V. ROTAR AND T. SHERVASHIDZE

ON AN EXTREMUM PROBLEM

(Reported on April 2, 2001)

The result presented was announced in [3]. We provide here a detailed proof and discussion. We believe that, in view of its generality, it could be helpful in many applications. In [3] it was used for estimation of the characteristic function of a quadratic form in normally distributed random variables, see also [1]. Similar ideas were used also in [2].

1. Notation and Results. For a natural number n let $x = (x_1, \ldots, x_n), x_j \ge 0, j = 1, \ldots, n$, and denote

$$\Psi(x) = \prod_{j=1}^{n} (1+x_j),$$

$$A_n = A_n(D, E) = \left\{ x : \sum_{j=1}^{n} x_j = D, \sum_{j=1}^{n} x_j^2 = E, \ x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \right\},$$

where D and E are such that D > 0, and

$$D^2/n \le E \le D^2. \tag{1}$$

(By the Cauchy inequality A_n is non-empty if (1) holds and the point $(D/m, \ldots, D/m, 0, \ldots, 0)$ belongs to A_n for some $m, 1 \le m \le n$, if $D^2/E = m$; it is the only point of A_n for m = 1, n.) Let

$$\Psi_* = \Psi_*(D, E) = \min\left\{\Psi(x) : x \in A_n\right\}, \quad \Psi^* = \Psi^*(D, E) = \max\left\{\Psi(x) : x \in A_n\right\}$$

Similar to [1] it is easy to obtain a lower bound for Ψ_* . Indeed, according to the Method of Lagrange's multipliers (say, λ_1, λ_2 in our case) the coordinates l_1, \ldots, l_n of the point at which the minimum is attained, satisfy the equations

$$\Psi_* - \lambda_1 (1 + l_j) - 2\lambda_2 l_j (1 + l_j) = 0, j = 1, \dots, n$$

Thus l_j 's can take at most two nonzero values and without loss of generality there exists a positive real α such that $l_j = \alpha$ for $j = 1, \ldots, r$ with $r \ge m/2$ and $D_1 = r\alpha \ge D/2$ where m stands for the number of positive l_j 's. Since $r = D_1^2/(r\alpha^2) \ge D^2/(4E) := r_0$, we have

$$\Psi_* \ge (1+\alpha)^r \ge (1+D/(2r))^r \ge (1+D/(2r_0))^{r_0}$$

Detailed analysis leads to precise extreme values for $\Psi(x)$ and lower and upper bounds for minimum and maximum, respectively, which are more accurate than the last lower bound for Ψ_* . Our approach consists in using classical methods for the case $n \leq 3$ and extending the result to the case n > 3.

Let m(h) = h for an integer h and m(h) = [h] + 1 otherwise; denote

$$b(1) = 0, \quad b(h) = \left\{ (m(h)/h - 1)/(m(h) - 1) \right\}^{1/2} \text{ as } h > 1.$$
 (2)

2000 Mathematics Subject Classification. 26B12, 52A40. Key words and phrases. Conditional extrema. Note that $0 = b(h) = b(h-0) \neq b(h+0) = 1/h$ for an integer h; at non-integer points b(h) is continuous. Below we consider $h = D^2/E$ which varies in [1, n]. We have m(1) = 1 and m(h) = j for $h \in (j-1, j]$ where j = 2, ..., n. We will also use the notation

$$b_j = b_j(D, E) = b_j(h) = [((j/h) - 1)/(j - 1)]^{1/2}, h \in [1, j], j = 2, ..., n, b_1 = 0;$$

 b_j coincides with b(h) when $h\in (j-1,j].$ Observe that $b_j(D,D^2/(j-1))=1/(j-1).$

Proposition. 1°. The function $\Psi(x)$ attains its minimum on A_n at a unique point $l = (l_1, \ldots, l_n)$ with coordinates

$$l_1 = \dots = l_{m-1} = D(1+b)/m, \quad l_m = D(1-(m-1)b)/m, \quad l_{m+1} = \dots = l_n = 0,$$

where m = m(h), b = b(h) and $h = D^2/E$. The function $\Psi(l) = \Psi_* = \Psi_*(D;h)$ is increasing in h, and

$$\Psi_* = \Psi_*(D;h) = \left(1 + \frac{D(1+b)}{m}\right)^{m-1} \left(1 + \frac{D(1-(m-1)b)}{m}\right) \ge \left(1 + \frac{D}{[h]}\right)^{[h]}.$$
 (3)

2°. The function $\Psi(x)$ attains its maximum on A_n at a unique point $u = (u_1, \ldots, u_n)$ with coordinates

$$u_1 = D(1 + (n-1)b_n)/n, \quad u_2 = \dots = u_n = D(1 - b_n)/n,$$

 $\Psi(u) = \Psi^* = \Psi^*(D, n; h)$ is the increasing function in h, and

$$\Psi^* = \Psi^*(D,n;h) = \left(1 + \frac{D(1+(n-1)b_n)}{n}\right) \left(1 + \frac{D(1-b_n)}{n}\right)^{n-1} \le \left(1 + \frac{D}{n}\right)^n.$$
 (4)

 ${\it Remark.}$ We have

$$\Psi(x) = 1 + s_1(x) + s_2(x) + \dots + s_n(x),$$

where

$$s_k(x) := \sum_{1 \leq i_1 < \dots < i_k \leq n} x_{i_1} \cdots x_{i_k}, k = 1, 2, \dots, n,$$

are the elementary symmetric polynomials. Since $s_1(x) = D$ and $s_2(x) = (D^2 - E)/2$ on $A_n(D, E)$, the proposition provides extreme values for the sum of all elementary symmetric polynomials in *n* nonnegative real variables when $s_1(x)$ and $s_2(x)$ are fixed.

Below we will give the proof of the proposition (compare it with that of Lemma 1 from [2]). In what follows (1) is supposed to hold.

2. Proof of the Case $n \leq 3$. Since m(1) = 1 and $b(1) = b_1 = 0$, the case n = 1 is trivial. Clearly, A_2 consists of only one point x = l = u with coordinates

$$x_1 = (D/2)(1+b_2), \quad x_2 = (D/2)(1-b_2)$$

and

$$\Psi(x_1, x_2) = \Psi_* = \Psi^* = 1 + D + (D^2 - E)/2.$$

So, (3) and (4) hold for n = 2.

We turn to the case n = 3. Note that A_3 is an arch of the circumference obtained by the intersection of the sphere $S_{M_0,R}$ centered at M_0 and having the radius $R, R^2 = E - D^2/3$, with the plane domain surrounded by the triangle $M_0M_1M_2$ (see Fig. 1), where

$$M_0 = (D/3, D/3, D/3), \quad M_1 = (D/2, D/2, 0), \quad M_2 = (D, 0, 0).$$

For the end point M of the arch A_3 , which lies on M_0M_2 , we have

 $M = ((D/3)(1+2b_3)), (D/3)(1-b_3), (D/3)(1-b_3)).$

110

i

As for N, the other end point of A_3 , note first that it lies on M_0M_1 if $E \leq D^2$ and since $N = (x_1, x_1, D - 2x_1) \in S_{M_0,R}$, we obtain

$$N = ((D/3)(1+b_3), (D/3)(1+b_3), (D/3)(1-2b_3)) \quad \text{if} \quad D^2/3 \le E \le D^2/2.$$
(5)

If $D^2 \ge E \ge D^2/2$ the end point N of A_3 lies on M_1M_2 and since $N = (x_1, D - x_1, 0) \in S_{M_0,R}$ we have

$$N = ((D/2)(1+b_2), (D/2)(1-b_2), 0) \quad \text{for} \quad D^2 \ge E \ge D^2/2.$$
(6)

Note that two expressions (5) and (6) for N coincide at the boundary $E = D^2/2$. Furthermore, for $x \in A_3$

$$\Psi(x) = 1 + D + (D^2 - E)/2 + x_1 x_2 x_3.$$

So the extrema are to be found for $x_1x_2x_3$. Clearly

$$x_1x_2x_3 = x_3[x_3^2 - Dx_3 + (D^2 - E)/2] := f(x_3).$$

Solving the equation $f(x_3) = 0$, we obtain the following roots $x_3^{(1)} = 0$, $x_3^{(2)} = (D/2)(1 - b_2)$, $x_3^{(3)} = (D/2)(1 + b_2)$, where the two last roots become complex when $E \leq D^2/2$.

If $D^2/2 \leq E \leq D$, the third coordinate x_3 varies in the interval $[0, (D/3)(1-b_3)]$. Calculating the derivative we obtain $f'(x_3) = 3x_3^2 - 2Dx_3 + (D^2 - E)/2$, which gives that possible extreme points are $x_3^* = (D/3)(1-b_3)$ and $x_3^{**} = (D/3)(1+b_3)$; the latter one lies outside the interval considered and $f''(x_3^*) > 0$. Thus the minimum is attained at $x_3 = 0$ and the maximum at $x_3 = (D/3)(1-b_3)$.

If $E \leq D^2/2$, x_3 varies in the interval $[(D/3)(1-2b_3), (D/3)(1-b_3)]$ and since the derivative is positive on it, we have the minimum at $x_3 = (D/3)(1-2b_3)$ and the maximum at $x_3 = (D/3)(1-b_3)$.

Summing up we conclude that for n=3 the function Ψ attains its maximum at the unique point

$$u = \left((D/3)(1+2b_3), (D/3)(1-b_3), (D/3)(1-b_3) \right)$$
(7)

and its minimum at the unique point

$$l = ((D/3)(1+b_3), (D/3)(1+b_3), (D/3)(1-2b_3)) \quad \text{if} \quad D^2/3 \le E \le D^2/2 \tag{8}$$

and at the unique point

$$l = ((D/2)(1+b_2), (D/2)(1-b_2), 0) \quad \text{if} \quad D^2/2 \le E \le D^2.$$
(9)

Formulas (7) and (8) give the same answers on the boundary $E = D^2/2$.

Now we again use the notation $m = m(D, E) = m(D^2/E)$ introduced above for the least integer which is greater than or equals to D^2/E and $b = b(D, E) = b(D^2/E)$ given by formula (2). Two formulas (8) and (9) presenting Ψ_* for $n \leq 3$ are unified by the formula

$$\Psi_* = \left[1 + (D/m)(1+b)\right]^{m-1} \left[1 + (D/m)(1-(m-1)b)\right], \quad n \le 3.$$
(10)

The expression for Ψ^* which covers the case n=2 too is simpler since it does not contain m:

$$\Psi^* = \left[1 + (D/n)(1 + (n-1)b_n)\right] \left[1 + (D/n)(1-b_n)\right]^{n-1}, \quad n \le 3.$$
(11)

Let us now show that (10) and (11) are valid for the case n > 3 as well.

3. Proof for the Case n > 3. Minimum. We should show that the minimum is attained at $l \in A_n$ which has the form

$$l = (\underbrace{\alpha, \dots, \alpha}_{m-1}, \beta, \underbrace{0, \dots, 0}_{n-m}), \tag{12}$$

where $\alpha \geq \beta > 0$.

Let us equip Ψ and Ψ_* with an additional subscript n, i.e.,

$$\Psi_{*n} = \Psi_{*n}(D, E) = \Psi_n(l), \quad l = (l_1, \dots, l_n), \quad l_1 \ge \dots \ge l_n \ge 0.$$
(13)

For $n \leq 3$ the relation (12) has been proved. Let us now consider the case n > 3 and take the last three positive coordinates l_{m-2}, l_{m-1}, l_m of l. Denote

$$l_{m-2} + l_{m-1} + l_m = D', \quad l_{m-2}^2 + l_{m-1}^2 + l_m^2 = E'$$

and find the minimum $\Psi_{*3}(D', E')$ of $\Psi_3(x_1, x_2, x_3)$. If this minimum has been less than $\Psi_3(l_{m-2}, l_{m-1}, l_m)$ this would have contradicted to our assumption that at l minimum is attained by Ψ_n . According to (8) $l_{m-2} = l_{m-1} \ge l_m$. Arguing similarly we can show that $l_{m-3} = l_{m-2}$, etc. Denote now

$$l_1 = \dots = l_{m-1} = \alpha, \ l_m = \beta, \ m-1 = k$$

We have the following conditions

$$k\alpha + \beta = D, k\alpha^2 + \beta^2 = E, \alpha \ge \beta > 0.$$
(14)

Having in mind that

$$E/D^2 - 1/(k+1) \ge 0, (15)$$

which is the case since $(k+1) \leq n$ we obtain

$$\alpha = \frac{D}{k+1} \left(1 + \sqrt{\frac{(k+1)E/D^2 - 1}{k}} \right), \quad \beta = \frac{D}{k+1} \left(1 - k\sqrt{\frac{(k+1)E/D^2 - 1}{k}} \right),$$

and $\beta > 0$, if
 $E/D^2 < 1/k.$ (16)

Now we are ready to define k. Inequalities (15) and (16) lead to $k < D^2/E \le k+1$ which implies that $k + 1 = m = m(D, E) = m(D^2/E)$ and this solution is unique. We conclude that the conditions (14) determine l in the form (12) where there are n - m zeros, first m - 1 positive coordinates are equal to α and the mth one to β , where m, α

and β are expressed in terms of D and E in the way stated in the part 1° of Proposition. Next we study $\Psi_*(D, E)$ as a function of $h = D^2/E$, which varies in [1, n]. According to the properties of m(h) and b(h) described above this function is continuous in each interval $(j, j + 1], j = 1, \ldots, n - 1$, and since $\Psi_*(D; h)$ equals to $(1 + D/j)^j$ for h = j and

112

it has the same limit as $h \to j + 0$ for each j = 1, ..., n - 1, $\Psi_*(D; h)$ is continuous on the whole interval [1, n]. The derivative of $\Psi_*(D; h)$ w.r.t. h is positive for $h \in (j, j + 1]$, whence $\Psi_*(D; h)$ increases in this interval and

$$\Psi_*(D;h) \ge \lim_{h \to j+0} \Psi_*(D;h) = \left(1 + D/j\right)^j = \left(1 + D/[h]\right)^{\lfloor h \rfloor}, \quad h \in (j,j+1], \quad j = 1, \dots, n-1$$

As $\Psi_*(D;j) = (1+D/j)^j$ in the integer points, we obtain the following lower estimate

$$\Psi_*(D,E) = \Psi_*(D;h) \ge \left(1 + \frac{D}{[h]}\right)^{[h]} = \left(1 + \frac{D}{[D^2/E]}\right)^{[D^2/E]}.$$

Of course, one can take $\Psi_*(D; h_0)$ with any $h_0, 1 \le h_0 < h$, as a lower estimate for $\Psi_*(D; h)$.

4. Proof for the Case n > 3. Maximum. It is easy to show that for $E < D^2$ the point of maximum of Ψ looks like

$$u = (\alpha, \beta, \dots, \beta), \quad \alpha \ge \beta > 0.$$
 (17)

Indeed, let $u = (u_1, \ldots, u_n)$ and consider the first three coordinates of u. Denote $u_1 + u_2 + u_3 = D'$, $u_1^2 + u_2^2 + u_3^2 = E'$. As in (13) we equip Ψ^* with an additional subscript n. It is evident that the problem of finding maximum for $\Psi_3(x_1, x_2, x_3)$ in $A_3(E', D')$ has the unique solution of the form (u_1, u_2, u_2) . According to (7) it means that $u_1 \ge u_2 = u_3$. Arguing similarly, we obtain that $u_3 = u_4$, and so on until we arrive at (u_{n-2}, u_{n-1}, u_n) . Thus we see that our hypothesis (17) is true.

Introduce the notation

$$u_1 = \alpha, \quad u_2 = \cdots = u_n = \beta, \quad \alpha \ge \beta > 0.$$

From the conditions

$$\alpha + (n-1)\beta = D, \quad \alpha^2 + (n-1)\beta^2,$$

we obtain

$$= (D/n) (1 + (n-1)b_n)), \quad \beta = (D/n)(1-b_n),$$

and hence the validity of (11) for any natural n.

 $\alpha =$

If $E = D^2$, then $b_n = 1$, $\alpha = D$ and $\beta = 0$, which corresponds to the singular case $A_n(D, D^2) = \{(D, 0, \dots, 0)\}$, when u has the same form (17) where we set $\beta = 0$.

Let us now study (11) as the function of h. We need no calculations to claim that

$$\Psi^*(D; E) = \Psi^*(D; h) \le \left(1 + D/n\right)^n \tag{18}$$

since $(1 + D/n)^n$ is a maximum of $\Psi(x)$ with the only constraint $\sum x_i = D$, $x_i > 0$, $i = 1, \ldots, n$. But as in the case of minimum, we can prove that $\Psi^*(D; h)$ increases (since its derivative w.r.t. h is positive). This will lead to (18) after substituting h = n in the expression of $\Psi^*(D; h)$.

As an upper estimate of $\Psi^*(D;h)$ we can take $\Psi^*(D;h_0)$ with any h_0 such that $h < h_0 < n$.

References

1. N. G. GAMKRELIDZE AND V. I. ROTAR, On the rate of convergence in the limit theorem for quadratic forms. (Russian) *Teor. Veroyatnost. i Primenen.* **22** (1977), No. 2, 404–407; English transl.: *Theory Probab. Appl.* **22(1977)** (1978), 394–397.

2. S. V. NAGAEV AND V. I. ROTAR, On strengthening of Lyapunov type estimates (the case when distributions of summands' are close to the normal distribution).(Russian) *Teor. Veroyatnost. i Primenen.* **18**(1973), No. 1, 109–121; English transl.: *Theory Probab. Appl.* **18**(1973), 107–119.

3. V. I. ROTAR AND T. L. SHERVASHIDZE, Some estimates for distributions of quadratic forms. (Russian) *Teor. Veroyatnost. i Primenen.* **30**(1985), No. 3, 549–554; English transl.: *Theory Probab. Appl.* **30**(1986), 585–590.

Authors' addresses:

V. Rotar Department of Mathematics San Diego State University 5500 Campanile Drive San Diego, CA 92182-7720 USA

T. Shervashidze A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, M. Aleksidze St., Tbilisi 380093 Georgia