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Consider the Emden—Fowler equation
u™ = p(t)|ul*signu, p(t) >0, A>1, n>2, (1)

with a locally Lebesgue integrable on (a, b) function p(t), which differs from zero on a set
of positive measure in any left neighborhood of b.

A solution u : [a,b) — (0,+00) of the equation (1) is said to be a nonoscillatory

singular solution of the second kind, if
uDA)>0 (=0,...,n—1) for tc (a,b), lim u(t) = +oo. (2)
t—

Problems on the existence of such solutions and on its asymptotic estimation were
studied for the equation (1) in [1, p. 323-325], where they are reduced to the similar ones
for a proper strongly increasing solutions, which are more investigated (see [1, 2] and the
bibliography therein). In particular, this approach allows to give the sufficient condition

J(a,b) < +o00, where J(s,t) = /p(T)(b —7)" " Ldr, (3)

for the equation (1) to have a solution (2).

In this paper new necessary conditions of solvability of the problem (1)—(2) and two-
sided asymptotic estimates of its solutions are obtained. Here also it is established the
necessity of the condition (3) in certain cases.

Begin with a simple assertion which presents some important properties of solutions
of the problem under consideration.

Lemma 1. Let u(t) be a solution of the problem (1), (2) and ¢(t) > 0 be a non-

3
decreasing function on (a,b). Then vi(t) = > u®(t)(b —t)!/I! (i =0,...,n — 1) are
1=0
nondecreasing unbounded functions on (a,b), satisfying there conditions

bom—1(t) PO =1""10] (1) L2 eii(t)
vom—1(t)  (n =DM n-1()  9(t) vpit1(t)

where v,,i(t) = vi(D)p(t), par(t) = min{(b — )=1, §()/(Mep ()}

2 YM (t)a (4)

The lower asymptotic estimate of solutions of the problem (1), (2) gives
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Theorem 1. Every solution u of the problem (1), (2) admits the lower estimate

1/(1=X) te(

Unfl(t) > ((TL - 1)!()‘ - 1)71‘](757 b)) a, b)7 (5)

provided the condition (3) holds.
Proof. Let u be a solution of the problem (1), (2). From (1) we deduce v,—1(t) =

uM ()b — )"/ (n = 1) > p(t)(b — ) Tv_, (t)/(n — 1)! for ¢ € (a,b). Integrate this
inequality taking into acount (2):

b b

vii?(t) :/én_l(T)dT < /p(T)(bf'r)”_ld'r-

A—1 ) (1) (n—1)!
t t
The last estimate is equivalent to (5). Thus the theorem is proved.

The main result of this article is contained in the following [

Theorem 2. Let u(t) be a solution of the problem (1)—(2) and let ¢ : (a,b) — (0, +00)
be any nondecreasing function. Then for any numbers v € [0,1), u € ((1 —v)/n1,(1 —
v)/n), M >0 and 0 > 0 the equality

im £y 0 m(9)(8) =0 (6)
t—=b
is true and the upper estimate
u(t) < YFy o ()] (20, (7)
is fulfilled, where
b

— e ()b —n)"H" ()"
Fu,u,a,M(LP)(t) =¥ (t)/ LPJ(T)@;X/?-V—l(T) (@(T)) dr,

ni =1+ (n—1)X and v > 0 depends only on n, X\, u, v.

Proof. Let u be a solution of the problem (1), (2) and ¢(t) > 0 be a nondecreasing
function on (a,b). By lemma 1 and the inequality

n n n
Zﬁﬂ?i > Hl‘fi, z; >0, B;>0, Zﬂi =1,
i=1 i=1 i=1
n—1
for the derivative of the function w,(t) = [] vy,i(t) we have
i=0

-

n—

Do(t) N pi(t) PG =" (1) )
RCIRD IR mey ey e AR AUCD Dl

i=0 ’ i=0

o(t)

»(1)

+
(A

P (H)vp,n-1() Vi (t)

p()(b =" 103 5 () \ i TT (vpuiga (8 hig
o o) T (22eni0)™

y (M)/—LnJrl _ (&)u (p(t)(b - t)nil)#végo_m(t) ’ﬁ P

v— v 50 (t)a
o0 ] V0 =
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where the numbers u; are defined by the equalities pup = i, tin+1 = v,

2w+ nip—1) #G(I—V’Z(l—u))

Al —ie1, €1 =

L nn—1) nt  n4+n

Hi = . 2(1 —v —npu) 2l—-v) 1—v

p+(n—ier, 61 = ——-77, eE\—/———

n(n —1) n+ni n
fori=1,...,n. It is clear that these numbers satisfy the conditions
n+1
pi — it >er (E=1,...,n—1), Apun —p1 > e, Zm =1 (9)

i=1

Dividing (8) by wa(t)np‘s(t) with ¢ < min{e;,0/n}, 6§ = 0 — ne and integrating the
result, we get

>'Yt/ (p"(:E)(pﬁ/[Jru_l(x) (Lp(x)) ©,0 ( )H : ( )d .

Hence by Lemma 1 and (9) it follows (7) and (8). The theorem is proved. [

The following part of the report contains some applications of the above results, where
they are applied to analysis of the condition (3) and its natural extensions.

Theorem 3. If the equation (1) with the function p(t) sutisfying
p(t)(b—t)" < cJ(a,t) for tE [te,b) C(a,b), ¢>0, (10)

has a solution of the type (2), then the condition (3) holds and in some left neighborhood
of b
u(t) <y JVEO=D(,b),  where = y(n, A, p). (11)

If along with (3)
p(t)(b—t)" < cJ(t,b) for tE€ [te,b) C (a,b), ¢>0 (12)
holds then there takes place the two-sided estimate
0 <1 < u(®)JY AV (t,b) < 79, (13)

where y1 and 2 depend on n, .

Proof. Let the equation (1) with the function p(t) satisfying (10) has a solution of the

type (2). Suppose to the contrary that (3) is not true. Then the function ¢(t) = J(a,t)

increases with no bound on (a, b) and by (10) (b—t)pc(t) = p(t)(b—t)™/J(a,t) < 1 holds.
b

Therefore, for any o > p we have the equality Fo - v (@)(t) = J"(a,t)f(p(:v)(b —

t
x)*~1jrk=o=1(a,x)dx = J*(a,t)/(p — o), which contradicts the conclusion of Theorem
2. This means the validity of (3) and the boundness of ¢(t). In view of this fact we
obtain Fy, , o a(@)(t) > vJ(t,b) for t >ty > a, which by Theorem 2 yields (11).



149

Now assume that (3) and (12) are fulfilled. Then ¢(t) = 1/J(¢,b) increases with no
bound on (a,b) and for any p,o > 0

b
Fypom(@)(t) = J77(t,b) /P(fl?)(b — @) IR (@, b)da = JH(t,b)/( + 0)
t

holds from which by Theorem 2 there immediatelly follows the estimate (13). The theo-
rem is proved. [

Corollary 1. The problem (1), (2) with function p(t), satisfying on (a,b) 0 < ¢1 <
p(t)(b— )"~ Ing (1/(b— )k (1/(b—1t)) < c2, k > 0, has a solutions if and only if o > 0,
and every such solution admits the estimate 0 < v1 < u(t) lnz/(lfk)(l/(b — 1)) < 72,

k
where Ingt = t, Ing 1 t = In(Ing t), 1 (t) = H In; t and 1, v2 depend only on n, A, o.
=0

In the general case it is useful to introduce into consideration the nonnegative functions
pra(t) = min{p(t), F()(b—£)="}, p3(t) = p(t) — py.(t) and the integrals

t t

_ p)n—1 “(x)(b—z)* 1
Jf*(s,t):/%dm, J;(s,t):/’%dz,

S S
where f(x) is an arbitrary nondecreasing positive function.
Theorem 4. If the equation (1) has a soluttion u of the type (2), then for an ar-

bitrary nondecreasing positive function f(t) and all p € (0,1/n) Jg.(a,b) < +oo,
lirrll) JH(t)J5,«(t,b) = 0 and in some neighborhood of b the estimate
t—

u(t) < A(F()TFF (1, b)) 7N
1§ true.
If in addition pys.(t)(b—1t)" < cf(t)Js.(t,b) fort € (a,b), holds then there takes place
the estimate u(t) < y(f(t)Jpa(t, b))/ 1A,
Corollary 2. If the problem (1), (2) with the function p(t), satisfying

b

Jf(t,b):/l%x)m)n_ldm:—l—oo for t€ (a,b),

t

where f(x) > 0 is an arbitrary nondecreasing function, is solvable, then

tliE)p;(t)(b — )"/ f(t) = +o0, Jj(t,b) = +o0.

Theorem 5. Let the equation (1) with the function p(t) satisfying the condition
Pi-Ob =" > cf()7u(tb) for ©E (a,b)

holds, where f(z) increases on (a,b), have a solution u of the type (2). Then the estimate

)

/(1=X)
u) <7 (r0 1)

holds, where v depends only on n, A, p.
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Theorem 6. If the equation (1) with the function p(t) satisfying the condition
py()(b — )" > cf(t)J}(ast)  for tE (a,b),
where f(x) increases on (a,b), has a solution u of the type (2), then the estimate

b
1/(1=X)

u(t) < ’y(f(t)J;(a, t)(/flsgnp;(T)dT)l/#) ,

t

holds, where v depends only on n, A, p.

To prove the Theorem it is sufficient to apply Theorem 2 with the function ¢(t) =

J}(a,t), which is unbounded in the case where (3) is not fulfilled.
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