V. Rotar and T. Shervashidze

ON AN EXTREMUM PROBLEM

(Reported on April 2, 2001)
The result presented was announced in [3]. We provide here a detailed proof and discussion. We believe that, in view of its generality, it could be helpful in many applications. In [3] it was used for estimation of the characteristic function of a quadratic form in normally distributed random variables, see also [1]. Similar ideas were used also in [2].

1. Notation and Results. For a natural number n let $x=\left(x_{1}, \ldots, x_{n}\right), x_{j} \geq 0$, $j=1, \ldots, n$, and denote

$$
\begin{gathered}
\Psi(x)=\prod_{j=1}^{n}\left(1+x_{j}\right) \\
A_{n}=A_{n}(D, E)=\left\{x: \sum_{j=1}^{n} x_{j}=D, \sum_{j=1}^{n} x_{j}^{2}=E, x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0\right\}
\end{gathered}
$$

where D and E are such that $D>0$, and

$$
\begin{equation*}
D^{2} / n \leq E \leq D^{2} \tag{1}
\end{equation*}
$$

(By the Cauchy inequality A_{n} is non-empty if (1) holds and the point ($D / m, \ldots, D / m$, $0, \ldots, 0)$ belongs to A_{n} for some $m, 1 \leq m \leq n$, if $D^{2} / E=m$; it is the only point of A_{n} for $m=1, n$.) Let

$$
\Psi_{*}=\Psi_{*}(D, E)=\min \left\{\Psi(x): x \in A_{n}\right\}, \quad \Psi^{*}=\Psi^{*}(D, E)=\max \left\{\Psi(x): x \in A_{n}\right\}
$$

Similar to [1] it is easy to obtain a lower bound for Ψ_{*}. Indeed, according to the Method of Lagrange's multipliers (say, λ_{1}, λ_{2} in our case) the coordinates l_{1}, \ldots, l_{n} of the point at which the minimum is attained, satisfy the equations

$$
\Psi_{*}-\lambda_{1}\left(1+l_{j}\right)-2 \lambda_{2} l_{j}\left(1+l_{j}\right)=0, j=1, \ldots, n
$$

Thus l_{j} 's can take at most two nonzero values and without loss of generality there exists a positive real α such that $l_{j}=\alpha$ for $j=1, \ldots, r$ with $r \geq m / 2$ and $D_{1}=r \alpha \geq D / 2$ where m stands for the number of positive l_{j} 's. Since $r=D_{1}^{2} /\left(r \alpha^{2}\right) \geq D^{2} /(4 E):=r_{0}$, we have

$$
\Psi_{*} \geq(1+\alpha)^{r} \geq(1+D /(2 r))^{r} \geq\left(1+D /\left(2 r_{0}\right)\right)^{r_{0}}
$$

Detailed analysis leads to precise extreme values for $\Psi(x)$ and lower and upper bounds for minimum and maximum, respectively, which are more accurate than the last lower bound for Ψ_{*}. Our approach consists in using classical methods for the case $n \leq 3$ and extending the result to the case $n>3$.

Let $m(h)=h$ for an integer h and $m(h)=[h]+1$ otherwise; denote

$$
\begin{equation*}
b(1)=0, \quad b(h)=\{(m(h) / h-1) /(m(h)-1)\}^{1 / 2} \quad \text { as } \quad h>1 \tag{2}
\end{equation*}
$$

2000 Mathematics Subject Classification. 26B12, 52A40.
Key words and phrases. Conditional extrema.

Note that $0=b(h)=b(h-0) \neq b(h+0)=1 / h$ for an integer h; at non-integer points $b(h)$ is continuous. Below we consider $h=D^{2} / E$ which varies in $[1, n]$. We have $m(1)=1$ and $m(h)=j$ for $h \in(j-1, j$] where $j=2, \ldots, n$. We will also use the notation

$$
b_{j}=b_{j}(D, E)=b_{j}(h)=[((j / h)-1) /(j-1)]^{1 / 2}, \quad h \in[1, j], \quad j=2, \ldots, n, \quad b_{1}=0
$$

b_{j} coincides with $b(h)$ when $h \in(j-1, j]$. Observe that $b_{j}\left(D, D^{2} /(j-1)\right)=1 /(j-1)$.
Proposition. 1°.The function $\Psi(x)$ attains its minimum on A_{n} at a unique point $l=\left(l_{1}, \ldots, l_{n}\right)$ with coordinates

$$
l_{1}=\cdots=l_{m-1}=D(1+b) / m, \quad l_{m}=D(1-(m-1) b) / m, \quad l_{m+1}=\cdots=l_{n}=0
$$

where $m=m(h), b=b(h)$ and $h=D^{2} / E$. The function $\Psi(l)=\Psi_{*}=\Psi_{*}(D ; h)$ is increasing in h, and

$$
\begin{equation*}
\Psi_{*}=\Psi_{*}(D ; h)=\left(1+\frac{D(1+b)}{m}\right)^{m-1}\left(1+\frac{D(1-(m-1) b)}{m}\right) \geq\left(1+\frac{D}{[h]}\right)^{[h]} \tag{3}
\end{equation*}
$$

2°. The function $\Psi(x)$ attains its maximum on A_{n} at a unique point $u=\left(u_{1}, \ldots, u_{n}\right)$ with coordinates

$$
u_{1}=D\left(1+(n-1) b_{n}\right) / n, \quad u_{2}=\cdots=u_{n}=D\left(1-b_{n}\right) / n
$$

$\Psi(u)=\Psi^{*}=\Psi^{*}(D, n ; h)$ is the increasing function in h, and

$$
\begin{equation*}
\Psi^{*}=\Psi^{*}(D, n ; h)=\left(1+\frac{D\left(1+(n-1) b_{n}\right.}{n}\right)\left(1+\frac{D\left(1-b_{n}\right)}{n}\right)^{n-1} \leq\left(1+\frac{D}{n}\right)^{n} \tag{4}
\end{equation*}
$$

Remark. We have

$$
\Psi(x)=1+s_{1}(x)+s_{2}(x)+\cdots+s_{n}(x)
$$

where

$$
s_{k}(x):=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}, k=1,2, \ldots, n
$$

are the elementary symmetric polynomials. Since $s_{1}(x)=D$ and $s_{2}(x)=\left(D^{2}-E\right) / 2$ on $A_{n}(D, E)$, the proposition provides extreme values for the sum of all elementary symmetric polynomials in n nonnegative real variables when $s_{1}(x)$ and $s_{2}(x)$ are fixed.

Below we will give the proof of the proposition (compare it with that of Lemma 1 from [2]). In what follows (1) is supposed to hold.
2. Proof of the Case $n \leq 3$. Since $m(1)=1$ and $b(1)=b_{1}=0$, the case $n=1$ is trivial. Clearly, A_{2} consists of only one point $x=l=u$ with coordinates

$$
x_{1}=(D / 2)\left(1+b_{2}\right), \quad x_{2}=(D / 2)\left(1-b_{2}\right)
$$

and

$$
\Psi\left(x_{1}, x_{2}\right)=\Psi_{*}=\Psi^{*}=1+D+\left(D^{2}-E\right) / 2
$$

So, (3) and (4) hold for $n=2$.
We turn to the case $n=3$. Note that A_{3} is an arch of the circumference obtained by the intersection of the sphere $S_{M_{0}, R}$ centered at M_{0} and having the radius $R, R^{2}=$ $E-D^{2} / 3$, with the plane domain surrounded by the triangle $M_{0} M_{1} M_{2}$ (see Fig. 1), where

$$
M_{0}=(D / 3, D / 3, D / 3), \quad M_{1}=(D / 2, D / 2,0), \quad M_{2}=(D, 0,0)
$$

For the end point M of the arch A_{3}, which lies on $M_{0} M_{2}$, we have

$$
\left.M=\left((D / 3)\left(1+2 b_{3}\right)\right),(D / 3)\left(1-b_{3}\right),(D / 3)\left(1-b_{3}\right)\right)
$$

As for N, the other end point of A_{3}, note first that it lies on $M_{0} M_{1}$ if $E \leq D^{2}$ and since $N=\left(x_{1}, x_{1}, D-2 x_{1}\right) \in S_{M_{0}, R}$, we obtain

$$
\begin{equation*}
N=\left((D / 3)\left(1+b_{3}\right),(D / 3)\left(1+b_{3}\right),(D / 3)\left(1-2 b_{3}\right)\right) \quad \text { if } \quad D^{2} / 3 \leq E \leq D^{2} / 2 \tag{5}
\end{equation*}
$$

Fig. 1
If $D^{2} \geq E \geq D^{2} / 2$ the end point N of A_{3} lies on $M_{1} M_{2}$ and since $N=\left(x_{1}, D-x_{1}, 0\right) \in$ $S_{M_{0}, R}$ we have

$$
\begin{equation*}
N=\left((D / 2)\left(1+b_{2}\right),(D / 2)\left(1-b_{2}\right), 0\right) \quad \text { for } \quad D^{2} \geq E \geq D^{2} / 2 \tag{6}
\end{equation*}
$$

Note that two expressions (5) and (6) for N coincide at the boundary $E=D^{2} / 2$.
Furthermore, for $x \in A_{3}$

$$
\Psi(x)=1+D+\left(D^{2}-E\right) / 2+x_{1} x_{2} x_{3} .
$$

So the extrema are to be found for $x_{1} x_{2} x_{3}$. Clearly

$$
x_{1} x_{2} x_{3}=x_{3}\left[x_{3}^{2}-D x_{3}+\left(D^{2}-E\right) / 2\right]:=f\left(x_{3}\right)
$$

Solving the equation $f\left(x_{3}\right)=0$, we obtain the following roots $x_{3}^{(1)}=0, x_{3}^{(2)}=$ $(D / 2)\left(1-b_{2}\right), x_{3}^{(3)}=(D / 2)\left(1+b_{2}\right)$, where the two last roots become complex when $E \leq D^{2} / 2$.

If $D^{2} / 2 \leq E \leq D$, the third coordinate x_{3} varies in the interval $\left[0,(D / 3)\left(1-b_{3}\right)\right]$. Calculating the derivative we obtain $f^{\prime}\left(x_{3}\right)=3 x_{3}^{2}-2 D x_{3}+\left(D^{2}-E\right) / 2$, which gives that possible extreme points are $x_{3}^{*}=(D / 3)\left(1-b_{3}\right)$ and $x_{3}^{* *}=(D / 3)\left(1+b_{3}\right)$; the latter one lies outside the interval considered and $f^{\prime \prime}\left(x_{3}^{*}\right)>0$. Thus the minimum is attained at $x_{3}=0$ and the maximum at $x_{3}=(D / 3)\left(1-b_{3}\right)$.

If $E \leq D^{2} / 2, x_{3}$ varies in the interval $\left[(D / 3)\left(1-2 b_{3}\right),(D / 3)\left(1-b_{3}\right)\right]$ and since the derivative is positive on it, we have the minimum at $x_{3}=(D / 3)\left(1-2 b_{3}\right)$ and the maximum at $x_{3}=(D / 3)\left(1-b_{3}\right)$.

Summing up we conclude that for $n=3$ the function Ψ attains its maximum at the unique point

$$
\begin{equation*}
u=\left((D / 3)\left(1+2 b_{3}\right),(D / 3)\left(1-b_{3}\right),(D / 3)\left(1-b_{3}\right)\right) \tag{7}
\end{equation*}
$$

and its minimum at the unique point

$$
\begin{equation*}
l=\left((D / 3)\left(1+b_{3}\right),(D / 3)\left(1+b_{3}\right),(D / 3)\left(1-2 b_{3}\right)\right) \quad \text { if } \quad D^{2} / 3 \leq E \leq D^{2} / 2 \tag{8}
\end{equation*}
$$

and at the unique point

$$
\begin{equation*}
l=\left((D / 2)\left(1+b_{2}\right),(D / 2)\left(1-b_{2}\right), 0\right) \quad \text { if } \quad D^{2} / 2 \leq E \leq D^{2} \tag{9}
\end{equation*}
$$

Formulas (7) and (8) give the same answers on the boundary $E=D^{2} / 2$.
Now we again use the notation $m=m(D, E)=m\left(D^{2} / E\right)$ introduced above for the least integer which is greater than or equals to D^{2} / E and $b=b(D, E)=b\left(D^{2} / E\right)$ given by formula (2). Two formulas (8) and (9) presenting Ψ_{*} for $n \leq 3$ are unified by the formula

$$
\begin{equation*}
\Psi_{*}=[1+(D / m)(1+b)]^{m-1}[1+(D / m)(1-(m-1) b)], \quad n \leq 3 \tag{10}
\end{equation*}
$$

The expression for Ψ^{*} which covers the case $n=2$ too is simpler since it does not contain m :

$$
\begin{equation*}
\Psi^{*}=\left[1+(D / n)\left(1+(n-1) b_{n}\right)\right]\left[1+(D / n)\left(1-b_{n}\right)\right]^{n-1}, \quad n \leq 3 \tag{11}
\end{equation*}
$$

Let us now show that (10) and (11) are valid for the case $n>3$ as well.
3. Proof for the Case $n>3$. Minimum. We should show that the minimum is attained at $l \in A_{n}$ which has the form

$$
\begin{equation*}
l=(\underbrace{\alpha, \ldots, \alpha}_{m-1}, \beta, \underbrace{0, \ldots, 0}_{n-m}), \tag{12}
\end{equation*}
$$

where $\alpha \geq \beta>0$.
Let us equip Ψ and Ψ_{*} with an additional subscript n, i.e.,

$$
\begin{equation*}
\Psi_{* n}=\Psi_{* n}(D, E)=\Psi_{n}(l), \quad l=\left(l_{1}, \ldots, l_{n}\right), \quad l_{1} \geq \cdots \geq l_{n} \geq 0 \tag{13}
\end{equation*}
$$

For $n \leq 3$ the relation (12) has been proved. Let us now consider the case $n>3$ and take the last three positive coordinates l_{m-2}, l_{m-1}, l_{m} of l. Denote

$$
l_{m-2}+l_{m-1}+l_{m}=D^{\prime}, \quad l_{m-2}^{2}+l_{m-1}^{2}+l_{m}^{2}=E^{\prime}
$$

and find the minimum $\Psi_{* 3}\left(D^{\prime}, E^{\prime}\right)$ of $\Psi_{3}\left(x_{1}, x_{2}, x_{3}\right)$. If this minimum has been less than $\Psi_{3}\left(l_{m-2}, l_{m-1}, l_{m}\right)$ this would have contradicted to our assumption that at l minimum is attained by Ψ_{n}. According to (8) $l_{m-2}=l_{m-1} \geq l_{m}$. Arguing similarly we can show that $l_{m-3}=l_{m-2}$, etc. Denote now

$$
l_{1}=\cdots=l_{m-1}=\alpha, \quad l_{m}=\beta, \quad m-1=k .
$$

We have the following conditions

$$
\begin{equation*}
k \alpha+\beta=D, k \alpha^{2}+\beta^{2}=E, \alpha \geq \beta>0 . \tag{14}
\end{equation*}
$$

Having in mind that

$$
\begin{equation*}
E / D^{2}-1 /(k+1) \geq 0 \tag{15}
\end{equation*}
$$

which is the case since $(k+1) \leq n$ we obtain

$$
\alpha=\frac{D}{k+1}\left(1+\sqrt{\frac{(k+1) E / D^{2}-1}{k}}\right), \quad \beta=\frac{D}{k+1}\left(1-k \sqrt{\frac{(k+1) E / D^{2}-1}{k}}\right),
$$

and $\beta>0$, if

$$
\begin{equation*}
E / D^{2}<1 / k \tag{16}
\end{equation*}
$$

Now we are ready to define k. Inequalities (15) and (16) lead to $k<D^{2} / E \leq k+1$ which implies that $k+1=m=m(D, E)=m\left(D^{2} / E\right)$ and this solution is unique. We conclude that the conditions (14) determine l in the form (12) where there are $n-m$ zeros, first $m-1$ positive coordinates are equal to α and the m th one to β, where m, α and β are expressed in terms of D and E in the way stated in the part 1° of Proposition.

Next we study $\Psi_{*}(D, E)$ as a function of $h=D^{2} / E$, which varies in [1, n]. According to the properties of $m(h)$ and $b(h)$ described above this function is continuous in each interval $(j, j+1], j=1, \ldots, n-1$, and since $\Psi_{*}(D ; h)$ equals to $(1+D / j)^{j}$ for $h=j$ and
it has the same limit as $h \rightarrow j+0$ for each $j=1, \ldots, n-1, \Psi_{*}(D ; h)$ is continuous on the whole interval $[1, n]$. The derivative of $\Psi_{*}(D ; h)$ w.r.t. h is positive for $h \in(j, j+1]$, whence $\Psi_{*}(D ; h)$ increases in this interval and
$\Psi_{*}(D ; h) \geq \lim _{h \rightarrow j+0} \Psi_{*}(D ; h)=(1+D / j)^{j}=(1+D /[h])^{[h]}, \quad h \in(j, j+1], \quad j=1, \ldots, n-1$.
As $\Psi_{*}(D ; j)=(1+D / j)^{j}$ in the integer points, we obtain the following lower estimate

$$
\Psi_{*}(D, E)=\Psi_{*}(D ; h) \geq\left(1+\frac{D}{[h]}\right)^{[h]}=\left(1+\frac{D}{\left[D^{2} / E\right]}\right)^{\left[D^{2} / E\right]}
$$

Of course, one can take $\Psi_{*}\left(D ; h_{0}\right)$ with any $h_{0}, 1 \leq h_{0}<h$, as a lower estimate for $\Psi_{*}(D ; h)$.
4. Proof for the Case $n>3$. Maximum. It is easy to show that for $E<D^{2}$ the point of maximum of Ψ looks like

$$
\begin{equation*}
u=(\alpha, \beta, \ldots, \beta), \quad \alpha \geq \beta>0 \tag{17}
\end{equation*}
$$

Indeed, let $u=\left(u_{1}, \ldots, u_{n}\right)$ and consider the first three coordinates of u. Denote $u_{1}+$ $u_{2}+u_{3}=D^{\prime}, u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=E^{\prime}$. As in (13) we equip Ψ^{*} with an additional subscript n. It is evident that the problem of finding maximum for $\Psi_{3}\left(x_{1}, x_{2}, x_{3}\right)$ in $A_{3}\left(E^{\prime}, D^{\prime}\right)$ has the unique solution of the form $\left(u_{1}, u_{2}, u_{2}\right)$. According to (7) it means that $u_{1} \geq u_{2}=u_{3}$. Arguing similarly, we obtain that $u_{3}=u_{4}$, and so on until we arrive at (u_{n-2}, u_{n-1}, u_{n}). Thus we see that our hypothesis (17) is true.

Introduce the notation

$$
u_{1}=\alpha, \quad u_{2}=\cdots=u_{n}=\beta, \quad \alpha \geq \beta>0
$$

From the conditions

$$
\alpha+(n-1) \beta=D, \quad \alpha^{2}+(n-1) \beta^{2}
$$

we obtain

$$
\left.\alpha=(D / n)\left(1+(n-1) b_{n}\right)\right), \quad \beta=(D / n)\left(1-b_{n}\right)
$$

and hence the validity of (11) for any natural n.
If $E=D^{2}$, then $b_{n}=1, \alpha=D$ and $\beta=0$, which corresponds to the singular case $A_{n}\left(D, D^{2}\right)=\{(D, 0, \ldots, 0)\}$, when u has the same form (17) where we set $\beta=0$.

Let us now study (11) as the function of h. We need no calculations to claim that

$$
\begin{equation*}
\Psi^{*}(D ; E)=\Psi^{*}(D ; h) \leq(1+D / n)^{n} \tag{18}
\end{equation*}
$$

since $(1+D / n)^{n}$ is a maximum of $\Psi(x)$ with the only constraint $\sum x_{i}=D, x_{i}>0$, $i=1, \ldots, n$. But as in the case of minimum, we can prove that $\Psi^{*}(D ; h)$ increases (since its derivative w.r.t. h is positive). This will lead to (18) after substituting $h=n$ in the expression of $\Psi^{*}(D ; h)$.

As an upper estimate of $\Psi^{*}(D ; h)$ we can take $\Psi^{*}\left(D ; h_{0}\right)$ with any h_{0} such that $h<h_{0}<n$.

References

1. N. G. Gamkrelidze and V. I. Rotar, On the rate of convergence in the limit theorem for quadratic forms. (Russian) Teor. Veroyatnost. i Primenen. 22 (1977), No. 2, 404-407; English transl.: Theory Probab. Appl. 22(1977) (1978), 394-397.
2. S. V. Nagaev and V. I. Rotar, On strengthening of Lyapunov type estimates (the case when distributions of summands' are close to the normal distribution).(Russian) Teor. Veroyatnost. i Primenen. 18(1973), No. 1, 109-121; English transl.: Theory Probab. Appl. 18(1973), 107-119.
3. V. I. Rotar and T. L. Shervashidze, Some estimates for distributions of quadratic forms. (Russian) Teor. Veroyatnost. i Primenen. 30(1985), No. 3, 549-554; English transl.: Theory Probab. Appl. 30(1986), 585-590.

Authors' addresses:
V. Rotar

Department of Mathematics
San Diego State University
5500 Campanile Drive
San Diego, CA 92182-7720
USA
T. Shervashidze
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

