V. M. Evtukhov

ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS OF n-th ORDER

> (Reported on June 11, 2001)

Consider the differential equation

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

where $f:[\alpha, \omega[\times D \longrightarrow R$ is continuous function, $-\infty<\alpha<\omega \leq+\infty, D=$ $\left\{\left(y_{1}, \ldots, y_{n}\right) \in R^{n}: 0<\left|y_{i}\right|<+\infty, \quad i=1, \ldots, n\right\}$.

For this equation in the second and third chapters of the monography of I.T.Kiguradze and T.A.Chanturija [1] at some estimations on function f are obtained: at $\omega=+\infty$ conditions of existence of solutions with a degree asymptotics $y(t) \sim t^{i-1}(i=1, \ldots, n)$, and also estimations for Kneser's and fast-growing solutions; at $\omega<+\infty$ - estimations for singular solutions of the first and second kind.

In the present paper theorems of exact asymptotic formulas are reduced for those solutions y the equations (1), each of which is defined on some interval $\left[t_{0}, \omega[\subset[\alpha, \omega[\right.$ and satisfies to conditions

1) $y^{(n-1)}(t) \neq 0 \quad$ for $\quad t \in\left[t_{0}, \omega[\right.$;
2) $\quad \lim _{t \uparrow \omega} y^{(k-1)}(t)=\left\{\begin{array}{ll}\text { or } & 0, \\ \text { or } & \pm \infty\end{array} \quad(k=1, \ldots, n)\right.$.

At an establishment of these theorems the ideas included in works [2-5] are used, devoted to the equations with nonlinearities of Emden - Fowler type.

Let's assume

$$
\pi_{\omega}(t)=\left\{\begin{array}{rl}
t, & \text { if } \quad \omega=+\infty \\
t-\omega, & \text { if } \quad \omega<+\infty
\end{array}, \Lambda_{n-1}=\left\{0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{n-2}{n-1}, 1, \pm \infty\right\}\right.
$$

also we will enter set $\Omega_{o \delta}=\left[\alpha_{o}, \omega\left[\times D_{\delta}\right.\right.$, where

$$
\alpha_{o} \in\left[\alpha, \omega\left[, \quad D_{\delta}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in R^{n}: \quad\left|z_{i}\right| \leq \delta<1, \quad i=1, \ldots, n\right\}\right.\right.
$$

All basic outcomes for the equation (1) are obtained in terms of existence some continuously or twice continuously differentiable function $\psi:[\alpha, \omega[\longrightarrow R \backslash\{0\}$, possessing those or other properties.

[^0]For their formulation we will need the following notations:

$$
\begin{aligned}
& \varphi_{k 1}(t)=\frac{\psi(t)\left[\left(\lambda_{n-1}^{o}-1\right) \pi_{\omega}(t)\right]^{n-k}}{\prod_{i=k}^{n-1} a_{0 i}}, \quad(k=1, \ldots, n), \\
& \text { where } \quad a_{0 k}=(n-k) \lambda_{n-1}^{0}-(n-k-1), \quad \lambda_{n-1}^{0} \notin \Lambda_{n-1} ; \\
& \varphi_{k 2}(t)=\frac{\psi(t)\left[\pi_{\omega}(t)\right]^{n-k}}{(n-k)!}, \quad(k=1, \ldots, n) ; \\
& \varphi_{k 3}(t)=\psi(t)\left(\frac{\psi(t)}{\psi^{\prime}(t)}\right)^{n-k}, \quad(k=1, \ldots, n) ; \\
& \varphi_{k 3+i}(t)=\frac{\psi(t)\left[\pi_{\omega}(t)\right]^{i-k}}{(i-k)!}, \quad(k=1, \ldots, i), \\
& \varphi_{k 3+i}(t)=\frac{(-1)^{k-i-1}(k-i-1)!\psi^{\prime}(t)}{\left[\pi_{\omega}(t)\right]^{k-i-1}}, \quad(k=i+1, \ldots, n) \\
& i=1, \ldots, n-1,
\end{aligned}
$$

and also the following conditions $\left(A_{j}\right)(j=1, \ldots, n+2)$:
$\left(A_{j}\right) \quad(j \in\{1,2,3\})$. On some set $\Omega_{o \delta}$ the relation takes place

$$
\frac{f\left(t, \varphi_{1 j}(t)\left[1+z_{1}\right], \ldots, \varphi_{n j}(t)\left[1+z_{n}\right]\right)}{\psi^{\prime}(t)}=b_{0 j}(t)+\sum_{k=1}^{n} b_{k j}(t) z_{k}+Z_{j}\left(t, z_{1}, \ldots, z_{n}\right), \quad\left(2_{j}\right)
$$

where functions $b_{k j}:\left[\alpha_{o}, \omega[\longrightarrow R(k=0,1, \ldots, n)\right.$ - are continuous and have properties

$$
\begin{equation*}
\lim _{t \uparrow \omega} b_{0 j}(t)=1, \quad \lim _{t \uparrow \omega} b_{k j}(t)=b_{k j}^{0}=\text { const } \quad(k=1, \ldots, n) \tag{j}
\end{equation*}
$$

and function $Z_{j}: \Omega_{o \delta} \longrightarrow R$ is continuous and such, that

$$
\begin{equation*}
\frac{Z_{j}\left(t, z_{1}, \ldots, z_{n}\right)}{\sum_{k=1}^{n}\left|z_{k}\right|} \longrightarrow 0 \quad \text { for } \quad \sum_{k=1}^{n}\left|z_{k}\right| \longrightarrow 0 \quad \text { uniformly on } \quad t \in\left[\alpha_{o}, \omega[\right. \tag{j}
\end{equation*}
$$

$\left(A_{3+i}\right) \quad(i \in\{1, \ldots, n-1\})$. On some set $\Omega_{o \delta}$ the relation takes place

$$
\begin{gathered}
\frac{(-1)^{n-i}\left[\pi_{\omega}(t)\right]^{n-i} f\left(t, \varphi_{13+i}(t)\left[1+z_{1}\right], \ldots, \varphi_{n 3+i}(t)\left[1+z_{n}\right]\right)}{(n-i)!\psi^{\prime}(t)}= \\
=b_{03+i}(t)+\sum_{k=1}^{n} b_{k 3+i}(t) z_{k}+Z_{3+i}\left(t, z_{1}, \ldots, z_{n}\right)
\end{gathered}
$$

where functions $b_{k 3+i}:\left[\alpha_{o}, \omega\left[\rightarrow R(k=0,1, \ldots, n)\right.\right.$ and $Z_{3+i}: \Omega_{o \delta} \rightarrow R-$ - are continuous and such, that conditions $\left(3_{3+i}\right)$ and $\left(4_{3+i}\right)$ are observed.

Theorem 1. Let there is continuously differentiable function $\psi:[\alpha, \omega[\longrightarrow R \backslash\{0\}$ such, that

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \psi^{\prime}(t)}{\psi(t)}=\frac{1}{\lambda_{n-1}^{0}-1}, \quad \lambda_{n-1}^{0} \notin \Lambda_{n-1}
$$

and the condition $\left(A_{1}\right)$ is observed. Then, if the algebraic equation

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k 1}^{0} \prod_{i=k}^{n-1} a_{0 i} \prod_{j=1}^{k-1}\left(a_{0 j}+\rho\right)=(1+\rho) \prod_{j=1}^{n-1}\left(a_{0 j}+\rho\right) \tag{5}
\end{equation*}
$$

does not have roots with zero real part, the differential equation (1) has at least one solution satisfyng asymptotic representations

$$
y^{(k-1)}(t)=\varphi_{k 1}(t)[1+o(1)], \quad(k=1, \ldots, n) \quad \text { at } \quad t \uparrow \omega .
$$

Remark 1. The equation (5) obviously has no roots with a zero real part, if

$$
\sum_{k=1}^{n} b_{k 1}^{0} \neq 1 \quad \text { and } \quad \sum_{k=1}^{n-1}\left|b_{k 1}^{0}\right| \leq\left|b_{n 1}^{0}-1\right|
$$

Theorem 2. Let there is continuously differentiable function $\psi:[\alpha, \omega[\longrightarrow R \backslash\{0\}$ such, that

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \psi^{\prime}(t)}{\psi(t)}=0, \quad \lim _{t \uparrow \omega} \psi(t)= \begin{cases}\text { or } & 0, \\ \text { or } & \pm \infty\end{cases}
$$

and the condition $\left(A_{2}\right)$ is observed. Then, if $\sum_{k=1}^{n} b_{k 2}^{0} \neq 0$, at the differential equation (1) there is at least one solution satisfyng asymptotic representations

$$
y^{(k-1)}(t)=\varphi_{k 2}(t)[1+o(1)], \quad(k=1, \ldots, n) \quad \text { at } \quad t \uparrow \omega
$$

Theorem 3. Let there is twice continuously differentiable function $\psi:[\alpha, \omega[\longrightarrow R \backslash$ $\{0\}$ such, that

$$
\lim _{t \uparrow \omega} \frac{\psi^{\prime \prime}(t) \psi(t)}{\left[\psi^{\prime}(t)\right]^{2}}=1
$$

and the condition $\left(A_{3}\right)$ is observed. Then, if the algebraic equation

$$
\begin{equation*}
\sum_{k=1}^{n} b_{0 k}(1+\rho)^{k-1}=(1+\rho)^{n} \tag{6}
\end{equation*}
$$

as no roots with a zero real part, the differential equation (1) has at least one solution satisfing asymptotic representations

$$
y^{(k-1)}(t)=\varphi_{k 3}(t)[1+o(1)], \quad(k=1, \ldots, n) \quad \text { at } \quad t \uparrow \omega
$$

Remark 2. The equation (6) obviously has no roots with a zero real part, if

$$
\sum_{k=1}^{n} b_{k 2}^{0} \neq 1 \quad \text { and } \quad \sum_{k=1}^{n-1}\left|b_{k 2}^{0}\right| \leq\left|b_{n 2}^{0}-1\right|
$$

Theorem 4. Let there is twice continuously differentiable function $\psi:[\alpha, \omega[\longrightarrow R \backslash$ $\{0\}$ such, that

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega} \psi^{\prime \prime}(t)}{\psi^{\prime}(t)}=-1, \quad \lim _{t \uparrow \omega} \psi(t)= \begin{cases}\text { or } & 0, \\ \text { or } & \pm \infty\end{cases}
$$

and the condition $\left(A_{3+i}\right)$ is observed at some $i \in\{1, \ldots, n-1\}$. Then, if $\sum_{k=i+1}^{n} b_{k 3+i}^{0} \neq 1$ and the algebraic equation

$$
\begin{equation*}
\sum_{k=i+1}^{n} \frac{b_{k 3+i}^{0}}{(k-i-1)!} \prod_{j=i+1}^{k-1}(j-i+\rho)=\frac{(n-i+\rho)}{(n-i)!} \prod_{j=i+1}^{n-1}(j-i+\rho) \tag{7}
\end{equation*}
$$

has no roots with a zero real part, the differential equation (1) has at least one solution satisfyng asymptotic representations

$$
y^{(k-1)}(t)=\varphi_{k 3+i}(t)[1+o(1)], \quad(k=1, \ldots, n) \quad \text { at } \quad t \uparrow \omega
$$

Remark 3. The equation (7) obviously has no roots with a zero real part, if

$$
\sum_{k=i+1}^{n} b_{k 3+i}^{0} \neq 1 \quad \text { and } \quad \sum_{k=i+1}^{n-1}\left|b_{k 3+i}^{0}\right| \leq\left|b_{n 3+i}^{0}-1\right|
$$

Remark 4. To find out to what extend theorems 1-4 sapplement each other, it is necessary to pay attention to a principal term $\varphi_{n j}(j \in\{1, \ldots, n+2\})$ established asymptotic of $n-1$ a derivative of a solution y of the differential equation (1).

It is easy to notice, taking into account conditions of the appropriate theorems, that

$$
\begin{aligned}
& \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \varphi_{n 1}^{\prime}(t)}{\varphi_{n 1}(t)}=\frac{1}{\lambda_{n-1}^{0}-1}, \quad \lambda_{n-1}^{0} \notin\left\{0, \frac{1}{2}, \frac{2}{3}, \ldots, \frac{n-2}{n-1}, 1, \pm \infty\right\} \\
& \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \varphi_{n 2}^{\prime}(t)}{\varphi_{n 2}(t)}=0, \quad\left(\lambda_{n-1}^{0}= \pm \infty\right) \\
& \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \varphi_{n 3}^{\prime}(t)}{\varphi_{n 3}(t)}= \pm \infty, \quad\left(\lambda_{n-1}^{0}=1\right) \\
& \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \varphi_{n 3+i}^{\prime}(t)}{\varphi_{n 3+i}(t)}=i-n \quad\left(\lambda_{n-1}^{0}=\frac{n-i-1}{n-i}\right), \quad i=1, \ldots, n-1
\end{aligned}
$$

Moreover, it is possible to show, that each of these limits is equal $\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{(n)}(t)}{y^{(n-1)}(t)}$.
Therefore, in case of existence (final or equal $\pm \infty$) a $\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{(n)}(t)}{y^{(n-1)}(t)}$ all possible situations are enveloped.

Let's show now on the example of the differential equation

$$
\begin{equation*}
y^{(n)}=p(t)|y|^{\sigma_{0}}\left|y^{\prime}\right|^{\sigma_{1}} \cdots\left|y^{(n-1)}\right|^{\sigma_{n-1}} \operatorname{sign} y \tag{8}
\end{equation*}
$$

where $\sigma_{j}(j=0,1, \ldots, n-1)$ - real constants and $p:[\alpha, \omega[\longrightarrow R \backslash\{0\}-$ continuous function, how effectively theorems 1-4 work.

In case of the theorem 1, the left part of representation $\left(2_{1}\right)$ from a condition $\left(A_{1}\right)$ becomes

$$
\begin{gathered}
\frac{f\left(t, \varphi_{11}(t)\left[1+z_{1}\right], \ldots, \varphi_{n 1}(t)\left[1+z_{n}\right]\right)}{\psi^{\prime}(t)}= \\
=\frac{\alpha_{0} p(t)|\psi(t)|^{1-\gamma_{0}}\left|\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right|^{\mu_{n}}}{\psi^{\prime}(t)} \prod_{j=1}^{n}\left|1+z_{j}\right|^{\sigma_{j-1}}
\end{gathered}
$$

where

$$
\begin{gathered}
\alpha_{0}=\operatorname{sign}\left[\psi(t)\left[\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right]^{n-1},\right. \\
\gamma_{0}=1-\sum_{j=0}^{n-1} \sigma_{j}, \quad \mu_{n}=\sum_{j=0}^{n-2} \sigma_{j}(n-j-1) .
\end{gathered}
$$

From here it is clear, that the condition $\left(A_{1}\right)$ will be hold, if

$$
\lim _{t \uparrow \omega} \frac{\alpha_{0} p(t)|\psi(t)|^{1-\gamma_{0}}\left|\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right|^{\mu_{n}}}{\psi^{\prime}(t)}=1
$$

In this connection, let's search function ψ, aspiring at $t \uparrow \omega$ either to zero, or to $\pm \infty$, from the differential equation of the first order

$$
\psi^{\prime}=\alpha_{0} p(t)|\psi|^{1-\gamma_{0}}\left|\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right|^{\mu_{n}}
$$

From here we discover, that

$$
|\psi(t)|^{\gamma_{0}}=\gamma_{0}\left|\lambda_{n-1}^{0}-1\right|^{\mu_{n}} J_{n}(t) \operatorname{sign}\left[\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right]^{n-1}
$$

where

$$
J_{n}(t)=\int_{A_{n}}^{t} p(\tau)\left|\pi_{\omega}(\tau)\right|^{\mu_{n}} d \tau, \quad A \in\{\omega ; \alpha\}
$$

Hence, the inequality

$$
\begin{equation*}
\gamma_{0}\left[\left(\lambda_{n-1}^{0}-1\right) \pi_{\omega}(t)\right]^{n-1} J_{n}(t)>0 \quad \text { at } \quad t \in[\alpha, \omega[\tag{9}
\end{equation*}
$$

should be fulfilled and thus we will have

$$
\psi(t)= \pm\left|\gamma_{0}\right| \lambda_{n-1}^{0}-\left.\left.1\right|^{\mu_{n}} J_{n}(t)\right|^{\frac{1}{\gamma_{0}}}
$$

Due to the first of conditions of the theorem 1, this function should have property also

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) \psi^{\prime}(t)}{\psi(t)}=\frac{1}{\lambda_{n-1}^{0}-1}, \quad\left(\lambda_{n-1}^{0} \notin \Lambda_{n-1}\right)
$$

i.e., the condition

$$
\begin{equation*}
\lim _{t \uparrow \omega} \frac{\left|\pi_{\omega}(t)\right|^{\mu_{n}+1} J_{n}^{\prime}(t)}{J_{n}(t)}=\frac{1}{\lambda_{n-1}^{0}-1}, \quad\left(\lambda_{n-1}^{0} \notin \Lambda_{n-1}\right) \tag{10}
\end{equation*}
$$

should be satisfied. Thus, from the theorem 1 we have
Corollary 1. If $\gamma_{0} \neq 0$, conditions (9), (10) are observed and the algebraic equation

$$
\sum_{k=1}^{n} \sigma_{k-1} \prod_{i=k}^{n-1} a_{0 i} \prod_{j=1}^{k-1}\left(a_{0 j}+\rho\right)=(1+\rho) \prod_{j=1}^{n-1}\left(a_{0 j}+\rho\right)
$$

has no roots with a zero real part, the differential equation (1) has the solutions, satisfyng asymptotic representations

$$
\begin{array}{r}
y^{(k-1)}(t)= \pm\left|\gamma_{0}\right| \lambda_{n-1}^{0}-\left.\left.1\right|^{\mu_{n}} J_{n}(t)\right|^{\frac{1}{\gamma_{o}}}\left[\left(\lambda_{n-1}-1\right) \pi_{\omega}(t)\right]^{n-k}[1+o(1)] \\
(k=1, \ldots, n) \quad \text { at } \quad t \uparrow \omega
\end{array}
$$

Let's remark, that the conditions indicated in a corollary (9) and (10) are necessary for existence of the equation (8) solutions satisfying a condition

$$
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) y^{(n)}(t)}{y^{(n-1)}(t)}=\frac{1}{\lambda_{n-1}^{0}-1}, \quad \lambda_{n-1}^{0} \notin \Lambda_{n-1}
$$

Acknowledgment

The appropriate corollaries may be similarly obtained from theorems 2-4.

References

1. I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations. (Russian) Nauka, Moscow, 1990.
2. A. V. Kostin, The asymptotic of proper solutions of nonlinear ordinary differential equations. (Russian) Differentsial'nye Uravneniya 23(1987), No. 3, 524-526.
3. V. M. Evtukhov, Asymptotic representation of monotonic solutions of a nonlinear nth order differential equation of Emden-Fowler type. (Russian) Dokl. Russian Akad. Nauk 324(1992), No. 2, 258-260.
4. V. M. Evtukhov, On one class of monotone solutions of nth order nonlinear differential equation of Emden-Fowler type. (Russian) Soobshch. Akad. Nauk Gruzii 145(1992), No. 2, 269-273.
5. V. M. Evtukhov and E. V. Shebanina, The asymptotic behaviour of solutions of differential equations of nth order. Mem Differential Equations Math. Phis. 13(1997), 150-153.

Author's address:

Faculty of Mechanics and Mathematics
I. Mechnikov Odessa State University

2, Petra Velikogo St., Odessa 270057
Ukraine

[^0]: 2000 Mathematics Subject Classification. 34E10.
 Key words and phrases. Hight order differential equations, asymptotic representations of proper and singular solutions.

