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ON AN EXTREMUM PROBLEM

(Reported on April 2, 2001)

The result presented was announced in [3]. We provide here a detailed proof and
discussion. We believe that, in view of its generality, it could be helpful in many applica-
tions. In [3] it was used for estimation of the characteristic function of a quadratic form
in normally distributed random variables, see also [1]. Similar ideas were used also in [2].

1. Notation and Results. For a natural number n let x = (x1, . . . , xn), xj ≥ 0,
j = 1, . . . , n, and denote

Ψ(x) =

n∏

j=1

(1 + xj),

An = An(D, E) =

{

x :

n∑

j=1

xj = D,

n∑

j=1

x2
j = E, x1 ≥ x2 ≥ · · · ≥ xn ≥ 0

}

,

where D and E are such that D > 0, and

D2/n ≤ E ≤ D2. (1)

(By the Cauchy inequality An is non-empty if (1) holds and the point (D/m, . . . ,D/m,
0, . . . , 0) belongs to An for some m, 1 ≤ m ≤ n, if D2/E = m; it is the only point of An

for m = 1, n.) Let

Ψ∗ = Ψ∗(D,E) = min
{

Ψ(x) : x ∈ An

}
, Ψ∗ = Ψ∗(D, E) = max

{
Ψ(x) : x ∈ An

}
.

Similar to [1] it is easy to obtain a lower bound for Ψ∗. Indeed, according to the
Method of Lagrange’s multipliers (say, λ1, λ2 in our case) the coordinates l1, . . . , ln of
the point at which the minimum is attained, satisfy the equations

Ψ∗ − λ1(1 + lj)− 2λ2lj(1 + lj) = 0, j = 1, . . . , n.

Thus lj ’s can take at most two nonzero values and without loss of generality there exists
a positive real α such that lj = α for j = 1, . . . , r with r ≥ m/2 and D1 = rα ≥ D/2
where m stands for the number of positive lj ’s. Since r = D2

1/(rα2) ≥ D2/(4E) := r0,
we have

Ψ∗ ≥ (1 + α)r ≥ (1 + D/(2r))r ≥ (1 + D/(2r0))r0 .

Detailed analysis leads to precise extreme values for Ψ(x) and lower and upper bounds
for minimum and maximum, respectively, which are more accurate than the last lower
bound for Ψ∗. Our approach consists in using classical methods for the case n ≤ 3 and
extending the result to the case n > 3.

Let m(h) = h for an integer h and m(h) = [h] + 1 otherwise; denote

b(1) = 0, b(h) =
{

(m(h)/h − 1)/(m(h) − 1)
}1/2

as h > 1. (2)
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Note that 0 = b(h) = b(h−0) 6= b(h+0) = 1/h for an integer h; at non-integer points b(h)
is continuous. Below we consider h = D2/E which varies in [1, n]. We have m(1) = 1
and m(h) = j for h ∈ (j − 1, j] where j = 2, . . . , n. We will also use the notation

bj = bj(D,E) = bj(h) = [((j/h)− 1)/(j − 1)]1/2 , h ∈ [1, j], j = 2, . . . , n, b1 = 0;

bj coincides with b(h) when h ∈ (j − 1, j]. Observe that bj(D,D2/(j − 1)) = 1/(j − 1).

Proposition. 1◦.The function Ψ(x) attains its minimum on An at a unique point

l = (l1, . . . , ln) with coordinates

l1 = · · · = lm−1 = D(1 + b)/m, lm = D(1− (m − 1)b)/m, lm+1 = · · · = ln = 0,

where m = m(h), b = b(h) and h = D2/E. The function Ψ(l) = Ψ∗ = Ψ∗(D;h) is

increasing in h, and

Ψ∗ = Ψ∗(D;h) =

(

1 +
D(1 + b)

m

)m−1(

1 +
D(1− (m − 1)b)

m

)

≥

(

1 +
D

[h]

)[h]

. (3)

2◦. The function Ψ(x) attains its maximum on An at a unique point u = (u1, . . . , un)
with coordinates

u1 = D(1 + (n− 1)bn)/n, u2 = · · · = un = D(1 − bn)/n,

Ψ(u) = Ψ∗ = Ψ∗(D, n;h) is the increasing function in h, and

Ψ∗ = Ψ∗(D, n;h) =

(

1 +
D(1 + (n− 1)bn

n

)(

1 +
D(1− bn)

n

)n−1

≤

(

1 +
D

n

)n

. (4)

Remark. We have

Ψ(x) = 1 + s1(x) + s2(x) + · · ·+ sn(x),

where

sk(x) :=
∑

1≤i1<···<ik≤n

xi1 · · · xik
, k = 1, 2, ..., n,

are the elementary symmetric polynomials. Since s1(x) = D and s2(x) = (D2 − E)/2
on An(D, E), the proposition provides extreme values for the sum of all elementary
symmetric polynomials in n nonnegative real variables when s1(x) and s2(x) are fixed.

Below we will give the proof of the proposition (compare it with that of Lemma 1
from [2]). In what follows (1) is supposed to hold.

2. Proof of the Case n ≤ 3. Since m(1) = 1 and b(1) = b1 = 0, the case n = 1 is
trivial. Clearly, A2 consists of only one point x = l = u with coordinates

x1 = (D/2)(1 + b2), x2 = (D/2)(1 − b2)

and

Ψ(x1, x2) = Ψ∗ = Ψ∗ = 1 + D + (D2 −E)/2.

So, (3) and (4) hold for n = 2.

We turn to the case n = 3. Note that A3 is an arch of the circumference obtained
by the intersection of the sphere SM0,R centered at M0 and having the radius R, R2 =
E − D2/3, with the plane domain surrounded by the triangle M0M1M2 (see Fig. 1),
where

M0 = (D/3, D/3,D/3), M1 = (D/2, D/2, 0), M2 = (D, 0, 0).

For the end point M of the arch A3, which lies on M0M2, we have

M =
(
(D/3)(1 + 2b3)

)
, (D/3)(1 − b3), (D/3)(1 − b3)

)
.
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As for N , the other end point of A3, note first that it lies on M0M1 if E ≤ D2 and
since N = (x1, x1,D − 2x1) ∈ SM0,R, we obtain

N =
(
(D/3)(1 + b3), (D/3)(1 + b3), (D/3)(1 − 2b3)

)
if D2/3 ≤ E ≤ D2/2. (5)
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If D2 ≥ E ≥ D2/2 the end point N of A3 lies on M1M2 and since N = (x1,D−x1, 0) ∈
SM0,R we have

N =
(
(D/2)(1 + b2), (D/2)(1 − b2), 0

)
for D2 ≥ E ≥ D2/2. (6)

Note that two expressions (5) and (6) for N coincide at the boundary E = D2/2.

Furthermore, for x ∈ A3

Ψ(x) = 1 + D + (D2 −E)/2 + x1x2x3.

So the extrema are to be found for x1x2x3. Clearly

x1x2x3 = x3[x2
3 −Dx3 + (D2 − E)/2] := f(x3).

Solving the equation f(x3) = 0, we obtain the following roots x
(1)
3 = 0, x

(2)
3 =

(D/2)(1 − b2), x
(3)
3 = (D/2)(1 + b2), where the two last roots become complex when

E ≤ D2/2.

If D2/2 ≤ E ≤ D, the third coordinate x3 varies in the interval [0, (D/3)(1 − b3)].
Calculating the derivative we obtain f ′(x3) = 3x2

3 − 2Dx3 + (D2 − E)/2, which gives
that possible extreme points are x∗3 = (D/3)(1− b3) and x∗∗3 = (D/3)(1 + b3); the latter
one lies outside the interval considered and f ′′(x∗3) > 0. Thus the minimum is attained
at x3 = 0 and the maximum at x3 = (D/3)(1 − b3).

If E ≤ D2/2, x3 varies in the interval [(D/3)(1 − 2b3), (D/3)(1 − b3)] and since
the derivative is positive on it, we have the minimum at x3 = (D/3)(1 − 2b3) and the
maximum at x3 = (D/3)(1 − b3).

Summing up we conclude that for n = 3 the function Ψ attains its maximum at the
unique point

u =
(
(D/3)(1 + 2b3), (D/3)(1 − b3), (D/3)(1 − b3)

)
(7)

and its minimum at the unique point

l =
(
(D/3)(1 + b3), (D/3)(1 + b3), (D/3)(1 − 2b3)

)
if D2/3 ≤ E ≤ D2/2 (8)

and at the unique point

l =
(
(D/2)(1 + b2), (D/2)(1 − b2), 0

)
if D2/2 ≤ E ≤ D2. (9)
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Formulas (7) and (8) give the same answers on the boundary E = D2/2.
Now we again use the notation m = m(D, E) = m(D2/E) introduced above for the

least integer which is greater than or equals to D2/E and b = b(D, E) = b(D2/E) given
by formula (2). Two formulas (8) and (9) presenting Ψ∗ for n ≤ 3 are unified by the
formula

Ψ∗ =
[
1 + (D/m)(1 + b)

]m−1[
1 + (D/m)(1 − (m − 1)b)

]
, n ≤ 3. (10)

The expression for Ψ∗ which covers the case n = 2 too is simpler since it does not
contain m:

Ψ∗ =
[
1 + (D/n)(1 + (n− 1)bn)

][
1 + (D/n)(1 − bn)

]n−1
, n ≤ 3. (11)

Let us now show that (10) and (11) are valid for the case n > 3 as well.

3. Proof for the Case n > 3. Minimum. We should show that the minimum is
attained at l ∈ An which has the form

l = (α, . . . , α
︸ ︷︷ ︸

m−1

, β, 0, . . . , 0
︸ ︷︷ ︸

n−m

), (12)

where α ≥ β > 0.

Let us equip Ψ and Ψ∗ with an additional subscript n, i.e.,

Ψ∗n = Ψ∗n(D,E) = Ψn(l), l = (l1, . . . , ln), l1 ≥ · · · ≥ ln ≥ 0. (13)

For n ≤ 3 the relation (12) has been proved. Let us now consider the case n > 3 and
take the last three positive coordinates lm−2, lm−1, lm of l. Denote

lm−2 + lm−1 + lm = D′, l2m−2 + l2m−1 + l2m = E′

and find the minimum Ψ∗3(D′, E′) of Ψ3(x1, x2, x3). If this minimum has been less than
Ψ3(lm−2 , lm−1, lm) this would have contradicted to our assumption that at l minimum
is attained by Ψn. According to (8) lm−2 = lm−1 ≥ lm. Arguing similarly we can show
that lm−3 = lm−2, etc. Denote now

l1 = · · · = lm−1 = α, lm = β, m − 1 = k.

We have the following conditions

kα + β = D,kα2 + β2 = E,α ≥ β > 0. (14)

Having in mind that

E/D2 − 1/(k + 1) ≥ 0, (15)

which is the case since (k + 1) ≤ n we obtain

α =
D

k + 1

(

1 +

√

(k + 1)E/D2 − 1

k

)

, β =
D

k + 1

(

1− k

√

(k + 1)E/D2 − 1

k

)

,

and β > 0, if

E/D2 < 1/k. (16)

Now we are ready to define k. Inequalities (15) and (16) lead to k < D2/E ≤ k + 1
which implies that k + 1 = m = m(D, E) = m(D2/E) and this solution is unique. We
conclude that the conditions (14) determine l in the form (12) where there are n − m
zeros, first m− 1 positive coordinates are equal to α and the mth one to β, where m, α
and β are expressed in terms of D and E in the way stated in the part 1◦ of Proposition.

Next we study Ψ∗(D,E) as a function of h = D2/E, which varies in [1, n]. According
to the properties of m(h) and b(h) described above this function is continuous in each
interval (j, j + 1], j = 1, . . . , n− 1, and since Ψ∗(D;h) equals to (1 +D/j)j for h = j and
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it has the same limit as h → j + 0 for each j = 1, . . . , n − 1, Ψ∗(D; h) is continuous on
the whole interval [1, n]. The derivative of Ψ∗(D;h) w.r.t. h is positive for h ∈ (j, j + 1],
whence Ψ∗(D; h) increases in this interval and

Ψ∗(D; h)≥ lim
h→j+0

Ψ∗(D; h)=
(
1+D/j

)j
=

(
1+D/[h]

)[h]
, h∈(j, j +1], j=1, . . . , n−1.

As Ψ∗(D; j) = (1+D/j)j in the integer points, we obtain the following lower estimate

Ψ∗(D, E) = Ψ∗(D;h) ≥

(

1 +
D

[h]

)[h]

=

(

1 +
D

[D2/E]

)[D2/E]

.

Of course, one can take Ψ∗(D;h0) with any h0, 1 ≤ h0 < h, as a lower estimate for
Ψ∗(D; h).

4. Proof for the Case n > 3. Maximum. It is easy to show that for E < D2 the
point of maximum of Ψ looks like

u = (α, β, . . . , β), α ≥ β > 0. (17)

Indeed, let u = (u1, . . . , un) and consider the first three coordinates of u. Denote u1 +
u2 +u3 = D′, u2

1 +u2
2 +u2

3 = E′. As in (13) we equip Ψ∗ with an additional subscript n.
It is evident that the problem of finding maximum for Ψ3(x1, x2, x3) in A3(E′, D′) has
the unique solution of the form (u1, u2, u2). According to (7) it means that u1 ≥ u2 = u3.
Arguing similarly, we obtain that u3 = u4, and so on until we arrive at (un−2, un−1, un).
Thus we see that our hypothesis (17) is true.

Introduce the notation

u1 = α, u2 = · · · = un = β, α ≥ β > 0.

From the conditions

α + (n− 1)β = D, α2 + (n− 1)β2,

we obtain

α = (D/n)
(
1 + (n− 1)bn)

)
, β = (D/n)(1 − bn),

and hence the validity of (11) for any natural n.

If E = D2, then bn = 1, α = D and β = 0, which corresponds to the singular case
An(D, D2) = {(D, 0, . . . , 0)}, when u has the same form (17) where we set β = 0.

Let us now study (11) as the function of h. We need no calculations to claim that

Ψ∗(D;E) = Ψ∗(D; h) ≤
(
1 + D/n

)n
(18)

since (1 + D/n)n is a maximum of Ψ(x) with the only constraint
∑

xi = D, xi > 0,
i = 1, . . . , n. But as in the case of minimum, we can prove that Ψ∗(D; h) increases (since
its derivative w.r.t. h is positive). This will lead to (18) after substituting h = n in the
expression of Ψ∗(D;h).

As an upper estimate of Ψ∗(D; h) we can take Ψ∗(D; h0) with any h0 such that
h < h0 < n.
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