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V. ROTAR AND T. SHERVASHIDZE

ON AN EXTREMUM PROBLEM

(Reported on April 2, 2001)

The result presented was announced in [3]. We provide here a detailed proof and
discussion. We believe that, in view of its generality, it could be helpful in many applica-
tions. In [3] it was used for estimation of the characteristic function of a quadratic form
in normally distributed random variables, see also [1]. Similar ideas were used also in [2].

1. Notation and Results. For a natural number n let = (z1,...,2n), ; > 0,
j=1,...,n, and denote
n
v(@) = [Ja+a,

j=1

n n

Anp = An(D,E) = {x:ij =D, Zz? =E, z1>222> - >an 20},
Jj=1 Jj=1

where D and E are such that D > 0, and
D?/n < E < D% (1)

(By the Cauchy inequality A, is non-empty if (1) holds and the point (D/m,...,D/m,
0,...,0) belongs to A, for some m, 1 < m < n, if D?/E = m; it is the only point of A,,
for m = 1,n.) Let

U, =0 (D,E) =min {¥(z):2 € Ay}, " =T"(D,E)=max{¥(z):z€ An}.

Similar to [1] it is easy to obtain a lower bound for ¥.. Indeed, according to the
Method of Lagrange’s multipliers (say, A1, A2 in our case) the coordinates 1, ...,l, of
the point at which the minimum is attained, satisfy the equations

v, 7/\1(1+lj)72)\2lj(1+lj) =0,j= 1,...,n.

Thus [;’s can take at most two nonzero values and without loss of generality there exists
a positive real « such that l; = a for j = 1,...,r with » > m/2 and D1 = ra > D/2
where m stands for the number of positive I;’s. Since r = D?/(ra?) > D?/(4E) := 1o,
we have

Vo> (1+0) > (14 D/(2r)" = (1+ D/(2r0))".

Detailed analysis leads to precise extreme values for ¥(z) and lower and upper bounds
for minimum and maximum, respectively, which are more accurate than the last lower
bound for ¥,. Our approach consists in using classical methods for the case n < 3 and
extending the result to the case n > 3.

Let m(h) = h for an integer h and m(h) = [h] + 1 otherwise; denote

b(1) =0, b(k) = {(m(h)/h —1)/(m(r) = D)}'"* as B> 1. @)
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Note that 0 = b(h) = b(h—0) # b(h+0) = 1/h for an integer h; at non-integer points b(h)
is continuous. Below we consider h = D?/E which varies in [1,n]. We have m(1) = 1
and m(h) = j for h € (j — 1, j] where j = 2,...,n. We will also use the notation

bj = bj(D,E) =bj(h) = [((5/h) = 1)/ = DI'/?, he[Ljl, j=2,....n, b1 =0;
b; coincides with b(h) when h € (j — 1, j]. Observe that b;(D,D2?/(j — 1)) = 1/(j — 1).

Proposition. 1°.The function W(x) attains its minimum on A, at a unique point
l=(l1,...,ln) with coordinates

li = =lmo1=DA+b)/m, lm=D1-(m-1b)/m, lmy1=- =1y =0,
where m = m(h), b = b(h) and h = D2?/E. The function ¥(l) = ¥, = U, (D;h) is
increasing in h, and
D1 +b)\™ ! D(1 - (m—1)b D\ [P
\I/*z\lf*(D;h)=<1+ﬁ) (1+M)2(1+—) - (3)
m m [h]
2°. The function ¥(x) attains its mazimum on Ay at a unique point u = (u1,...,uUn)
with coordinates
ur =D+ (n—1)bn)/n, uz=--=un=D(1—bn)/n,
W(u) = U* = ¥*(D,n;h) is the increasing function in h, and
D(1 —1)b D(1—bp)\"! D\"™
\Il*:\I!*(D,n;h):(lJr 1+ )")(1+ ( ")) <(1+—) . (4)
n

n - n

Remark. We have
W(@) = 1+ 51(2) + s2(2) + - + 50 (a),

where

sk(z) = Z Tiy Ty, k=1,2,.,n,
1<ip < <ip <n

are the elementary symmetric polynomials. Since s1(z) = D and s2(z) = (D? — E)/2
on An(D, E), the proposition provides extreme values for the sum of all elementary
symmetric polynomials in n nonnegative real variables when si1(z) and sa2(x) are fixed.

Below we will give the proof of the proposition (compare it with that of Lemma 1
from [2]). In what follows (1) is supposed to hold.

2. Proof of the Case n < 3. Since m(1) =1 and b(1) = by = 0, the case n = 1 is
trivial. Clearly, Ao consists of only one point x = = u with coordinates

z1 = (D/2)(1 + b2), z2 = (D/2)(1 - b2)
and
U(z1,22) = ¥, = U* =14+ D+ (D? — E)/2.

So, (3) and (4) hold for n = 2.

We turn to the case n = 3. Note that A3 is an arch of the circumference obtained
by the intersection of the sphere Sas,,r centered at Mo and having the radius R, R? =
E — D?/3, with the plane domain surrounded by the triangle MoM; Mz (see Fig. 1),
where

My = (D/?)7 D/3,D/3), M= (D/27 D/2,0), Mz =(D,0,0).

For the end point M of the arch A3, which lies on MyMs, we have

M = ((D/3)(1 + 2b3)), (D/3)(1 — bs), (D/3)(1 — b3)).
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As for N, the other end point of A3, note first that it lies on MoM; if E < D? and
since N = (x1,21,D — 221) € Sy, R, We Obtain

N = ((D/3)(1 +b3), (D/3)(1 + b3), (D/3)(1 — 2b3)) it D?*/3<E<D?/2. (5)

z3

N T2

1,/ My
Fig. 1

If D2 > E > D?/2 the end point N of A3 lies on M Mz and since N = (x1, D—x1,0) €
Sno, R We have

N = ((D/2)(1 +b2),(D/2)(1 = b2),0) for D*>E > D?/2. (6)

Note that two expressions (5) and (6) for N coincide at the boundary E = D2/2.
Furthermore, for x € As

U(z) =1+ D+ (D? — E)/2 + z12223.
So the extrema are to be found for z1x2xz3. Clearly
x179x3 = z3[22 — D3 + (D? — E)/2] := f(z3).

Solving the equation f(x3) = 0, we obtain the following roots xgl) = 0, x:(f) =

(D/2)(1 = b2), zgs) = (D/2)(1 + b2), where the two last roots become complex when
E < D?/2.

If D?/2 < E < D, the third coordinate x3 varies in the interval [0, (D/3)(1 — b3)].
Calculating the derivative we obtain f'(z3) = 3x2 — 2Dx3 + (D? — E)/2, which gives
that possible extreme points are 3 = (D/3)(1 — b3) and z%* = (D/3)(1 + b3); the latter
one lies outside the interval considered and f”(z3%) > 0. Thus the minimum is attained
at 3 = 0 and the maximum at 23 = (D/3)(1 — b3).

If E < D?/2, x3 varies in the interval [(D/3)(1 — 2b3),(D/3)(1 — b3)] and since
the derivative is positive on it, we have the minimum at z3 = (D/3)(1 — 2b3) and the
maximum at z3 = (D/3)(1 — b3).

Summing up we conclude that for n = 3 the function ¥ attains its maximum at the
unique point

u=((D/3)(1 + 2b3), (D/3)(1 = b3), (D/3)(1 — b3)) (M)
and its minimum at the unique point
l= ((D/3)(1 +b3), (D/3)(1 + b3), (D/3)(1 — 2b3)) if D?2/3<E<D2%/2 (8)
and at the unique point

1= ((D/2)(1+b2),(D/2)(1 = b2),0) if D?/2<E< D (9)
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Formulas (7) and (8) give the same answers on the boundary E = D2/2.

Now we again use the notation m = m(D, E) = m(D?/E) introduced above for the
least integer which is greater than or equals to D?/FE and b = b(D, E) = b(D?/E) given
by formula (2). Two formulas (8) and (9) presenting ¥, for n < 3 are unified by the
formula

W = [14(D/m)1+0)]" " [1 4 (D/m)(1 — (m—1)p)], n<3. (10)

The expression for U* which covers the case n = 2 too is simpler since it does not
contain m:

W= (14 (D/n)(1+ (n—1)ba)] [1+ (D/m)(1 —b)]" ', n<3. (11)

Let us now show that (10) and (11) are valid for the case n > 3 as well.

3. Proof for the Case n > 3. Minimum. We should show that the minimum is
attained at | € A,, which has the form

I=(a...,a,00,...,0), (12)
——

m—1 n—m

where ao > 8 > 0.
Let us equip ¥ and W, with an additional subscript n, i.e.,

‘I’*n:\l’*n(DvE):\I}n(l)v l=(l1,...,ln), lh2-2>21l,>0. (13)

For n < 3 the relation (12) has been proved. Let us now consider the case n > 3 and
take the last three positive coordinates l,,—2,lm—1,lm of . Denote

lm—2 +lm1 +lm =D, 12 _,+12 | +12 =F

and find the minimum U,3(D’, E’) of ¥3(z1,z2,z3). If this minimum has been less than
W3(lm—2,lm—1,lm) this would have contradicted to our assumption that at ! minimum
is attained by ¥,. According to (8) l;m—2 = l;m—1 > lm. Arguing similarly we can show
that l;—3 = l;m—2, etc. Denote now

h==lp1=a, ln=06 m—-1=k.
We have the following conditions
ka+8=D,ka®>+ 82 =E,a>§>0. (14)
Having in mind that
E/D? —1/(k+1) >0, (15)

which is the case since (k 4+ 1) < n we obtain

and B > 0, if

E/D? < 1/k. (16)

Now we are ready to define k. Inequalities (15) and (16) lead to k < D2/E < k+ 1
which implies that k + 1 = m = m(D, E) = m(D?/E) and this solution is unique. We
conclude that the conditions (14) determine [ in the form (12) where there are n —m
zeros, first m — 1 positive coordinates are equal to « and the mth one to 3, where m, «
and 3 are expressed in terms of D and F in the way stated in the part 1° of Proposition.

Next we study ¥, (D, E) as a function of h = D?/E, which varies in [1,n]. According
to the properties of m(h) and b(h) described above this function is continuous in each
interval (j,5+1],5 = 1,...,n— 1, and since V. (D;h) equals to (1+ D/5)? for h = j and
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it has the same limit as h — j 4 0 for each j = 1,...,n — 1, ¥, (D;h) is continuous on
the whole interval [1,n]. The derivative of ¥, (D;h) w.r.t. h is positive for h € (4,7 + 1],
whence U, (D;h) increases in this interval and

U (Dsh)> lim Wl (Dih)=(1+D/5) = (1+D/)™, heGi+1), j=1,....n—1.
h—j+0

As U, (D;j) = (1+D/5)7 in the integer points, we obtain the following lower estimate

wom =iz (1 2)" = (14 522

Of course, one can take W, (D;ho) with any hg, 1 < hg < h, as a lower estimate for
V. (D;h).

4. Proof for the Case n > 3. Maximum. It is easy to show that for E < D? the
point of maximum of ¥ looks like

v=(a,B3,...,8), a>p3>0. 17

Indeed, let u = (u1,...,un) and consider the first three coordinates of u. Denote ui +
ugtuz = D', u? +u2+u2 = E'. Asin (13) we equip ¥* with an additional subscript n.
It is evident that the problem of finding maximum for ¥3(z1,x2,x3) in A3(E’, D’) has
the unique solution of the form (u1, u2,u2). According to (7) it means that u1 > u2 = us.
Arguing similarly, we obtain that uz = u4, and so on until we arrive at (up—2, Un—1, Un).
Thus we see that our hypothesis (17) is true.

Introduce the notation

uy=o, uzg=---=up =0, a>p>0.

From the conditions
a+(n-1)B=D, a®+((n-1)p5%
we obtain

a=(D/n)(1+(n—1)bn)), B=(D/n)(1~bn),

and hence the validity of (11) for any natural n.

If E = D2, then b, = 1, o = D and 8 = 0, which corresponds to the singular case
An(D,D?) = {(D,0,...,0)}, when u has the same form (17) where we set 3 = 0.

Let us now study (11) as the function of h. We need no calculations to claim that

U (D; B) = U*(D;h) < (14 D/n)" (18)

since (1 4+ D/n)™ is a maximum of W(z) with the only constraint Y x; = D, @; > 0,
i =1,...,n. But as in the case of minimum, we can prove that U*(D; h) increases (since
its derivative w.r.t. h is positive). This will lead to (18) after substituting h = n in the
expression of U*(D;h).

As an upper estimate of ¥*(D;h) we can take W*(D;ho) with any ho such that
h < ho < n.
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