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Consider the differential equation

y(n) = f
(

t, y, y′, . . . , y(n−1)
)

, (1)

where f : [α,ω[×D −→ R is continuous function, −∞ < α < ω ≤ +∞, D =
{ (y1, . . . , yn) ∈ Rn : 0 < |yi| < +∞, i = 1, . . . , n }.

For this equation in the second and third chapters of the monography of I.T.Kiguradze
and T.A.Chanturija [1] at some estimations on function f are obtained: at ω = +∞
conditions of existence of solutions with a degree asymptotics y(t) ∼ ti−1 (i = 1, . . . , n),
and also estimations for Kneser’s and fast-growing solutions; at ω < +∞ - estimations
for singular solutions of the first and second kind.

In the present paper theorems of exact asymptotic formulas are reduced for those
solutions y the equations (1), each of which is defined on some interval [t0, ω[⊂ [α,ω[ and
satisfies to conditions

1) y(n−1)(t) 6= 0 for t ∈ [t0, ω[;

2) lim
t↑ω

y(k−1)(t) =

{

or 0,
or ±∞

(k = 1, . . . , n).

At an establishment of these theorems the ideas included in works [2-5] are used,
devoted to the equations with nonlinearities of Emden - Fowler type.

Let’s assume

πω(t) =

{

t, if ω = +∞
t− ω, if ω < +∞

, Λn−1 =

{

0,
1

2
,
2

3
, . . . ,

n− 2

n− 1
, 1,±∞

}

,

also we will enter set Ωoδ = [αo, ω[×Dδ, where

αo ∈ [α, ω[, Dδ = {(z1, . . . , zn) ∈ Rn : | zi |≤ δ < 1, i = 1, . . . , n} .

All basic outcomes for the equation (1) are obtained in terms of existence some con-
tinuously or twice continuously differentiable function ψ : [α,ω[−→ R \ {0}, possessing
those or other properties.
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For their formulation we will need the following notations:

ϕk1(t) =
ψ(t)

[

(λo
n−1 − 1)πω(t)

]n−k

n−1
∏

i=k

a0i

, (k = 1, . . . , n),

where a0k = (n− k)λ0
n−1 − (n− k − 1), λ0

n−1 /∈ Λn−1;

ϕk2(t) =
ψ(t)[πω(t)]n−k

(n− k)!
, (k = 1, . . . , n);

ϕk3(t) = ψ(t)

(

ψ(t)

ψ′(t)

)n−k

, (k = 1, . . . , n);

ϕk3+i(t) =
ψ(t)[πω(t)]i−k

(i− k)!
, (k = 1, . . . , i),

ϕk3+i(t) =
(−1)k−i−1(k − i− 1)!ψ′(t)

[πω(t)]k−i−1
, (k = i+ 1, . . . , n),

i = 1, . . . , n− 1,

and also the following conditions (Aj) (j = 1, . . . , n+ 2):

(Aj) (j ∈ {1, 2, 3}). On some set Ωoδ the relation takes place

f (t, ϕ1j(t)[1 + z1], . . . , ϕnj(t)[1 + zn])

ψ′(t)
= b0j(t)+

n
∑

k=1

bkj(t)zk +Zj(t, z1, . . . , zn), (2j )

where functions bkj : [αo, ω[−→ R (k = 0, 1, . . . , n) - are continuous and have properties

lim
t↑ω

b0j (t) = 1, lim
t↑ω

bkj(t) = b0kj = const (k = 1, . . . , n), (3j )

and function Zj : Ωoδ −→ R is continuous and such, that

Zj(t, z1, . . . , zn)
n
∑

k=1

|zk|

−→ 0 for

n
∑

k=1

|zk| −→ 0 uniformly on t ∈ [αo, ω[. (4j )

(A3+i) (i ∈ {1, . . . , n− 1}). On some set Ωoδ the relation takes place

(−1)n−i [πω(t)]n−if (t, ϕ13+i(t)[1 + z1], . . . , ϕn3+i(t)[1 + zn])

(n− i)!ψ′(t)
=

= b03+i(t) +

n
∑

k=1

bk3+i(t)zk + Z3+i(t, z1, . . . , zn),

where functions bk3+i : [αo, ω[→ R (k = 0, 1, . . . , n) and Z3+i : Ωoδ → R– - are continu-
ous and such, that conditions (33+i) and (43+i) are observed.

Theorem 1. Let there is continuously differentiable function ψ : [α, ω[−→ R \ {0}
such, that

lim
t↑ω

πω(t)ψ′(t)

ψ(t)
=

1

λ0
n−1 − 1

, λ0
n−1 /∈ Λn−1
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and the condition (A1) is observed. Then, if the algebraic equation

n
∑

k=1

b0k1

n−1
∏

i=k

a0i

k−1
∏

j=1

(a0j + ρ) = (1 + ρ)

n−1
∏

j=1

(a0j + ρ) (5)

does not have roots with zero real part, the differential equation (1) has at least one

solution satisfyng asymptotic representations

y(k−1)(t) = ϕk1(t)[1 + o(1)], (k = 1, . . . , n) at t ↑ ω.

Remark 1. The equation (5) obviously has no roots with a zero real part, if

n
∑

k=1

b0k1 6= 1 and

n−1
∑

k=1

|b0k1| ≤ |b0n1 − 1|.

Theorem 2. Let there is continuously differentiable function ψ : [α, ω[−→ R \ {0}
such, that

lim
t↑ω

πω(t)ψ′(t)

ψ(t)
= 0, lim

t↑ω
ψ(t) =

{

or 0,
or ±∞

and the condition (A2) is observed. Then, if
n
∑

k=1

b0
k2 6= 0, at the differential equation (1)

there is at least one solution satisfyng asymptotic representations

y(k−1)(t) = ϕk2(t)[1 + o(1)], (k = 1, . . . , n) at t ↑ ω.

Theorem 3. Let there is twice continuously differentiable function ψ : [α,ω[−→ R \
{0} such, that

lim
t↑ω

ψ′′(t)ψ(t)

[ψ′(t)]2
= 1

and the condition (A3) is observed. Then, if the algebraic equation

n
∑

k=1

b0k(1 + ρ)k−1 = (1 + ρ)n (6)

as no roots with a zero real part, the differential equation (1) has at least one solution

satisfing asymptotic representations

y(k−1)(t) = ϕk3(t)[1 + o(1)], (k = 1, . . . , n) at t ↑ ω.

Remark 2. The equation (6) obviously has no roots with a zero real part, if

n
∑

k=1

b0k2 6= 1 and

n−1
∑

k=1

|b0k2| ≤ |b0n2 − 1|.

Theorem 4. Let there is twice continuously differentiable function ψ : [α,ω[−→ R \
{0} such, that

lim
t↑ω

πωψ′′(t)

ψ′(t)
= −1, lim

t↑ω
ψ(t) =

{

or 0,
or ±∞
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and the condition (A3+i) is observed at some i ∈ {1, . . . , n−1}. Then, if
n
∑

k=i+1

b0
k3+i

6= 1

and the algebraic equation

n
∑

k=i+1

b0
k3+i

(k − i− 1)!

k−1
∏

j=i+1

(j − i+ ρ) =
(n− i+ ρ)

(n− i)!

n−1
∏

j=i+1

(j − i+ ρ) (7)

has no roots with a zero real part, the differential equation (1) has at least one solution

satisfyng asymptotic representations

y(k−1)(t) = ϕk3+i(t)[1 + o(1)], (k = 1, . . . , n) at t ↑ ω.

Remark 3. The equation (7) obviously has no roots with a zero real part, if

n
∑

k=i+1

b0k3+i 6= 1 and

n−1
∑

k=i+1

|b0k3+i| ≤ |b0n3+i − 1|.

Remark 4. To find out to what extend theorems 1-4 sapplement each other, it is
necessary to pay attention to a principal term ϕnj (j ∈ {1, . . . , n + 2}) established
asymptotic of n− 1 a derivative of a solution y of the differential equation (1).

It is easy to notice, taking into account conditions of the appropriate theorems, that

lim
t↑ω

πω(t)ϕ′n1(t)

ϕn1(t)
=

1

λ0
n−1 − 1

, λ0
n−1 /∈

{

0,
1

2
,
2

3
, . . . ,

n− 2

n− 1
, 1,±∞

}

;

lim
t↑ω

πω(t)ϕ′n2(t)

ϕn2(t)
= 0, (λ0

n−1 = ±∞);

lim
t↑ω

πω(t)ϕ′n3(t)

ϕn3(t)
= ±∞, (λ0

n−1 = 1);

lim
t↑ω

πω(t)ϕ′n3+i(t)

ϕn3+i(t)
= i− n

(

λ0
n−1 =

n− i− 1

n− i

)

, i = 1, . . . , n− 1.

Moreover, it is possible to show, that each of these limits is equal lim
t↑ω

πω(t)y(n)(t)

y(n−1)(t)
.

Therefore, in case of existence (final or equal ±∞) a lim
t↑ω

πω(t)y(n)(t)

y(n−1)(t)
all possible

situations are enveloped.

Let’s show now on the example of the differential equation

y(n) = p(t)|y|σ0 |y′|σ1 · · · |y(n−1)|σn−1sign y, (8)

where σj (j = 0, 1, . . . , n − 1)– real constants and p : [α,ω[−→ R \ {0}– continuous
function, how effectively theorems 1-4 work.

In case of the theorem 1, the left part of representation (21) from a condition (A1)
becomes

f (t, ϕ11(t)[1 + z1], . . . , ϕn1(t)[1 + zn])

ψ′(t)
=

=
α0p(t)|ψ(t)|1−γ0 |(λ0

n−1 − 1)πω(t)|µn

ψ′(t)

n
∏

j=1

|1 + zj |
σj−1 ,
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where

α0 = sign [ψ(t)[(λ0
n−1 − 1)πω(t)]n−1,

γ0 = 1−

n−1
∑

j=0

σj , µn =

n−2
∑

j=0

σj(n− j − 1).

From here it is clear, that the condition (A1) will be hold, if

lim
t↑ω

α0p(t)|ψ(t)|1−γ0 |(λ0
n−1 − 1)πω(t)|µn

ψ′(t)
= 1.

In this connection, let’s search function ψ, aspiring at t ↑ ω either to zero, or to ±∞,
from the differential equation of the first order

ψ′ = α0p(t)|ψ|
1−γ0 |(λ0

n−1 − 1)πω(t)|µn .

From here we discover, that

|ψ(t)|γ0 = γ0|λ
0
n−1 − 1|µnJn(t) sign[(λ0

n−1 − 1)πω(t)]n−1 ,

where

Jn(t) =

t
∫

An

p(τ)|πω(τ)|µn dτ, A ∈ {ω;α}.

Hence, the inequality

γ0[(λ0
n−1 − 1)πω(t)]n−1Jn(t) > 0 at t ∈ [α,ω[ (9)

should be fulfilled and thus we will have

ψ(t) = ±
∣

∣γ0|λ
0
n−1 − 1|µnJn(t)

∣

∣

1

γ0 .

Due to the first of conditions of the theorem 1, this function should have property also

lim
t↑ω

πω(t)ψ′(t)

ψ(t)
=

1

λ0
n−1 − 1

, (λ0
n−1 /∈ Λn−1),

i.e., the condition

lim
t↑ω

|πω(t)|µn+1J ′n(t)

Jn(t)
=

1

λ0
n−1 − 1

, (λ0
n−1 /∈ Λn−1). (10)

should be satisfied. Thus, from the theorem 1 we have

Corollary 1. If γ0 6= 0, conditions (9), (10) are observed and the algebraic equation

n
∑

k=1

σk−1

n−1
∏

i=k

a0i

k−1
∏

j=1

(a0j + ρ) = (1 + ρ)

n−1
∏

j=1

(a0j + ρ)

has no roots with a zero real part, the differential equation (1) has the solutions, satisfyng

asymptotic representations

y(k−1)(t) = ±
∣

∣γ0|λ
0
n−1 − 1|µnJn(t)

∣

∣

1

γo [(λn−1 − 1)πω(t)]n−k [1 + o(1)],

(k = 1, . . . , n) at t ↑ ω.
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Let’s remark, that the conditions indicated in a corollary (9) and (10) are necessary
for existence of the equation (8) solutions satisfying a condition

lim
t↑ω

πω(t)y(n)(t)

y(n−1)(t)
=

1

λ0
n−1 − 1

, λ0
n−1 /∈ Λn−1.
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