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Abstract. The following problems for partial functional differential equa-
tions are considered: the Cauchy problem on the Haar pyramid for first
order equations, mixed problems on bounded domains for Hamilton–Jacobi
equations, initial boundary value problem of the Dirichlet type for nonlinear
parabolic equations. Impulses depend on functional variable and they are
given at fixed points.

The theory of functional differential inequalities is presented in the paper.
Moreover, discrete versions of theorems on differential inequalities are pre-
sented. The numerical method of lines and difference methods are examples
of applications of the theory.
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Introduction

Many real processes and phenomena studied in mechanics, theoretical
physics, population dynamics and economy are characterized by the fact
that at certain moments of their development the system of parameters
undergo rapid changes by jumps. In the mathematical simulation of such
processes and phenomena the duration of these changes is usually neglected
and the process is assumed to change its state impulsively. A natural tool
for the mathematical simulation of such processes are impulsive differen-
tial equations. The paper V. Milman and Myshkis [1] initiated the theory
of impulsive ordinary differential equations. Up to now numerous papers
were published concerning various problems for classes of equations and also
dealing with special problems appearing in this theory.

It is not our aim to show a full review of papers concerning ordinary
impulsive differential equations. We shall mention only monographs which
contain reviews. They are [2]–[5].

Partial differential equations with impulses were first treated in [6]. The
authors therein have shown that parabolic equations with impulses provide
natural framework for many evolutional processes in the population dynam-
ics. Estimates of solutions of impulsive parabolic equations and applications
to the population dynamics were considered in [7]. The first results on im-
pulsive quenching problems for reaction-diffusion equations were given in
[8].

Hyperbolic differential equations and inequalities with impulses were con-
sidered in [9]–[12]. Estimates of solutions, estimates of the difference be-
tween solutions of two problems, uniqueness theory and continuous depen-
dence on given functions were considered. The monotone iterative methods
for impulsive nonlinear hyperbolic equations were investigated in [13]. Dif-
ference methods for first order partial differential or functional differential
equations with impulses were investigated in [14]–[17]. The authors proved
that there are natural classes of difference methods for such problems. The-
orems on difference inequalities or recurrent inequalities were used in the
investigation of the stability of difference schemes.

Almost periodic solutions of hyperbolic systems were considered in [18]

Detailed bibliographical information can be found in [17], [19]. An ex-
tensive survey of developments in the area of impulsive partial differential
equations was given also in [20], [21].

The classical theory of partial differential inequalities has been developed
widely in the monographs [22]–[25]. As it is well known, they found appli-
cations in differential problems. The basic examples of such questions are:
estimates of solutions of partial equations, estimates of the domain of the
existence of solutions, criterion of uniqueness, estimates of the error of ap-
proximate solutions. Moreover discrete versions of differential inequalities
are frequently used to prove the convergence of approximation methods.
The numerical method of lines [25]–[27] and difference methods [28]–[31]
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represent classical examples.
Results on parabolic differential and functional differential inequalities

with impulses can be found in [32]–[38].
The paper is intended as a self-contained exposition of partial functional

differential and difference inequalities with impulses. In the following we
describe the topics which are considered in the paper.

Chapter I deals with initial problems for functional differential equations
of the Hamilton–Jacobi type on the Haar pyramid. We begin with dis-
cussing of functional differential inequalities with impulses and applications.
The second part of the Chapter I deals with difference methods for initial
problems. The main problem in these investigations is to find a suitable
functional difference equation which satisfies a consistency condition with
respect to the original problem and it is stable. The method of difference
inequalities is used in theorems on the stability. It is important fact in our
considerations that the right hand sides of equations satisfy the nonlinear
estimates of the Perron type with respect to functional variable.

Functional differential inequalities generated by mixed problems are ex-
amined in Chapter II. Uniqueness of solutions and continuous dependence
on given functions are consequences of comparison theorems. Discrete ver-
sions of functional differential problems are considered also.

The method of lines for partial differential equations consists in replacing
spatial derivatives by difference expressions. Then the partial equation is
transformed into a system of ordinary differential equations. The numerical
method of lines for nonlinear differential problems of parabolic type were
examined in [25]–[27], [39], [40]. The method of lines is also treated as a tool
for proving of existence theorems for differential problems corresponding
to parabolic equations [41]–[43] or first order hyperbolic systems [44]. The
method of lines for nonlinear functional differential equations was considered
in [45]–[49]. The method for equations of higher orders is studied in [39]. For
further bibliography see the references in the papers cited above, especially
in papers [47]–[49].

In Chapter II we present a theory of the numerical method of lines for
functional differential problems with impulses. The main theorems con-
cerning the numerical method of lines will be based on comparison the-
orems where a function satisfying some differential difference inequalities
with impulses is estimated by a solution of an adequate ordinary functional
differential problem with impulses. Next we prove that there are natural
classes of difference methods for mixed problems.

In Chapter III we present a theory of parabolic functional differential
problems with impulses.

Two types of results on parabolic functional differential inequalities are
taken into considerations. The first type allows to estimate a function of
several variables satisfying a functional differential inequality by means of
an other function of several variables. The second one give estimates of
functions of several variables by means of solutions of ordinary functional
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differential problems.
A number of papers concerned with difference approximations for nonlin-

ear parabolic functional problems were published ([50]–[55]). The method
of difference inequalities or simple theorems on recurrent inequalities are
used in the investigation of the stability of nonlinear difference functional
problems. The authors have been assumed that given functions have par-
tial derivatives with respect to all variables except for (x, y). All the above
results deal with equations without impulses.

Our assumption are be more general. We consider nonlinear parabolic
functional differential equations with impulses and with initial boundary
conditions of the Dirichlet type. We show that there is a general class of
difference schemes for such problems. We give sufficient conditions for the
convergence of a sequence of approximate solutions under the assumptions
that given functions satisfy the nonlinear estimates of the Perron type with
respect to the functional variable. The proof of stability is based on a
theorem on nonlinear recurrent inequalities for functions of one variable.

Impulsive differential equations with a deviated argument and differen-
tial integral equations can be derived from a general model of equation by
specializing given functions.

Difference methods for impulsive partial functional differential problems
are based on general ideas for finite difference equations which were intro-
duced in [56], [57].

It should be noted that all the problems considered in the paper have
the following property: the unknown function is the functional argument in
equations. The partial derivatives appear in a classical sense. At the mo-
ment there are very few important results for functional differential equa-
tions with deviated argument at derivatives ([58]–[61]).
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CHAPTER I
INITIAL PROBLEMS ON THE HAAR PYRAMID

1.1. Functional Differential Inequalities

For any two metric spaces X and Y we denote by C(X,Y ) the class
of all continuous functions from X into Y. We will use vectorial inequali-
ties with the understanding that the same inequalities hold between their
corresponding components.

Let a > 0, τ0 ∈ R+, R+ = [0,+∞), be fixed and suppose that the
functions α, β : [0, a) → Rn, α = (α1, . . . , αn), β = (β1, . . . , βn), and α̃,
β̃ : [−τ0, 0] → Rn, α̃ = (α̃1, . . . , α̃n), β̃ = (β̃1, . . . , β̃n) satisfy the conditions:

(i) α and β are of class C1 on [0, a) and α(x) < β(x) for x ∈ [0, a),
(ii) α̃, β̃ ∈ C([−τ0, 0], Rn) and α̃(x) ≤ β̃(x) for x ∈ [−τ0, 0],
(iii) β̃(0) = β(0) = b where b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n, and

α̃(0) = α(0) = −b.
Let E = {(x, y) ∈ R1+n : x ∈ (0, a), y = (y1, . . . , yn), y ∈ [α(x), β(x)] },

E0 = {(x, y) ∈ R1+n : x ∈ [−τ0, 0], y ∈ [ α̃(x), β̃(x) ]},

∂0E = ∂E ∩ ( (0, a)×Rn ) ,

where ∂E is the boundary of E. We will consider functional differential
problem on the set E, whereas E0 will be an initial set. Suppose that
0 < a1 < a2 < · · · < ak are given numbers. Write

I = [−τ0, 0], J = [0, a), Jimp = { a1, . . . , ak } (1.1)

and

Eimp = { (x, y) ∈ E : x ∈ Jimp } .

Let Cimp(E0 ∪E,R) be the class of all functions z : E0 ∪E → R such that
(i) the restriction of z to the set E0∪ (E \Eimp) is a continuous function,
(ii) for each (x, y) ∈ Eimp there exist the limits

lim
(t,s)→(x,y), t<x

z(t, s) = z(x−, y), lim
(t,s)→(x,y), t>x

z(t, s) = z(x+, y), (1.2)

(iii) z(x, y) = z(x+, y) for (x, y) ∈ Eimp.

For a function z ∈ Cimp(E0 ∪E,R) and (x, y) ∈ Eimp we put ∆z(x, y) =
z(x, y)− z(x−, y). Let

Sx = [ α̃(x), β̃(x) ] for x ∈ [−τ0, 0], Sx = [α(x), β(x) ] for x ∈ [0, a).

Write

Ω = (E \Eimp )×Cimp(E0 ∪E,R)×Rn, Ωimp = Eimp ×Cimp(E0 ∪E,R)

and suppose that

f : Ω → R, g : Ωimp → R, ϕ : E0 → R
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are given functions. In this Chapter we discuss a number of questions
referring to the Cauchy problem with impulses

Dxz(x, y) = f(x, y, z,Dyz(x, y) ) on E \Eimp, (1.3)

∆z(x, y) = g(x, y, z ) on Eimp, z(x, y) = ϕ(x, y) on E0, (1.4)

where Dyz = (Dy1z, . . . , Dyn
z).

We consider classical solutions of the above problem. A function z :
E0 ∪ E → R is a solution of (1.3), (1.4) if z ∈ Cimp(E0 ∪ E,R), there exist
the derivatives Dxz, Dyz on E \Eimp and z satisfies (1.3), (1.4).

A function z ∈ Cimp(E0 ∪ E,R) will be called a function of class D if z
has partial derivatives Dx, Dyz on E \Eimp and there is the total derivative
of z on ( ∂E \ Eimp ) ∩ ( (0, a)× Rn ) . We will consider solutions of (1.3),
(1.4) or solutions of functional differential inequalities generated by (1.3),
(1.4) which are of class D on E0 ∪ E.

Let Cimp(I ∪ J,R) be the class of all functions w : I ∪ J → R such that
w ∈ C( (I ∪ J) \ Jimp, R ) and for each x ∈ Jimp there exists the limits

lim
t→x, t<x

w(t) = w(x−), lim
t→x, t>x

w(t) = w(x+).

We assume also that w(x) = w(x+) for x ∈ Jimp.

Two different types of results on functional differential inequalities will
be considered in this Chapter. The first type allows to estimate a func-
tion of several variables by means of an other function of several variables,
while the second one, the so called comparison theorems, give estimates for
functions of several variables satisfying functional differential inequalities
with impulses, by means of functions of one variable which are solutions of
adequate initial problems with impulses. Let

Ex = (E0 ∪E ) ∩ ( [−τ0, x ]×Rn ) , 0 ≤ x < a.

For every x ∈ [0, a) and z ∈ Cimp(E0 ∪ E,R) we write

‖z‖x = sup{ |z(t, s)| : (t, s) ∈ Ex }

and

‖z‖x− = sup{ |z(t, s)| : (t, s) ∈ (E0 ∪ E ) ∩ ( [−τ0, x)×Rn ) }.

If w ∈ Cimp(I ∪ J,R) then we write also

‖w‖x =sup{ |w(t)| : −τ0≤ t≤x } and ‖z‖x− =sup{ |w(t)| : −τ0≤ t<x }.

The function f is called to satisfy the Volterra condition if for each (x, y) ∈
E \Eimp there is a set E[x, y] such that

(i) E[x, y] ⊂ Ex,

(ii) if z, z̄ ∈ Cimp(E0 ∪E,R) and z(t, s) = z̄(t, s) for (t, s) ∈ E[x, y] then
f(x, y, z, q) = f(x, y, z̄, q), q ∈ Rn.

Note that the Volterra condition means that the value of f at the point
(x, y, z, q) depends on (x, y, q) and on the restriction of z to the set E[x, y].
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The function g is called to satisfy the condition V (−) if for each (x, y) ∈
Eimp there is a set H [x, y] such that

(i) H [x, y] ⊂ (E0 ∪ E ) ,∩ ( [−τ0, x) ×Rn )

(ii) if z, z̄ ∈ Cimp(E0 ∪E,R) and z(t, s) = z̄(t, s) for (t, s) ∈ H [x, y] then
g(x, y, z) = g(x, y, z̄).

We consider differential inequalities generated by (1.3), (1.4).

We define functions I0, I+, I− : E → {1, . . . , n} as follows. For each
(x, y) ∈ E there exist sets (possibly empty) of integers I0[x, y], I+[x, y],
I−[x, y] such that

I+[x, y] ∩ I−[x, y] = ∅, I0[x, y] ∪ I+[x, y] ∪ I−[x, y] = {1, . . . , n},

and

yi = αi(x) for i ∈ I−[x, y], yi = βi(x) for i ∈ I+[x, y],

αi(x) < yi < βi(x) for i ∈ I0[x, y].

Let F and G be the Niemycki operators generated by the problem i. e.

F [ z ](x, y) = f(x, y, z,Dyz(x, y) ) on E \Eimp,

G[ z ](x, y) = g(x, y, z ) on Eimp.

Assumption H [ f, g ]. Suppose that

1) f : Ω → R satisfies the Volterra condition and for (x, y, z, q) ∈ Ω, q̄ ∈
Rn we have

f(x, y, z, q )−f(x, y, z, q̄ )+
∑

i∈I−[x,y]

α′i(x) (qi−q̄i)+
∑

i∈I+ [x,y]

β′i(x) (qi−q̄i) ≤ 0

where q = (q1, . . . , qn), q̄ = (q̄1, . . . , q̄n), and qi ≤ q̄i for i ∈ I−[x, y], qi ≥ 0
for i ∈ I+[x, y], qi = q̄i for i ∈ I0[x, y],

2) the function g : Ωimp → R satisfies the condition V (−) and for fixed
(x, y) ∈ Eimp the function g(x, y, · ) is nondecreasing on Cimp(E0 ∪E,R),

3) the function f satisfies the following monotonicity condition: if (x, y) ∈
E, z, z̄ ∈ Cimp(E0 ∪E,R), z(t, s) ≤ z̄(t, s) on Ex and z(x, y) = z̄(x, y) then

f(x, y, z, q) ≤ f(x, y, z̄, q) for q ∈ Rn.

Remark 1.1. Suppose that the function

f̄ : (E \Eimp)×R× Cimp(E0 ∪ E,R)×Rn → R

is nondecreasing with respect to the functional variable and

f(x, y, z, q) = f̄(x, y, z(x, y), z, q).

Then f satisfies the monotonicity condition 3).
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Theorem 1.2. Suppose that Assumption H [ f, g ] is satisfied and
1) the functions u, v ∈ Cimp(E0 ∪ E,R) are of class D and

u(x, y) ≤ v(x, y) on E0, u(0, y) < v(0, y) for y ∈ [−b, b],

2) denoted

T+ = { (x, y) ∈ E :

u(t, s) < v(t, s) for (t, s) ∈ E ∩ ([0, x)×Rn) and u(x, y) = v(x, y) } ,

we assume that

Dxu(x, y)− F [u ](x, y) < Dxv(x, y)− F [ v ](x, y) on T+ \Eimp,

and

∆u(x, y)−G[u ](x, y) < ∆v(x, y)−G[ v ](x, y) on T+ ∩ Eimp.

Then

u(x, y) < v(x, y) on E. (1.5)

Proof. Suppose that assertion (1.5) is false. Then the set

J+ = { x ∈ [0, a) : u(x, y) ≥ v(x, y) for some y ∈ [α(x), β(x) ] }

is not empty. Defining x̄ = inf J+ it follows that x̄ > 0 and that there
exists ȳ ∈ [α(x̄), β(x̄) ] such that (x̄, ȳ) ∈ T+. There are two cases to be
distinguished.

(i) Suppose that (x̄, ȳ) ∈ E \ Eimp. Then Dyi
(u − v)(x̄, ȳ) ≥ 0 for i ∈

I+[x̄, ȳ], Dyi
(u− v)(x̄, ȳ) ≤ 0 for i ∈ I−[x̄, ȳ], and Dyi

(u− v)(x̄, ȳ) = 0 for
i ∈ I0[x̄, ȳ]. For x ∈ [0, x̄] we put η(x) = ( η1(x), . . . , ηn(x) ) where

ηi(x) = αi(x) for i ∈ I−[x̄, ȳ], ηi(x) = βi(x) for i ∈ I+[x̄, ȳ], (1.6)

ηi(x) = ȳi for i ∈ I0[x̄, ȳ]. (1.7)

We consider now the composite function γ(x) = (u−v)(x, η(x)), x ∈ [0, x̄].
It attains maximum at x̄. Since u− v is of class D on E0 ∪E then we have

Dx(u− v)(x̄, ȳ) +
∑

i∈I−[x̄,ȳ]

α′i(x̄)Dyi
(u− v)(x̄, ȳ) +

+
∑

i∈I+[x̄,ȳ]

Dyi
(u− v)(x̄, ȳ) ≥ 0. (1.8)

From Assumption H [ f, g ] and condition 2) it follows that

Dx(u−v)(x̄, ȳ) < −
∑

i∈I−[x̄,ȳ]

α′i(x̄)Dyi
(u−v)(x̄, ȳ)−

∑

i∈I+[x̄,ȳ]

Dyi
(u−v)(x̄, ȳ)

which contradicts (1.8).
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(ii) Suppose now that (x̄, ȳ) ∈ Eimp. Then

u(x̄−, ȳ) ≤ v(x̄−, ȳ) (1.9)

and

u(t, s) ≤ v(t, s) for (t, s) ∈ (E0 ∪ E ) ∩ ( [−τ0, x̄)×Rn ).

It follows from Assumption H [ f, g ] and condition 2) that

(u− v)(x̄, ȳ) < u(x̄−, ȳ) + g( x̄, ȳ, u )− v(x̄−, ȳ)− g( x̄, ȳ, v ) ≤ 0

which contradicts the condition (x̄, ȳ) ∈ T+.

Hence J+ is empty and the statement (1.5) follows.

Remark 1.3. Suppose that ḡ : Eimp×R×Cimp(E0∪E,R) → R is a given
function and g is defined by g(x, y, z) = ḡ(x, y, z(x−, y), z). Then condition
2) of Assumption H[ f, g ] can be replaced by the following one:

2’) the function ḡ satisfies condition V (−), it is nondecreasing with respect
to the functional variable and for fixed (x, y, z) ∈ Eimp × Cimp(E0 ∪ E,R)
the function γ(p) = p+ ḡ(x, y, p, z) is nondecreasing on R.

Now we consider weak functional differential inequalities.
Assumption H [σ, σ0 ]. Assume that
1) the functions σ : ( J \ Jimp ) × R+ → R+ and σ0 : Jimp × R+ → R+

are continuous and σ(x, 0 ) = 0 for x ∈ J \ Jimp, σ0(x, 0 ) = 0 for x ∈ Jimp,

2) the functions σ(x, · ) and σ0(x, · ) are nondecreasing and the right
hand maximum solution of the problem with impulses

ω′(x) = σ(x, ω(x) ) on J \ Jimp,

∆ω(x) = σ0(x, ω(x−) ), on Jimp, ω(0) = 0,

is ω̄(x) = 0 on J,
3) the estimate

f(x, y, z, q )− f(x, y, z̄, q ) ≥ −σ(x, ‖ z̄ − z ‖x )

is satisfied on Ω for z ≤ z̄,

4) the inequality

g(x, y, z )− g(x, y, z̄ ) ≥ −σ0(x, ‖z̄ − z‖x− )

is satisfied on Ωimp for z ≤ z̄.

Theorem 1.4. Suppose that Assumptions H [ f, g ] and H [σ, σ0 ] are sat-
isfied and

1) the functions u, v ∈ Cimp(E0 ∪ E,R) are of class D and u(x, y) ≤
v(x, y) on E0,

2) the functional differential inequality

Dxu(x, y)− F [u ](x, y) ≤ Dxv(x, y) − F [ v ](x, y) on E \Eimp
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and the inequality for impulses

∆u(x, y)−G[u ](x, y) ≤ ∆v(x, y) −G[ v ](x, y) on Eimp

are satisfied.
Then u(x, y) ≤ v(x, y) on E.

Proof. Let ã ∈ (ak, a) be fixed. Consider the problem

ω′(x) = σ(x, ω(x) ) + ε1 on [0, ã) \ Jimp,

∆ω(x) = σ0(x, ω(x−) ) + ε2 on Jimp, ω(0) = ε0.

There exists ε̄ > 0 such that for 0 < εi < ε̄, i = 0, 1, 2, there is the maximum
solution ω( · , ε ) : [0, ã) → R+, ε = (ε0, ε1, ε2), of the above problem.

We prove that

u(x, y) ≤ v(x, y) on E ∩ ( (0, ã)×Rn ) . (1.10)

Let

ṽ(x, y) = v(x, y) + ε0 on E0 and

ṽ(x, y) = v(x, y) + ω(x, ε) on E ∩ ( [0, ã)×Rn ) .

Then ṽ is of class D on (E0 ∪ E ) ∩ ( [−τ0, ã)×Rn ) and (u− v)(x, y) < 0
on E0.

Direct calculations give

Dxu(x, y)− F [u ](x, y) < Dxṽ(x, y)− F [ ṽ ](x, y) on

(E \Eimp ) ∩ ( (0, ã)×Rn )

and

∆u(x, y)−G[u ](x, y) < ∆ṽ(x, y)−G[ ṽ ](x, y) on Eimp.

It follows from Theorem 1.2 that u(x, y) < ṽ(x, y) on E ∩ ( (0, ã)×Rn ) .
On the other hand limε→0 ω(x, ε) = 0 uniformly on [0, ã) which leads to
(1.10). Finally, the constant ã ∈ (ak, a) is arbitrary and therefore the proof
of Theorem 1.4 is completed.

Assumption H [ σ̃, σ̃0 ]. Suppose that
1) the functions σ̃ : ( J \ Jimp ) × R− → R+ and σ̃ : Jimp × R− → R+,

R− = (−∞, 0 ], are continuous, σ̃(x, 0) = 0 on J \Jimp, σ̃(x, 0) = 0 on Jimp,

2) the function f : Ω → R satisfies the condition: if (x, y) ∈ E, q ∈
Rn, z, z̄ ∈ Cimp(E0 ∪ E,R), z(t, s) ≤ z̄(t, s) on Ex and z(x, y) < z̄(x, y)
then

f(x, y, z, q)− f(x, y, z̄, q) ≤ σ̃(x, z(x, y)− z̄(x, y) ),

3) if (x, y) ∈ Eimp, z, z̄ ∈ Cimp(E0 ∪ E,R), z(t, s) ≤ z̄(t, s) on Ex and
z(x−, y) < z̄(x−, y) then

g(x, y, z, )− g(x, y, z̄, ) ≤ σ̃0(x, z(x
−, y)− z̄(x−, y) ),
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4) the left hand minimum solution of the equation with impulses

ω′(x) = σ̃(x, ω(x) ) on J \ Jimp, ∆ω(x) = σ̃0(x, ω(x−) ) on Jimp,

satisfying the condition limx→a− ω(x) = 0 is ω̄(x) = 0, x ∈ J.

Theorem 1.5. Suppose that Assumptions H [ f, g ], H [ σ̃, σ̃0 ] are satisfied
and

1) the functions u, v ∈ Cimp(E0 ∪ E,R) are of class D and u(x, y) <
v(x, y) on E0,

2) for (x, y) ∈ E \Eimp we have

Dxu(x, y)− F [u ](x, y) ≤ Dxv(x, y)− F [ v ](x, y)

and

∆u(x, y)−G[u ](x, y) ≤ ∆v(x, y) −G[ v ](x, y) for (x, y) ∈ Eimp.

Then

u(x, y) < v(x, y) on E. (1.11)

Proof. First we prove inequality (1.11) on E ∩ ( [0, a− ε)×Rn ) where 0 <
ε < a− ak.

Let
0 < p0 < min { v(x, y) − u(x, y) : (x, y) ∈ E0 } .

For δ > 0 denote by ω( · , δ) the right hand minimum solution of the problem

ω′(x) = −σ̃(x,−ω(x) )− δ, x ∈ [0, a− ε) \ Jimp,

∆ω(x) = −σ̃0(x,−ω(x−) ), x ∈ Jimp, ω(0) = p0.

If p0 > 0 is fixed then to every ε > 0 there corresponds δ0 > 0 such
that for 0 < δ < δ0 the solution ω( · , δ of the above problem exists and
it is positive on [0, a − ε). Suppose that δ > 0 is such a constant that
ω( · , δ satisfies the above conditions. Let ũ(x, y) = u(x, y) + p0 on E0 and
ũ(x, y) = u(x, y) + ω(x, δ) on E ∩ ( [0, a− ε)×Rn ) . We will prove that

ũ(x, y) < v(x, y) on E ∩ ( [0, a− ε)×Rn ) . (1.12)

It follows from Assumption H [ σ̃, σ̃0 ] that

Dxũ(x, y)− F [ ũ ](x, y) < Dxv(x, y)− F [ v ](x, y)

on (E \Eimp ) ∩ ( [0, a− ε)×Rn ) and

∆ũ(x, y)−G[ ũ ](x, y) < ∆v(x, y)−G[ v ](x, y)

on Eimp. Since ũ(x, y) < v(x, y) on E0, we have the estimate (1.12) from
Theorem 1.2.

Since 0 < ε < a− ak is arbitrary, inequality (1.11) holds true on E. This
completes the proof of Theorem 1.5.
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Remark 1.6. If Assumptions H [ f, g ], H [σ, σ0 ] are satisfied then the
Cauchy problem (1.3), (1.4) admits at most one solution u : E0 ∪E → R of
class D.

1.2. Comparison Results for Impulsive Problems

We will prove a theorem on estimates of functions satisfying functional
differential inequalities with impulses by means of solutions of ordinary
equations with impulses. We will use functional differential equations as
comparison problems.

For z ∈ Cimp(E0 ∪E,R) we define the function V z : [−τ0, a) → R+ by

(V z )(x) = max { | z(x, y) | : y ∈ Sx } .

Lemma 1.7. If z ∈ Cimp(E0 ∪ E,R) then V z ∈ Cimp(I ∪ J,R).

We omit the proof of the above lemma.
Assumption H [ %, %0 ]. Suppose that
1) the function % : ( J \ Jimp )×Cimp(I ∪ J,R+) → R+ is continuous and

satisfies the Volterra condition,
2) the function %0 : Jimp × Cimp(I ∪ J,R+) → R+ is continuous and

satisfies the following condition V (−): if w, w̄ ∈ Cimp(I ∪J,R+) and w(t) =
w̄(t) on [−τ0, x) then %0(x,w ) = %0(x, w̄ ),

3) the functions % and %0 are nondecreasing with respect to the functional
variables and for each function η ∈ C(I, R+) there exists the maximum
solution ω( · , η) : [−τ0, a) → R+ of the Cauchy problem

ω′(x) = %(x, ω ) on J \ Jimp, (1.13)

∆ω(x) = %(x, ω) on Jimp, ω(x) = η(x) for x ∈ I. (1.14)

In the sequel we will use the following lemma on functional differential
inequalities.

Lemma 1.8. Suppose that Assumption H [ %, %0 ] is satisfied and
1) the function ϕ ∈ Cimp(I ∪ J,R+) satisfies the initial estimate φ(x) ≤

η(x) on I with η ∈ C(I, R+), ω( · , η) is the maximum solution of (1.13),
(1.14),

2) denoted

T+ = {x ∈ J \ Jimp : φ(x) > ω(x, η) }

we assume that

D−φ(x) ≤ %(x, φ ), for x ∈ T+ \ Jimp,

and

∆φ(x) ≤ %0(x, φ ) for T+ ∩ Jimp.

Then φ(x) ≤ ω(x, η) on J.
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We omit the proof of Lemma 1.8.
Assumption H [G ]. Suppose that the function

G : (E \Eimp )× Cimp(I ∪ J,R+)× Rn
+ → R+

is continuous and satisfies the Volterra condition,
2) the estimate

G(x, y, w, q) −
∑

i∈I−[x,y]

α′i(x) qi +
∑

i∈I+[x,y]

β′i(x) qi ≤ %(x,w )

is satisfied on (E \Eimp )×Cimp(I ∪J,R+)×Rn
+ with qi = 0 for i ∈ I0[x, y].

Remark 1.9. If E is the Haar pyramid

E = { (x, y) : x ∈ (0, a), y ∈ [−b+Mx, b−Mx } , (1.15)

where b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n, M = (M1, . . . ,Mn) ∈ Rn
+,

b−Ma > 0, and

G(x, y, w, q) = %(x,w ) +

n
∑

i=1

Mi qi

then condition 2) of Assumption H [G ] is satisfied.

Theorem 1.10. Suppose that Assumptions H [ %, %0 ], H [G ] are satisfied
and

1) the function u ∈ Cimp(E0 ∪ E,R) is of class D and |u(x, y) | ≤ η(x)
on E0 where η ∈ C(I, R+),

2) the differential inequality with impulses is satisfied

|Dxu(x, y) | ≤ G (x, y, V u, [|Dyu(x, y) |] ) on E \Eimp,

∆|u(x, y) | ≤ %0(x, V u ) on Eimp,

where

[|Dyu(x, y) |] = ( |Dy1u(x, y) |, . . . , |Dyn
u(x, y) | ) .

Then |u(x, y) | ≤ ω(x, η) on E where ω( · , η is the maximum solution of
(1.13), (1.14).

Proof. Let φ = V u and x̄ ∈ J \ Jimp is such a point that φ(x̄) > ω(x̄, η).
We prove that

D−ϕ(x̄) ≤ %( x̄, ϕ ). (1.16)

There is ȳ ∈ Sx̄ such that (i) ϕ(x̄) = u(x̄, ȳ) or (ii) ϕ(x̄) = −u(x̄, ȳ). Let us
consider the case (i). We have Dyi

u(x̄, ȳ) ≥ 0 for ∈ I+[x̄, ȳ], Dyi
u(x̄, ȳ) ≤ 0

for i ∈ I−[x̄, ȳ], and Dyi
u(x̄, ȳ) = 0 for i ∈ I0[x̄, ȳ]. Let η = (η1, . . . , ηn) :

[0, x̄] → Rn be given by (1.6), (1.7) and γ(x) = u(x, η(x)) for x ∈ [0, x̄].
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We have γ(x) ≤ ϕ(x) for x ∈ [0, x̄] and γ(x̄) = ϕ(x̄). It follows that
D−ϕ(x̄) ≤ γ′(x̄). The above inequality and assumption 2) imply

D−ϕ(x̄) ≤ Dxu(x̄, ȳ) +
n
∑

i=1

Dyi
u(x̄, ȳ) η′i(x̄) ≤ G( x̄, ȳ, V u, [|Dyu(x̄, ȳ)|] )

+
∑

i∈I−[x̄,ȳ]

α′i(x̄)Dyi
u(x̄, ȳ) +

∑

i∈I+[x̄,ȳ]

β′i(x̄)Dyi
u(x̄, ȳ) ≤ σ(x̄, ϕ)

which proves (1.16). If the case (ii) is satisfied then (1.16) can be proved in
an analogous way. If x̄ ∈ Jimp then we have

∆φ(x̄) ≤ %0( x̄, φ ).

Then φ satisfies all the assumptions of Lemma 1.8 and the assertion fol-
lows.

In the case when E is the Haar pyramid (1.15) and

E0 = { (x, y) : x ∈ [−τ0, 0], y ∈ [−b, b] } (1.17)

we have the following results.

Theorem 1.11. Suppose that Assumption H [ %, %0 ] is satisfied and
1) the function u ∈ Cimp(E0 ∪ E,R) is of class D and |u(x, y) | ≤ η(x)

on E0 with η ∈ C(I, R+),
2) the differential inequality with impulses is satisfied

|Dxu(x, y) | ≤ %(x, V u ) +

n
∑

i=1

Mi |Dyi
u(x, y) | on E \Eimp,

∆|u(x, y) | ≤ %0(x, V u ) on Eimp.

Under these assumptions we have |u(x, y) | ≤ ω(x, η) on E.

Now we consider problem (1.3), (1.4) on the Haar pyramid (1.15) with
the initial set (1.17). We start with the theorem on the estimate of solutions
of equations with impulses.

Theorem 1.12. Suppose that Assumption H [ %, %0 ] is satisfied and
1) the function f : Ω → R satisfies the Volterra condition and

| f(x, y, w, q) | ≤ %(x, V z) +

n
∑

i=1

Mi | qi | on Ω,

2) the function g : Ωimp → R satisfies the condition V (−) and

| g(x, y, z) | ≤ %0(x, V z ) on Ωimp,

3) ϕ ∈ C(E0, R) and |ϕ(x, y) | ≤ η(x) on E0 with η ∈ C(I, R+),
4) the function u ∈ Cimp(E0∪E,R) is the solution of problem (1.3), (1.4)

and u is of class D.
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Under these assumptions we have |u(x, y) | ≤ ω(x, η) on E.

Proof. The function u satisfies all the assumptions of Theorem 1.11 and the
statement follows.

Let us consider now two problems: problem (1.3), (1.4) and the following
one

Dxz(x, y) = f̃(x, y, z,Dyz(x, y) ) on E \Eimp, (1.18)

∆z(x, y) = g̃(x, y, z ) on Eimp, z(x, y) = ϕ̃(x, y) on E0, (1.19)

where f̃ : Ω → R, g̃ : Ωimp → R, ϕ̃ : E0 → R. We give an estimate of the
difference for solutions of problems (1.3), (1.4) and (1.18), (1.19).

Theorem 1.13. Suppose that Assumption H [ %, %0 ] is satisfied and
1) the function f, f̃ and g, g̃ satisfy the Volterra condition and the

condition V (−) respectively,
2) the estimates

∣

∣

∣ f(x, y, z, q)− f̃(x, y, z̄, q̄)
∣

∣

∣ ≤ %(x, V (z − z̄) ) +

n
∑

i=1

Mi | qi − q̄i | on Ω,

and
| g(x, y, z )− g̃(x, y, z̄ ) | ≤ %0(x, V (z − z̄ ) ) on Ωimp

are satisfied,
3) η ∈ C(I, R+) and | (ϕ− ϕ̃)(x, y) | ≤ η(x) on E0.

4) u, ũ ∈ CimpC(E0∪E,R) are solutions of (1.3), (1.4) and (1.18), (1.19)
respectively, the functions u, ũ are of class D.

Under these assumptions we have | (u− ũ)(x, y) | ≤ ω(x, η) on E.

Proof. The function u− ũ satisfies all the assumptions of Theorem 1.11 and
the statement follows.

As a consequence of the above theorem we get the following uniqueness
criterion.

Theorem 1.14. Suppose that Assumption H [ %, %0 ] is satisfied and
1) the functions f and g satisfy the Volterra condition and the condition

V (−) respectively,
2) the estimates

| f(x, y, z, q)− f(x, y, z̄, q̄) | ≤ %(x, V (z − z̄) ) +

n
∑

i=1

Mi | qi − q̄i | on Ω,

and
| g(x, y, z )− g(x, y, z̄ ) | ≤ %0(x, V (z − z̄ ) ) on Ωimp

are satisfied,
3) the maximum solution of problem (1.13), (1.14) with η = 0 is ω( · , 0) =

0 on J.
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Then the Cauchy problem (1.3), (1.4) admits at most one solution of the
class D on E0 ∪E.

Theorem 1.14 follows from Theorem 1.13 for f̃ = f, g̃ = g.

Remark 1.15. Suppose that the functions

h : ( J \ Jimp )×R+ → R+ and h0 : Jimp × R+ → R+

are continuous and are nondecreasing with respect to the second variable.
Put

%(x,w ) = h(x, ‖w‖x ) and %0(x,w) = h0(x, ‖w‖x−).

Then
(i) assumption 2) of Theorem 1.11 has the form

|Dxu(x, y) | ≤ h(x, ‖u‖x ) +

n
∑

i=1

Mi |Dyi
u(x, y) | on E \Eimp,

and

∆|u(x, y) | ≤ h0(x, ‖u‖x− ) on Eimp,

(ii) assumption 2) of Theorem 1.14 has the form

| f(x, y, z, q)− f(x, y, z̄, q̄ | ≤ h(x, ‖ z − z̄ ‖x ) +

n
∑

i=1

Mi |qi − q̄i| on Ω,

and

| g(x, y, z)− g(x, y, z̄) | ≤ h0(x, ‖ z − z̄ ‖x− ) on Ωimp,

(iii) the comparison problem (1.13), (1.14) is the ordinary Cauchy prob-
lem with impulses

ω′(x) = h(x, ω(x) ), x ∈ J \ Jimp,

∆ω(x) = h0(x, ω(x−) ), x ∈ Jimp, ω(0) = η,

where η ∈ R+.

1.3. Difference Equations for Initial Problems

We denote by F (X,Y ) the class of all functions defined on X and taking
values in Y, where X and Y are arbitrary sets. For E and E0 defined by
(1.15) and (1.17) we put

Ω = (E \Eimp )×Cimp(E0 ∪E,R)×Rn, Ωimp = Eimp×Cimp(E0 ∪E,R),

and suppose that f : Ω → R, g : Ωimp → R, ϕ : E0 → R are given func-
tions. We take into considerations the Cauchy problem with impulses (1.3),
(1.4). We will approximate classical solutions of the problem by solutions
of adequate difference problems.

We define a mesh on the set E0 ∪ E in the following way. Let N and
Z be the sets of natural numbers and integers respectively. For y, ȳ ∈
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Rn, y = (y1, . . . , yn), ȳ = (ȳ1, . . . , ȳn), we write y ∗ ȳ = (y1ȳ1, . . . , ynȳn).
Suppose that (h0, h

′) where h′ = (h1, . . . , hn) stand for steps of the mesh.
For h = (h0, h

′) and (i,m) ∈ Z1+n where m = (m1, . . . ,mn) we define nodal
points as follows:

x(i) = ih0, y(m) = m ∗ h′, y(m) = (y
(m1)
1 , . . . , y(mn)

n ).

Denote by Θ the set of all h = (h0, h
′) such that there are

Ñ0 ∈ Z, N = (N1, . . . , Nn) ∈ Nn

with the properties: Ñ0h0 = τ0 and N ∗ h′ = b. We assume that Θ 6= ∅ and
that there is a sequence {h(j)}, h(j) ∈ Θ, and limj→∞ h(j) = 0. For h ∈ Θ
we put |h| = h0 + h1 + · · · + hn. There is N0 ∈ N such that N0h0 < a ≤
(N0 + 1)h0. For h ∈ Θ we define

R1+n
h = { (x(i), y(m)) : (i,m) ∈ Z1+n }

and

E0.h = E0 ∩ R
1+n
h , Eh = E ∩ R1+n

h .

In this Section we assume that h′ ≤ h0M. For a function z : E0.h ∪Eh → R

we write z(i,m) = z(x(i), y(m)). Elements of the set E0.h∪Eh will be denoted
by (x(i), y(m)) or (x, y). Put

Ej.h =
{

(x(i), y(m)) ∈ E0.h ∪ Eh : i ≤ j
}

and

‖ z ‖j.h = max
{

| z(i,m) | : (x(i), y(m)) ∈ Ej.h

}

where 0 ≤ j ≤ N0. Let

E′h ={ (x(i), y(m)) ∈ Eh : (x(i) + h0, y
(m))∈Eh }.

The motivation for the definition of the set E ′h is the following. Approximate
solution of problem (1.3), (1.4) are functions uh defined on Eh. We will write
difference equations generated by (1.3), (1.4) at each point of the set E ′h. It
follows from condition h′ ≤ h0M that we calculate all the values of uh on
Eh.

Suppose that natural numbers n1, . . . , nk are defined by

h0 ni < ai ≤ h0 (ni + 1), i = 1, . . . , k.

Let

E
imp
h =

{

(x(i), y(m)) : i∈{n1, . . . , nk }, (x(i), y(m)), (x(i+1), y(m))∈Eh

}

and

Ωh =
(

E′h \E
imp
h

)

×F (E0.h∪Eh, R)×Rn, Ωimp
h = E′h×F (E0.h∪Eh, R).
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For 1 ≤ j ≤ n we write ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 standing on j-th
place. We consider difference operators δ0, δ = (δ1, . . . , δn) given by

δ0z
(i,m) =

1

h0



z(i+1,m) −
1

2n

n
∑

j=1

(

z(i,m+ej) + z(i,m−ej)
)



 , (1.20)

δjz
(i,m) =

1

2hj

(

z(i,m+ej) − z(i,m−ej)
)

, 1 ≤ j ≤ n. (1.21)

Suppose that for h ∈ Θ the functions fh : Ωh → R, gh : Ωimp
h → R,

ϕh : E0.h → R are given. The function fh is said to satisfy the Volterra
condition if for each (x(i), y(m)) ∈ E′h there is a set E[i,m] such that

(i) E[i,m] ⊂ Ei.h,

(ii) for z, z̄ ∈ F (E0.h ∪ Eh, R) such that z = z̄ on E[i,m] we have

fh(x(i), y(m), z, q) = fh(x(i), y(m), z̄, q), q ∈ Rn.

We will approximate solutions of (1.3), (1.4) by means of solutions of the
problem

δ0z
(i,m) = fh(x(i), y(m), z, δz(i,m) ), (x(i), y(m)) ∈ E′h \E

imp
h , (1.22)

z(i+1,m) − z(i,m) = gh(x(i), y(m), z ), (x(i), y(m)) ∈ Eimp
h , (1.23)

z(i,m) = ϕ
(i,m)
h on E0.h. (1.24)

If fh and gh satisfy the Volterra condition and h′ ≤Mh0 then there exists
a unique solution uh : E0.h ∪ Eh → R of problem (1.22)–(1.24).

Let

Ih =
{

x(i) : i = −Ñ0, . . . ,−1, 0
}

,

Jh =
{

x(i) : i = 0, 1, . . . , N0,
}

, J ′h =
{

x(i) : i = 0, 1, . . . N0 − 1
}

,

and

Jh.j =
{

x(i) ∈ Ih ∪ Jh : i ≤ j
}

, 0 ≤ j ≤ N0.

We consider two comparison functions

σh : ( J ′h \J
imp
h )×F (Ih∪Jh, R+) → R+ and σ̃h : J imp

h ×F (Ih∪Jh) → R+

corresponding to fh and gh respectively. For simplify notation, we write

σh[ i, η ] instead of σh(x(i), η )

and

σ̃h[ j, η ] instead of σ̃h(x(j), η ).
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We will denote by Vh : F (E0.h ∪ Eh) → F (Ih ∪ Jh, R+) the operator given
by

(Vhz ) (x(i)) = max
{

| z(i,m) | : y(m) ∈ [−b, b ]
}

for x(i) ∈ Ih,

(Vhz ) (x(i)) =

= max
{

| z(i,m) | : y(m) ∈ [−b+Mx(i), b−Mx(i) ]
}

for x(i) ∈ Jh.

Assumption H [σh, σ̃h ]. Suppose that
1) the functions σh and σ̃h are nondecreasing with respect to the func-

tional variable and fulfill the Volterra condition,

2) σ[ · , θh ] = 0 on J ′h \ J
imp
h and σ̃[ · , θh ] = 0 on J imp

h where θ
(i)
h = 0 for

x(i) ∈ Ih ∪ Jh,

3) the difference problem with impulses

η(i+1) = η(i) + h0 σh[ i, η ] for x(i) ∈ J ′h \ J
imp
h , (1.25)

η(i+1) = η(i) + σ̃h[ i, η ] for x(i) ∈ J imp
h , η(i) = 0 on Ih (1.26)

is stable in the following sense: if ηh : Ih ∪ Jh → R+ is the solution of the
problem

η(i+1) = η(i) + h0 σh[ i, η ] + h0γ(h) for x(i) ∈ J ′h \ J
imp
h , (1.27)

η(i+1) =η(i)+σ̃h[i, η] + γ̃(h) for x(i)∈J imp
h , η(i) =α0(h) on Ih, (1.28)

where γ, γ̃, α0 : Θ → R+ and

lim
h→0

α0(h) = lim
h→0

γ(h) = lim
h→0

γ̃(h) = 0,

then there is a function β : Θ → R+ such that η
(i)
h ≤ β(h), x(i) ∈ Jh, and

limh→0 β(h) = 0.
Assumption H [ fh, gh ]. Suppose that functions fh and gh satisfy the

Volterra condition and
1) there exist the derivatives

(Dq1fh(P ), . . . , Dqn
fh(P ) ) = Dqfh(P )

and Dqfh(x, y, z, · ) ∈ C(Rn, Rn),
2) for each P = (x, y, z, q) ∈ Ωh we have

1−
nh0

hj

∣

∣Dqj
fh(P )

∣

∣ ≥ 0, 1 ≤ j ≤ n,

3) there are functions σh and σ̃h satisfying Assumption H [σh, σ̃h ] and
such that
∣

∣

∣ fh(x(i), y(m), z, q )− fh(x(i), y(m), z̄, q )
∣

∣

∣ ≤ σh[ i, Vh(z − z̄) ] on Ωh,
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and
∣

∣

∣ gh(x(i), y(m), z )− gh(x(i), y(m), z̄ )
∣

∣

∣ ≤ σ̃h[ i, Vh(z − z̄) ] on Ωimp
h ,

Now we prove a theorem on the convergence of the method (1.22)–(1.24).

Theorem 1.16. Suppose that Assumptions H [σh, σ̃h ], H [ fh, gh ] are sat-
isfied and

1) the functions f ∈ C(Ω, R), g ∈ C(Ωimp, R) fulfill the Volterra condi-
tion and the condition V (−) respectively and ϕ ∈ C(E0, R),

2) v ∈ Cimp(E0 ∪ E,R) is the solution of (1.3), (1.4), the function v is
of class C2 on E \Eimp and the partial derivatives of the second order of v
are bounded on E \Eimp,

3) uh : E0.h ∪Eh → R is the solution of (1.22)–(1.24), vh is the restric-
tion of v to the set E0.h∪Eh, and there exist functions α0, β̃1, β̃2 : Θ → R+

such that
∣

∣

∣ fh(x(i), y(m), vh, δv
(i,m)
h )− f(x(i), y(m), v, δv(i,m) )

∣

∣

∣ ≤ β̃1(h) (1.29)

on E′h \E
imp
h ,

∣

∣

∣ gh(x(i), y(m), uh )− g( ani
, y(m), u )

∣

∣

∣ ≤ β̃2(h) on E
imp
h , (1.30)

∣

∣

∣ϕ(i,m) − ϕ
(i,m)
h

∣

∣

∣ ≤ α0(h) on E0.h

and

lim
h→0

α0(h) = lim
h→0

β̃1(h) = lim
h→0

β̃2(h) = 0. (1.31)

Then there exists a function γ̃ : Θ → R+ such that

∣

∣

∣
u

(i,m)
h − v

(i,m)
h

∣

∣

∣
≤ γ̃(h) on Eh and lim

h→0
γ̃(h) = 0. (1.32)

Proof. Let the function Γ̃h : E′h → R be defined by

δ0v
(i,m)
h = fh(x(i), y(m), vh, δv

(i,m)
h ) + Γ̃

(i,m)
h on E′h \E

imp
h ,

and

v
(i+1,m)
h = v

(i,m)
h + gh(x(i), y(m), vh ) + Γ̃

(i,m)
h on E

imp
h .

It follows from the consistency conditions (1.29)–(1.31) that there exists

γ : Θ → R+ such that | Γ̃
(i,m)
h | ≤ γ(h) on E′h and limh→ γ(h) = 0. Let

ωh : Ih ∪ Jh → R+ be given by

ω
(i)
h = max

{

|u
(i,m)
h − v

(i,m)
h | : y(m) ∈ [−b, b ]

}

for x(i) ∈ Ih
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and

ω
(i)
h = max

{

|u
(i,m)
h − v

(i,m)
h | : y(m) ∈ [−b+Mx(i), b−Mx(i) ]

}

for x(i) ∈ Jh.

It follows that the function ωh satisfies the difference inequalities

ω
(i+1)
h ≤ ω

(i)
h + h0σ[ i, ωh ] + h0γ(h), x(i) ∈ J ′h \ J

imp
h ,

ω
(i+1)
h ≤ ω

(i)
h + σ̃h[ i, ωh ] + γ(h), x(i) ∈ J imp

h .

We have also the initial estimate ω
(i)
h ≤ α0(h) on Ih. Consider the problem

η(i+1) = η(i) + h0σh[ i, η ] + h0γ(h), x(i) ∈ J ′h \ J
imp
h , (1.33)

η(i+1) =η(i)+σ̃h[ i, η ]+γ(h), x(i) ∈ J imp
h , η(i) = α0(h) on Ih. (1.34)

Denote by η̃h : Ih ∪ Jh → R+ the solution of (1.33), (1.34). It follows that

ω
(i)
h ≤ η̃

(i)
h on Jh and consequently |u

(i,m)
h − v

(i,m)
h | ≤ η̃

(i)
h on Eh. Now we

obtain (1.32) from condition 3) of Assumption H[σh, σ̃h ]. This completes
the proof of Theorem 1.16.

Now we consider the condition of stability 3) from Assumption H [σh, σ̃h ]
in the case when fh and gh satisfy the Lipschitz condition. Suppose that
there are L0, L ∈ R+ such that

∣

∣

∣ fh(x(i), y(m), z, q )− fh(x(i), y(m), z̄, q )
∣

∣

∣ ≤ L‖z − z‖h.i on Ωh,

and
∣

∣

∣
gh(x(i), y(m), z )− gh(x(i), y(m), z̄ )

∣

∣

∣
≤ L0‖z − z̄‖h.i on Ωimp

h .

Then problem (1.33), (1.34) is equivalent to

η(i+1) = η(i)(1 + Lh0) + h0γ(h), x(i) ∈ J ′h \ J
imp
h , (1.35)

η(i+1) = η(i)(1 + L0) + γ̃(h), x(i) ∈ J imp
h , η(0) = α0(h). (1.36)

Write nk+1 = N0. Then the solution ηh of (1.35), (1.36) has the form

η
(i)
h = α0(h)(1 + Lh0)

i + h0γ(h)

i−1
∑

τ=0

(1 + Lh0)
τ , i = 0, 1, . . . , n1,

η
(nj+i)
h =

[

(1 + L0)η
(nj)
h + γ̃(h)

]

( 1 + Lh0 )
i−1

+

+h0γ(h)

i−2
∑

τ=0

(1 + Lh0)
τ , i = 1, 2, . . . , nj+1 − nj , j = 1, . . . , k,

where
∑−1

τ=0 = 0.

We see at once that there is η̃ : Θ → R+ such that η
(i)
h ≤ η̃(h) for

1 ≤ i ≤ N0 and limh→0 η̃(h) = 0.
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Remark 1.17. It is easy to prove a theorem on the convergence of the
difference method (1.22)–(1.24) with the operators δ0 and δ = (δ1, . . . , δn)
given by

δ0z
(i,m) =

1

h0

(

z(i+1,m) − z(i,m)
)

(1.37)

and

δjz
(i,m) =

1

hj

(

z(i,m+ej) − z(i,m)
)

, j = 1, . . . , κ, (1.38)

δjz
(i,m) =

1

hj

(

z(i,m) − z(i,m−ej)
)

, j = κ+ 1, . . . , n, (1.39)

where 1 ≤ κ ≤ n is fixed. Condition 2) of Assumption H [fh, gh ] takes the
form

1− h0

n
∑

j=1

1

hj

∣

∣Dqj
fh(x, y, z, q )

∣

∣ ≥ 0,

Dqi
fh(x, y, z, q ) ≥ 0 for 1 ≤ i ≤ κ, Dqi

fh(x, y, z, q ) ≤ 0 for κ+ 1 ≤ i ≤ n,
where (x, y, z, q) ∈ Ωh.

Remark 1.18. All the results of this Chapter can be extended for systems
of functional differential equations with impulses

Dxzi(x, y)=fi(x, y, z(x, y), z,Dyzi(x, y) ), i = 1, . . . , k, (x, y)∈E\Eimp,

∆z(x, y) = g(x, y, z(x−, y), z ) on Eimp, z(x, y) = ϕ(x, y) on E0,

where z = (z1, . . . , zk) and

f = (f1, . . . , fk) : (E \Eimp)×Rk × Cimp(E0 ∪ E,R
k)×Rn → Rk

g = (g1, . . . , gk) : Eimp ×Rk × Cimp(E0 ∪ R,R
k), ϕ : E0 → Rk.

Some quasi monotonicity conditions are required for f and g in this case.
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CHAPTER II
INITIAL BOUNDARY VALUE PROBLEMS WITH IMPULSES

2.1. Functional Differential Inequalities Generated by Mixed

Problems

We formulate the problem. Let a > 0, τ0 ∈ R+, b = (b1, . . . , bn) ∈ Rn

and τ = (τ1, . . . , τn) ∈ Rn
+ be given where bi > 0 for 1 ≤ i ≤ n. Suppose

that κ ∈ Z, 0 ≤ κ ≤ n, is fixed. For each y = (y1, . . . , yn) ∈ Rn we write
y = (y′, y′′) where y′ = (y1, . . . , yκ), y′′ = (yκ+1, . . . , yn). We have y′ = y if
κ = n and y′′ = y if κ = 0. We define the sets

E = (0, a)× [−b′, b′)× (−b′′, b′′], B = [−τ0, 0]× [0, τ ′]× [−τ ′′, 0].

Let c = (c1, . . . , cn) = b+ τ and

E0 = [−τ0, 0]× [−b′, c′]× [−c′′, b′′],

∂0E = ( (0, a)× [−b′, c′]× [−c′′, b′′] ) \E, E∗ = E0 ∪ E ∪ ∂0E.

If τ0 > 0 then we put B(−) = B ∩ ( [−τ0, 0)×Rn) .
Suppose that 0 < a1 < a2 < · · · < ak < a are given numbers. Let

I, J, Jimp be the sets given by (1.1) and

Eimp = { (x, y) ∈ E : x ∈ Jimp } ,

E∗imp = { (x, y) ∈ E∗ : x ∈ Jimp } , ∂0Eimp = { (x, y) ∈ ∂0E : x ∈ Jimp } .

We denote by Cimp(E∗, R) the class of all functions z : E∗ → R such that
(i) the restriction of z to the set E∗ \E∗imp is a continuous function,
(ii) for each (x, y) ∈ E∗imp there are the limits (1.2),

(iii) z(x, y) = z(x+, y) for (x, y) ∈ E∗imp.

In the same way we define the set Cimp(E0 ∪ ∂0E,R). For a function z ∈
Cimp(E

∗, R) and a point (x, y) ∈ Eimp we write ∆z(x, y) = z(x, y)−z(x−, y).
Suppose that we have a sequence { t1, t2, . . . , tp } such that −τ0 ≤ t1 <

t2 < · · · < tp ≤ 0. Write Γi = B ∩ ( (ti, ti+1)×Rn ) for i = 1, . . . , p− 1 and

Γ0 = ∅ if − τ0 = t1, Γ0 = B ∩ ( (−τ0, t1)×Rn ) if − τ0 < t1,

Γp = ∅ if tp = 0, Γp = B ∩ ( (tp, 0)×Rn ) if tp < 0.

We denote by Cimp[B,R] the class of all functions w : B → R such that
there is a sequence { t1, . . . , tp } (the numbers p and t1, . . . , tp depend on w)
such that

(i) the functions w |Γi
, i = 0, 1, . . . , p, are continuous,

(ii) for every i, j, 1 ≤ i, j ≤ p, (ti, s) ∈ B, (tj , s) ∈ B, ti > −τ0, tj < 0,
there exist the limits

lim
(t,y)→(ti,s), t<ti

w(t, y) = w(t−i , s), lim
(t,y)→(tj ,s), t>tj

w(t, y) = w(t+j , s),

(iii) w(tj , s) = w(t+j , s) for (tj , s) ∈ B, 1 ≤ j ≤ p − 1 and for j = p if
tp < 0,



29

(iv) the functions w(t1, · ) and w(tp, · ) are continuous if t1 = −τ0 and
tp = 0.

We define also in the case τ0 > 0

Cimp[B(−), R] = {w |B(−) : w ∈ Cimp[B,R] } .

Elements of the sets Cimp[B,R] and Cimp[B(−), R] will be denoted by the
same symbols. We denote by ‖ · ‖B and ‖ · ‖B(−) the supremum norms in
the space Cimp[B,R] and Cimp[B

(−), R] respectively.
Suppose that z : E∗ → R and (x, y) ∈ [0, a)×[−b, b]. Then z(x,y) : B → R

is the function defined by

z(x,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B.

The function z(x,y) is the restriction of z to the set [x− τ0, x]× [y, y′+ τ ′]×
[y′′ − τ ′′, y′′] and this restriction is shifted to the set B. If τ0 > 0 then for
the above z and (x, y) we will consider also the function z(x−,y) : B(−) → R

given by z(x−,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B(−).

It is easy to see that if z ∈ Cimp(E
∗, R) and (x, y) ∈ [0, a)× [−b, b] then

z(x,y) ∈ Cimp[B,R] and z(x−,y) ∈ Cimp[B
(−), R] in the case τ0 > 0.

Put

Ω = (E \Eimp)× Cimp[B,R]×Rn and Ωimp = Eimp × Cimp[B(−), R]

and suppose that f : Ω → R, g : Ωimp → R, ϕ ∈ Cimp(E0∪∂0E,R) are given
functions. We assume that g does not depend on the functional variable
in the case τ0 = 0. We take into considerations the functional differential
equations with impulses

Dxz(x, y) = f(x, y, z(x,y), Dyz(x, y) ) on E \Eimp, (2.1)

∆z(x, y) = g(x, y, z(x−,y) ) on Eimp (2.2)

and the initial boundary conditions

z(x, y) = ϕ(x, y) on E0 ∪ ∂0E. (2.3)

We consider classical solutions of problem (2.1)–(2.3). A function z̃ : E∗ →
R is a solution of (2.1)–(2.3) if z̃ ∈ Cimp(E

∗, R), there are the derivatives
Dxz̃, Dy z̃ on E \Eimp and z̃ satisfies (2.1)–(2.3).

Example 1. Suppose that f̃ : (E \ Eimp) × R × R × Rn → R is a given
function. Put

f(x, y, w, q ) = f̃(x, y, w(0, 0),

∫

B

w(t, s) dt ds, q ).

Then equation (2.1) is equivalent to

Dxz(x, y)= f̃(x, y, z(x, y),

∫

B

z(x+t, y+s) dt ds,Dyz(x, y) ), (x, y)∈E\Eimp.
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It is easy to see that differential equations with a deviated argument are
also particular cases of (2.1).

We prove theorems on functional differential inequalities with impulses.
Suppose that z ∈ Cimp(E

∗, R) and the derivatives Dxz, Dyz exists on
E \Eimp. We consider the Niemycki operators corresponding to (2.1), (2.2)

F [ z ](x, y) = f(x, y, z(x,y), Dyz(x, y) ) on E \Eimp,

G[ z ] = g(x, y, z(x−,y) ) on Eimp.

Let I+, I−, I0 : E → {1, . . . , n} be the functions defined in the follow-
ing way. For each (x, y) ∈ E there are sets (possibly empty) of integers
I+[x, y], I−[x, y], I0[x, y] exist such that

I+[x, y] ∪ I−[x, y] ∪ I0[x, y] = {1, . . . , n},

and

ȳi = bi for i ∈ I+[x, y],

ȳi = −bi for i ∈ I−[x, y], −bi < ȳi < bi for i ∈ I0[x, y].

Assumption H [ f, g ]. Suppose that
1) the function f of the variables (x, y, w, q) satisfies the following mono-

tonicity condition: if w, w̄ ∈ Cimp[B,R], w(t, s)≤ w̄(t, s) on B and w(0, 0)=
w̄(0, 0) then f(x, y, w, q)≤f(x, y, w̄, q),

2) the derivatives (Dq1f, . . . , Dqn
f ) exist on Ω and

Dqi
f(x, y, w, q) ≥ 0 on Ω for 1 ≤ i ≤ κ,

Dqi
f(x, y, w, q) ≤ 0 on Ω for κ+ 1 ≤ i ≤ n,

3) the function g of the variables (x, y, w) is nondecreasing with respect
to w.

Theorem 2.1. Suppose that Assumption H [ f, g ] is satisfied and
1) u, v ∈ Cimp(E∗, R), the derivatives Dxu, Dxv, Dyu, Dyv exist on

E \Eimp,

2) the differential inequality

Dxu(x, y)− F [u ](x, y) < Dxv(x, y) − F [ v ](x, y) on E \Eimp, (2.4)

and the inequality for impulses

∆u(x, y)−G[u ](x, y) < ∆v(x, y −G[ v ](x, y) on ∈ Eimp (2.5)

are satisfied,
3) the initial boundary inequality u(x, y) < v(x, y), (x, y) ∈ E0 ∪ ∂0E

holds.
Under these assumptions we have u(x, y) < v(x, y) for (x, y) ∈ E.
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Proof. Write

I∗ = {x ∈ [0, a) : there is y such that (x, y) ∈ E and u(x, y) ≥ v(x, y)} .

Suppose, by contradiction, that assertion fails to be true. Then I∗ is not
empty. Let x̃ = min I∗. It follows that x̃ > 0 and there is ỹ such that
(x̃, ỹ) ∈ E and

u(x̃, ỹ) = v(x̃, ỹ). (2.6)

First suppose that (x̃, ỹ) ∈ E \Eimp. Because (x̃, ỹ) 6∈ ∂0E, we have

{ 1, . . . , κ } ∩ I+[x̃, ỹ] = ∅ and {κ+ 1, . . . , n } ∩ I−[x̃, ỹ] = ∅.

According to the definition of (x̃, ỹ) we have

Dx(u− v)(x̃, ỹ) ≥ 0 (2.7)

and

Dyi
(u− v)(x̃, ỹ) ≥ 0 for i ∈ I+[x̃, ỹ],

Dyi
(u− v)(x̃, ỹ) ≤ 0 for i ∈ I−[x̃, ỹ],

Dyi
(u− v)(x̃, ỹ) = 0 for i ∈ I0[x̃, ỹ].

We also have the inequality

u(x̃,ỹ)(t, s) ≤ v(x̃,ỹ)(t, s) for (t, s) ∈ B.

Thus, from assumption 2) and from the above estimates, we deduce that

Dx(u− v)(x̃, ỹ) < f( x̃, ỹ, u(x̃,ỹ), Dyu(x̃, ỹ) )− f( x̃, ỹ, v(x̃,ỹ), Dyu(x̃, ỹ) ) +

+
∑

i∈I+[x̃,ỹ]∪I−[x̃,ỹ]

Dqi
f( x̃, ỹ, v(x̃,ỹ), q̃

(i) )Dyi
(u− v)(x̃, ỹ) ≤ 0,

where q̃(i) ∈ Rn are intermediate points. The last inequality contradicts
(2.7) and thus the assertion follows.

Now suppose that (x̃, ỹ) ∈ Eimp. Then we have u(x̃−, ỹ) ≤ v(x̃−, ỹ) and

u(x̃−,ỹ)(t, s) ≤ v(x̃−,ỹ)(t, s) for (t, s) ∈ B(−).

It follows from assumption 3) and from the monotonicity of g with respect
to the functional variable that

u(x̃, ỹ)−v(x̃, ỹ) < u(x̃−, ỹ)−v(x̃−, ỹ)+g( x̃, ỹ, u(x̃−,ỹ) )−g( x̃, ỹ, v(x̃−,ỹ) ) ≤ 0,

which contradicts (2.6). This completes the proof of the Theorem 2.1.



32

Remark 2.2. Assumption 2) of Theorem 2.1 can be replaced by the fol-
lowing one. Let

T+ ={ (x, y)∈E : u(t, s)<v(t, s) on E∩( [0, x)×Rn ) , u(x, y)=v(x, y) } .

Suppose that

Dxu(x, y)− F [u ](x, y) < Dxv(x, y)− F [ v ](x, y) for (x, y) ∈ T+ \Eimp,

∆u(x, y)−G[u ](x, y) < ∆v(x, y) −G[ v ](x, y) for (x, y),∈ T+ ∩Eimp.

The point (x̃, ỹ) from the proof of Theorem 2.1 is an element of T+.

Now we will deal with weak functional differential inequalities with im-
pulses. We need more restrictive assumptions on the functions f and g. We
will need two comparison functions: σ and σ0 for f and g respectively.

Assumption H [σ, σ0 ]. Suppose that
1) the function σ : (J \ Jimp)×R+ → R+ and σ0 : Jimp ×R+ → R+ are

continuous and σ(x, 0) = 0 for x ∈ J \ Jimp, σ0(x, 0) = 0 for x ∈ Jimp,

2) the functions σ(x, · ) and σ0(t, · ) are nondecreasing on R+ and the
function ω̃(x) = 0, x ∈ J, is the unique solution of the initial problem with
impulses

ω′(x) = σ(x, ω(x) ) on J \ Jimp,

∆ω(x) = σ0(x, ω(x−) ) on Jimp, ω(0) = 0.

Now we formulate the main theorem of weak functional differential inequal-
ities.

Theorem 2.3. Suppose that Assumptions H [ f, g ], H [σ, σ0 ] are satisfied
and

1) for every w, w̄ ∈ Cimp[B,R], if w̄ ≥ w then

f(x, y, w̄, q )− f(x, y, w, q ) ≤ σ(x, ‖w̄ − w‖B )

where (x, y, q) ∈ (E \Eimp)×Rn,

2) for every w, w̄ ∈ Cimp[B(−), R], if w̄ ≥ w, then

g(x, y, w̄ )− g(x, y, w ) ≤ σ0(x, ‖w̄ − w‖B(−) ),

where (x, y) ∈ Eimp,

3) u, v ∈ Cimp(E
∗, R), the derivatives Dxu, Dxv, Dyu, Dyv exist on

E \Eimp and u(x, y) ≤ v(x, y) on E0 ∪ ∂0E,

4) the differential inequality

Dxu(x, y)− F [u ](x, y) ≤ Dxv(x, y) − F [ v ](x, y) on E \Eimp,

and the inequality for impulses

∆u(x, y)−G[u ](x, y) ≤ ∆v(x, y) −G[ v ](x, y) on Eimp,

are satisfied.
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Under these assumptions we have

u(x, y) ≤ v(x, y) for (x, y) ∈ E. (2.8)

Proof. Let ã ∈ (ak, a) be fixed. At first we prove that

u(x, y) ≤ v(x, y) for (x, y) ∈ E ∩ ( [0, ã)×Rn ) . (2.9)

For ε = (ε0, ε1, ε2) we consider the maximum solution ω( · , ε) of the problem

ω′(x) = σ(x, ω(x) ) + ε0 on [0, ã) \ Jimp, (2.10)

∆ω(x) = σ0(x, ω(x−) ) + ε1 on Jimp, ω(0) = ε2. (2.11)

There is ε̄ > 0 such that for 0 < εi < ε̄ , i = 0, 1, 2, the solution ω( · , ε) is
defined on [0, ã). Let the function u(ε) : E∗ → R by given by

u(ε)(x, y) = u(x, y)− ω(x, ε) on (E ∪ ∂0E ) ∩ ( [0, ã)×Rn ) ,

u(ε)(x, y) = u(x, y)− ε2 on E0.

We prove that

u(ε)(x, y) < v(x, y) on E ∩ ( [0, ã)×Rn ) . (2.12)

It follows from the assumptions of Theorem 2.3 that

u(ε)(x, y) < v(x, y) on E0 ∪ (∂0E ∩ ( [0, ã)×Rn ) )

and

Dxu
(ε)(x, y)− F [u(ε) ](x, y) < Dxv(x, y) − F [ v ](x, y)

on (E ∩ ( [0, ã)×Rn ) ) \Eimp.

∆u(ε)(x, y)−G[u(ε) ](x, y) < ∆v(x, y) −G[ v ](x, y) on Eimp.

Hence, an application of Theorem 2.1 shows that (2.12) is satisfied. Because

lim
ε→0

ω(x, ε) = 0 uniformly with respect tox ∈ [0, ã),

we get the assertion (2.9). The constant ã ∈ (ak, a) is arbitrary, then (2.9)
implies (2.8). This completes the proof of Theorem 2.3.

Remark 2.4. Assumption 4) of Theorem 2.3 can be replaced by the fol-
lowing one. Let

T̃ = { (x, y) ∈ E : u(x, y) > v(x, y) } .

Suppose that

Dxu(x, y)− F [u ](x, y) ≤ Dxv(x, y)− F [ v ](x, y) on T̃ \Eimp

and

∆u(x, y)−G[u ](x, y) ≤ ∆v(x, y)−G[ v ](x, y) on T̃ ∩ Eimp.
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In this case we use Theorem 2.1 for u(ε) and v in the version given in Remark
2.2.

Remark 2.5. Let Assumptions H [ f, g ], H [σ, σ0 ] and conditions 1), 2)
of Theorem 2.3 hold. Then, there is at most one solution of problem (2.1)–
(2.3).

2.2. Comparison Theorems for Mixed Problems

In dealing with applications of ordinary differential inequalities to partial
differential equations, we have to estimate the solutions of such equations,
which are functions of several variables, by functions of one variable. We
denote by Cimp(J,R) the class of all functions ω : J → R such that the
restriction of ω to the set J \ Jimp is a continuous function and for every
x ∈ Jimp there are the limits limt→x+ ω(t) = ω(x+), limt→x− ω(t) = ω(x−).
We assume also that ω(x) = ω(x+). Put Ω0 = (E \Eimp)×Cimp(B,R) and
suppose that

σ : (J \ Jimp)×R+ → R+, σ0 : Jimp → R+, λ = (λ1, . . . , λn) : Ω0 → Rn

are given functions. In this Section we consider the functional differential
inequalities of the form

∣

∣

∣

∣

∣

Dxz(x, y)−
n
∑

i=1

λi(x, y, z(x,y) ) Dyi
z(x, y)

∣

∣

∣

∣

∣

≤ σ(x, ‖z(x,y)‖B ), (2.13)

where (x, y) ∈ E \Eimp, with the inequality for impulses

|∆z(x, y) | ≤ σ0(x, ‖z(x−,y)‖B(−) ), (x, y) ∈ Eimp. (2.14)

We prove a theorem which allows the estimate of a function satisfying the
above inequalities by means of the extremal solution of an adequate differ-
ential problem with impulses.

Assumption H [λ, σ, σ0]. Suppose that
1) λ : Ω0 → Rn is the function such that

λi(x, y, w) ≥ 0 on Ω0 for 1 ≤ i ≤ κ,

λi(x, y, w) ≤ 0 on Ω0 for κ+ 1 ≤ i ≤ n,

2) σ : (J \ Jimp) × R+ → R+ and σ0 : Jimp × R+ → R+ are continuous
and for every η ∈ R+ there exists on J the right hand maximum solution
ω( · , η) of the problem

ω′(x) = σ(x, ω(x) ) for x ∈ J \ Jimp, (2.15)

∆ω(x) = σ0(x, ω(x−) ) for x ∈ Jimp, ω(0) = η. (2.16)

3) for each x ∈ Jimp the function γ0(p) = p + σ0(x, p), p ∈ R+, is
nondecreasing on R+ and σ is nondecreasing with respect to the second
variable.

In the sequel we will use the following lemma
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Lemma 2.6. Suppose that
1) the functions σ̃ : (J \ Jimp) × R+ → R+, σ̃0 : Jimp × R+ → R+ are

given and γ̃(p) = p+ σ̃0(x, p) is nondecreasing on R with fixed x ∈ Jimp,

2) α, β ∈ Cimp(J,R), and α(0) < β(0),
3) denoted by

T̃+ = {x ∈ (0, a) : α(t) < β(t) for t ∈ [0, x) and α(x) = β(x) } ,

we assume that

D−α(x) − σ̃(x, α(x) ) < D−β(x) − σ̃(x, β(x) ) for x ∈ T̃+ \ Jimp,

and

∆α(x) − σ̃0(x, α(x−) ) < ∆β(x) − σ̃0(x, β(x−) ) for x ∈ Jimp.

Then α(x) < β(x) for x ∈ J.

We omit the proof of the Lemma 2.6; see [24], [25] for analogous results
for problems without impulses.

Theorem 2.7. Suppose that Assumption H [λ, σ, σ0 ] is satisfied.
Let u ∈ Cimp(E

∗, R) be a function such that
1) the derivatives Dxu, Dyu exist on E \Eimp and

|u(x, y) | ≤ η on E0 ∪ ∂0E, (2.17)

2) u satisfies the differential inequality ( 2.13) on E \Eimp and the esti-
mate for impulses

|∆u(x, y) | ≤ σ0(x,Γu(x−,y) ) on Eimp

holds true, where

Γu(x−,y)=‖u(x−,y)‖B(−) if τ0 > 0 and Γu(x−,y)= |u(x−, y) | if τ0 = 0.

Under these assumptions we have

|u(x, y) | ≤ ω(x, η) on E (2.18)

where ω( · , η) is the right hand maximum solution of (2.15), (2.16).

Proof. Let us define

ϕ(x) = max { |u(t, y) | : (t, y) ∈ E∗ ∩ ( [−τ0, x]×Rn ) }, x ∈ [0, a).

Then ϕ ∈ Cimp(J,R) and estimation (16) is equivalent to ϕ(x) ≤ ω(x, η),
x ∈ J. Let ã ∈ (ak, a) be fixed. At first we prove that

ϕ(x) ≤ ω(x, η) on [0, ã). (2.19)
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Let ω( · , η, ε), ε = (ε0, ε1, ε2), be the right hand maximum solution of the
problem

ω′(x) = σ(x, ω(x)) + ε0 for x ∈ J \ Jimp, (2.20)

∆ω(x) = σ0(x, ω(x−)) + ε1 for x ∈ Jimp, ω(0) = η + ε2, (2.21)

where εi > 0, i = 0, 1, 2. There is ε̄ > 0 such that for 0 < εi < ε̄, i = 0, 1, 2,
the solution ω( · , η, ε) is defined on [0, ã). It is enough to show that

ϕ(x) < ω(x, η, ε), x ∈ [0, ã), (2.22)

because limε→0 ω(x, η, ε) = ω(x, η) uniformly on [0, ã). We will prove re-
lation (2.22) by using Lemma 2.6. It follows from assumption (2.17) that
ϕ(0) < ω(0, η, ε). Thus, put

T+ = {x ∈ (0, ã) : ϕ(t) < ω(t, η, ε) for t ∈ [0, x), ϕ(x) = ω(x, η, ε) } .

Let x̃ ∈ T+. There are two possibilities:
(a) x̃ ∈ T+ \ Jimp, (b) x̃ ∈ T+ ∩ Jimp.

Let us consider the case (a). Then ϕ(x̃) > 0 and there is ỹ such that
(x̃, ỹ) ∈ E∗ and ϕ(x̃) = |u(x̃, ỹ) |. It follows from (2.17) that (x̃, ỹ) ∈ E \
Eimp. Suppose that ϕ(x̃) = u(x̃, ỹ). Then ‖u(x̃,ỹ)‖B = ϕ(x̃) and

Dyi
u(x̃, ỹ) ≥ 0 for i ∈ I+[x̃, ỹ], Dyi

u(x̃, ỹ) ≤ 0 for i ∈ I−[x̃, ỹ],

Dyi
u(x̃, ỹ)) = 0 for i ∈ I0[x̃, ỹ].

Because (x̃, ỹ) 6∈ ∂0E, we have {1, . . . , κ}∩ I+[x̃, ỹ] = ∅ and {κ+1, . . . , n}∩
I−[x̃, ỹ] = ∅. Hence, we deduce using assumption 2) that

D−ϕ(x̃) ≤ σ(x̃, ‖u(x̃,ỹ)‖B) +

+
∑

i∈I+[x̃,ỹ]∪I−[x̃,ỹ]

λi(x̃, ỹ, u(x̃,ỹ))Dyi
u(x̃, ỹ) ≤ σ( x̃, ϕ(x̃) ),

and consequently

D−ϕ(x̃) < σ(x̃, ϕ(x̃)) + ε0. (2.23)

If ϕ(x̃) = −u(x̃, ỹ) then we prove (2.23) in a similar way.
Consider the case (b). For each y such that (x̃, y) ∈ E \ Eimp we have

|u(x̃−, y) | ≤ ϕ(x̃−) and ‖u(x̃,y)‖B(−) ≤ ϕ(x̃−). There is ỹ such that (x̃, ỹ) ∈
(E \ Eimp) and ϕ(x̃) = |u(x̃, ỹ) |. If r0 = 0 then we have from assumption
2)

ϕ(x̃) = |u(x̃, ỹ) | ≤ |u(x̃−, ỹ) |+ σ0( x̃, |u(x̃
−, ỹ)| ) ≤ ϕ(x̃−) + σ0( x̃, ϕ(x̃−) ),

and consequently

∆ϕ(x̃) < σ0(x̃, ϕ(x̃−)) + ε1. (2.24)

In a similar way we prove (2.24) in the case τ0 > 0. Thus we see that all
the assumptions of Lemma 2.6 are satisfied for α(x) = ϕ(x) and β(x) =
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ω(x, η, ε), x ∈ [0, ã). Then inequality (2.22) is satisfied. The constant ã ∈
(ak, a) is arbitrary then the proof of Theorem 2.7 is completed, as observed
earlier.

Remark 2.8. It is easy to see that assumption (2.17) of Theorem 2.7 can
be replaced by the following one. Suppose that |u(x, y) | ≤ η for (x, y) ∈ E0

and |u(x, y) | ≤ ω(x, η) for (x, y) ∈ ∂0E where ω( · , η) is the right hand
maximum solution of (2.15), (2.16).

The next theorem allows us to estimate the difference of any solution of
(2.1)–(2.3) and any solution of

Dxz(x, y) = f̃(x, y, z(x,y), Dyz(x, y)) on E \Eimp, (2.25)

∆z(x, y) = g̃(x, y, z(x−,y)) on Eimp, (2.26)

z(x, y) = ϕ̃(x, y) on E0 ∪ ∂0E, (2.27)

where f̃ : Ω → R, g̃ : Ωimp → R and ϕ̃ ∈ Cimp(E0 ∪ ∂0E,R) are given
functions.

Theorem 2.9. Suppose that
1) there are σ and σ0 such that conditions 2), 3) of Assumption H

[λ, σ, σ0 ] are satisfied and
∣

∣

∣ f(x, y, w, q )− f̃(x, y, w̄, q )
∣

∣

∣ ≤ σ(x, ‖w − w̄‖B ) on Ω,

| g(x, y, p, w )− g̃(x, y, p̄, w̄ ) | ≤ σ0(x, ‖w − w̄‖B(−) ) on Ωimp,

2) f satisfies condition 2) of Assumption H [ f, g ] and

Dqf(x, y, w, · ) ∈ C(Rn, Rn)

for every (x, y, w) ∈ (E \Eimp)× C∗imp(B,R),
3) the initial-boundary estimates

| (ϕ− ϕ̃)(x, y) | ≤ η on E0, | (ϕ− ϕ̃)(x, y) | ≤ ω(x, η) on ∂0E

are satisfied, where ω( · , η) is the right hand maximum solution of (2.15),
(2.16),

4) u and v are solutions of problems (2.1)–(2.3) and (2.25)–(2.27) respec-
tively.

Then |u(x, y)− v(x, y) | ≤ ω(x, η) for (x, y) ∈ E.

Proof. Consider the function z̃ = u− v. Then we have on E \Eimp

∣

∣

∣

∣

∣

∣

Dxz̃(x, y)−
n
∑

i=1

1
∫

0

Dqi
f(x, y, u(x, y), u(x,y), P (x, y, t))dt Dyi

z̃(x, y)

∣

∣

∣

∣

∣

∣

≤ σ(x, ‖z̃(x,y)‖B )

where P (x, y, t) = Dyv(x, y) + t[Dyu(x, y)−Dyv(x, y)] and

|∆z̃(x, y) | ≤ σ0(x,Γz̃(x−,y) ) for (x, y) ∈ Eimp,
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where Γ is defined in Theorem 2.7. Hence the assertion follows from Theo-
rem 2.7 which completes the proof of Theorem 2.9.

As an immediate consequence of Theorem 2.9, we derive uniqueness and
continuous dependence results.

Theorem 2.10. Suppose that
1) there are σ and σ0 such that condition 2), 3) of Assumption H [λ, σ, σ0]

are satisfied and

| f(x, y, w, q)− f(x, y, w̄, q) | ≤ σ(x, ‖w − w̄‖B ) on Ω,

| g(x, y, w)− g(x, y, w̄) | ≤ σ0(x, ‖w − w̄‖B(−) ) on Ωimp,

2) f satisfies condition 2) of Assumption H [ f, g ] and

Dqf(x, y, w, · ) ∈ C(Rn, Rn)

for every (x, y, w) ∈ (E \Eimp)× C∗imp(B,R),
3) ω(x, 0) = 0 for x ∈ J is the right hand maximum solution of (2.15),

(2.16) with η = 0.
Then, there is at most one solution of problem (2.1)–(2.3).

The above statement follows from Theorem 2.9 with f̃ = f.

Remark 2.11. Suppose that the assumptions of Theorem 2.9 are satisfied
and the function ω(x, 0) = 0, x ∈ J, is the right hand maximum solution of
problem (2.15), (2.16) corresponding to η = 0. Then, for every ε > 0 there
is δ > 0 such that if

∣

∣

∣ f(x, y, w, q)− f̃(x, y, w̄, q)
∣

∣

∣ < δ on Ω,

| g(x, y, w) − g̃(x, y, w̄) | < δ on Ωimp,

and | (ϕ− ϕ̃)(x, y) | < δ on E0∪∂0E, then |u(x, y)−v(x, y) | < ε for (x, y) ∈
E.

The above statement follows from Theorem 2.9.

2.3. The Lines Method for Impulsive Functional Differential

Problems

We define a mesh on E∗ with respect to the spatial variable. Assume
that for a given h′ = (h1, . . . , hn) where hi > 0 for 1 ≤ i ≤ n, there exists
(N1, . . . , Nn) = N ∈ Zn such that N ∗ h′ = τ . Denote by Θ′ the set of all
h′ having the above property. We assume that Θ′ 6= ∅ and that there is a
sequence

{

h′(j)
}∞

j=0
, h′(j) =

(

h
(j)
1 , . . . , h(j)

n

)

∈ Θ′,

such that limj→∞ h′(j) = 0. We define nodal points as follows: let m =
(m1, . . . ,mn) ∈ Zn, then

y(m) = m ∗ h′ and y(m) =
(

y
(m1)
1 , . . . , y(mn)

n

)

.



39

Write

R1+n
x.h′ = { (x, y(m)) : x ∈ R, m ∈ Zn }.

We define the sets

Bh′ =B∩R
1+n
x.h′ , E0.h′ = E0∩R

1+n
x.h′ , Eh′ =E∩R

1+n
x.h′ , ∂0Eh′ =∂0E∩R

1+n
x.h′ ,

and

E∗h′ = E0.h′ ∪ Eh′ ∪ ∂0Eh′ , E
imp
h′ = { (x, y(m)) ∈ Eh′ : x ∈ Jimp },

Elements of the set E∗h′ will be denoted by (x, y(m)) or (x, y). For a function
z : E∗h′ → R we write z(m)(x) = z(x, y(m)). Let δ = (δ1, . . . , δn) be the
difference operator defined by (1.38), (1.39). We denote by Cimp(E

∗
h′ , R)

the class of all functions z : E∗h′ → R such that z( · , y) ∈ Cimp(I ∪ J,R) for
every fixed y.

Suppose that we have a sequence {t1, . . . , tp} such that −τ0 ≤ t1 < t2 <

· · · < tp ≤ 0. Let Pi = (ti, ti+1) for i = 1, . . . , l − 1 and

P0 = ∅ if − τ0 = t1, P0 = (−τ0, t1) z if − τ0 < t1,

Pp = ∅ if tp = 0, Pp = (tp, 0) if tp < 0.

We denote by Cimp[I, R] the class of all functions α : I → R for which there
is a sequence { t1, . . . , tp } (p and t1, . . . , tp depend on α) such that

(i) the functions α |Pi
, 0 ≤ i ≤ p, are continuous;

(ii) for each i, j, 1 ≤ i, j ≤ p, ti > −τ0, tj < 0, there exist the limits
limt→ti, t<ti

α(t) = α(t−i ) and limt→tj , t>tj
α(t) = α(t+j );

(iii) α(tj) = α(t+j ) for 1 ≤ j ≤ p− 1 and for j = p if tp < 0.
Let Cimp[Bh′ , R] be the set of all functions w : Bh′ → R such that

w(m)( · ) ∈ Cimp[I, R] for every fixed y(m). In the case τ0 > 0 we define also

B
(−)
h′ = { (x, y(m)) ∈ Bh′ : −τ0 ≤ x < 0 }

and

Cimp[B
(−)
h′ , R] = {w |

B
(−)

h′

: w ∈ Cimp[Bh′ , R] }.

Elements of the sets Cimp[Bh′ , R] and Cimp(B
(−)
h′ , R) will be denoted by the

same symbols. For w ∈ Cimp[Bh′ , R] we write

‖w ‖Bh′
= sup{ |w(m)(x) | : (x, y(m)) ∈ Bh′ }.

We will denote by ‖ · ||
B

(−)

h′

the supremum norm in the space Cimp[B
(−)
h′ , R]

in the case τ0 > 0.
Suppose that z : E∗h′ → R and (x, y(m)) ∈ Eh′ . We define a function

z(x,m) : Bh′ → R as follows:

z(x,m)(t, y) = z(x+ t, y(m) + y), (t, y) ∈ Bh′ .
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If τ0 > 0 then we define also z(x−,m) : B
(−)
h′ → R by

z(x−,m)(t, y) = z(x+ t, y(m) + y), (t, y) ∈ B
(−)
h′ .

Write

Ωh′ = (Eh′ \E
imp
h′ )× Cimp[Bh′ , R]×Rn, Ωimp

h′ = E
imp
h′ × Cimp[B

(−)
h′ , R].

Suppose that for h′ ∈ Θ′ the functions fh′ : Ωh′ → R, gh′ : Ωimp
h′ → R,

ϕh : E0.h′ ∪ ∂0Eh′ → R, are given. Applying the method of lines to (2.1)–
(2.3) we obtain the system of ordinary functional differential equations with
impulses

Dxz
(m)(x) = fh′(x, y

(m), z(x,m), δz
(m)(x) ) on Eh′ \E

imp
h′ (2.28)

∆z(m)(x) = gh′(x, y
(m), z(x−,m) ) on E

imp
h′ (2.29)

z(m)(x) = ϕh′(x, y
(m)) on E0.h′ ∪ ∂0Eh′ . (2.30)

A function z̃ : E∗h′ → R is a solution of (2.28)–(2.30) if z̃ ∈ Cimp(E
∗
h′ , R),

there exists the derivative Dxz̃ on Eh′ \E
imp
h′ and z̃ satisfies (2.28)–(2.30).

Let Fh′ , Gh′ be the Niemycki operators corresponding to (2.28), (2.29),
i.e.

Fh′ [ z ](m)(x) = fh′(x, y
(m), z(x,m), δz

(m)(x) ) on Eh′ \E
imp
h′

and

Gh′ [ z ](m)(x) = gh′(x, y
(m), z(x−,m) ) on E

imp
h′ .

Now we prove a comparison theorem for differential difference inequalities
with impulses. Write

Sh′ = (Eh′ \E
imp
h′ )× Cimp[Bh′ , R]

and suppose that

λ=(λ1, . . . , λn) : Sh′ → R, σ : (J \Jimp)×R+ → R+, σ0 : Jimp×R+ → R+

are given functions.
We deal with the differential difference inequalities
∣

∣

∣

∣

∣

Dxz
(m)(x) −

n
∑

i=1

λi(x, y
(m), z(x,m)) δiz

(m)(x)

∣

∣

∣

∣

∣

≤ σ(x, ‖z(x,m)‖Bh′
) (2.31)

on Eh′ \E
imp
h′ with the estimate for impulses

∣

∣

∣∆z(m)(x)
∣

∣

∣ ≤ σ0(x, Ṽh′z(x,m) ) on E
imp
h′ , (2.32)

where

Ṽh′z(x,m) = |u(m)(x−) | if τ0 = 0 and

Ṽh′z(x,m) = ‖u(x−,m) ‖B
(−)

h′

if τ0 > 0.
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We prove that the function z : E∗h′ → R satisfying the above inequalities
can be estimated by a solution of an adequate ordinary differential equation
with impulses. Let us formulate the following assumptions.

Assumption Himp[λ, σ, σ0 ]. Suppose that
1) the function λ : Sh′ → Rn is such that

λi(x, y, w) ≥ 0 on Sh′ for 1 ≤ i ≤ κ and

λi(x, y, w) ≤ 0 on Sh′ for κ+ 1 ≤ i ≤ n

2) the functions σ : (J \ Jimp)×R+ → R+ and σ0 : Jimp×R+ → R+ are
continuous and for every η ∈ R+ there exists on J the right hand maximum
solution ω( · , η) of the problem

ω′(x) = σ(x, ω(x)) on J \ Jimp,

∆ω(x) = σ0(x, ω(x−)) on Jimp, ω(0) = η,
(2.33)

3) for each x ∈ J \ Jimp and t ∈ Jimp the functions σ(x, · ) and σ0(t, · )
are nondecreasing on R+.

Now we prove the following comparison theorem.

Theorem 2.12. Suppose that Assumption Himp[λ, σ, σ0 ] is satisfied and

1) the function u ∈ Cimp(E
∗
h′ , R) has the derivative Dxu on Eh′ \ E

imp
h′ ,

u satisfies differential difference inequality (2.31) and the estimate for im-
pulses (2.32) holds,

2) the initial boundary estimate
∣

∣

∣u(m)(x)
∣

∣

∣ ≤ η on E0.h′ ∪ ∂0Eh′ , η ∈ R+, (2.34)

is satisfied.
Under these assumptions we have

∣

∣

∣u(m)(x)
∣

∣

∣ ≤ ω(x, η) on Eh′ , (2.35)

where ω( · , η) is the right hand maximum solution of (2.33).

Proof. Consider the function

ϕ(x) = max{ |u(m)(x) | : (x, y(m)) ∈ E∗h′ }, x ∈ J.

Then ϕ ∈ Cimp(J,R+) and ϕ(0) ≤ η. We prove that

ϕ(x) ≤ ω(x, η), x ∈ J. (2.36)

Let ã ∈ (ak, a) be fixed and consider the problem

ω′(x) = σ(x, ω(x) ) + ε0, x ∈ J \ Jimp,

∆ω(x) = σ0(x, ω(x−)) + ε1, x ∈ Jimp, ω(0) = η + ε2.

Denote by ω( · , η, ε), ε = (ε0, ε1, ε2), the right hand maximum solution of
the problem. There is ε̃ > 0 such that for 0 < εi < ε̃, i = 0, 1, 2, the
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solution ω( · , η, ε) exists on [0, ã) and limε→0 ω(x, η, ε) = ω(x, η) uniformly
on [0, ã). We prove that for the above ε we have

ϕ(x) < ω(x, η, ε), x ∈ [0, ã). (2.37)

We will use Lemma 2.6. It follows from (2.34) that ϕ(0) < ω(0, η, ε). Let

T+ = {x ∈ (0, ã) : ϕ(t) < ω(t, η, ε) for t ∈ (0, x), ϕ(x) = ω(x, η, ε)}.

Now we prove that

D−ϕ(x) < σ(x, ϕ(x) ) + ε0 for x ∈ T+ \ Jimp. (2.38)

Let x ∈ T+ \ Jimp. Then ϕ(x) > 0 and there exists m ∈ Zn such that
(x, y(m)) ∈ E∗h′ and ϕ(x) = |u(m)(x) |. It follows from (2.34) that (x, y(m)) ∈

Eh′ \E
imp
h′ . Suppose that ϕ(x) = u(m)(x). Then ‖u(x,m) ‖Bh′

= ϕ(x) and

D−ϕ(x)≤σ(x, ϕ(x)) +

κ
∑

i=1

λi(x, y
(m), u(x,m))

1

hi

[

u(m+ei)(x)− u(m)(x)
]

+

+
n
∑

i=κ+1

λi(x, y
(m), u(x,m))

1

hi

[

u(m)(x)− u(m−ei)(x)
]

≤ σ(x, ϕ(x)).

Thus, we get

Dxϕ(x) < σ(x, ϕ(x) ) + ε1. (2.39)

In a similar way we prove (2.39) in the case when ϕ(x) = −u(m)(x).

Now we show that

∆ϕ(x) < σ0(x, ϕ(x−)) + ε1 for x ∈ T+ ∩ Jimp. (2.40)

Let x ∈ T+ ∩ Jimp. We have ϕ(x) > 0. There exists m ∈ Zn such that

(x, y(m)) ∈ E
imp
h and ϕ(x) = |u(m)(x) |. Then we have Ṽh′u(x,m) = ϕ(x−).

If τ0 = 0 then we get

ϕ(x) = |u(m)(x)| ≤ |u(m)(x−)|+ σ0(x, |u
(m)(x−)|) ≤ ϕ(x−) + σ0(x, ϕ(x−)),

and (2.40) is proved. If τ0 > 0 the we obtain

ϕ(x) = |u(m)(x) | ≤ |u(m)(x−) |+ σ0(x, ‖u(x−,m) ‖B
(−)

h′

) ≤

≤ ‖u(x−,m) ‖B
(−)

h′

+ σ0(x, ‖u(x−,m) ‖B
(−)

h′

) ≤ ϕ(x−) + σ0(x, ϕ(x−) ).

Thus, we get (2.40). We obtain (2.37) by applying Lemma 2.6. Letting ε→
0 in (2.37) we conclude (2.35) for x ∈ [0, ã). Since the number ã ∈ (ak, a) is
arbitrary, then Theorem 2.12 follows.
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Now we prove a theorem on the existence of the approximate solution.
Assumption Himp[ fh′ ]. Suppose that
1) the function fh′ : Ωh′ → R of the variables (x, y, w, q) is continuous

and it has partial derivatives (Dq1fh′ , . . . , Dqn
fh′) on Ωh′ satisfying the

conditions

Dqi
fh′(x, y, p, w, q) ≥ 0 on Ωh′ for 1 ≤ i ≤ κ,

Dqi
fh′(x, y, p, w, q) ≤ 0 on Ωh′ for κ+ 1 ≤ i ≤ n,

2) the functions σ : (J \ Jimp) × R+ → R+ and σ0 : Jimp × R+ → R+

satisfy conditions 2), 3) of Assumption Himp[λ, σ, σ0 ] and

| fh′(x, y, w, q )− fh′(x, y, w̄, q ) | ≤ σ(x, ‖w − w̄ ‖Bh′
) on Ωh′ ,

| gh′(x, y, w )− gh′(x, y, , w̄ ) | ≤ σ0(x, ‖w − w̄ ‖
B

(−)

h′

) on Ωimp
h′ ,

3) the function ω̃(x) = 0 is the unique solution of the initial problem
with impulses

ω′(x) = σ(x, ω(x)), x ∈ J \ Jimp,

∆ω(x) = σ0(x, ω(x−)), x ∈ Jimp, ω(0) = 0.

Assumption Himp[ z0 ]. Suppose that

1) the function z0 ∈ C(E∗h′ , R) is such that there existsDxz0 on Eh′\E
imp
h′

and z0 satisfies the initial boundary condition (2.30),
2) there are function γ0, γ ∈ C(J,R+) such that

∣

∣

∣Dxz
(m)
0 (x) − Fh′ [ z0 ](m)(x)

∣

∣

∣ ≤ γ(x) on Eh′ \E
imp
h′ ,

∣

∣

∣∆z
(m)
0 (x)−Gh′ [ z0 ](m)(x)

∣

∣

∣ ≤ γ0(x) on E
imp
h′ ,

and there exists on J the right hand maximum solution w0 of the problem

ω′(x) = σ(x, ω(x)) + γ(x), x ∈ J \ Jimp, (2.41)

∆ω(x) = σ0(x, ω(x−)) + γ0(x), x ∈ Jimp, ω(0) = 0. (2.42)

Theorem 2.13. If Assumptions Himp[FH′ ] and Himp[ z0 ] are satisfied,
then there exists exactly one solution uh′ : E∗h′ → R of problem (2.28)–
(2.30).

Proof. In the first step we define the sequence {wk}∞k=0, where wk : J → R+,

in the following way: w0 is given in Assumption Himp[ z0 ] and

wk+1(x) =

x
∫

0

σ(t, wk(t))dt, x ∈ J \ Jimp,

wk+1(x) = wk(x−) + σ0(x,wk(x−)), x ∈ Jimp,
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where k ≥ 0. It is easy to see that wk+1(x) ≤ wk(x) on J and

lim
k→∞

wk(x) = 0 uniformly on J. (2.43)

In the second step we define the sequence {zk}
∞
k=0, zk : E∗h′ → R, in the

following way: z0 is given in Assumption Himp[ z0 ]. If zk is given then zk+1

is a solution of the system of differential equations

Dxz
(m)(x) = fh′(x, y

(m), (zk)(x,m), δz
(m)(x) ) on Eh′ \E

imp
h′ ,

with impulses given by

∆z(m)(x) = gh′(x, y
(m), (zk)(x−,m) ) on E

imp
h′

and with initial boundary condition (2.30). We prove that
∣

∣

∣
(zj+i − zj)

(m)(x)
∣

∣

∣
≤ wj(x) on Eh′ , (2.44)

for i, j ≥ 0. First we prove (2.44) for j = 0 and i ≥ 0. It follows that
estimate (2.44) is satisfied for j = 0, i = 0. If we assume that

∣

∣

∣ (zj − z0)
(m)(x)

∣

∣

∣ ≤ w0(x) on Ek

then using the Hadamard mean value theorem and Assumption Himp[fh′ ]
we conclude that the functions zj+1 − z0 satisfies the differential difference
inequality
∣

∣

∣

∣

∣

∣

Dx (zj+1−z0)
(m)

(x)−
n
∑

l=1

1
∫

0

Dql
fh′ (Qm(x, t)) dt δl (zj+1−z0)

(m)
(x)

∣

∣

∣

∣

∣

∣

≤

≤ σ(x,w0(x) ) + γ(x) on Eh′ \E
imp
h′ ,

where

Qm(x, t) =
(

x, y(m), (zj)(x,m), δz
(m)
0 (x) + tδ(zj+1 − z0)

(m)(x)
)

.

Now let us consider the estimate for impulses. For (x, y(m)) ∈ Eimp
h′ we have

∣

∣

∣∆ (zj+1 − z0)
(m)

(x)
∣

∣

∣ ≤

≤
∣

∣

∣ gh′(x, y
(m), (zj)(x−,m) )− gh′(x, y

(m), (z0)(x−,m) )
∣

∣

∣+

+
∣

∣

∣
gh′(x, y

(m), (z0)(x−,m))−∆z
(m)
0 (x)

∣

∣

∣
≤

≤ σ0(x, ‖ (zj − z0)(x−,m) ‖B
(−)

h′

) + γ0(x) ≤

≤ σ0(x,w0(x
−) ) + γ0(x).

By virtue of Theorem 2.12 we get
∣

∣

∣ (zj+1 − z0)
(m)(x)

∣

∣

∣ ≤ ω0(x) on Eh′ .
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Thus (22) is proved for i = 0 and for all j ≥ 0. Now suppose that we have
the estimate

∣

∣

∣ (zj+i − zj)
(m)(x)

∣

∣

∣ ≤ wj(x) on Eh′ for all i ≥ 0

with fixed j ∈ N . Then, using the Hadamard mean value theorem and
Assumption Himp[ fh′ ] we conclude that the function zj+1+i − zj+1 satisfies
the functional difference inequality

∣

∣

∣

∣

Dx (zj+1+i − zj+1)
(m)

(x)−

−
n
∑

l=1

Dql
fh′(Q̃m(x, t))dt δl (zj+1+i−zj+1)

(m)
(x)

∣

∣

∣

∣

≤

≤ σ(x,wj (x)) on Eh′ \E
imp
h′ ,

where Q̃ is an intermediate point given by

Q̃m(x, t) =
(

x, y(m), (zj+i)(x,m), δz
(m)
j+1(x) + tδ(zj+1+i − zj+1)

(m)(x)
)

.

Now, for (x, y(m)) ∈ Eimp
h′ , we get

∣

∣

∣∆ (zj+i+1 − zj+1)
(m)

(x)
∣

∣

∣ ≤

≤ σ0(x, ‖ (zj+i − zj)(x−,m) ‖B
(−)

h′

) ≤ σ0(x,wj(x
−) ).

It follows from Theorem 2.12 that
∣

∣

∣ (zj+1+i − zj+1)
(m)(x)

∣

∣

∣ ≤ ω∗(x) on Eh′

where ω∗ : [0, a) → R+ is the right hand maximum solution of the problem
with impulses

ω′(x) = σ(x, ωj(x) ) on J \ Jimp,

∆ω(x) = σ0(x, ωj(x
−) ) on Jimp, ω(0) = 0.

Since ω∗ = wj+1 then the proof of (2.44) is completed by induction. The
conditions (2.43), (2.44) and the relations

z
(m)
k+1(x) = z

(m)
k+1(ai) +

x
∫

ai

fh′( t, y
(m), (zk)(t,m), δz

(m)
k+1(t) ) dt on Eh′ \E

imp
h′ ,

z
(m)
k+1(x) = z

(m)
k+1(x

−) + gh′(x, y
(m), (zk)(x−,m)) on E

imp
h′ ,

where k ≥ 0, imply that there exists exactly one solution uh′ : E∗h′ → R of
problem (2.28)–(2.30). This proves the theorem.

Now we prove the following stability property of problem (2.28)–(2.30).
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Theorem 2.14. Suppose that Assumptions Himp[ fh′ ], Himp[ z0 ] are sat-
isfied and the functions vh′ : E∗h′ → R and γ0, γ1, γ2 : Θ′ → R+ are such
that

∣

∣

∣
Dxv

(m)
h′ (x)− Fh′ [ vh′ ]

∣

∣

∣
≤ γ1(h

′) on Eh′ \E
imp
h′ , (2.45)

∣

∣

∣∆v
(m)
h′ (x) −Gh′ [ vh′ ]

∣

∣

∣ ≤ γ2(h
′) on Eimp

h′ , (2.46)
∣

∣

∣ v
(m)
h′ (x) − ϕh′(x, y

(m))
∣

∣

∣ ≤ γ0(h
′) on E0.h′ ∪ ∂0Eh′

and limh′→0 γi(h
′) = 0, 1 = 0, 1, 2.

Then, there exists a function ω : J ×Θ′ → R+ such that for h′ ∈ Θ′ we
have

∣

∣

∣
u

(m)
h′ (x)− v

(m)
h′ (x)

∣

∣

∣
≤ ω(x, h′) on Eh′

where uh′ is the solution of problem (2.28) - (2.30) and limh′→0 ω(x, h′) = 0
uniformly on [0, ã) with arbitrary ã ∈ (ak, a).

Proof. Let ã ∈ (ak, a) be fixed. Let ω( · , h′) : J → R+ be the maximum
solution of the problem with impulses

ω′(x) = σ(x, ω(x) ) + γ1(h
′), x ∈ [0, ã) \ Jimp, (2.47)

∆ω(x) = σ0(x, ω(x−) ) + γ2(h
′), x ∈ Jimp, ω(0) = γ0(h). (2.48)

There is ā > 0 such that for ‖h′‖ ∈ (0, ā) the maximum solutions of the
above problem is defined on [0, ã) and we have limh′→0 ω(x, h′) = 0 uni-
formly with respect to x ∈ [0, ã). The function uh′ − vh′ satisfies the differ-
ential difference inequality
∣

∣

∣

∣

∣

∣

Dx (uh′−vh′)
(m) (x)−

n
∑

i=1

1
∫

0

Dqi
fh′(Pm(x, t) )dt δi (uh′−vh′)

(m) (x)

∣

∣

∣

∣

∣

∣

≤

≤ σ(x, ‖ (uh′ − vh′)(x,m) ‖Bh′
) + γ1(h

′) on E
imp
h′ ,

where

Pm(x, t) =
(

x, y(m), (uh′)(x,m), δv
(m)
h′ (x) + tδ(uh′ − vh′)

(m)(x)
)

and
∣

∣

∣∆ (uh′ − vh′)
(m) (x)

∣

∣

∣ ≤ σ0(x, Ṽh′ (uh′ − vh′)(x−,m) ) + γ1(h
′) on Eimp

h′ .

Applying Theorem 2.12 we obtain
∣

∣

∣ (uh′ − vh′)
(m)(x)

∣

∣

∣ ≤ ω(x, h′) on Eh′ ∩ ([0, ã)×Rn ) .

This completes the proof of Theorem 2.14.

Now we prove the following convergence theorem.
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Theorem 2.15. Suppose that the Assumptions Himp[ fh′ ], Himp[ z0 ] are
satisfied and

1) f ∈ C (Ω, R), g ∈ C(Ωimp, R) and v : E∗ → R is a solution of
problem (2.1)–(2.3), the function v |E\Eimp

is of class C1 and the derivatives
Dxv, Dyv are bounded on E \Eimp,

2) there exist functions γ̄0, γ̄1, γ̄2 : Θ′ → R+ such that
∣

∣

∣ f(x, y(m), (vh′)(x,m), δv
(m)
h′ (x))− Fh′ [ vh′ ](x, y

(m)
∣

∣

∣ ≤

≤ γ̄1(h
′) on Eh′ \E

imp
h′ , (2.49)

∣

∣

∣ g(x, y(m), (vh′)(x−,m) )−Gh′ [ vh′ ]
(m)(x)

∣

∣

∣ ≤ γ̄2(h
′) on Eimp

h′ , (2.50)

and
∣

∣

∣ (ϕh′ − ϕ)(m)(x)
∣

∣

∣ ≤ γ̄0(h
′) on E0.h′ ∪ ∂Eh′ ,

where vh′ is the restriction of v to the set E∗h′ .
Then there exists γ : J ×Θ′ → R+ such that

∣

∣

∣
(uh′ − vh′)

(m)(x)
∣

∣

∣
≤ γ(x, h′) on Eh′

and limh′→0 γ(x, h
′) = 0 uniformly on [0, ã) with arbitrary ã ∈ (ak, a).

Proof. It follows from assumption 1) and from compatibility conditions
(2.49), (2.50) that there are functions γ1, γ2 : Θ′ → R+ such that con-
ditions (2.45), (2.46) are satisfied and limh′→0 γi(h

′) = 0 for i = 1, 2. Then
Theorem 2.15 follows from Theorem 2.14.

Now we give an example of the increment function fh corresponding to
(2.1), (2.2). We define the operator Th′ : Cimp[Bh′ , R] → Cimp[B,R] as
follows. Put

S+ = {s = (s1, . . . , sn) : si ∈ { 0, 1 } for 1 ≤ i ≤ n}.

Suppose that w ∈ Cimp[Bh′ , R] and (x, y) ∈ B. There is m ∈ Zn such that
y(m) ≤ y ≤ y(m+1) where m + 1 = (m1 + 1, . . . ,mn + 1) and (x, y(m)),
(x, y(m+1)) ∈ Bh′ . We define

(Th′w)(x, y) =
∑

s∈S+

w(m+s)(x)

(

y − y(m)

h′

)s (

1−
y − y(m)

h′

)1−s

where

(

y − y(m)

h′

)s

=

n
∏

i=1

(

yi − y
(mi)
i

hi

)si

,

(

1−
y − y(m)

h′

)1−s

=
n
∏

i=1

(

1−
yi − y

(mi)
i

hi

)1−si

,
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and we take 00 = 1 in the above formulas. It is easy to see that the function
Thw ∈ Cimp[B,R]. Consider the system of ordinary functional differential
equations with impulses

Dxz
(m)(x) = f

(

x, y(m), Th′z(x,m), δz
(m)(x)

)

(2.51)

∆z(m)(x) = h(x, y(m), Th′z(x−,m) ) (2.52)

with initial boundary condition (2.30). It is easy to formulate assumptions
which are sufficient for the convergence of the method of lines (2.51), (2.52),
(2.30). Let us mention that our method satisfies the compatibility condition
(2.49), (2.50).

2.4. Functional Difference Equations with Impulses

(2.1)–(2.3) by solutions of adequate difference problems. We formulate a
difference problem corresponding to (2.1) - (2.3). We define a mesh in E∗

and B. Suppose that h = (h0, h
′) where h′ = (h1, . . . , hn) stand for steps

of the mesh. For (i,m) ∈ Z1+n where m = (m1, . . . ,mn) we define y(m) by
y(m) = ( y(m1), . . . , y(mn) ) = m ∗ h′ and x(i) = ih0. Denote by Θ the set of
all h such that there are M = (M1, . . . ,Mn) ∈ Zn and M0 ∈ Z such that
M ∗ h′ = τ and M0h0 = τ0. We assume that Θ 6= ∅ and that there is a
sequence

{

h(j)
}

, h(j) ∈ Θ, such that limj→∞ h(j) = 0. Let

R1+n
h =

{

(x(i), y(m)) : (i,m) ∈ Z1+n
}

.

We define the sets

E0.h = E ∩ R1+n
h , Bh = B ∩R1+n

h , Eh = E ∩ R1+n
h ,

and

∂0Eh = ∂0E ∩ R1+n
h , E∗h = E0.h ∪Eh ∪ ∂0Eh.

Elements of the set E∗h will be denoted by (x(i), y(m)) or (x, y).
For a function z : E∗h → R and a point (x(i), y(m)) ∈ E∗h we write

z(i,m) = z(x(i), y(m)) and

‖z‖i.h = max{ |z(j,m)| : (x(j), y(m)) ∈ E∗h, j ≤ i }.

For the above z and for a point (x(i), y(m)) ∈ Eh we define the function
z(i,m) : Bh → R by

z(i,m)(t, s) = z(x(i) + t, y(m) + s), (t, s) ∈ Bh.

Write y(m′) = (y(m))′ and y(m′′) = (y(m))′′. The function z(i,m) is the re-
striction of z to the set

(

[x(i) − τ0, x
(i)]× [y(m′), y(m′) + τ ′]× [y(m′′) − τ ′′, y(m′′)]

)

∩ R1+n
h
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and this restriction is shifted to the set Bh. Let {n1, . . . , nk }, ni ∈ N, be
defined by nih0 < ai ≤ (ni + 1)h0, i = 1, . . . , k. Write

E
imp
h = { (x(i), y(m)) ∈ Eh : i ∈ {n1, . . . , nk} },

E′h = { (x(i), y(m)) ∈ Eh : 0 ≤ i ≤ N0 − 1}.

The motivation for the definition of the set E ′h is the following. Approx-
imate solutions of (2.1)–(2.3) are functions uh defined on the mesh Eh. For
the calculation of all values of uh on Eh we will write a difference equation
or equation for impulses at each point of the set E ′h.

We define difference operators δ0, δ = (δ1, . . . , δn) by (1.37)–(1.39). Let

Ωh = (E′h \E
imp
h )× F (Bh, R)×Rn, Ωimp

h = E
imp
h × F (Bh, R)

and assume that for h ∈ Θ we have fh : Ωh → R, gh : Ωimp
h → R, and

ϕh : E0.h ∪ ∂0Eh → R. We consider the initial boundary value problem

δ0z
(i,m) = fh(x(i), y(m), z(i,m), δz

(i,m) ), (x(i), y(m)) ∈ E′h \E
imp
h , (2.53)

z(i+i,m) = z(i,m) + gh(x(i), y(m), z(i,m) ), (x(i), y(m)) ∈ Eimp
h , (2.54)

z(i,m) = ϕ
(i,m)
h on E0.h ∪ ∂0Eh. (2.55)

We will approximate solutions of (2.1)–(2.3) by means of solutions of (2.53)–
(2.55). It is evident that there exists exactly one solutions uh : E∗h → R of
(2.53)–(2.54).

In this Section we assume that the functions fh and gh of the variables
(x, y, w, q) and (x, y, w) respectively, satisfy some nonlinear estimates of the
Perron type with respect to the functional variables. Now we formulate
adequate comparison problems. Write

Ih = {x(i) : −Ñ0 ≤ i ≤ 0 }, Jh = {x(i) : 0 ≤ i ≤ N0 },

J
imp
h = {x(i) : i ∈ {n1 . . . , nk } }, J ′h = {x(i) : 0 ≤ i ≤ N0 − 1 },

where Ñ0h0 = τ0, N0h0 < a ≤ (N0+1)h0. For a function α : Ih∪Jh → R and
for 0 ≤ i ≤ N0 we define a function α(i) : Ih → R by α(i)(x) = α(x(i) +x),
x ∈ Ih. Suppose that

σh : (J ′h \ J
imp
h )× F (Ih, R+) → R+, σ̃h : J imp

h × F (Ih, R+) → R+

are given functions. We consider the difference problem with impulses

η(i+1) = η(i) + h0σh(x(i), η(i) ) for x(i) ∈ J ′h \ J
imp
h , (2.56)

η(i+1) = η(i) + σ̃h(x(i), η(i) ) for x(i) ∈ J imp
h , η(i) = 0 on Ih. (2.57)

For w ∈ F (Bh, R) we define

‖w‖Bh
= max { |w(i,m)| : (x(i), y(m)) ∈ Bh },
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and |h| = h0 + h1 + · · ·+ hn. For z : E∗h → R we put

Fh[ (i,m), z ] = fh(x(i), y(m), z(i,m), δz
(m) ) on E′h \E

imp
h ,

Gh[ (i,m), z ] = gh(x(i), y(i,m), z(m) ) on E
imp
h .

Assumption H [ fh, gh ]. Suppose that the functions fh and gh satisfy the
conditions

1) for (x, y, w) ∈ (E′h\E
imp
h )×F (Bh, R) we have fh(x, y, w, · ) ∈ C(Rn, R)

and there exist the derivatives

(Dq1fh(P ), . . . , Dqn
fh(P )) = Dqfh(P ), P = (x, y, w, q) ∈ Ωh,

2) Dqfh(x, y, w, · ) ∈ C(Rn, Rn) and for P ∈ Ωh we have

Dqi
fh(P ) ≥ 0 where 1 ≤ i ≤ κ, Dqi

fh(P ) ≤ 0 where κ+ 1 ≤ i ≤ n,

1 − h0

n
∑

i=1

1

hi

|Dqi
fh(P ) | ≥ 0.

We prove a theorem on difference inequalities generated by (2.53)–(2.55).

Theorem 2.16. Suppose that Assumption H [ fh, gh ] is satisfied and
1) the functions fh and gh are nondecreasing with respect to the functional

variables,
2) the functions u, v : E∗h → R satisfy

δ0u
(i,m)−Fh[ (i,m), u ] ≤ δ0v

(i,m)−Fh[ (i,m), v ] on E′h \E
imp
h ,

u(i+1,m) − u(i,m) −Gh[ (i,m), u ]≤v(i+1) − v(i,m) − Fh[ (i,m), v ] on E
imp
h ,

3) the initial boundary inequality u(i,m) ≤ v(i,m) is satisfied on E0.h ∪
∂0Eh.

Under these assumptions we have u(i,m) ≤ v(i,m) on Eh.

Proof. We prove the above inequality by induction with respect to i. It
follows from assumption 3) that it is fulfilled for i = 0. Suppose that u(j,m) ≤
v(j,m) for each (x(j), y(m)) ∈ Eh where 0 ≤ j ≤ i. Define z̃ = u − v. We

prove that z̃(i+1,m) ≤ 0 for (x(i+1), y(m)) ∈ Eh. If (x(i), y(m)) ∈ E′h \ E
imp
h

then

z̃(i+1,m) ≤ z̃(i,m)) +

+
[

fh(x(i), y(m), v(i,m), δu
(m) )− fh(x(i), y(m), v(i,m), δv

(m) )
]

=

= z̃(i,m)



 1− h0

n
∑

j=1

1

hj

∣

∣

∣Dqj
fh(P̃

∣

∣

∣



+

+h0

κ
∑

j=1

1

hj

Dqj
fh(P̃ ) z̃(i,m+ej) − h0

n
∑

j=κ+1

1

hj

Dqj
fh(P̃ ) z̃(i,m−ej),
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where P̃ ∈ Ωh is an intermediate point. It follows from assumption 2) that
z̃(i+1,m) ≤ 0.

If (x(i), y(m)) ∈ Eimp
h then

z̃(i+1,m) ≤ z̃(i,m) + gh(x(i), y(m), u(i,m) )− gh(x(i), y(m), v(i,m) ).

It follows from the monotonicity of the function gh with respect to the func-
tional variable that z̃(i+1,m) ≤ 0. This completes the proof of the Theorem
2.16.

Remark 2.17. Let Γh : E′h × F (E∗h, R) → R be given by

Γh(x(i), y(m), z) = z(i,m) + h0 Fh[ (i,m), z ] on E′h \E
imp
h ,

Γh(x(i), y(m), z) = z(i,m) +Gh[ (i,m), z ] on E
imp
h .

The condition 3) of Assumption H [ fh, gh ] is equivalent to the assumption
that Γh is nondecreasing with respect to the functional argument. Theorem
2.16 can be proved by the method used in [62].

Now we give a general theorem on the convergence of the difference
method for equations with impulses. Let Vh : F (Bh, R) → F (Ih, R+) be
the operator given by

(Vhw)(x(i)) = max
{

| z(i,m) | : (x(i), y(m)) ∈ Bh

}

, x(i) ∈ Ih.

Assumption H [σh, σ̃h ]. Suppose that
1) the functions σh and σ̃h are nondecreasing with respect to the func-

tional variables and σh(x(i), θh) = 0 on J ′h \ J
imp
h , σ̃h(x(i), θh) = 0 on J imp

h

where θh : Ih → R is given by θh(x) = 0 for x ∈ Ih,
2) the difference problem with impulses (2.56), (2.57) is stable in the

following sense: if ηh : Ih ∪ Jh → R+ is the solution of the problem

η(i+1) = η(i) + h0σh(x(i), η(i) ) + h0γ(h) for x(i) ∈ J ′h \ J
imp
h , (2.58)

η(i+1) = η(i) + σ̃h(x(i), η(i) ) + γ̃(h)

for x(i) ∈ J imp
h , η(i) = α0(h) on Ih, (2.59)

where γ, γ̃, α0 : Θ → R+ and

lim
h→0

γ(h) = lim
h→0

γ̃(h) = lim
h→0

α(h) = 0,

then there exists a function β : Θ → R+ such that η
(i)
h ≤ β(h), 0 ≤ i ≤ N0

and limh→0 β(h) = 0.
Assumption H [ fh, gh, σh, σ̃h ]. Suppose that the functions fh and gh sat-

isfy the conditions: there are σh and σ̃h satisfying Assumption H [σh, σ̃h ]
and such that
∣

∣

∣ fh(x(i), y(m), w, q )− fh(x(i), y(m), w̄, q )
∣

∣

∣ ≤ σh(x(i), Vh(w − w̄) ) on Ωh,
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and
∣

∣

∣ gh(x(i), y(m), w )− gh(x(i), y(m) )
∣

∣

∣ ≤ σ̃h(x(i), Vh(w − w̄) ) on Ωimp
h .

The main theorem in this Section is the following.

Theorem 2.18. Suppose that Assumptions H [σh, σ̃h ], H [ fh, gh ], H [ fh,

gh, σh, σ̃h ] are satisfied and
1) f ∈ C(Ω, R), g ∈ C(Ωimp, R), ϕ ∈ Cimp(E0 ∪ ∂0E,R) and v ∈

Cimp(E
∗, R) is the solution of problem (2.1)–(2.3),

2) the function v |E\Eimp
is of class C2 and partial derivatives of the

second order of v are bounded on E \Eimp,

3) uh : E∗h → R is the solution of (2.53)–(2.55) and there exist α : Θ →

R+ such that
∣

∣

∣
ϕ(i,m) − ϕ

(i,m)
h

∣

∣

∣
≤ α(h) on E0.h∪∂0Eh, and limh→0 α(h) = 0,

4) there exist functions β1, β2 : Θ → R+ such that the compatibility
conditions are satisfied
∣

∣

∣Fh[ (i,m), vh]−f(x(i), y(m), v(P [i,m]), δv
(m) )

∣

∣

∣≤β1(h) on E′h\E
imp
h (2.60)

and
∣

∣

∣Gh[ (i,m), vh ]− g(x(i), y(m), v(P [i,m]−) )
∣

∣

∣ ≤ β1(h) on E
imp
h (2.61)

where vh is the restriction of v to the set E∗h, P [i,m] = (x(i), y(m)) and
limh→0 βi(h) = 0, i = 1, 2. The function u(P [i,m]−) is the restriction of

u(P [m]) to the set B(−). Then there exists β̃ : Θ → R+ such that

∣

∣

∣u
(i,m)
h − v

(i,m)
h

∣

∣

∣ ≤ β̃(h) and lim
h→0

β̃(h) = 0. (2.62)

Proof. Let the function Γh : E′h → R be defined by

δ0v
(i,m)
h = Fh[ (i,m), vh ] + Γ

(i,m)
h on E′h \E

imp
h ,

v
(i+1,m)
h − v

(i,m)
h = Gh[ (i,m), vh ] + Γ

(i,m)
h on E

imp
h .

It follows from the compatibility conditions (2.60), (2.61) that there are
γ, γ̃ : Θ → R+ such that

∣

∣

∣Γ(i,m)
∣

∣

∣ ≤ γ(h) on E′h \E
imp
h ,

∣

∣

∣Γ(i,m)
∣

∣

∣ ≤ γ̃(h) on E
imp
h

and

lim
h→0

γ(h) = lim
h→0

γ̃(h) = 0.

Write

ω̄(x(i)) = max
{ ∣

∣

∣ (uh − vh)(i,m)
∣

∣

∣ : (x(i), y(m)) ∈ E∗h

}

, x(i) ∈ Ih ∪ Jh.
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Then ω̄ satisfies the difference functional inequalities

ω̄(i+1) ≤ ω̄(i) + h0σ(x(i), ω̄(i) ) + h0γ(h), x(i) ∈ J ′h \ J
imp
h ,

ω̄(i+1) ≤ ω̄(i) + σ̃(x(i), ω̄(i) ) + γ̃(h), x(i) ∈ J imp
h

and ω̄(i) ≤ α0(h) on Ih.

Consider the difference problem

η(i+1) = η(i) + h0σh(x(i), η(i)) + h0γ(h) for x(i) ∈ J ′h \ J
imp
h ,

η(i+1) =η(i)+σ̃h(x(i), η(i))+γ̃(h) = l = lfor x(i) ∈ J imp
h ,

η(i) =α0(h) for x(i) ∈ Ih.

Let βh : Ih∪Jh → R+ be the solution of the above problem. Then ω̄(i) ≤ β
(i)
h

on Jh. Now we obtain (2.54) from the stability of the solution of problem
(2.56), (2.57). This completes the proof of Theorem 2.18.

2.5. Nonlinear Estimates for Increment Functions

Now we consider examples of nonlinear estimates for f . We will consider
the class of operators Th.i : F (Bh, R) → F (B,R), h ∈ Θ, 0 ≤ i ≤ N0,

which are given in the following way. Let

S+ = { s = (s0, s1, . . . , sn) : si ∈ {0, 1} for 0 ≤ i ≤ n }

and

Y
imp
h.i =

{

x(j) ∈ Ih : x(j+i) ∈ J imp
h

}

, i = 0, 1, . . . , N0.

Suppose that w ∈ F (Bh, R), (x, y) ∈ B and 0 ≤ i ≤ N0. There exists
(j,m) ∈ Z1+n such that (x(j), y(m)), (x(j+1), y(m+1)) ∈ Bh where x(j) ≤

x ≤ x(j+1), y(m) ≤ y ≤ y(m+1). If x(j) 6∈ Y imp
h.i then we define

(Th.iw) (x, y) =
∑

s∈S+

w((j,m)+s)

(

Y − Y (j,m)

h

)s (

1−
Y − Y (j,m)

h

)1−s

,

where

(

Y − Y (j,m)

h

)s

=

(

x − x(j)

h0

)s0 n
∏

ζ=1

(

yζ − y
(mζ)
ζ

hζ

)sζ

and

(

1−
Y − Y (j,m)

h

)1−s

=

(

1−
x− x(j)

h0

)1−s0 n
∏

ζ=1

(

1−
yζ − y

(mζ)
ζ

hζ

)1−sζ



54

and we take 00 = 1 in the above formulas. If x(j) ∈ Y imp
h.i then there exists

ζ, 1 ≤ ζ ≤ k such that x ∈ [(nζ − i)h0, (nζ − i+ 1)h0]. We define

(Th.iw) (x, y)=(Th.iw) ((nζ − i)h0, y) if x ∈ [(nζ − i)h0, aζ − ih0),

(Th.iw) (x, y)=(Th.iw) ((nζ − i+ 1)h0, y) if x∈ [aζ − ih0, (nζ − i+ 1)h0].

Then we have

Th.i : F (Bh, R) → Cimp[B,R].

Consider the initial boundary value problem (2.1)–(2.3) and the difference
method

δ0z
(i,m) = f(x(i), y(m), Th.iz(i,m), δz

(i,m) ), (x(i), y(m)) ∈ E′h \E
imp
h ,

z(i+1,m) = z(i,m) + g(x(i), y(m), Th.iz(i,m)− ), (x(i), y(m′)) ∈ Eimp
h ,

z(i,m) = ϕ(i,m) on E0.h ∪ ∂0Eh,

where δ0, δ = (δ1, . . . , δn) is defined by (1.37)–(1.39) and Th,iz(i,m)− is the

restriction of Th,iz(i,m) to the set B(−). Suppose that

σ : (J \ Jimp)×R+ → R+, σ̃ : Jimp ×R+) → R+

are given functions. We will consider the following comparison problem

η′(x) = σ(x, η(x) ) for x ∈ J \ Jimp, (2.63)

η(x) = η(x−) + σ̃(x, η(x−) ) for x ∈ Jimp η(0) = p0, (2.64)

where p0 ∈ R+. Suppose that σ and σ̃ satisfy the conditions
1) σ and σ̃ are continuous, σ(x, 0 ) = 0 for x ∈ J \Jimp and σ̃(x, 0 ) = 0

for x ∈ Jimp,

2) the function σ in nondecreasing with respect to (x, p) ∈ (J \Jimp)×R+

and the function σ̃ is nondecreasing with respect to the second variable,
3) the function f and g satisfy the conditions

| f(x, y, w, q )− f(x, y, w̄, q ) | ≤ σ(x, ‖w − w̄‖B ) on Ω, (2.65)

| g(x, y, w )− g(x, y, w̄ ) | ≤ σ̃(x, ‖w − w̄‖B(−) ) on Ωimp. (2.66)

We define fh : Ωh → R and gh : Ωimp
h → R by

fh(x(i), y(m), w, q ) = f(x(i), y(m), Th.iw, q ) on Ωh,

gh(x(i), y(m), w ) = g(x(i), y(m), Th.iw
(−) ) on Ωimp

h ,

where Th.iw
(−) is the restriction of Th.iw to the set B(−).

It is easy to prove by induction with respect to n that

∑

s′∈S′+

(

y − y(m)

h′

)s′ (

1 −
y − y(m)

h′

)1−s′

= 1, y(m) ≤ y ≤ y(m+1),
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where
S′+ = { s′ = (s1, . . . , sn : si ∈ {0, 1} for 1 ≤ i ≤ n }.

Then we have the following estimates:
∣

∣

∣ fh(x(i), y(m), w, q )− fh(x(i), y(m), w̄, q )
∣

∣

∣ ≤ σ(x(i), ‖w − w̄‖Bh
) on Ωh,

and
∣

∣

∣
gh(x(i), y(m), w )− gh(x(i), y(m), w̄ )

∣

∣

∣
≤ σ̃(x(i), ‖w − w̄‖Bh

) on Ωimp
h .

Thus we see that problem (2.58), (2.59) is equivalent to

η(i+1) = η(i) + h0σ(x(i), η(i) ) + h0γ(h) for x
(i) ∈ J ′h \ J

imp
h , (2.67)

η(i+1) = η(i) + σ̃(x(i), η(i) ) + γ̃(h) for x(i) ∈ J imp
h , η(0) = α0(h). (2.68)

Denote by ηh : Jh → R+ the solution of the above problem. Let η̃ : J → R+

be the solution of the problem

η′(x) = σ(x, η(x) ) + γ(h), x ∈ J \ Jimp, (2.69)

η(x) = η(x−) + σ̃(x, η(x−) ) + γ̃(h), x ∈ Jimp, η(0) = α0(h). (2.70)

Then we have

η̃(i+1) ≥ η̃(i) + h0σ(x(i), η̃(i) ) + h0γ(h), x(i) ∈ J ′k \ J
imp
h ,

η̃(i+1) ≥ η̃(i) + σ̃(x(i), η̃(i) ), x(i) ∈ J imp
h ,

and consequently η
(i)
h ≤ η̃(i) for 0 ≤ i ≤ N0. If we assume that problem

(2.69), (2.70) with p0 = 0 has the right hand maximum solution ζ(x) = 0
for x ∈ J then the problem (2.67), (2.68) with γ(h) = γ̃(h) = α0(h) = 0 for
h ∈ Θ is stable in the sense of Assumption H [σh, σ̃h ].

Remark 2.19. All the results of this Chapter can be extended for systems
of functional differential problems with impulses.
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CHAPTER III
PARABOLIC FUNCTIONAL DIFFERENTIAL
PROBLEMS WITH IMPULSES

3.1. Functional Differential Inequalities

We formulate the problem. Let E = (0, a) × (−b, b) where a > 0, b =
(b1, . . . bn) ∈ Rn, and bi > 0 for 1 ≤ i ≤ n. Put B = [−τ0, 0]× [−τ, τ ] where
τ0 ∈ R+, τ = (τ1, . . . , τn) ∈ Rn

+. Write c = b+ τ and

E0 = [−τ0, 0]×[−c, c], ∂0E = (0, a)×( [−c, c]\(−b, b) ), E∗ = E∪E0∪∂0E.

If τ0 > 0 then we put B(−) = [−τ0, 0)× [−τ, τ ]. Suppose that 0 < a1 < a2 <

· · · < ak < a are given numbers. Let I, J, Jimp be the sets given by (1.1).
Suppose that

Eimp, ∂0Eimp, E
∗
imp, Cimp(E

∗, R), Cimp(E0 ∪ ∂0E,R)

and

Cimp[B,R], Cimp[B
(−), R]

are the sets defined in Section 2.1 with the above givenE, ∂0E, E0, B, B
(−).

Let Mn×n be the class of all n× n symmetric matrices with real elements.
Write

Σ = (E\Eimp)×R×Cimp[B,R]×Mn×n, Σimp = Eimp×R×Cimp[B
(−), R]

and suppose that f : Σ → R, g : Σimp → R, ϕ : E0 ∪ ∂0E → R are given
functions. We assume that ϕ ∈ Cimp(E0 ∪ ∂0E,R). In this Chapter we
consider the initial boundary value problem

Dxz(x, y)=f(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y)) on E\Eimp, (3.1)

∆z(x, y) = g(x, y, z(x−, y), z(x−,y) ) on Eimp, (3.2)

z(x, y) = ϕ(x, y) on E0 ∪ ∂0E, (3.3)

where Dyz(x, y) = (Dy1z(x, y), . . . , Dyn
z(x, y) ) and Dyyz(x, y) =

[

Dyiyj

]

i,j=1,...,n
. A function z ∈ Cimp(E∗, R) will be called the function

of class C
(1,2)
imp (E∗, R) if z has continuous derivatives Dxz, Dyz, Dyyz on

E \ Eimp. We consider solutions of class C
(1,2)
imp (E∗, R) of problem (3.1)–

(3.3).

Example 2. Suppose that f̃ : (E \ Eimp) × R2 × Rn × Mn×n and g̃ :
Eimp × R2 → R are given functions. We define f and g by

f(x, y, p, w, q, r) = f̃(x, y, p,

∫

B

w(t, s)dtds, q, r),

g(x, y, p, w) = g̃(x, y, p,

∫

B(−)

w(t, s)dtds).
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Then (3.1), (3.2) is equivalent to the integral differential equation

Dxz(x, y) = f̃(x, y, z(x, y),

∫

B

z(x+ t, y + s)dtds,

Dyz(x, y), Dyyz(x, y)) on E \Eimp,

with impulses given by the relation

∆z(x, y) = g̃(x, y, z(x−, y),

∫

B(−)

z(x+ t, y + s)dtds on Eimp.

Example 3. Suppose that α, ᾱ : B → R, β, β̄ : B → Rn and f̃ , g̃ are
given in Example 2. Assume that

−τ0 ≤ α(x, y) − x ≤ 0, −τ0 ≤ ᾱ(x, y)− x < 0,

−τ ≤ β(x, y) − y ≤ τ, −τ ≤ β̄(x, y)− y ≤ τ,

where (x, y) ∈ B. Put

f(x, y, p, w, q, r) = f̄(x, y, p, w(α(x, y) − x, β(x, y) − y), q, r),

g(x, y, p, w) = ḡ(x, y, p, w(ᾱ(x, y)− x, β̄(x, y)− y)).

Then (3.1), (3.2) reduces to the differential equation with a deviated argu-
ment

Dxz(x, y) = f̄(x, y, z(x, y), z(α(x, y), β(x, y)),

Dyz(x, y), Dyyz(x, y) ) on E \Eimp,

and with impulses given by

∆z(x, y) = ḡ(x, y, z(x−, y), z(ᾱ(x, y), β̄(x, y)) ) on Eimp.

For any matrices

r, r̄ ∈Mn×n, r = [ rij ]
i,j=1,...,n

, r̄ = [ r̄ij ]
i,j=1,...,n

,

we write r ≤ r̄ if

n
∑

i,j=1

(rij − r̄ij)λiλj ≤ 0 for λ = (λ1, . . . , λn) ∈ Rn,

A function f : Σ→R is said to be parabolic with respect to z∈C
(1,2)
imp (E∗, R)

on E \Eimp and for any r, r̄ ∈Mn×n, r ≤ r̄, we have

f(x, y, z(x, y), z(x,y), Dyz(x, y), r) ≤ f(x, y, z(x, y), z(x,y), Dyz(x, y), r̄).

For f : Σ → R, g : Σimp → R and z ∈ C
(1,2)
imp (E∗, R) we write

F [ z ](x, y) = f(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y) ) on E \Eimp,
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and

G[ z ](x, y) = g(x, y, z(x−, y), z(x−,y) ) on Eimp.

We start with a theorem on strong inequalities.
Assumption H [ f, g ]. Suppose that the functions f and g satisfy the

conditions:
1) f is nondecreasing with respect to the functional variable,
2) g is nondecreasing with respect to the functional variable and the

function

γ(p) = p+ g(x, y, p, w), p ∈ R,

is nondecreasing for each (x, y, w) ∈ Eimp × Cimp[B(−), R].

Theorem 3.1. Suppose that Assumption H [ f, g ] is satisfied and

1) the functions u, v ∈ C
(1,2)
imp (E∗, R) satisfy the initial boundary inequal-

ity

u(x, y) < v(x, y) on E0 ∪ ∂0E, (3.4)

2) the functional differential inequality

Dxu(x, u)− F [u ](x, y) < Dxv(x, y)− F [ v ](x, y) on E \Eimp (3.5)

and the inequality for impulses

∆u(x, y)−G[u ](x, y) < ∆v(x, y) −G[ v ](x, y) on Eimp, (3.6)

are satisfied,
3) the function f is parabolic with respect to u on E \Eimp.

Then u(x, y) < v(x, y) on E∗.

Proof. If the inequality is false then the set

J+ = {x ∈ [0, a) : there is y ∈ (−b, b) such that u(x, y) ≥ v(x, y) }

is not empty. Defining x̃ = inf J+ it follows from (3.4) that x̃ > 0 and that
there is ỹ ∈ (−b, b) such that

u(x, y) < v(x, y) on E∗ ∩ ( [−τ0, x̃)×Rn ) , u(x̃, ỹ) = v(x̃, ỹ). (3.7)

There are two cases to be distinguished. If (x̃, ỹ) ∈ E \ Eimp then Dx(u −
v)(x̃, ỹ) ≥ 0, Dy(u− v)(x̃, ỹ) = 0 and Dyyu(x̃, ỹ) ≤ Dyyv(x̃, ỹ), which leads
to a contradiction with (3.5).

Suppose now that (x̃, ỹ) ∈ Eimp. Then x̃ ∈ Jimp and (u− v)(x̃−, ỹ) ≤ 0.
It follows from (3.6) and from Assumption H [ f, g ] that

(u− v)(x̃, ỹ) <

< (u− v)(x̃−, ỹ) + g( x̃, ỹ, u(x̃−, ỹ), u(x̃,ỹ) )− g( x̃, ỹ, v(x̃−, ỹ), v(x̃,ỹ) ) ≤ 0,

which contradicts (3.7). Hence J+ is empty and the statement follows.
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Remark 3.2. In Theorem 3.1 we can assume instead of (3.5), (3.6) that

Dxu(x, u)− F [u ](x, y) < Dxv(x, y)− F [ v ](x, y) for on T+ \Eimp

and

∆u(x, y)−G[u ](x, y) < ∆v(x, y) −G[ v ](x, y) on T+∩ ∈ Eimp,

where

T+ = {(x, y) ∈ E : (u− v)(t, s) < 0 on

( [−τ0, x)×Rn ) ∩ E and (u− v)(x, y) = 0}.

Now we consider weak impulsive functional differential inequalities.

Theorem 3.3. Suppose that Assumption H [ f, g ] is satisfied and
1) there are functions σ : (J \Jimp)×R+ → R+ and σ0 : Jimp×R+ → R+

satisfying Assumption H [σ, σ0 ] (Section 2.1) and such that

f(x, y, p, w, q, r)− f(x, y, p̄, w̄, q, r) ≥ −σ(x,max { p̄− p, ‖w̄ − w‖B} )

on Σ where p ≤ p̄, w ≤ w̄ and

g(x, y, p, w)− g(x, y, p̄, w̄) ≥ −σ0(x,max { p̄− p, ‖w̄ − w‖B(−)} )

on Σimp where p ≤ p̄, w ≤ w̄,

2) the function u, v ∈ C
(1,2)
imp (E∗, R) satisfy the initial boundary inequality

u(x, y) ≤ v(x, y) on E0 ∪ ∂0E,

3) f is parabolic with respect to u on E \Eimp and

Dxu(x, u)− F [u ](x, y) ≤ Dxv(x, y) − F [ v ](x, y) on E \Eimp

4) the inequality for impulses

∆u(x, y)−G[u ](x, y) ≤ ∆v(x, y) −G[ v ](x, y) on Eimp,

are satisfied.
Then u(x, y) ≤ v(x, y) on E∗.

Proof. Suppose that ã ∈ (ak, a). We prove that

u(x, y) ≤ v(x, y) on ( [−τ0, ã)×Rn ) ∩ E∗. (3.8)

Consider problem (2.10), (2.11). There exists ε̄ > 0 such that for 0 <

εi < ε̄, i = 0, 1, 2, the maximum solution ω( · , ε), ε = (ε0, ε1, ε2) of (2.10),
(2.11) is defined on [0, ã). Let ṽ(x, y) = v(x, y) + ε0 on E0 and ṽ(x, y) =
v(x, y) + ω(x, ε) on ( [0, ã) × Rn ) ∩ (E ∪ ∂0E ). Then u(x, y) < ṽ(x, y) on
(E0 ∪ ∂0E ) ∩ ( [−τ0, ã)×Rn ) and

Dxu(x, u)− F [u](x, y)<Dxṽ(x, y)− F [ṽ](x, y) on (E \Eimp) ∩ ([0, ã)×Rn)

∆u(x, y)−G[u ](x, y) < ∆ṽ(x, y)−G[ ṽ ](x, y) on Eimp.
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It follows from Theorem 3.1 that

u(x, y) < v(x, y) on E∗ ∩ ( [−τ0, ã)×Rn ).

Since limε→0 ω(x, ε) = 0 uniformly on [0, ã), we obtain (3.8). The constant
ã ∈ (ak, a) is arbitrary and therefore the proof is completed.

3.2. Comparison Results for Parabolic Problems

We prove estimates of functions satisfying impulsive parabolic inequali-
ties by means of solutions of impulsive ordinary functional differential equa-
tions.

Let Cimp[I, R] be the set define in Section 2.3. We define also in the case
τ0 > 0

I(−) = [−τ0, 0) and Cimp[I(−), R] = { η |I(−) : η ∈ Cimp[I, R] } .

Elements of the sets Cimp[I, R] and Cimp[I(−), R] will be denoted by the
same symbols. We denote by ‖ · ‖I and ‖ · ‖I(−) the supremum norms in
the space Cimp[I, R] and Cimp[I

(−), R] respectively.
Suppose that ω : I ∪ J → R and x ∈ J. Then ω(x) : I → R is the

function defined by ω(x)(t) = ω(x + t), t ∈ I. If τ0 > 0 then for the above

ω and x we will consider also the function ω(x−) : I(−) → R given by

ω(x−)(t) = ω(x+ t), t ∈ I(−).

Assumption H [σ, σ̃ ]. Suppose that
1) the functions σ : (J \ Jimp)×R+ × Cimp[I, R+] → R+ and σ̃ : Jimp ×

R+ × Cimp[I
(−), R+] → R+ are continuous and nondecreasing with respect

to the functional variables,

2) for each (x, η) ∈ (J \ Jimp) × Cimp[J
(−)
0 , R] the function γ(p) = p +

σ̃(x, p, η) is nondecreasing on R+

3) for each η ∈ C(I, R) there exists the maximum solution ω( · , η) of the
problem

ω′(x) = σ(x, ω(x), ω(x) ) on J \ Jimp, (3.9)

∆ω(x) = σ̃(x, ω(x−), ω(x−) ) on Jimp, ω(x) = η(x) on I. (3.10)

We will need the following lemma on ordinary functional differential in-
equalities.

Lemma 3.4. Suppose that Assumption H [σ, σ̃ ] is satisfied and
1) η̃ ∈ C(I, R+) and ω( · , η̃) : [−τ0, a) → R+ is the maximum solution of

problem ( 3.9), ( 3.10) with η = η̃,

2) ψ ∈ Cimp(I ∪ J,R+) and

ψ(x) ≤ η̃(x) on I, ∆ψ(x) ≤ σ̃(x, ψ(x−), ψ(x−)) on Jimp,

3) for x ∈ J+ = {x ∈ J \ Jimp : ψ(x) > ω(x, η̃) } we have

D−ψ(x) ≤ σ(x, ψ(x), ψ(x) ).
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Under these assumptions ψ(x) ≤ ω(x, η̃) for x ∈ J.

We omit the proof of the Lemma.
Let V : Cimp[B,R] → Cimp[I, R] be the operator given by

(V w)(t) = max { |w(t, s)| : s ∈ [−τ, τ ] },

where t ∈ [−τ0, 0]. If w ∈ Cimp[B(−), R] then V w ∈ Cimp[I(−), R] denotes a
function given by the above formula for t ∈ I (−).

Theorem 3.5. Suppose that Assumption H [σ, σ̃ ] is satisfied and
1) f ∈ C( Ω, R ) and for each (x, y, p, w) ∈ (E \ Eimp)× R × Cimp[B,R]

we have

f(x, y, p, w, 0, 0) sign p ≤ σ(x, |p|, V w) (3.11)

where sign p = 1 if p ≥ 0 and sign p = −1 if p < 0,

3) the function u ∈ C
(1,2)
imp (E∗, R) is a solution of ( 3.1) and f is parabolic

with respect to u on E \Eimp,

4) η̃ ∈ C(I, R+) and |u(x, y)| ≤ η̃(x) on E0,

5) the boundary estimate |u(x, y)| ≤ ω(x, η̃) on ∂0E and inequality for
impulses

∆|u(x, y)| ≤ σ̃(x, |u(x−, y)|, V u(x−) ) on Eimp ∪ ∂0Eimp

are satisfied.
Under these assumptions we have |u(x, y)| ≤ ω(x, η̃), (x, y) ∈ E∗.

Proof. We prove that the function ψ = Tu satisfies all the assumption of
Lemma 3.4. It follows from the initial estimate for u and from assumption
5) that condition 3) of Lemma 3.4 holds. Suppose that x ∈ J \ Jimp and
ψ(x) > ω(x, η̃). There exists y ∈ [−c, c] such that ψ(x) = |u(x, y)|. It follows
from the boundary estimate that y ∈ (−b, b). There are two possibilities:
either (i) ψ(x) = u(x, y) or (ii) ψ(x) = −u(x, y).

Consider the case (i). Then Dyu(x, y) = 0 and Dyyu(x, y) ≥ 0. It follows
that

D−ψ(x) ≤ Dxu(x, y) = f(x, u, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y) ) ≤

≤ σ(x, |u(x, y)|, V u(x,y)) ≤ σ(x, ψ(x), ψ(x)).

Thus ψ satisfies condition 4) of Lemma 3.4. The case (ii) is analogous. Thus
all conditions of Lemma 3.4 are satisfied and Theorem 3.5 follows.

Let us consider two problems: the problem (3.1)–(3.3) and the problem

Dxz(x, y)= f̃(x, y, z(x, y), z(x,y), Dyz(x, y), Dyyz(x, y)) on E \Eimp, (3.12)

∆z(x, y) = g̃(x, y, z(x−, y), z(x−,y)) on Eimp ∪ ∂0Eimp, (3.13)

z(x, y) = ϕ̃(x, y) on E0 ∪ ∂0E, (3.14)
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where f̃ : Σ → R, g̃ : Σimp → R, ϕ̃ : E0 ∪ ∂0E → R are given functions.
We prove a theorem on the estimate of the difference between solutions of
(3.1)–(3.3) and (3.12)–(3.14).

Theorem 3.6. Suppose that Assumption H [σ, σ̃ ] are satisfied and
1) the functions f, f̃ and g, g̃ satisfy the conditions

[

f(x, y, p, w, q, r) − f̃(x, y, p̄, w̄, q, r)
]

sign (p− p̄) ≤

≤ σ(x, |p− p̄|, V (w − w̄)) on Σ

and

|g(x, y, p, w)− g̃(x, y, p̄, w̄)| ≤ σ̃(x, |p− p̄|, V (w − w̄)) on Σimp,

2) ϕ, ϕ̃ ∈ Cimp(E0 ∪ ∂0E,R), and |ϕ(x, y) − ϕ̃(x, y)| ≤ η̃(x) on E0 with
η̃ ∈ C(I, R+),

3) u, ũ ∈ C
(1,2)
imp (E∗, R) are solutions of (3.1)–3.3) and (3.12)–(3.14) re-

spectively,
4) the boundary estimate |ϕ(x, y)− ϕ̃(x, y)| ≤ ω(x, η̃) on ∂0E is satisfied

and f is parabolic with respect to u on E \Eimp.

Under these assumptions we have |u(x, y)− v(x, y)| ≤ ω(x, η̃) on E∗.

Proof. We prove that the function ψ : [−τ0, a) → R+ given by

ψ(x) = max {|u(x, y)− v(x, y)| : y ∈ [−c, c] }

satisfies all the conditions of Lemma 3.4. Suppose that x ∈ J+ where

J+ = {x ∈ J \ Jimp : ψ(x) > ω(x, η̃) }.

There is y ∈ [−c, c] such that ψ(x) = |u(x, y)− ũ(x, y)|. From the boundary
estimate it follows that y ∈ (−b, b). There are two possibilities: either

(i) ψ(x) = u(x, y)− ũ(x, y) or (ii) ψ(x) = −[u(x, y)− ũ(x, y) ].

Consider the case (i). Then Dy(u−ũ)(x, y)=0 and Dyyu(x, y)≤Dyyũ(x, y).
It follows that

D−ψ(x) ≤ Dx(u− ũ)(x, y) =

= f(x, y, u(x, y), u(x,y), Dyu(x, y), Dyyu(x, y) )−

−f̃(x, y, ũ(x, y), ũ(x,y), Dyu(x, y), Dyyũ(x, y) )

and consequently
D−ψ(x) ≤ σ(x, ψ(x), ψ(x) )

The case (ii) is analogous. It is easy to see that ψ satisfies

∆ψ(x) ≤ σ̃(x, ψ(x−), ψ(x−) )

for x ∈ Jimp such that ψ(x) > ω(x, η̃) and ψ(x) ≤ η̃(x) on I. Thus all the
conditions of Lemma 3.4 are satisfied and the statement of the Theorem 3.6
follows.
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Theorem 3.7. Suppose that Assumption H [σ, σ̃ ] is satisfied and

1) the function f ∈ C(Σ, R) and g ∈ C(Σimp, R) satisfy the conditions

[ f(x, y, p, w, q, r) − f(x, y, p̄, w̄, q, r) ] sign (p− p̄) ≤

≤ σ(x, |p− p̄|, ‖w − w̄‖B )

and

|g(x, y, p, w )− g(x, y, p̄, w̄ )| ≤ σ̃(x, |p− p̄|, ‖w − w̄‖B(−) ),

2) the maximum solution of the problem with impulses

ω′(x) = σ(x, ω(x), ω(x) ) on J \ Jimp,

∆ω(x) = σ̃(x, ω(x−), ω(x−) ) on Jimp, ω(x) = 0 on I,

is ω̄(x) = 0, x ∈ I ∪ J.

Then there is at most one solution of problem (3.1)–(3.3) of class

C
(1,2)
imp (E∗, R).

Proof. The above Theorem follows from Theorem 3.6 for f̃=f and g̃=g.

Remark 3.8. Suppose that % : (J \ Jimp) × R+ × R+ → R+ and %̃ :
Jimp ×R+ ×R+ → R+ are given functions and σ, σ̃ are defined by

σ(x, p, η ) = %(x, p, ‖η‖I ), σ̃(x, p, η ) = %̃(x, p, ‖η‖I(−) ).

Then

(i) Estimates given in assumption 1) of Theorem 3.7 are equivalent to

[

f(x, y, p, w, q, r) − f̃(x, y, p̄, w̄, q, r)
]

sign (p− p̄) ≤

≤ %(x, |p− p̄|, ‖w − w̄‖B )

and

| g(x, y, p, w )− g̃(x, y, p̄, w̄ ) | ≤ %̃(x, |p− p̄|, ‖w − w̄‖B(−) ).

(ii) If we assume that η̃ ∈ C(I, R+) is nondecreasing on I then problem
(3.9), (3.10) is equivalent to

ω′(x) = %(x, ω(x), ω(x) ) on J \ Jimp,

∆ω(x) = %̃(x, ω(x−), ω(x−) ) on Jimp, ω(0) = η̃(0).
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3.3. Discretization of Parabolic Problems

Suppose that B, B(−), I, J, E, E0, ∂0E, Eimp, ∂0Eimp, E
∗ are the

sets defined in Section 3.1. Write

Σ = (E \Eimp)×Cimp[B,R]×Rn ×Mn×n, Σimp = Eimp ×Cimp[B
(−), R]

and suppose that

f : Σ → R, g : Σimp → R, φ ∈ Cimp(E0 ∪ ∂0E,R)

are given functions. In this Section we consider the parabolic functional
differential equation with impulses

Dxz(x, y) = f(x, y, z(x,y), Dyz(x, y), Dyyz(x, y)) on E \Eimp, (3.15)

∆z(x, y) = g(x, y, z(x−,y)) on Eimp, (3.16)

and the initial boundary condition

z(x, y) = φ(x, y) on E0 ∪ ∂0E. (3.17)

We formulate a difference problem corresponding to (3.15)–(3.17). We
start with a definition of a mesh in E∗ and B. Suppose that h = (h0, h

′)
where h′ = (h1, . . . , hn) stand for steps of the mesh. For (i,m) ∈ Z1+n

where m = (m1, . . . ,mn) we define y(m) by y(m) = ( y(m1), . . . , y(mn) ) =
m ∗ h′ and x(i) = ih0. Denote by Θ the set of all h such that there are
M = (M1, . . . ,Mn) ∈ Zn and M0 ∈ Z such that M ∗h′ = τ and M0h0 = τ0.

We assume that Θ 6= ∅ and that there is a sequence
{

h(j)
}

, h(j) ∈ Θ, such

that limj→∞ h(j) = 0. Let

R1+n
h =

{

(x(i), y(m)) : (i,m) ∈ Z1+n
}

.

We define the sets

E0.h = E ∩ R1+n
h , Bh = B ∩R1+n

h , Eh = E ∩ R1+n
h ,

and

∂0Eh = ∂0E ∩ R1+n
h , E∗h = E0.h ∪Eh ∪ ∂0Eh.

Elements of the set E∗h will be denoted by (x(i), y(m)) or (x, y). For a function
z : E∗h → R and a point (x(i), y(m)) ∈ E∗h we write z(i,m) = z(x(i), y(m)) and

‖z‖i.h = max{ |z(j,m)| : (x(j), y(m)) ∈ E∗h, j ≤ i }.

For the above z and for a point (x(i), y(m)) ∈ Eh we define the function
z(i,m) : Bh → R by

z(i,m)(t, s) = z(x(i) + t, y(m) + s), (t, s) ∈ Bh.

The function z(i,m) is the restriction of z to the set
(

[x(i) − τ0, x
(i)]× [y(m) − τ, y(m) + τ ]

)

∩ R1+n
h
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and this restriction is shifted to the set Bh. Let {n1, . . . , nk }, ni ∈ N, be
defined by nih0 < ai ≤ (ni + 1)h0, i = 1, . . . , k. Write

E
imp
h = { (x(i), y(m)) ∈ Eh : i ∈ {n1, . . . , nk} },

E′h = { (x(i), y(m)) ∈ Eh : 0 ≤ i ≤ N0 − 1}.

Let

J
imp
h = {x(i) : i ∈ {n1, . . . , nk} },

and

Ih = {x(i) : −M0 ≤ i ≤ 0}, Jh = {x(i) : 0 ≤ i ≤ N0}, J ′h = Jh \ {x
(N0)}

where N0 ∈N is defined by N0 h0 < a ≤ (N0 + 1)h0. For a function η :
Ih ∪ Jh → R and x(i) ∈ Jh we define a function η(i) : Ih → R by ηi(t) =

η(x(i) + t), t ∈ Ih.
Put X = {(i, j) : 1 ≤ i, j ≤ n i 6= j} and assume that we have

defined the sets X+, X− ⊂ X such that X+ ∪X− = X, X+ ∩X− = ∅ ( in
particular, it may be X+ = ∅ or X− = ∅). We assume also that (j, k) ∈ X+

if (k, j) ∈ X+. We define for 1 ≤ j ≤ n

δ+j z
(i,m) =

1

hj

(

z(i,m+ej) − z(i,m)
)

, δ−i z
(i,m) =

1

hi

(

z(i,m) − z(i,m−ej)
)

,

where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 standing on j-th place. We consider
difference operators

δ0, δ = (δ1, . . . , δn), δ(2) =
[

δ
(2)
jk

]

j,k=1,...,n

given by

δ0z
(m) =

1

h0

(

z(i+1,m) − z(i,m)
)

, (3.18)

δjz
(i,m) =

1

2

(

δ+j z
(i,m) + δ−j z

(i,m)
)

, j = 1, . . . , n, (3.19)

and

δ
(2)
jj z

(i,m) = δ−j δ
+
j z

(i,m), j = 1, . . . , n, (3.20)

δ
(2)
jk z

(i,m) =
1

2

(

δ+j δ
+
k z

(i,m) + δ−j δ
−
k z

(i,m)
)

for (j, k) ∈ X+, (3.21)

δ
(2)
jk z

(i,m) =
1

2

(

δ+j δ
−
k z

(i,m) + δ−j δ
+
k z

(i,m)
)

for (j, k) ∈ X−. (3.22)

Let

Σh = (E′h \E
imp
h )× F (Bh, R)×Rn ×Mn×n, Σimp

h = E
imp
h × F (Bh, R).

Suppose that for each h ∈ Θ we have

fh : Σh → R, gh : Σimp
h → R, φh : E0.h ∪ ∂0Eh → R.
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Write

Fh[ z ](i,m) = fh(x(i), y(m), z(i,m), δz
(i,m), δ(2)z(i,m) ) on E′h \E

imp
h

and

Gh[ z ](i,m) = gh(x(i), y(m), z(i,m) ) on E
imp
h

where z ∈ F (E∗h, R).
We will approximate solutions of problem (3.15)–(3.17) by means of so-

lutions of the functional difference equations

δ0z
(i,m) = Fh[ z ](i,m) for (x(i), y(m)) ∈ E′h \E

imp
h , (3.23)

∆z(i,m) = Gh[ z ](i,m) for (x(i), y(m)) ∈ Eimp
h , (3.24)

with the initial boundary condition

z(i,m) = φ
(i,m)
h on E0.h ∪ ∂0Eh. (3.25)

It is clear that there exists exactly one solution vh : E∗h → R of (3.23)–(3.25).

3.4. Convergence of the Difference Method for Parabolic

Problems

We will consider two comparison functions σh and σ̃h corresponding to
fh and gh respectively. Suppose that we have

σ : (J ′h \ J
imp
h )× F (Ih, R+) → R+, σ̃h : J imp

h × F (Ih, R+) → R+.

Our main assumptions are the following.
Assumption H [σh, σ̃h ]. Suppose that

1) the functions σh(x, · ) : F (Ih, R+) → R+ where x ∈ Jh \ J
imp
h and

σ̃h(x, · ) : F (Ih, R+) → R+ where x ∈ J imp
h are nondecreasing,

2) σh(x, θh) = 0 for x ∈ Jh \ J
imp
h where θh(t) = 0 for t ∈ Ih and

σ̃h(x, θh) = 0 for x ∈ J imp
h ,

3) the functional difference problem with impulses

η(i+1) = η(i) + h0σh(x(i), η(i)) for x(i) ∈ J ′h \ J
imp
h , (3.26)

η(i+1) = η(i) + σ̃h(x(i), η(i), η(i)) for x(i) ∈ J imp
h , (3.27)

η(i) = 0 for x(i) ∈ Ih, (3.28)

is stable in the following sense: if ηh : Ih ∪ Jh → R+ is the solution of the
problem

η(i+1) = η(i) + h0σh(x(i), η(i)) + h0γ(h) for x(i) ∈ J ′h \ J
imp
h ,

η(i+1) = η(i) + σ̃h(x(i), η(i), η(i)) + γ̃(h) for x(i) ∈ J imp
h ,

η(i) = α0(h) for x(i) ∈ Ih,
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where γ, γ̃, α0 : Θ → R+ and

lim
h→0

γ(h) = lim
h→0

γ̃(h) = lim
h→0

α0(h) = 0,

then there exists β : Θ → R+ such that η
(i)
h ≤ β(h) for x(i) ∈ Jh and

limh→0 β(h) = 0.

In a convergence theorem we will estimate a function of several variables
by means of a function of one variable. Therefore we will need the following
operator Vh : F (Bh, R) → F (Ih, R+). If w : Bh → R then

(Vhw)(x(i)) = max{ |w(x(i), y(m))| : −M ≤ m ≤M }, −M0 ≤ i ≤ 0.

Assumption H [ fh, gh ]. Suppose that σh and σ̃h satisfy Assumption H
[σh, σ̃h ] and

|fh(x, y, w, q, r) − fh(x, y, w̄, q, r)| ≤ σ(x, Vh(w − w̄) ) on Σh, (3.29)

|gh(x, y, w)− gh(x, y, w̄)| ≤ σ̃h(x, Vh(w − w̄) ) on Σimp
h . (3.30)

Assumption H [Dqfh, Drfh ]. Suppose that the function fh : Σh → R of
the variables (x, y, w, q, r), q = (q1, . . . , qn), r = [rij ]i,j=1,...,n, satisfies the
conditions:

1) for each P = (x, y, w, q, r) ∈ Σh there exist the derivatives

Dqfh(P ) = (Dq1fh(P ), . . . , Dqn
fh(P )) , Drfh(P ) =

[

Drij
fh(P )

]

i,j=1,...,n

and

Dqfh(x, y, w, ·)∈C(Rn×Mn×n, R
n), Drfh(x, y, w, ·)∈C(Rn×Mn×n,Mn×n),

2) the matrix Drfh is symmetric and for P = (x, y, w, q, r) ∈ Σh we have

Drij
fh(P ) ≥ 0 for (i, j) ∈ X+, Drij

fh(P ) ≤ 0 for (i, j) ∈ X− (3.31)

1− 2h0

n
∑

i=1

1

h2
i

Drii
fh(P ) + h0

∑

(i,j)∈X

1

hihj

|Drij
fh(P )| ≥ 0, (3.32)

−
1

2
|Dqj

fh(P )|+
1

hj

Drjj
fh(P )−

∑

i∈π[j]

1

hi

|Drij
fh(P )|≥0, 1≤j≤n, (3.33)

where π[j] = {1, . . . , j − 1, j + 1, . . . , n}.

Theorem 3.9. Suppose that Assumptions H [σh, σ̃h ], H [ fh, gh ], H [Dqfh,

Drfh ] are satisfied and
1) there is α0 : Θ → R+ such that

|φ
(i,m)
h − φ(i,m)| ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0, (3.34)

and vh : E∗h → R is a solution of (3.23)–(3.25),
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2) u ∈ Cimp(E∗, R) is a solution of (3.15)–(3.17), u is of class C3 on
E \ Eimp and the partial derivatives of the third order of u are bounded on
Ē \Eimp,

3) there exists C > 0 such that hih
−1
j ≤ C for i, j = 1, . . . , n, h ∈ Θ,

4) there exist β̃1, β̃2 : Θ → R+ such that the compatibility conditions are
satisfied

∣

∣

∣Fh[uh ](i,m) − f(x(i), y(m), u(x(i),y(m)), δu
(i,m)
h , δ(2)u

(i,m)
h )

∣

∣

∣ ≤

≤ β̃1(h) on E′h \E
(imp
h , lim

h→0
β̃1(h) = 0, (3.35)

and

∣

∣

∣Gh[uh ](ni,m) − g(ai, y
(m), u(x(i)−,y(m)))

∣

∣

∣ ≤

≤ β̃2(h) on E
(imp
h , lim

h→0
β̃2(h) = 0, (3.36)

where uh is the restriction of u to the set E∗h. Then there exists γ : Θ → R+

such that

|u
(i,m)
h − v

(i,m)
h | ≤ γ(h) on Eh, lim

h→0
γ(h) = 0. (3.37)

Proof. Let Γh : E′h → R be defined by

δ0u
(i,m)
h = Fh[uh ](i,m) + Γ

(i,m)
h on E′h \E

imp
h , (3.38)

∆u
(i,m)
h = Gh[uh ](i,m) + Γ

(i,m)
h on E

imp
h . (3.39)

It follows that there is β : Θ → R+ such that |Γ
(i,m)
h | ≤ β(h) on E′h and

limh→0 β(h) = 0.

Let ηh : Ih ∪Xh → R+ be given by

η
(i)
h = max{ |u

(i,m)
h − v

(i,m)
h | : (x(i), y(m)) ∈ E∗h }, −M0≤ i≤N0, (3.40)

We prove that ηh satisfies the difference inequalities

η
(i+1)
h ≤ max{α0(h), η

(i)
h + h0σh(x(i), (ηh)(i)) + h0β(h) }, (3.41)

x(i) ∈ J ′h \ J
imp
h ,

η
(i+1)
h ≤ max{α0(h), η

(i)
h + σ̃h(x(i), η

(i)
h , (ηh)(i)) + β(h) }, (3.42)

x(i) ∈ J imp
h .



69

We prove (3.41). Suppose that (x(i), y(m)) ∈ E′h \ E
imp
h . It follows from

Assumptions H [ fh, gh ], H [Dqfh, Drfh ] that

|(uh − vh)(i+1,m)| ≤

≤
∣

∣

∣ (uh − vh)(i,m) + h0

[

fh(x(i), y(m), (uh)(i,m), δu
(i,m)
h , δ(2)u

(i,m)
h ) −

−fh(x(i), y(m), (uh)(i,m), δv
(i,m)
h , δ(2)v

(i,m)
h )

] ∣

∣

∣
+

+h0 σh

(

x(i), Vh( (uh)(i,m) − (vh)(i,m) )
)

+ h0β(h)

and consequently

∣

∣

∣ (uh − vh)(i+1,m)
∣

∣

∣ ≤

≤

∣

∣

∣

∣

(uh−vh)(i,m)

[

1−2h0

n
∑

j=1

1

h2
j

Drjj
fh(Q)+h0

∑

(j,k)∈X

1

hjhk

|Drjk
fh(Q)

]∣

∣

∣

∣

+

+

∣

∣

∣

∣

n
∑

j=1

(uh − vh)(i,m+ej )

[

h0

2hj

Dqj
fh(Q) +

h0

h2
j

Drjj
fh(Q)−

−
∑

k∈π[j]

h0

hjhk

|Drjk
fh(Q)|

] ∣

∣

∣

∣

+

+

∣

∣

∣

∣

n
∑

j=1

(uh − vh)(i,m−ej)

[

−
h0

2hj

Dqj
fh(Q) +

h0

h2
j

Drjj
fh(Q)−

−
∑

k∈π[j]

h0

hjhk

|Drjk
fh(Q)|

] ∣

∣

∣

∣

+

+
∑

(j,k)∈X+

h0

2hjhk

Drjk
fh(Q)

[∣

∣

∣

∣

(uh − vh)(i,m+ej+ek)+(uh−vh)(i,m−ej−ek)

∣

∣

∣

∣

]

−

−
∑

(j,k)∈X−

h0

2hjhk

Drjk
fh(Q)

[∣

∣

∣

∣

(uh−vh)(i,m+ej−ek)+(uh−vh)(i,m−ej+ek)

∣

∣

∣

∣

]

+

+h0 σh(x(i), (ηh)(i) ) + h0β(h), (3.43)

where Q = (x(i), y(m), (uh)(i,m), q
(i,m), r(i,m)) ∈ Σh is an intermediate point.

The above estimates and (3.31)–(3.33) imply

|(uh − vh)(i+1,m)| ≤ η
(i)
h + h0 σh(x(i), (ηh)(i) ) + h0 β(h) (3.44)

on E′h \E
imp
h . If (x(i), y(m)) ∈ ∂0Eh \E

imp
h then we have

|(uh − vh)(i+1,m)| ≤ α0(h).

The above inequalities imply (3.41).
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Suppose now that (x(i), y(m)) ∈ Eimp
h . Then we have

|(uh − vh)(i+1,m)| ≤ η
(i)
h + σ̃h(x(i, η

(i)
h , (ηh)(i)) + β(h).

If (x(i), y(m)) ∈ ∂0Eh and i ∈ {n1, . . . , nk} then

|(uh − vh)(i+1,m)| ≤ α0(h).

The above inequalities imply (3.42).

Denote by η̃h : Ih ∪ Jh → R+ the solution of the problem

η(i+1) = η(i) + h0σh(x(i), η(i)) + h0β(h) for x(i) ∈ J ′h \ J
imp
h , (3.45)

η(i+1) = η(i) + σ̃h(x(i), η(i), η(i)) + β(h) for x(i) ∈ J imp
h , (3.46)

η(i) = α0(h) for x(i) ∈ Ih. (3.47)

Since the function ηh satisfies (3.41), (3.42) it follows from the monotonicity

of σ and σ̃ that η
(i)
h ≤ η̃

(i)
h for x(i) ∈ Jh and consequently |u

(i,m)
h − v

(i,m)
h | ≤

η̃
(i)
h on Eh. The assertion of our theorem follows from the stability of

problem (3.26)–(3.28).

Remark 3.10. The condition 2) of Assumption H [Dqfh, Drfh ] is very
complicated because we consider the functional differential problem with
all the derivatives [Dyiyj

z ]i,j=1,...,n. We have obtained estimate (3.44) from
(3.43) because the appropriate coefficients in (3.43) are nonnegative. Con-
sider the simple equation

Dxz(x, y) = f̃(x, y, z(x,y) ) +

n
∑

j=1

Dyjyj
z(x, y) on E \Eimp

where f̃ : (E \ Eimp) × Cimp[B,R] → R is a given function. Then the
corresponding difference equation has the form

δ0z
(i,m) = f̃h(x(i), y(m), z(i,m) ) +

n
∑

j=1

δ
(2)
jj z

(i,m)

where (x(i), y(m)) ∈ E′h \E
imp
h . Then condition 2) of Assumption H [Dqfh,

Drfh ] is equivalent to

1− 2h0

n
∑

j=1

1

h2
j

≥ 0

which is known in literature.
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3.5. Difference Methods for Almost Linear Problems

Write Σ0 = (E \Eimp)× C(B,R)×Rn and suppose that

F0 ∈ C( Σ0, R ), g ∈ C( Σimp, R ), φ ∈ Cimp(E0 ∪ ∂0E,R)

and

F ∈ C(E \Eimp,Mn×n ), F = [ Fij ]i,j=1,...,n

are given functions. In this Section we consider the almost linear equation
with impulses

Dxz(x, y) = F0(x, y, z(x,y), Dyz(x, y) ) +

+
n
∑

i,j=1

Fi,j(x, y )Dyiyj
z(x, y) on E \Eimp, (3.48)

∆z(x, y) = g(x, y, z(x−,y) on Eimp (3.49)

and the initial boundary condition (3.17).
Let

Σ0.h = (E′h \E
imp
h )× F (Bh, R)×Rn

and suppose that

F0.h : Σ0.h → R, gh : Σimp
h → R, φh : E0.h ∪ ∂0Eh → R,

are given functions. Consider the difference equations

δ0z
(i,m) = F0.h(x(i), y(m), z(i,m), δz

(i,m)) +

+
n
∑

i,j=1

Fij(x
(i), y(m)) δ

(2)
ij z

(i,m), (x(i), y(m)) ∈ E′h \E
imp
h , (3.50)

z(i+1,m) = z(i,m) + gh(x(i), y(m), z(i,m)), (x(i), y(m)) ∈ Eimp
h (3.51)

with initial boundary condition (3.25).
If we apply Theorem 3.9 to problems (3.48), (3.49) and (3.50), (3.51),

(3.25) then we need the following assumption on F : for each (j, k) ∈ X the
function

F̃jk(x, y) = sign Fjk(x, y), (x, y) ∈ E \Eimp,

is constant (see condition (3.31)).
Now we prove that this condition can be omitted in the case of almost

linear problems. We define for (i, j) ∈ X :

δ
(2)
jk z

(i,m) =
1

2

(

δ+j δ
−
k z

(i,m) + δ−j δ
+
k z

(i,m)
)

if

F
(i,m)
jk = Fjk(x(i), y(m)) ≤ 0, (3.52)

δ
(2)
jk z

(i,m) =
1

2

(

δ+j δ
+
k z

(i,m) + δ−j δ
−
k z

(i,m)
)

if F
(i,m)
jk > 0. (3.53)
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We consider the difference problem (3.50), (3.51) with δ0, δ given by (3.18),
(3.19) and δ(2) given by (3.20), (3.52), (3.53).

Assumption H [F0.h, F ] Suppose that the functions F0.h and F satisfy
the conditions:

1) for each Q = (x, y, w, q) ∈ Σ0.h there exist the derivatives

(Dq1F0.h(Q), . . . , Dqn
F0.h(Q) ) = DqF0.h(Q)

and DqF0.h(x, y, w, · ) ∈ C(Rn, Rn) for (x, y, w) ∈ (E′h \E
imp
h )× F (Bh, R),

2) the matrix F is symmetric and

1− 2h0

n
∑

i=1

1

h2
i

Fii(x, y) + h0

∑

(i,j)∈X

1

hihj

|Fij(x, y)| ≥ 0,

−
1

2
|Dqj

F0.h(Q)|+
1

hj

Fjj(x, y)−
∑

i∈π[j]

1

hi

|Fij(x, y)| ≥ 0, 1 ≤ j ≤ n,

where (x, y) ∈ E′h \E
imp
h , Q = (x, y, w, q) ∈ Σ0.h.

Assumption H [F0.h, gh ]. Suppose that
1) σh and σ̃h satisfy Assumption H [σh, σ̃h ] and
2) for each (x, y, w, q) ∈ Σ0.h, w̄ ∈ F (Bh, R) we have

|F0.h(x, y, w, q) − F0.h(x, y, w̄, q)| ≤ σh(x, Vh(w − w̄) ),

3) the function gh satisfies the estimate (3.30).

Theorem 3.11. Suppose that Assumptions H [σh, σ̃h ], H [F0.h, F ], H
[F0.h, gh ] are satisfied and

1) there is α0 : Θ → R+ such that the condition ( 3.34) is satisfied and
vh : E∗h → R is a solutions of problem (3.50)–(3.53), (3.18)–(3.20),

2) u ∈ Cimp(E
∗, R) is a solution of (3.48), (3.49), u is of class C3 on

E \Eimp and the derivatives of the third order of u are bounded on E \Eimp,

3) there exists C > 0 such that hih
−1
j ≤ C, i, j = 1, . . . , n, h ∈ Θ,

4) there exist β̃1, β̃2 : Θ → R+ such that

|F0(x
(i), y(m), u(x(i),y(m)), δu

(i,m)
h )− F0.h(x(i), y(m), (uh)(i,m), δu

(i,m)
h )| ≤

≤ β̃1(h), (x(i), y(m)) ∈ Eh \E
imp
h , lim

h→0
β̃1(h) = 0,

and condition (3.36) is satisfied.

Then there is γ : Θ → R+ such that |u
(i,m)
h − v

(i,m)
h | ≤ γ(h) on Eh and

limh→0 γ(h) = 0.

Proof. Let Γh : E′h → R be defined by (3.38), (3.39) for

fh(x, y, w, q, r) = F0.h(x, y, w, q) +

n
∑

i,j=1

Fij rij , (x, y, w, q, r) ∈ Σh,
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and for δ0, δ, δ
(2) given by (3.18)–(3.20), (3.52), (3.53). It follows from the

compatibility conditions and from assumption 1) that there is β : Θ → R+

such that |Γ
(i,m)
h | ≤ β(h) on E′h and limh→0 β(h) = 0. Let ηh : Ih∪Jh → R+

be defined by (3.40). We prove that ηh satisfies (3.41), (3.42).

Suppose that (x(i), y(m)) ∈ E′h \E
imp
h . Let

X+[i,m] = {(j, k) ∈ X : Fjk(x(i), y(m)) ≥ 0}, X−[i,m] = X \X+[i,m]

and zh = uh − vh. It follows from Assumptions H [F0.h, F ], H [F0.h, gh ]
that

|z
(i+1,m)
h | ≤ h0 σh(x(i), Vh(zh)(i,m)) + h0β(h) +

+

∣

∣

∣

∣

z
(i,m)
h + h0

n
∑

j,k=1

Fjkz
(i,m) δz

(i,m)
h +

+h0

[

F0.h(x(i), y(m), (uh)(i,m), δu
(m
h )−F0.h(x(i), y(m), (uh)(i,m), δv

(m
h )
]

∣

∣

∣

∣

≤

≤ h0 σh(x(i), Vh(zh)(i,m)) + h0β(h) +

+

∣

∣

∣

∣

∣

∣

z
(i,m)
h + h0

n
∑

j=1

Dqj
F0.h(Q̃)

1

2hj

(

z
(i,m+ej)
h − z

(i,m−ej)
h

)

+

+h0

n
∑

j=1

F
(i,m)
jj

1

h2
j

(

z
(i,m+ej)
h − 2z

(i,m)
h + z(i,m−ej)

)

+

+h0

∑

(j,k)∈X+[i,m]

1

2hjhk

F
(i,m)
jk

(

−z
(i,m+ej)
h − z

(i,m+ek)
h − z

(i,m−ej)
h −

−z
(i,m−ek)
h +2z

(i,m)
h + z

(i,m+ej+ek)
h + z

(i,m−ej−ek)
h

)

−

−h0

∑

(j,k)∈X−[i,m]

F
(i,m)
jk

1

2hjhk

(

z
(i,m+ej)
h + z

(i,m+ek)
h + z

(i,m−ej)
h +

+z
(i,m−ek)
h −2z

(i,m)
h − z

(i,m+ej−ek)
h − z

(i,m−ej+ek)
h

)∣

∣

∣ ,

where Q̃ = (x(i), y(m), (uh)(i,m), q
(i,m)) ∈ Σ0.h is an intermediate point. The

above estimate implies

|z
(i+1,m)
h | ≤ h0 σh(x(i), Vh(zh)(i,m)) + h0β(h) +

+
∣

∣

∣ z
(i,m)
h

∣

∣

∣



 1− 2h0

n
∑

j=1

1

h2
j

F
(i,m)
ii + h0

∑

(j,k)∈X

1

hjhk

|F
(i,m)
jk |



+

+

n
∑

j=1

∣

∣

∣ z
(i,m+ej)
h

∣

∣

∣





h0

2hj

Dqj
F0.h(Q̃) +

h0

h2
j

F
(i,m)
jj + h0

∑

k∈π[j]

1

hjhk

|F
(i,m)
jk |



+
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+
n
∑

j=1

∣

∣

∣
z
((i,m−ej)
h

∣

∣

∣



−
h0

2hj

Dqj
F0.h(Q̃)+

h0

h2
j

F
(i,m)
jj +h0

∑

k∈π[j]

1

hjhk

|F
(i,m)
jk |



+

+h0

∑

(j,k)∈X+[i,m]

|F
(i,m)
jk |

1

2hjhk

|z
(i,m+ej+ek)
h + z

(i,m−ej−ek)
h |+

+h0

∑

(j,k)∈X−[i,m]

|F
(i,m)
jk |

1

2hjhk

|z
(i,m−ej+ek)
h + z

(i,m+ej−ek)
h |.

It follows from the assumption 2) that

|(uh − vh)(i+1,m)| ≤ η
(i)
h + h0 σh(x(i), (ηh)(i)) + h0β(h) on E′h \E

imp
h .

The above inequality and (3.40) imply (3.41). The proof of (3.42) is the
same as in the proof of Theorem 3.9 Therefore we omit the details. From

(3.41), (3.42) we see that η
(i)
h ≤ η̃

(i)
h , x(i) ∈ Jh, where η̃h is the solution of

(3.45)–(3.47). Then we have |u
(i,m)
h −v

(i,m)
h | ≤ η̃

(i)
h on Eh, and the assertion

of our theorem follows from the stability of problem (3.26) (3.28).

3.6. Remarks on Nonlinear Estimates for Increment Functions

In this Section we investigate the condition 3) of Assumption H [σh, σ̃h ]
on the stability of difference problem (3.26) (3.28). We consider a class of
difference equations (3.23), (3.24) where fh and gh are superpositions of f
and g and suitable interpolation operators. We will consider the operators

Th.i : F (Bh, R) → F (B,R), 0 ≤ i ≤ N0,

defined in Section 2.5 with B, Bh considered in Section 3.1. The interpo-
lating operators Th.i were first introduced in [45] and were adopted in [14]
for equations with impulses.

Consider the initial boundary value problem (3.15)–(3.17) and the differ-
ence equations

δ0z
(i,m) = f

(

x(i), y(m), Th.iz(i,m), δz
(i,m), δ(2)z(i,m)

)

,

(x(i), y(m)) ∈ E′h \E
imp
h , (3.54)

z(i+1,m) = z(i,m) + g(x(i), y(m), Th.iz
−
(i,m)), (x(i), y(m)) ∈ Eimp

h , (3.55)

with initial boundary condition (3.25) where Th,iz(i,m)− is the restriction of

the function Th,iz(i,m) to the set B(−). Suppose that σ : (J\Iimp)×R+ → R+

and σ̃ : Iimp × R+ → R+ are given functions. We consider the comparison
problem with impulses

ω′(x) = σ(x, ω(x)) for x ∈ J \ Jimp, (3.56)

ω(x) = ω(x−) + σ̃(x, ω(x−)) for x ∈ Jimp, ω(0) = 0. (3.57)
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For w ∈ Cimp[B,R] we write

‖w‖B = sup{ |w(t, s)| : (t, s) ∈ B }.

We will denote by ‖ · ‖B(−) the supremum norm in the space Cimp[B
(−), R].

Suppose that the following conditions are satisfied:
(I) σ and σ̃ are continuous, σ(x, 0) = 0 for x ∈ J \ Jimp, σ̃(x, 0) = 0 for

x ∈ Jimp.

(II) The function σ is nondecreasing with respect to (x, p) ∈ (J \Jimp)×
R+ and the function σ̃ is nondecreasing with respect to the second variable.

(III) The maximum solution of problem (3.56), (3.57) is ω(x) = 0 for
x ∈ J.

(IV) We have the estimates

|f(x, y, w, q, r) − f(x, y, w̄, q, r)| ≤ σ(x, ‖w − w̄‖B) on Σ

and
|g(x, y, w) − g(x, y, w̄)| ≤ σ̃(x, ‖w − w̄‖B(−)) on Σimp.

The method (3.54), (3.55) is a particular case of (3.23), (3.24) for

fh(x(i), y(m), w, q, r) = f(x(i), y(m), Th.iw, q, r) on Σh,

gh(x(i), y(m), w) = g(x(i), y(m), (Th,iw)(−)) on Σimp
h ,

where (Th,iw)(−) is the restriction of Th.iw to the set B(−).

It is easy to see that the above functions fh and gh satisfy the compati-
bility conditions (3.35), (3.36) and that

|fh(x(i), y(m), w, q, r) − fh(x(i), y(m), w̄, q, r)| ≤ σ(x(i), ‖w − w̄‖h) on Σh,

|gh(x(i), y(m), w)− gh(x(i), y(m), w̄)| ≤ σ̃(x(i), ‖w − w̄‖h) on Σimp
h .

Now we prove that the difference problem

η(i+1) = η(i) + h0 σ(x(i), η(i)) for x(i) ∈ J ′h \ J
imp
h , (3.58)

η(i+1) = η(i) + σ̃(x(i), η(i)) for x(i) ∈ J imp
h , η(0) = 0, (3.59)

is stable in the sense of Assumption H [σh, σ̃h ].
Let ηh : Jh → R+ be a solution of the problem

η(i+1) = η(i) + h0 σ(x(i), η(i)) + h0γ(h) for x(i) ∈ J ′h \ J
imp
h ,

η(i+1) =η(i)+σ̃(x(i), η(i)) + γ̃(h) for x(i) ∈ J imp
h ,

η(0) = α0(h),

with γ, γ̃, α0 : Θ → R+.

Denote by ωh : J → R+ the solution of the initial problem with impulses

ω′(x) = σ(x, ω(x)) + γ(h) for x ∈ J \ Jimp,

ω(x) = η(x−) + σ̃(x, ω(x−) + γ̃(h) for x ∈ Jimp,

ω(0) = α0(h).
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There is ε0 > 0 such that for |h| < ε0 the solution ωh is defined on J and

lim
h→0

ωh(x) = 0 uniformly with respect to x ∈ J.

It follows from condition (II) that ωh satisfies the difference inequalities

ω
(i+1)
h ≥ ω

(i)
h + h0 σ(x(i), ω

(i)
h ) + h0γ(h) for x(i) ∈ Jh \ J

imp
h ,

ω
(i+1)
h ≥ ω

(i)
h + σ̃(ai, ω

(i)
h ) + γ̃(h), x(i) ∈ J imp

h .

From the above estimates we have η
(i)
h ≤ ω

(i)
h ≤ ωh(a) for x(i) ∈ Jh. Then

the problem (3.58), (3.59) is stable in the sense of Assumption H [σh, σ̃h ].

Remark 3.12. The results of this Chapter can be extended for weakly
coupled parabolic systems with impulses

Dxzi(x, y) = fi(x, y, z(x,y), Dyzi(x, y), Dyyzi(x, y)),

(x, y) ∈ E \Eimp, i = 1, . . . , k,

∆z(x, y) = g(x, y, z(x−,y)), (x, y) ∈ Eimp,

where

f = (f1, . . . , fk) : (Σ \ Σimp)× Cimp[B,R
k]×Rn ×Mn×n → Rk,

g = (g1, . . . , gk) : Σimp ×Rk × Cimp[B(−), Rk]

and z = (z1, . . . , zk).

3.7. Numerical Example

For n = 2 we put

E = (0, 1.5]× (−1, 1)× (−1, 1),

B = { 0 } × [−0.5, 0.5]× [−0.5, 0.5], Jimp = {0.5, 1}

and

E0 = {0} × [−1.5, 1.5]× [−1.5, 1.5],

∂0E = (0, 1.5]× ([−1.5, 1.5]× [−1.5, 1.5] \ (−1, 1)× (−1, 1)) .

Consider the differential - integral equation

Dxz(x, y)=
1

4
[Dy1y1z(x, y)+Dy2y2z(x, y)]+

1

8
(x+y1+y2)Dy1y2z(x, y) +

+6x





∫

B

z(x, y + s)ds− z(x, y)



+ f(x, y), (x, y) ∈ E \Eimp, (3.60)
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with impulses

∆z(x, y) =

∫

B

z(x− 0.25, y + s)ds− z(x− 0.25, y) + g(x, y), (3.61)

(x, y) ∈ Eimp,

and with initial boundary conditions

z(0, y) = 0 for y ∈ [−1.5, 1.5]× [−1.5, 1.5],

z(x, y) = ψ(x, y) for (x, y) ∈ ∂0E,
(3.62)

where

f(x, y) = 1 + y2
1 + y2

2 + y1y2 − x− x2 −
x

8
(x+ y1 + y2),

ψ(x, y) = x(1 + y2
1 + y2

2 + y1y2) for 0 < x < 0.5, (x, y) ∈ ∂0E,

ψ(x, y) = x(1 + y2
1 + y2

2 + y1y2) + y1 + y2 for 0.5 ≤ x < 1, (x, y) ∈ ∂0E,

ψ(x, y) = x(1 + y2
1 + y2

2 + y1y2)−
1

2
(y1 + y2)

for 1 ≤ x ≤ 1.5, (x, y) ∈ ∂0E,

and

g(0.5, y) = y1+y2−
1

24
, g(1, y) = −

3

2
(y1+y2)−

1

8
, y ∈ (−1, 1)×(−1, 1).

Let

Bh = {(x(i), y
(j)
1 , y

(k)
2 ) : i = 0, −K1 ≤ j ≤ K1, −K2 ≤ k ≤ K2},

where K1,K2 ∈ N and K1h1 = K2h2 = 0.5. We define the operator Th :
F (Bh, R) → F (B,R) in the following way. Suppose that w ∈ F (Bh, R) and
y = (y1, y2), −0.5 ≤ yi ≤ 0.5, i = 1, 2. There exists m = (m1,m2) ∈ Z2

such that −Ki ≤ mi < Ki, i = 1, 2 and y
(mi)
i ≤ yi ≤ y

mi+1)
i , i = 1, 2. We

put

(Thw)(0, y) = w(0,m1+1,m2+1) y1 − y
(m1)
1

h1

y2 − y
(m2)
2

h2
+

+w(0,m1,m2+1)

(

1−
y1 − y

(m1)
1

h1

)

y2 − y
(m2)
2

h2
+

+ w(0,m1+1,m2)
y1 − y

(m1)
1

h1

(

1−
y2 − y

(m2)
2

h2

)

+

+ w(0,m1,m2)

(

1−
y1 − y

(m1)
1

h1

) (

1−
y2 − y

(m2)
2

h2

)

.
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The difference method for the above problem has the form

z(i+1,j,k) = z(i,j,k) +
h0

4

(

δ
(2)
11 z

(i,j,k) + δ
(2)
22 z

(i,j,k)
)

+

+h0
1

8

(

x(i) + y
(j)
1 + y

(k)
2

)

δ
(2)
12 z(i,j,k) +

+6x(i)h0





∫

B

Thz(i,j,k)(0, s)ds− z(i,j,k)



+

+h0f(x(i), y
(j)
1 , y

(k)
2 ), (x(i), y

(j)
1 , y

(k)
2 ) ∈ E′h \ Σimp

h , (3.63)

z(i+1,j,k) = z(i,j,k) +

∫

B

Thz(i′,j,k)(0, s)ds− z(i′,j,k) +

+g(x(i), y
(j)
1 , y

(k)
2 ), (x(i), y

(j)
1 , y

(k)
2 ) ∈ Σimp

h , (3.64)

and

z(0,j,k) = 0 for (0, y
(j)
1 , y

(k)
2 ) ∈ E0.h,

z(i,j,k) = ψ(i,j,k) for (x(i), y
(j)
1 , y

(k)
2 ) ∈ ∂0Eh,

(3.65)

where δ
(2)
11 , δ

(2)
22 are given by (3.20) for n = 2 and δ

(2)
12 is defined by

δ
(2)
12 z

(i,j,k) =
1

2h1h2

(

z(i,j+1,k) + z(i,j−1,k) + z(i,j,k+1) + z(i,j,k−1) −

−2z(i,j,k) − z(i,j+1,k−1) − z(i,j+1,k−1)
)

if x(i) + y
(j)
1 + y

(k)
2 < 0,

δ
(2)
12 z

(i,j,k) =
1

2h1h2

(

−z(i,j+1,k) − z(i,j−1,k) − z(i,j,k+1) − z(i,j,k−1) +

+2z(i,j,k) + z(i,j+1,k+1) + z(i,j−1,k−1)
)

if x(i) + y
(j)
1 + y

(k)
2 ≥ 0.

The above formulas are identical with (3.52), (3.53) for n = 2. The index i′

in (3.64) is defined by i′h0 = x(i) − 0.25.

If h1 = h2 = h̃ and 1 − h0 h̃
−2 ≥ 0 then the difference method (3.63)–

(3.65) is convergent.
We take h0 = 10−4, h1 = h2 = 10−2 Let Ω = Ē ∪ ∂0E. The function

v(x, y) = x(1 + y2
1 + y2

2 + y1y2) for 0 ≤ x < 0.5, (x, y) ∈ Ω,

v(x, y) = x(1 + y2
1 + y2

2 + y1y2) + y1 + y2 for 0.5 ≤ x < 1, (x, y) ∈ Ω,

v(x, y) = x(1 + y2
1 + y2

2 + y1y2)−
1

2
(y1 + y2) for 1 ≤ x ≤ 1.5, (x, y) ∈ Ω,

is the solution of (3.60)–(3.62). Let uh : Eh → R be a solution of (3.63)–

(3.65) and εh = uh − vh. Some values of ε
(i,j,k)
h are listed in the table for

x = 0.75, x = 1.25.
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TABLE OF ERRORS, x = 0.75

(y1, y2)

−0.3
0
0.3

−0.3

−6.33 10−2

−5.43 10−2

−5.21 10−2

0

−5.19 10−2

−5.43 10−2

−4.99 10−2

0.3

−4.01 10−2

−3.11 10−2

−6.01 10−2

TABLE OF ERRORS, x = 1.25

(y1, y2)

−0.3
0
0.3

−0.3

4.54 10−2

−3.34 10−2

3.71 10−2

0

−4.10 10−2

−2.98 10−2

3.27 10−2

0.3

−3.98 10−2

2.87 10−2

4.56 10−2

The computation was performed by the computer IBM AT.
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