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ON RELATION BETWEEN STABILITY AND CORRECTNESS OF
LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL
EQUATIONS
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Consider the problem

dx(t) = dA(t) - p(t) - z(t) + df (1), (1)
z(to) = co, (2)

where A : Ry — R™X™ and f : Ry — R”™ are, respectively, the real matrix- and vector-
functions with locally bounded variation components, p : Ry — R®*X™ is a matrix-
function locally integrable with respect to A, co € R™ and ¢y € R4.

Along with the problem (10), (2) let us consider the problem

dz(t) = dA(t) - p(t) - 2(t) + df (1), (3)
x(to) = co, (4)

where A : R4y — R™®X™ and ]7: Ry — R™ are, respectively, real matrix— and vector-
functions with locally bounded variation components, p : Ry — R"?*X™ is a matrix-
function locally integrable with respect to A, ¢o € R™ and to € Ry..

Before passing to the statement of the basic results, we give some notation and defi-
nitions.

R =] — 00, +00] is the set of real numbers, [a, b] and ]a, b[ are, respectively, closed and
open intervals; Ry = [0, +oo].

R™X™ ig the space of all real n X m-matrices z = (xlj):;:1 with the norm ||z|| =
maxj—1,..m Y i, |2l

Rixm ={(zs;)"™" x5 >0 (i=1,...,n;5=1,...,m)}.

R™ = R"*! is a space of all real column n-vectors « = (z;)™_;.

If z € R®*™, then £~! and det(z) are, respectively, the inverse to  matrix and the
determinant of x; I, is the identity n X n matrix;

d b b

V = sup{V(z) : ¢ < a < b < d}, where z is the sum of total variations on a

c a a
closed interval [a, b] of components z;; (i =1,...,n; j = 1,...,m) of the matrix-function

z e, d[— R™™5 w(a)(t) = (v(wi;)(t)};=,, where v(zi;)(t) = (j/;o:z:i]-) for t €]e,d|

(i=1,...,n;5=1,....m)};
z(t—) and z(t+) are the left and the right limits of the matrix-function z :]e,d[—
R™X™ at the point ¢t €]e,d[, diz(t) = z(t) — x(t—), dox(t) = z(t+) — z(t).
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! z;; as a constant outside [a,b] is assumed to be continuous.
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BVipc(Ry, R®X™) ig the set of all matrix-functions z : Ry — R™X™ of bounded
variations on every closed interval from R.
If g : Ry — R is a nondecreasing function, z : Ry — R and 0 < s <t < +o00, then

t

/:n(T)dg(T): /:n(T)dgl(T)— /x(7)dgg(7)+

s ]s,t[ Is,t[

+ Y w(r) dig(r) — > w(r) dag(r),

s<1<t s<7<t

where g; : Ry — R (j = 1,2) are continuous nondecreasing functions such that the
function g1 — g2 is identically equal to the continuous part of g, and f]s,t[dgj (r) is
the Lebesgue-Stieltjes integral over the open interval ]s,¢[ with respect to the measure
corresponding to the function g;(j = 1,2) (if s = t, then f: z(7)dg(T) = 0);

Lioe(R4, R; g) is the set of all functions z : Ry — R p(g)-measurable (i.e, measurable
with respect to the measures p(g1) and p(g2)) and integrable on the closed interval [0, b]
for every b € Ry.

A matrix-function ¢p is said to be nondecreasing if each of its components is such.

If G = (gik)f:zzl : Ry — RX™ is a nondecreasing matrix-functions, then
L(R4,R™*™ : @) is the set of all matrix-functions z = (l"k])z,]m:l : Ry — RXm
such that z; € LR+, R; gix) (i =1,...,4,;k=1,...,n;j=1,...,m);

t
Lm

t
/dG(T)'fE(T): (Z/ij(T)dgik(T)) for 0 <s<t< +oo.
k=1

i,j=1
s

If Gj : Ry — REX™ (4§ = 1,2) are nondecreasing matrix-functions, G = G1 — G2 and
z : Ry — R" ™ then

t

t t
/dG('r) cx(T) = /dGl('r) ~x(T) — /dGQ(T) sz(1) for 0 <s <t < +oo;

E] s E]

L(R4, R™™; G) =
J

I Dw

LRy, RY™; Gy).

Under a solution of the system (1) is understood a vector-function z € BVj,. (R4, R™)
such that

t

z(t) — z(s) = /dA(T) sp(1) - x(T) + f(t) — f(s) for 0< s <t < +o0.

8

We will assume that f € BVige(R+, R"), A € BVise(Ry, R"*™) and p €
Lipc(Ry, R*X™  A) are such that

det(I, + (—1)7 djA(t) - p(t)) #0 for t e Ry (j=1,2). (5)
Then the problem (1), (2) has a unique solution (see [1]).

Definition 1. The problem (1), (2) is said to be correct if for every arbitrarily small
€ > 0 and arbitrarily large p > 0 there exists § > 0 such that for any top € R4, o € R?,
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A € BVipc(R4, R X7, fNE BVipe(R4, R™) and 17 € Lioc(R4, R**™ A) satisfying the
conditions

lto — o] < 8, |lco — col| < 6, (6)

IM(e) ~ R <5 1) — Tyl <8,V (M~ 1) < p

and
det(In, + (=1)7djA(t) - p(t)) £ 0 for te Ry (j=1,2) (7)
with
t t
M(t) = / dA(r)-p(r), M(t) = / dA(r) - p(7), (8)
0 0
the inequality
lo(t) = y(t)]| <& for t € Ry 9)

holds, where & and y are the solutions of the problems (1), (2) and (3), (4), respectively.

Definition 2. The problem (1), (2) is said to be weakly correct if for arbitrary ¢ >0

there exists d > 0 such that for any to € R and ¢y € R”, Ac BVipe (R4, R®X™),
[ € BVige(Ry, R?) and p € Lige(Ry, R"X", A) satisfying the conditions (6), (7) and

+o0 ~ +oo ~
‘O/(M*M)<5y ‘O/(f*f)<5,

where the matrix-functions M and M are defined by (8), the inequality (9) holds, where
z and y are the solutions of the problems (1), (2) and (3), (4), respectively.

Definition 3. Let £ : Ry — Ry be a nondecreasing function such that lim;—, 40 £(t) =
+00. A solution z of the system (1) is said to be -exzponentially asymptotically stable if
there exists a positive number 7 such that for every € > 0 there exists 6 = dl(e) > 0 such
that an arbitrary solution y of the system (1) the satisfying the inequality

llz(to) — y(to)ll < &
for some tp € Ry, admits the estimate
llz() — y (@)l < £ exp(—n(&(t) —&(to))) for ¢ > to

The uniform stability of the solution x is defined just in the same way as for systems
of ordinary differential equations (see, e.g., [2] or [3]).

Definition 4. The system (1) is said to be uniformly stable (€-exponentially asymp-
totically stable) if every solution of that system is uniformly stable (¢-exponentially
asymptotically stable).

Definition 5. A pair (A,p) of matrix-functions A € BVjoc(Ry, R**™ and p €
Lipc (R4, R™®X™  A) satisfying the condition (5) is said to be uniformly stable (¢-expon-
entially asymptotically stable) if the system

da(t) = dA(t) - p(t) - 2(1)

is uniformly stable (£-exponentially asymptotically stable).
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Theorem 1. Let A € BVige(Ry,R"*"), f € BVigc(R+,R™), p € Lige(Ry, R %™, A),
and let the condition (5) hold. Moreover, let the pair (A,p) be -exponentially asymp-
totically stable and the conditions

_ v()(0)
lim sup;_, | \t/ (B) < 400,

and
v(€)(t) ~
lim V (B)=0

t—+o00 t

hold, where

v(€)(t) = sup{r > t: £(7) < &) +1},

B(A,p)(t) =/ dA(7) -p(7) + Z dy A7) - p(T)(In = d1A(7) - p(7)) ™" - d1 A7) - (7) =

0 0<r<t
= ) daA(r) - p(r)(In + d2A(T) - p(7)) T - d2A(T) - (7),
0<r<t
B(Ap, O =1+ Y diA(r) -p(r)(In = diA(r) - p(r)) L - di f(r) -
o<r<t
= Y AWM () + d2A(T) - p(r) T - daf(7).
0<r<t

Then the problem (1), (2) is correct.

Theorem 2. Let A€ BV, (R4, R*"*"™), f € BVioc(R+,R™), p € Lijpc (R4, R?*X" | A),
and let the condition (5) hold. Let, moreover, the pair (A, p) be uniformly stable. Then
the problem (1), (2) is weakly correct.
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