp'

Thus we see that problem (2.58), (2.59) is equivalent to
Y = O 4 hoa (2D D) + hoy(R) for 2D € T\ TP, (2.67)
N =@ 4520 0@ ) +5(h) for 2 € [, 9 = ag(h). (2.68)

Denote by ny, : Ji, — Ry the solution of the above problem. Let 7 : J — R4
be the solution of the problem

n'(x) = o(x,n(@)) +7(h), © € T\ Jimp, (2.69)
nx)=n(x")+o(z,n(x"))+50h), € Jimp, n0)=ag(h). (2.70)
Then we have
AU = 59 4 hoo (2, 75D) + hoy(h), 2@ € T\ TP,
ﬁ(i+1) > 7*7'(1') + 5(33(1')77"7'(1') ), 2@ e J}ilmp7
and consequently ng) < f](i) for 0 <i < Ny. If we assume that problem
(2.69), (2.70) with pg = 0 has the right hand maximum solution {(x) = 0

for z € J then the problem (2.67), (2.68) with y(h) = 4(h) = ag(h) = 0 for
h € © is stable in the sense of Assumption H [op,, 65, ].

Remark 2.19. All the results of this Chapter can be extended for systems
of functional differential problems with impulses.
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CHAPTER III
PARABOLIC FUNCTIONAL DIFFERENTIAL
PROBLEMS WITH IMPULSES

3.1. FUNCTIONAL DIFFERENTIAL INEQUALITIES

We formulate the problem. Let E = (0,a) x (—b,b) where a > 0, b =
(b1,...bp) € R*,and b; > 0 for 1 < i < n. Put B = [—79,0] x [—7, 7] where
T € Ry, 7= (11,...,7) € R}. Write c = b+ 7 and

Eo = [~70,0)x[—¢,d, BE = (0,a)x([=¢,d\(=b,b)), E* = EUE;UdE.

If 79 > 0 then we put B(™) = [—79,0) x [~7, 7]. Suppose that 0 < a1 < ag <
- < ap < a are given numbers. Let I, J, Jimp be the sets given by (1.1).
Suppose that

Eimpa aOEimpa Eitnpv Cimp(E*a R)a C’imp(EWO U aOEa R)
and
C'imp [B; R]a Cimp [B(i) ’ R]

are the sets defined in Section 2.1 with the above given E, o E, Ey, B, B(7).

Let M, «, be the class of all n x n symmetric matrices with real elements.
Write

¥ = (E\ Eimp) X RX Cimp[B, R] X Mypsn, Simp = Fimp X RX Cimp[B ™), R]

and suppose that f: ¥ — R, g : Ximp — R, ¢ : Eg UOE — R are given
functions. We assume that ¢ € Cimp(Eo U 0oE, R). In this Chapter we
consider the initial boundary value problem

Dzz(:c,y):f(x,y,z(x,y),z(lm,Dyz(:c,y),Dyyz(:c,y)) on E\Eimpa (31)

AZ(Ia y) = g( z,Y, Z(.’If—7 y)a Z(z—,y) ) on Eimp; (32)
z(z,y) = p(z,y) on EgUOE, (3.3)
where Dyz(z,y) = (Dy2(z,y),...,Dy, 2(x,y)) and Dy,z(z,y) =

[Dy,y, L’j:l - A function z € Cimp(£7, R) will be called the function
of class C&’?(E*,R) if z has continuous derivatives Dyz, Dyz, Dy,z on
E \ Eimp. We consider solutions of class C’i(il’? (E*,R) of problem (3.1)—
(3.3).

Example 2. Suppose that f : (E\ Eimp) X R X R" X Myx,, and § :
Eimp X R? — R are given functions. We define f and ¢ by

flx,y,p,w,q,r) = f(a?,y,p,/w(t,S)dtds,qw),
B

g(z,y,p,w) = g(z,y,p, / w(t, s)dtds).
B(=)
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Then (3.1), (3.2) is equivalent to the integral differential equation

Dux(,y) = fla,y, 2(2,y), / 2o+ by + s)dtds,
B
Dyz(x,y), Dyyz(xay)) on E\Eimp7

with impulses given by the relation

Bsly) =gl oo™ w), [ 2ot by + s)dids on B,
B(-)
Example 3. Suppose that o, @ : B — R, f3,3: B — R" and f, g are
given in Example 2. Assume that
—70 <afr,y) —x <0, -7
*Tgﬂ(g%y)fyg’ra -7

where (z,y) € B. Put

f@,y,pw,q,7) = f(z,y,p,w(a(z,y) -z, B(x,y) — ), q7),
9(z,y,p,w) = gz, y,p,w(a(z,y) — x, Bz, y) —y)).

Then (3.1), (3.2) reduces to the differential equation with a deviated argu-
ment

sz(%y) = f(x,y,z(x,y),z(a(x,y),ﬁ(w,y)),
Dyz(fcay)vDyyZ(:Cay)) on E\Eimpa

and with impulses given by

AZ(‘Tay) :g(l’,y,Z(I’*,y),Z(O_é(CC,y),B(LE,y))) on Eimp~

For any matrices

7, T € Mpxn, 1= [1 ]iﬁjzl,uwn , =Ty ]iﬁjzl,m,n )

we write r < 7 if

7 — T )X <0 for A= (A1,..., ) € R",
J J J

ij=1

A function f : ¥ — R is said to be parabolic with respect to z € C’i(;l’s) (E*,R)
on E\ Eiyp and for any 7, 7 € My xp, 7 < 7, we have

f(a?,y,z(x,y)7z(z,y),Dyz(Jc,y),r) < f(x7yaZ<xay)aZ(x,y)aDyz(Iay)vf)-
For f:¥ — R, g:Ximp — Rand z € c(12) (E*, R) we write

imp

F[Z](‘Tay) = f(a:,y,z(a:,y),z(x7y),Dyz(:c,y),Dyyz(w,y)) on E \ Eimpa
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and
Glz)(z,y) = 9(2,y,2(z7,Y), 2z~ y) ) 0N Eimp.

We start with a theorem on strong inequalities.

Assumption H [ f,g]. Suppose that the functions f and g satisfy the
conditions:

1) f is nondecreasing with respect to the functional variable,

2) ¢ is nondecreasing with respect to the functional variable and the
function

v(p) =p+g(z,y,p,w), p € R,
is nondecreasing for each (z,y, w) € Eimp X Cimp [B(_), R].

Theorem 3.1. Suppose that Assumption H [ f,g] is satisfied and

1) the functions u, v € -(1’2)(E*, R) satisfy the initial boundary inequal-

ity o
u(z,y) <wv(z,y) on EgUOE, (3.4)
2) the functional differential inequality
Dyu(z,u) — Flul(z,y) < Dyv(z,y) — Flv](z,y) on E\ Eimp  (3.5)
and the inequality for impulses
Au(z,y) — Glul(z,y) < Av(z,y) — G[v](z,y) on Eimp, (3.6)

are satisfied,
3) the function f is parabolic with respect to u on E \ Eimp.
Then u(z,y) < v(z,y) on E*.

Proof. If the inequality is false then the set
Jy ={x€0,a): thereisy e (—b,b) such that u(z,y) > v(z,y) }
is not empty. Defining & = inf J it follows from (3.4) that & > 0 and that
there is § € (—b,b) such that
u(z,y) <v(z,y) on E*N([-70,Z) x R"), w(Z,g)=v(Z,7). (3.7)

There are two cases to be distinguished. If (Z,9) € E \ Eimp then Dy (u —
v)(Z,9) > 0, Dy(u—v)(&,9) =0 and Dy, u(Z,§) < Dyy,v(&,7), which leads
to a contradiction with (3.5).

Suppose now that (Z,y) € Eimp. Then & € Jimp and (u —v)(27,7) < 0.
It follows from (3.6) and from Assumption H [ f, g] that

(u—0)(Z,9) <
< (u - U)(i’iag) +g(i’7gau(‘%7ag)au(i‘,ﬂ) ) - g( ‘%agav(‘%iag)av(i‘,ﬂ) ) S 07
which contradicts (3.7). Hence Jy is empty and the statement follows. 0O
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Remark 3.2. In Theorem 3.1 we can assume instead of (3.5), (3.6) that
Dyu(z,u) — Flul(z,y) < Dyv(z,y) — Flv](z,y) for on T4 \ Eimp
and
Au(z, ) — Glul(@) < Av(z,y) — G[v](@,5) on T4 € Fimp,
where
T, ={(z,y) € E: (u—v)(t,s) <0 on
([-70,2) x R")NE and (u—v)(z,y) =0}.
Now we consider weak impulsive functional differential inequalities.

Theorem 3.3. Suppose that Assumption H [ f,g] is satisfied and
1) there are functions o : (J\ Jimp) X Ry — Ry and 0o : Jimp X R4 — R
satisfying Assumption H [o,00] (Section 2.1) and such that
f@y,pw,q,1) = flz,y,p,w,q,r) > —o(2,max{p—p, [@—w|s})
on % where p < p, w < w and
9(z,y,p,w) = g(z,y,p,w) = —oo(x, max{p—p, |w —w|p-})
on Ximp where p < p, w < w,
2) the function u, v € C’i(il’? (E*, R) satisfy the initial boundary inequality
u(z,y) <wv(x,y) on EgUE,
3) f is parabolic with respect to u on E\ Einp and
Dyu(z,u) — Flu](z,y) < Dyv(z,y) — Flv](z,y) on E\ Einp
4) the inequality for impulses
Au(z,y) — Glu](z,y) < Av(z,y) — Glv](z,y) on Eimp,

are satisfied.
Then u(x,y) < v(z,y) on E*.

Proof. Suppose that a € (ax, a). We prove that
u(z,y) < v(z,y) on ([-710,a) x R")NE". (3.8)

Consider problem (2.10), (2.11). There exists £ > 0 such that for 0 <
g; < &, 1 =0,1,2, the maximum solution w(-,¢), e = (g9,£1,2) of (2.10),
(2.11) is defined on [0,a). Let v(z,y) = v(z,y) + o on Ey and o(x,y) =
v(z,y) +w(z,e) on ([0,a) x R")N(EUJyE). Then u(x,y) < o(z,y) on
(EouaoE)m([*To,d) X Rn) and

Dou(z,u) = Flu](z,y) < Dz0(z,y) — F[o)(z,y) on (E\ Eimp) N ([0,a) x R")
Au(z,y) — Glu](z,y) < Av(z,y) — G[0](z,y) on Eimp.
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It follows from Theorem 3.1 that
u(z,y) <wv(z,y) on E*N([—70,a) x R"™).

Since lim._,o w(x,e) = 0 uniformly on [0, @), we obtain (3.8). The constant
a € (ay,a) is arbitrary and therefore the proof is completed. [

3.2. COMPARISON RESULTS FOR PARABOLIC PROBLEMS

We prove estimates of functions satisfying impulsive parabolic inequali-
ties by means of solutions of impulsive ordinary functional differential equa-
tions.

Let Cimp[I, R] be the set define in Section 2.3. We define also in the case
70 >0

I(i) = [—To,O) and Cimp[l(i),R] = {77 I](—): ne Cimp[IaR] } .

Elements of the sets Cinp[I, R] and Ciyp[I7), R] will be denoted by the
same symbols. We denote by || - || and || - ||;-) the supremum norms in
the space Cimp[I, R] and Cimp[] =), R] respectively.

Suppose that w : TUJ — R and x € J. Then wy) : I — R is the
function defined by w,(t) = w(z +1t), t € I. If 79 > 0 then for the above
w and x we will consider also the function wg,-y : I (=) — R given by
we—) () =w(z+t), te 1),

Assumption H [0,5]. Suppose that

1) the functions o : (J \ Jimp) X R4+ X Cimp[{, R+] — R4+ and & : Jimp X
Ry x Cimp [I (_), Ry] — R4 are continuous and nondecreasing with respect
to the functional variables,

2) for each (z,7n) € (J\ Jimp) X Cimp[Jo(f),R] the function v(p) = p +
&(x,p,n) is nondecreasing on R

3) for each n € C(I, R) there exists the maximum solution w( -, 7n) of the
problem

W'(z) =o(z,w(@),we)) on J\ Jimp, (3.9)
Aw(r) =d(r,w(T”),wE-y) on Jimp, w(x)=n(z)on I. (3.10)

We will need the following lemma on ordinary functional differential in-
equalities.

Lemma 3.4. Suppose that Assumption H [0, is satisfied and

1)neC(,Rs) andw(-,7) : [—70,a) — Ry is the mazimum solution of
problem (3.9), (3.10) with n = 7,

2) ¢ € Cimp(ITUJ, Ry) and

w(m) < ’ﬁ(.’lﬁ) on I, AW?C) < 5(55»7#(307)71#@*)) on Jimp,
3) forxeJy={x€J\ Jimp: ¥(x)>w(xn)} we have
D,”L/)(:C) < J(wi(x)v 7;[](:8) )
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Under these assumptions ¥(z) < w(x, ) for x € J.

We omit the proof of the Lemma.
Let V : Cimp|B, R] — Cimp|!, R] be the operator given by

(Vw)(t) = max{ |w(t,s)[ - s €[-7,7]},

where t € [~79,0]. If w € Cimp[B7), R] then Vw € Cimp[I7), R] denotes a
function given by the above formula for ¢ € 1.

Theorem 3.5. Suppose that Assumption H [o,5] is satisfied and
1) f € C(QR) and for each (x,y,p,w) € (E\ Eimp) X R X Cimp[B, R]
we have

f(z,y,p,w,0,0) sign p < o(z, p|, Vw) (3.11)

where sign p=14f p > 0 and sign p = —1 if p <0,
3) the function u € C’i(il’g) (E*, R) is a solution of (3.1) and f is parabolic
with respect to u on E'\ Einp,
4) 7€ C(I, Ry) and [u(z,y)|
5) the boundary estimate |u(
impulses

<ij(x) on Ep,
z,y)| < w(z,7) on OE and inequality for

A|u(9:,y)| < 5(377 ‘u(xiay”v Vu(z—) ) on Eimp U aOEWirnp

are satisfied.
Under these assumptions we have |u(z,y)| < w(zx,7), (z,y) € E*.

Proof. We prove that the function ¢ = Tu satisfies all the assumption of
Lemma 3.4. It follows from the initial estimate for u and from assumption
5) that condition 3) of Lemma 3.4 holds. Suppose that & € J \ Jimp and
P(x) > w(x,n). There exists y € [—c¢, ¢] such that ¢¥(z) = |u(z,y)|. It follows
from the boundary estimate that y € (—b,b). There are two possibilities:
either (i) ¢¥(z) = u(z,y) or (i) Y (x) = —u(z,y).

Consider the case (i). Then Dyu(z,y) = 0 and Dy,u(z,y) > 0. It follows
that

D—w(ﬂf) S Dl’U,(J?, y) = f(l‘, u, u(m, y)a u(z,y)7 Dyu(ma y)7 Dyyu(x7 y) ) S
< o(@, [u(z, y)I, Viie,y) < oz, (@), Y )
Thus ¢ satisfies condition 4) of Lemma 3.4. The case (ii) is analogous. Thus

all conditions of Lemma 3.4 are satisfied and Theorem 3.5 follows.
Let us consider two problems: the problem (3.1)—(3.3) and the problem

Dzz(xa y) :f(xa Y, Z(IL’, y)a Z(a;,y)a DyZ(LII, y)a Dyyz(xa y)) on K \ Eimpa (312)
Az(z,y) = g(z,y,2(x7,Y), 2(z— ) N Eimp U 0o Eimp, (3.13)
Z(:Ca y) = QB(ZE,y) on EO U aOE7 (314)
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where f Y —= R, §: Bimp — R, ¢: EgUOyE — R are given functions.
We prove a theorem on the estimate of the difference between solutions of
(3.1)~(3.3) and (3.12)—(3.14). O

Theorem 3.6. Suppose that Assumption H [o,5 ] are satisfied and
1) the functions f, f and g, g satisfy the conditions

f(xayap7w7Qa T) - f(xayapawaq,r)} Sign (p 713) S
<o(z|p—p,V(w—w)) on 2
and
|9(37ay7p7 w) - g(xayaﬁaw” < &(xa |p _ﬁ‘7V(w - ’ID)) on zimpa

2) ¢, @ € Cimp(Eo UOE, R), and |p(z,y) — ¢(z,y)| < 7(x) on Ey with
ne C(Iv R+)7

3) u, 4 € C’i(il’g) (E*,R) are solutions of (3.1)-3.3) and (3.12)—(3.14) re-
spectively,

4) the boundary estimate |o(x,y) — @(x,y)| < w(x,n) on O FE is satisfied
and f is parabolic with respect to u on E'\ Eimp.

Under these assumptions we have |u(z,y) — v(z,y)| < w(z,7) on E*.

Proof. We prove that the function v : [—79,a) — R4 given by
() = max {u(z,y) —v(z,y)| : y € [~cdl}
satisfies all the conditions of Lemma 3.4. Suppose that € J where
Jr={a €I\ imp: V(@) > w(z.0) }.

There is y € [—¢, ¢] such that ¢(x) = |u(x, y) — G(z,y)|. From the boundary
estimate it follows that y € (—b,b). There are two possibilities: either

(1) ¥(x) = ule,y) — ale,y) or (i) P(z) = —[u(z,y) — u(z,y)].

Consider the case (i). Then D, (u—@)(x,y)=0 and Dy u(z,y) < Dy, i(z,y).
It follows that

D_p(x) < Da(u — @) (x,y) =
= f(z,y,u(z,Y), Wa,y), Dyu(z,y), Dyyulz,y)) —
*f( T, Y, W(2,Y), Uz,y), Dyu(z,y), Dyyi(z,y))
and consequently
D_o(z) < oz, 9(x), () )
The case (ii) is analogous. It is easy to see that v satisfies
Ap(z) <6(2,9(2),Ya-))

for € Jimp such that ¢¥(z) > w(x,7) and ¢¥(z) < 7(z) on I. Thus all the
conditions of Lemma 3.4 are satisfied and the statement of the Theorem 3.6
follows. O
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Theorem 3.7. Suppose that Assumption H [o,5] is satisfied and
1) the function f € C(X,R) and g € C(Zimp, R) satisfy the conditions

[f(xay7p7w7Q7r> - f(xayaﬁawaQ7T) ] Slgl’l(p—ﬁ) S
<o(a,|p—pl ||w—wlp)

and
|9($7y;p7w) - g(xvyapaw” < 5'(3?, |p _ﬁ‘v ||U) - wHB(_) )5
2) the mazimum solution of the problem with impulses

W'(x) = o(z,w(®),we)) on J\ Jimp,

Aw(r) = 6(z,w(®”),wr-y) on Jimp, w(x)=0o0nlI,

isw(x) =0,z elUJ
Then there is at most one solution of problem (3.1)-(3.3) of class
L2 (E*, R).

imp

Proof. The above Theorem follows from Theorem 3.6 for f=f and g=g. O

Remark 3.8. Suppose that ¢ : (J \ Jimp) X Ry X Ry — R4 and ¢ :
Jimp X Ry x Ry — Ry are given functions and o, ¢ are defined by

o(z,p,n) = o(,p,nllr), a(x,p,n) = o(zp,lnllr-)-

Then
(i) Estimates given in assumption 1) of Theorem 3.7 are equivalent to

f(xayap7w7Qa T) - f(xayapawaq,r)} Sign (p 713) S
< Q(l‘, |p_ﬁ|a Hw_ 'lDHB)

and
|9(37ay7p7w) _g(x?yaﬁaw)| S @(Z‘, |p—ﬁ\, ||U) _wHB(_) )

(ii) If we assume that 77 € C(I, R4) is nondecreasing on I then problem
(3.9), (3.10) is equivalent to

"(z) = o(z,w(x),w(x)) on J \ Jimp,
Aw(z) = o(z,w(z™),w(@”)) on Jimp, w(0)=17(0).

S
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3.3. DISCRETIZATION OF PARABOLIC PROBLEMS

Suppose that B, B, I, J, E, Ey, 0oE, Einp, OoEimp, E* are the
sets defined in Section 3.1. Write

Y= (E \ Eimp) X Cimp[B7 R] X Rn X Mnxn; Eimp = Eimp X Cimp[B(i)a R]
and suppose that
f:2—=R, g:Zimp— R, ¢ Cimp(EoUIE,R)

are given functions. In this Section we consider the parabolic functional
differential equation with impulses

sz(:c,y) = f(xayaZ(:c,y)aDyz(xay)aDyyz(xay)) on E\Eimpa (315)
AZ(iC,y) = g(xay,z(x—,y)) on Eimpa (316)

and the initial boundary condition
z(z,y) = ¢p(x,y) on Eg UJHE. (3.17)

We formulate a difference problem corresponding to (3.15)—(3.17). We
start with a definition of a mesh in E* and B. Suppose that h = (hg, ')
where b/ = (hi,...,hy) stand for steps of the mesh. For (i,m) € Z'tn
where m = (my,...,my) we define 3™ by y(™ = (gm0 yme)y =
m b/ and (9 = ihg. Denote by © the set of all h such that there are
M= (My,...,M,) € Z" and My € Z such that M «h' = 7 and Mohy = 79.
We assume that © # () and that there is a sequence {h(j)}, rU) € @, such
that lim; . h) = 0. Let

R = { @D, 4™ (i,m) € 2V } :
We define the sets
Eon=ENR*', B,=BNR,™ E,=ENR"™,

and
OE;, = 0gEN R}llJrn, E;; = FEop UELUOJE,.

Elements of the set E} will be denoted by (@, 4™ or (z,y). For a function
z: Ef — R and a point (z(?,y(™) € E; we write 2(0™) = (2 (™)) and

2llin = max{ [2U™)] 2 (2,4 € Bj, j<i}.

For the above z and for a point (x(i),y(m)) € Ej we define the function
Z(i,m) * Bh — R by

2(i,m) (L, 8) = z(x(i) + t,y(m) +5), (t,s) € Bp.

The function z(; ) is the restriction of z to the set

([:c(i) —70,29] x [y™ — 7, 4™ 4 T]) NR™
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and this restriction is shifted to the set Bp. Let {nq,...,n; }, n; € N, be
defined by n;ho < a; < (n; + ho, i =1,..., k. Write

EXP ={(z9 y™) e By ie{ny,...,n} },
B, ={(zW,y™)eE,: 0<i<Ny—1}.

Let .
J}‘Imp = {x(i) cie{ny,...,net},

and
Ih = {Z(i) : 7M0 S i § 0}, Jh = {’l}(l) :0 S ) S No}, J;IL = Jh \ {x(N")}

where Ny €N is defined by Nohg < a < (Ng + 1) hg. For a function 7 :
I, UJ, — R and (9 € J, we define a function NG : In — R by ni(t) =
n(x@ 1), t € I,.

Put X = {(i,5) : 1 < 4i,57 <n i # j} and assume that we have
defined the sets X, X_ C X such that Xy UX_ =X, X, NX_ =0 (in
particular, it may be X, = ) or X_ = ). We assume also that (j,k) € X
if (k,j) € X;. We define for 1 < j <n

_ 1 _ . . 1 . .
52 m) — » <Z<Z,m+ej> _ Z(Mn)) o) = W (zu,m) _ Z(z,m—en) 7
wheree; = (0,...,0,1,0,...,0) € R", 1 standing on j-th place. We consider
difference operators

8o, 6= (61,...,8,), 0@ = [5@}
05 (17 ) )a ik jk=1,..m
given by
1 ) )
Soz(™ = — (zU“vm) _ z(“m)) , (3.18)
ho
. 1 ) )
6,20 = 2 (5jz(“m) n 5;z(“’”>) L i=1,....n, (3.19)
and
(2) _(i,m) _ s— s+ (i,m S
6720 = 5k =1, (3.20)

5 m) — % (65020 67 620 for (k) € X, (3:21)
5 m) — % (650 20 67620 for (juk) € X (3.22)
Let
S = (Ep \ E}™) x F(Bp, R) x R" X Mypxn, 2™ =E™ x F(By,R).
Suppose that for each h € © we have
fniSh— R, gn: S = R, ¢ Eop UdoE, — R.
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Write
Fiu[ 2] = (29,5, 25y, 020 6@ 20m)) on B\ B
and
Gu[2]0™ = gp (2D, g™ 2 ,n)) on E™P

where z € F'(E}, R).
We will approximate solutions of problem (3.15)—(3.17) by means of so-
lutions of the functional difference equations

Boz®m™ = Fy[2)0m) for (2, y™) € BL\ B, (3.23)
Az = Gl 2]0™ for (2@, y(™) € EImP, (3.24)

with the initial boundary condition
LEm) (ZSE;’m) on Eyp UOyE}. (3.25)

It is clear that there exists exactly one solution vy, : Ef — R of (3.23)-(3.25).

3.4. CONVERGENCE OF THE DIFFERENCE METHOD FOR PARABOLIC
PROBLEMS

We will consider two comparison functions o, and 6y, corresponding to
fn and gy, respectively. Suppose that we have

o: (J\ ™) x F(In,Ry) — Ry, 6 : ;™ x F(In,Ry) — Ry

Our main assumptions are the following.

Assumption H [0, 65 ]. Suppose that

1) the functions op(x, -) : F(Ip, Ry) — Ry where x € Jp \ J,i;np and
Gn(x, -) : F(In, Ry) — Ry where z € J;™P are nondecreasing,

2) op(x,0,) = 0 for z € Jy, \ J;™ where 0),(t) = 0 for t € I, and
Gz, 0,) =0 for z € J™P,

3) the functional difference problem with impulses

7"t = @ 4 hoop (2@, n@)) for 2\ € I\ J;me, (3.26)
77(”1) = 77(2) + &h(m(i)an(2)7 77(2)) for x(Z) € J}iy,mpa (327)
n® =0 for 2 € I, (3.28)

is stable in the following sense: if np, : I, U J;, — Ry is the solution of the
problem

D = 0@+ hoow (2D, n)) + hoy(h) for 20 € Jj \ TP,
N = 0@+ 6n (2D, 09 06) +5(R) for & € L,
n® = ag(h) for 2 € Iy,
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where v, 7, ap : © — R4 and

li = lim ~ =i =

Jim ~y(h) = lim 5(h) = lim ao(h) =0,
then there exists § : © — R, such that n}(f) < B(h) for 2 € J,, and
1imh_,0 ﬁ(h) =0.

In a convergence theorem we will estimate a function of several variables
by means of a function of one variable. Therefore we will need the following
operator Vj, : F(Bp, R) — F(Ip,Ry). If w: By, — R then

(Vaw)(z) = max{ |w(z®,y™)|: —M <m <M}, —My<i<D0.

Assumption H [ fj,, gn]. Suppose that o, and &), satisfy Assumption H
[oh,0h] and

|fh(xa Yy, w,q, 7') - fh('ra Y, W, Q7r)| < O’(Z, Vh(w - U_}) ) on Zha (329)
|gh(x7ya w) - gh(xa yaw)| S &h(l‘, Vh(w - TI)) ) on Eihmp' (330)

Assumption H [ D, 5, D, f1, ]. Suppose that the function fj, : ¥, — R of
the variables (z,y,w,q,7), ¢ = (¢1,---,Gn), ¥ = [Fijli,j=1,...n, satisfies the
conditions:

1) for each P = (x,y,w,q,r) € ¥}, there exist the derivatives

Dyfa(P) = (Dyy fu(P),- - Dy fu(P)) Dofa(P) = [Dr fu(P)],_, .
and
Dy fu(z,y,w, ) € C(R"*xMpxn, R"), Dy fn(z,y,w,) € C(R"*XMpxn, Mnxn),
2) the matrix D, f3, is symmetric and for P = (z,y,w, q,r) € ¥}, we have
Dy fn(P) >0 for (i,j) € X4, Dy, fu(P) <0 for (3,5) € X—  (3.31)
n
1-— 2hoz %Dmfh(P) + ho Z %hlenjfh(P” >0, (3.32)
=1 "t (i,5)eX

1 1 1 .
—51Pa; fu(P) + 5= Doy fu(P) — > 7 |Dr f(P)[20, 1< <n, (3.33)
J

ienlj] "
where 7[j] ={1,...,7—1,7+1,...,n}.
Theorem 3.9. Suppose that Assumptions H [op,6n ], H| fr,gn], H[Dqfn,

D, fr] are satisfied and
1) there is g : © — Ry such that

|q§§f’m) — ™| < ag(h) on Eop UE) and }llimo ag(h) =0, (3.34)

and vy @ Ef — R is a solution of (3.23)(3.25),
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2) u € Cimp(E*, R) is a solution of (3.15)~(3.17), u is of class C* on
E\ Eimp and the partial derivatives of the third order of w are bounded on
E \ Eimpa

3) there exists C' > 0 such that hihj_l <C fori,j=1,...,n, h€ 0O,

4) there exist Br, B2 : O — Ry such that the compatibility conditions are
satisfied

’Fh[%](i’m) — F(2D 5™ g oy, ul™ 8Py ‘ <

< Bi(h) on Ej \ E™ lim 31 (k) = 0, (3.35)

and

(m)

‘Gh[uh](ni’m) = 9(ai, 4" g yomy) ‘ <

< By(h) on ES™, lim fa(h) =0, (3.36)

where uy, s the restriction of u to the set K. Then there exists v: © — Ry
such that

|u§f’m) - v,(j’m)| <~(h) on Ej, }1113}) ~v(h) =0. (3.37)

Proof. Let T'y, : Ej — R be defined by

Soul™™ = Fy[up 1™ 4 TE™ on Ep O\ B, (3.38)
Aul™ = Gy[up ] ™ +TP™ on B} (3.39)

It follows that there is 8 : © — Ry such that |F§f’m)| < B(h) on Ej and
hmh*,o ﬂ(h) =0.
Let 0y, : In U X}, — Ry be given by

oy = max{ |uf™ — o™ [ (@0,y) € Bf ), ~Mo<i<No, (3.40)
We prove that n;, satisfies the difference inequalities

i < maxfao(), 1 + hoon (29, (m) )+ hoB(R) }. - (3.41)
20 € Jj\ i,

m Y < max{ao(h), 0 + @ 0 (m)w) + B}, (342)
@ e J;me.
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We prove (3.41). Suppose that (z(V,y(™) € Ej \ E;;np. It follows from
Assumptions H [ 5, gn ], H [Dgfn, Dy fr ] that

[(up, — o) )| <
< |(up — vh)(i’m) + ho [fh(m(i),y(m), (uh)(iym),éugj’m), 5(2)u§:’m)) —
—fu(a®,y ™, (Uh)(z',m),5vf(f’m)75(2)1);(5’7”))} ‘ +
+ho on (ﬂf(i)vvh( (un)(i,m) = (Vn) (i;m) )) + hofB(h)

and consequently

(up — ) HE™) ‘ <

1
< (Uh Uh)(im) |:]- 2hOZ DTJth(Q)+h’O Z _jh |DT]kfh(Q):H+
j=1 ] (7,k)EX
n ho
+ Z (z m+63)[2h quh(Q) hQDr“fh(Q)
j=1
h
- in @+
kETrJ]
- 1, m—e; h,()
+ ;(uhf’uh)(’ J){ oh, —Dg, fn(Q) + hQDmfh(Q)
h
- D@+
kemn[j] ]
X gD @)l ) ] -
(4, k)eX +
h i —e i,m—e;+e
- 2 2h0}l_D'fjkfh(Q)|:(uh_vh)(l7m+61 W) 4 (up,—op) J+k)}+
. gtk
(5,k)eX—

+ho on (2, () )) + hoB(h), (3.43)

where Q = (2, y(™), (un) (i,m)> ¢ (M) € ¥, is an intermediate point.
The above estimates and (3.31)—(3.33) imply

[(un — o) | <t ho on (2D, () @y ) + ho B(h)  (3.44)
on Ej \ B T (), y™) € 9y By, \ E}™ then we have
[(un = 0a) ] < o (h).

The above inequalities imply (3.41).
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Suppose now that (z(,y(™)) ¢ E;;np. Then we have

[(un —va) ™ <t 4 G (20l (1) o)) + B(R).
If (2, y("™) € Oy E), and i € {ny,...,nx} then
|(up — vg) L™ < ag(h).

The above inequalities imply (3.42).
Denote by 7, : I, U Jp, — Ry the solution of the problem

D = 0D 4 hoop (2D, n)) + hoB(h) for = € J; \ ™, (3.45)
N =0 4 6, (29, 0D i) + B(R) for 2 € P, (3.46)
7 = ag(h) for 29 e I,. (3.47)

Since the function 7, satisfies (3.41), (3.42) it follows from the monotonicity
of 0 and & that 77;;) < 77;(:) for 2 € .Jj, and consequently \ugf’m) - v;;’m)| <
77,(:) on FEp. The assertion of our theorem follows from the stability of

problem (3.26)-(3.28). O

Remark 3.10. The condition 2) of Assumption H [D,f, D, f] is very
complicated because we consider the functional differential problem with
all the derivatives [ Dy, 2 i j=1,....n. We have obtained estimate (3.44) from
(3.43) because the appropriate coefficients in (3.43) are nonnegative. Con-
sider the simple equation

n
sz(x,y) = f(xvyaz(x,y) ) + ZDyjij(xvy) on E \ Eimp

j=1
where f : (E \ Eimp) X Cimp|B, R] — R is a given function. Then the
corresponding difference equation has the form

n

5020 = Fu(2®, 4™ ) Z 5@ (im)

where (2, y(™) € B} \ E;™. Then condition 2) of Assumption H [ D, fp,
D, fr] is equivalent to

which is known in literature.
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3.5. DIFFERENCE METHODS FOR ALMOST LINEAR PROBLEMS
Write 3¢ = (E \ Eimp) X C(B, R) x R™ and suppose that
FO S C( EOa R)a gc C( Eimpa R)a ¢ S C(irnp(E‘O U aOEa R)

and
F e C(E\ Eimp, Mpxn ), F=[Fijlij=1,.n

are given functions. In this Section we consider the almost linear equation
with impulses

sz(x,y) = FO(xayaZ(a;,y)aDyz(:Cay) ) +

n
+ Y Fij(2.y) Dyy,z(x,y) on E\ Einp, (3.48)
ij=1
AZ(:C) y) = g(fﬂ, Y, Z(x—,y) ON Eimp (349)

and the initial boundary condition (3.17).
Let
Yo = (E;L \ E}llmp) X F(Bh,R) x R"

and suppose that
Fon:Son — R, gn:Z3" — R, én: Eon UdEn — R,
are given functions. Consider the difference equations

5oz(i,m) = Fo»h(x(i) ) y(m), Z(i,m)» 5Z(Z’m)) +

n
+ Y B,y )6 20m (@ ym) € B\ B, (3.50)
i,j=1

LM — 2 0m) g (@, y ™ 2 ), (@, y™) € B (3.51)

with initial boundary condition (3.25).

If we apply Theorem 3.9 to problems (3.48), (3.49) and (3.50), (3.51),
(3.25) then we need the following assumption on F : for each (j,k) € X the
function

ij(xay) = Sign ij(xay)a (x,y) er \ Eimpa
is constant (see condition (3.31)).
Now we prove that this condition can be omitted in the case of almost
linear problems. We define for (i,j) € X :

(2) ,m) __ 1 —_(t,m — i,m :
o2 = 2 (6F a5 20 + 57 520 it
Fi™ = Fi(z®,ym) <o, (3.52)
. 1 . . im
5§§>z<“m> =3 (5;5;;2(“”) +5].—5k—z<um>) if Fj(k’ )> 0. (3.53)
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We consider the difference problem (3.50), (3.51) with &g, d given by (3.18),
(3.19) and 6 given by (3.20), (3.52), (3.53).
Assumption H [ Fy;, F'] Suppose that the functions Fy ; and F satisfy

the conditions:
1) for each Q = (x,y,w, q) € Xo., there exist the derivatives

(Dg Fo.n(Q),- -+ D, Fo.n(Q) ) = DgFo.n(Q)

and Dy Fy p(z,y,w, -) € C(R™, R") for (z,y,w) € (B}, \ E}™) x F(By, R),
2) the matrix F is symmetric and

n
1 1
1 —2hozh—%Fi-(x7y> + ho _Z Wj|Fij(x7y>| >0,
i=1 (i,5)€X
1 1 1 .
_§|quFO.h(Q)| + EFjj(xvy) - Z E|Fij(xvy)| 20, 1<j<n,
! ienlj]

where ($7y) € E;z \E}ilmpa Q = (CE, y>w7Q) € EO.hn
Assumption H [ Fy 1, g ]. Suppose that
1) op, and &3, satisfy Assumption H [op, 65 ] and
2) for each (z,y,w,q) € Xo.p, @ € F(Bp, R) we have

|F0.h(33ay7w7Q) - FO.}L(x7yaw7q)‘ S O'h(.]?,Vh(w - ’lI)) )7

3) the function g, satisfies the estimate (3.30).

Theorem 3.11. Suppose that Assumptions H [op,6n], H [Fon, F), H
[Fo.n, gn| are satisfied and

1) there is ap : © — Ry such that the condition (3.34) is satisfied and
vy 2 Ef — R is a solutions of problem (3.50)—(3.53), (3.18)—(3.20),

2) u € Cimp(E*, R) is a solution of (3.48), (3.49), u is of class C* on
E\ Eimp and the derivatives of the third order of u are bounded on E\ Einp,

3) there exists C > 0 such that hih]-_l <C,i,j=1,...,n, he O,

4) there exist Bi, B2:© — R such that
|Fo(fﬂ(i),y(m); U(z (i) 4y(m)Y, 5"&5:’7”)) - Fo‘h(fﬂ(i),y(m)v (uh)(i,m)ﬁugf’m))l <
§ Bl(h)v (Z(Z)ay(m)) € Eh \E;mea }11111’%) Bl(h) = 03
and condition (3.36) is satisfied.

Then there is v : © — R such that |u§:’m) - v,(f’m)| < ~(h) on Ey and
limp_oy(h) = 0.

Proof. Let 'y, : E] — R be defined by (3.38), (3.39) for

n
fh(xayawaQ7r) = FO.h(xayawacD + Z F’ij Tig, (xayawa% 7') € Eha
ij=1
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and for &y, 6, 62 given by (3.18)(3.20), (3.52), (3.53). It follows from the
compatibility conditions and from assumption 1) that there is §: © — R

such that |I’§:’m)| < B(h) on Ej}, and limp_,o B(h) = 0. Let ny, : I UJy, — Ry
be defined by (3.40). We prove that 7, satisfies (3.41), (3.42).

Suppose that (z(¥,y(™) € E} \ E}"P. Let

X+[iam] = {(]7 k) €X: ij(x(i)’y(m)) 2 O}a X*[Z‘am] =X \ XJr[ivm]

and zp, = up — vp. It follows from Assumptions H [Fon, F|, H [Fo.n, g1 ]
that

|””ﬂ<m%u>wmmmwwwm

20 4 g Z Fjpzm) 20 ¢
jik=1

+h0 FO.h(m(i) ) y(m)a (uh)(z,m) ) 6uglm) _FO.h(m(i) ) y(m); (uh)(z,m) ) 6vf(lm):| ‘ <

< ho o (2D, Vi (21) (5,m)) + hoB(h) +

n
A 4 ho Y Dy Fon(@) 5 (w4

j=1

zm 1 , i 7,m i mM—e.
+hOZF ( © m+61)722’,§bﬁ )+Z('L,m ej))+

1 i v , R
+ho Z S Fj(;,m) (72}(1 smte;) Z;;,m-&-ek) . Z}(z m—e;)
(G, k)eX 4 [im] ~ Y
(z m—ey) +22(z ,m) + Z(z ;m+ej+er) + Z}(li,mfejfek)> _
—ho Z F;Z,m) 2h1h (z(z m-‘re,) (i,m+ek) i Zﬁj’m_ej) n
(4,k)EX_[i,m] k
+Z}(j’miek) —23}(:’7”) — Z}(jvm‘f‘ej—@k) . Z;Li,m—ej-‘rek)) ’

where Q = (2, y(m), (un) (i,m) q»™)) € B¢, is an intermediate point. The
above estimate implies

255 < hg o (2D, Vi (28) (5.0m)) + hoB(R) +

‘ “m)‘ 1_2h02h2 ™ he Y

(.kex 7

1 ,m
|+

| )|k
i,m-+e; O
+> ‘ “h 2h,

h i,m) i,m
qJFO.h(Q)+h2FJ(j +h0 Z h. h |F( )l +
j=1 kemr[j]

J




74

n
iy m—e; ho 3
+Z ‘Z}(L('L m—e;) 7ﬂDqJ FO.h(Q) h2 Fj(j m)+h Z (’L m)|
=1 kem(j] ]
h, (z m) (i, m+e]+ek) (mn—ej—ek)
the D IE |2h e h |+
(j,k)EX 4 [i,m]
+ho Z | (z m) | 2h1h Z(z m—ej+tey) + Zgi,m—&-ej—ek) .
(4,k)€X _[i,m]

It follows from the assumption 2) that

[(un — o) T < 4 hg oy (2D, () i) + hoB(R) on E} \ E™P

The above inequality and (3.40) imply (3.41). The proof of (3.42) is the
same as in the proof of Theorem 3.9 Therefore we omit the details. From
(3.41), (3.42) we see that n(i) < f](l), (@) € J,, where 7, is the solution of
(3.45)—(3.47). Then we have |u(l ™ _ (i’m)| < f)g) on Fj, and the assertion
of our theorem follows from the stability of problem (3.26) (3.28). O

3.6. REMARKS ON NONLINEAR ESTIMATES FOR INCREMENT FUNCTIONS

In this Section we investigate the condition 3) of Assumption H [op, 4, |
on the stability of difference problem (3.26) (3.28). We consider a class of
difference equations (3.23), (3.24) where f;, and gj are superpositions of f
and ¢ and suitable interpolation operators. We will consider the operators

Thi: F(Bn,R) — F(B,R), 0<i< N,

defined in Section 2.5 with B, Bj considered in Section 3.1. The interpo-
lating operators T}, ; were first introduced in [45] and were adopted in [14]
for equations with impulses.

Consider the initial boundary value problem (3.15)—(3.17) and the differ-
ence equations

602(i’m) = f (l‘(Z) ) y(m)a Th.iz(i,m)a 6Z(i’m)a 6(2)2(277”‘)) )
(=D y™) € B, \ E™P, (3.54)
Li+Lm) — (m) g(x(i),y(m), Th-iz(_i,m))7 (x(i),y(m)) c E;me7 (3.55)

with initial boundary condition (3 25) where T}, ;2(;,m)- i the restriction of

the function T}, ;2(; ) to the set B(™). Suppose that o : (J\Limp)x R — Ry
and ¢ : Iimp X Ry — Ry are given functions. We consider the comparison
problem with impulses

W'(z) = o(z,w(x)) fora € J\ Jimp, (3.56)
w(z) =w(x") +o(x,w(@™)) forxe Jimp, w(0)=0. (3.57)
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For w € Cinp[B, R] we write
lw| g = sup{|w(t,s)|: (¢t s) € B}.

We will denote by || - || g-) the supremum norm in the space Ciup[B(7), R].
Suppose that the following conditions are satisfied:

(I) o and ¢ are continuous, o(z,0) = 0 for € J \ Jimp, 6(x,0) = 0 for
T € Jimp-

(IT) The function ¢ is nondecreasing with respect to (z,p) € (J \ Jimp) X
R and the function ¢ is nondecreasing with respect to the second variable.

(IIT) The maximum solution of problem (3.56), (3.57) is w(xz) = 0 for
z € J
(IV) We have the estimates

[f(z,y,w,q,7) — f(z,y,0,q,7)| < o, |w—w|5) on T
and
|g(w,y, ) g(fﬂ Yy,w )| < J( ,HU) 7w”B(*)) on Eimp-
The method (3.54), (3.55) is a particular case of (3.23), (3.24) for
fh(x(i)a y(m), w,q, T.) = f(x(Z) ) y(m)’ Th‘iwa q, T‘) on Zha
(2, y ™ w) = g(a @y, (Thw) () on T,

where (T;m-w)(,) is the restriction of T}, ;w to the set B().
It is easy to see that the above functions f; and g, satisfy the compati-
bility conditions (3.35), (3.36) and that

(@D, 5w, q,r) = fu(@D, g™ w,q,7)] < 0@, Jlw — o)) on T,
lgn(@?, 4™ w) = gi (2@, 5™ @) < 62, Jw — @) on .
Now we prove that the difference problem
D =@ 4 hoo(z® D) for 2 e Jp \ I, (3.58)
D =@ 4 520 @) for 2@ e J™P . p(0) =0,  (3.59)

is stable in the sense of Assumption H [0}, 67 .
Let np, : J,, — Ry be a solution of the problem

Y = 0@ 4 hoo(z®, D) + hoy(h) for 2D e J; \ TP,
n Y =@ 452D @) 4 5(h) for 2 e Jlmp
1(0) = o (h),

with v, 4, ap: © — R
Denote by wy, : J — R4 the solution of the initial problem with impulses

W'(z) = o(z,w(@)) + v(h) for x € J\ Jimp,

w(x)=n(z")+d(z,w(x™) +7(h) for x € Jimp,
w(0) = ag(h).
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There is g9 > 0 such that for |h| < g the solution wy, is defined on J and

}11111%) wp(z) = 0 uniformly with respect to = € J.

It follows from condition (II) that wj, satisfies the difference inequalities
wﬁfﬂ) > wﬁf) + ho o(x(i),wﬁf)) + hoy(R) for = € J;, \ P,
w,(jH) > wﬁf) + 5(ai,w,(j)) +75(h), @ e J;me.
From the above estimates we have 77,(;) < w;f) < wp(a) for 2@ e Jn. Then

the problem (3.58), (3.59) is stable in the sense of Assumption H [op, ]

Remark 3.12. The results of this Chapter can be extended for weakly
coupled parabolic systems with impulses

Dyzi(2,y) = fi(, Y, 2(2.9): Dy2i(2,y), Dyy2i(2,y)),
(z,y) € E\ Bimp, i=1,...,k,

Az(x,y) = g(xvyaz(a;*,y))a (ﬂ?,y) S Eimp;

where

f = (fl;- ~-afk) : (E\Eimp) X Cimp[BaRk] x R™ x Mn><n - Rka
9=(91,-+,9) : Zimp X R¥ x Cimp[B), RY]

and z = (z1,...,2%).

3.7. NUMERICAL EXAMPLE

For n = 2 we put

E=(0, 1.5] x (=1, 1) x (=1, 1),
B={0}x[-0.5, 0.5] x [<0.5, 0.5], Jimp = {0.5, 1}

and

Eo = {0} x [-1.5, 1.5] x [—1.5, 1.5],
OE = (0, 1.5] x ([-1.5, 1.5] x [=1.5, 1.5] \ (=1, 1) x (=1, 1)).

Consider the differential - integral equation

1 1
sz(xa y): Z [Dy1y1z(xvy)+Dy2y2Z(xvy)]+§(x+y1+y2)Dy1yzz(xvy) +

+62 / eyt s)ds — 2@y) | + f@ry),  (2y) € B\ B, (3.60)
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with impulses
Az(x,y) = /z(x —0.25,y + s)ds — z(x — 0.25,y) + g(z,y), (3.61)
B

(’JJ, y) € Eimpa
and with initial boundary conditions

2(0,y) =0 fory e [-1.5,1.5] x [-1.5, 1.5],

2(z,y) = ¥(z,y) for (z,y) € W E, (3.62)

where

X
f(:c,y):1+yf+y§+y1y2—x—xQ—g(erleryg),
Yz, y) =L+ 45 +y3 + y1y2) for0 <z < 0.5, (z,y) € BE,
V(x,y) =2z(L4+y; +ys+yiy2) +y1 +y2 for05<z <1, (z,y) € HE,

1
Yz, y) =2(L+ 95 + Y5+ yiy2) — 5 +2)

for 1<x <15, (z,y) € QE,

and

1 3 1
g(0.5,y) = yity2—o g(l,y) = —§(y1+y2)—§, y € (—1, 1)x(~1,1).

Let
B = {4 ) i=0, —K) <j< K, —~Ky <k < Ky},

where K1, K5 € N and K1h; = Koho = 0.5. We define the operator T}, :
F (B, R) — F(B, R) in the following way. Suppose that w € F (B}, R) and
y = (y1,92), —0.5 < y; < 0.5, i = 1,2. There exists m = (m1,mz) € Z2
such that —K; < m; < K;, i = 1,2 and ygmi) <y < ylmiﬂ), i=1,2. We
put

(m1) (m2)

(Thw)(0,y) = w(0mit+1mat1) Y1 — Y Y2 — s .
hy ho

(m1) (m2)
4 p(Omamat) (1 -y ) Y2—Ys n

hi ha

hi ha

(m1) (m2)
(0mima) 1 _ Y1— 4% 1— Y2 — Yo .
tw ( I o

(m1) (m2)
+ w(01m1+1,m2) Yy1— Y ' (1 o Y2 — Yo ? > +
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The difference method for the above problem has the form

LUHLR) (k) ZO (5g>z(z,y,k> n 5§§>Z(m,k>> n

1 . ; o
+h0§ (I(z) + oy +y§k)) 82 k) 4

+629 hy /Thz(i,j’k)(O,s)ds A AL I
B
thof(@u” 57), @078 e BT, (3.63)

Ltk — Ggk) 4 /Thz(i’,j,k)(oa s)ds — L(5k) 4
B

+9(z Dy ), @O,y g5 € S (3.64)
and
Z(O’j’k) =0 for (O,yy)ayék)) € Eo'h’

g 3 L (3.65)
23E) = gy (63R) - for (x(l),yy), yék)) € 0oEp,

where 59, 5&? are given by (3.20) for n = 2 and 5@ is defined by

2) (ijk) — J+Lk =1k g,k dsk—
532 (i )7m(z(u+1 ) 4 (i =1k) o (hdktl) 4 (igk=1) _
9,6 k) _ L (ig+1k=1) Z(i7j+1’k*1)) if 2 4y 4 40 < 0,

2) _(i,j 1 i,j i,j— i,J i,5,k—
52 (idik) — i (_Z< JHLE) (g =1k) (g k) (gk=1)

12, (0k) | (it Lk+D) Z(m’—l,k—l)) if 2@ 4y 4B >,

The above formulas are identical with (3.52), (3.53) for n = 2. The index ¢’
in (3.64) is defined by i'hg = (V) — 0.25.

If hy = hg = h and 1 — hg h~2 > 0 then the difference method (3.63)—
(3.65) is convergent.

We take ho = 1074, hy = ho = 1072 Let Q = E U §yE. The function

v(z,y) = 2(1 + 92 +y2 +y1ye) for 0 <z < 0.5, (z,y)€Q,
v(z,y) =x(1+yf +y5 +y1y2) +y1 +y2 for05 <z <1, (z,y) €,

1
U(Z,y) = IL’(l +y% +y§ +y1y2) - _(yl +y2) for 1 S x S 15, (xay) € Q7

2
is the solution of (3.60)—(3.62). Let up : E, — R be a solution of (3.63)—
(3.65) and e, = up — vp. Some values of agf’]’k) are listed in the table for

z=0.75, z = 1.25.
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TABLE OF ERRORS, x = 0.75

(y1, y2) —0.3 0 0.3

-0.3 —6.331072 —5.1910"2 —4.011072
0 —5.431072 —-54310"2 —3.11102
0.3 —5211072 —4.9910"2 —6.0110"2

TABLE OF ERRORS, x = 1.25

(y1,92) —0.3 0 0.3
—0.3 4541072 —4.1010"2 —3.9810°2
0 —3.341072 —2.9810"2 2.87102
0.3 3711072  3.271072 4561072

The computation was performed by the computer IBM AT.
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