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INTRODUCTION

Our consideration involves singular integral operators on manifolds with
boundary in weighted Holder spaces. We further develop the results that
were obtained for one-dimensional singular operators in [8].

Let R™ be an m-dimensional Euclidean space, x = (z1,...,Zm), ¥y =
(y1,---,Ym) be points of R™,

m

1
2
|a:|:(§ a:?) , = (T, Tm1)-

i=1

The paper consists of three sections. In §1 we study the question whether
the one-dimensional matrix singular operators

1
K(w)(2) = Az)u(z) + - B(z)/ ) 4 ser,
RY—T
are Noetherian in spaces of functions having certain differential and asymp-
totic properties.

Az) = [laij(@)llnxn,  B(x) = [[bij(@)lnxn, w=(u,...,un),

where any n-dimensional vector u = (u,...,u,) is considered as a one-
column matrix u = ||t;|nx1-

The results of §1 are used in §2 to study the representation of a positively
homogeneous matrix-function A(¢) (¢ € R™\{0}, m > 2) in the form

A(f) =A (fla fm)D(f)A+ (fla fm)a

where D is a certain canonical matrix and the matrix Ay (A_) admits an
analytic continuation with respect to &, to the upper (lower) complex half-
plane. Note that the matrices Ay, A_ possess certain algebraic, differential
and asymptotic properties.

In §3 we use the results of §2 to investigate the question whether the
matrix singular integral operator

A(u)(z) = C(z)u(x) + /D k(z,z —y)u(y)dy, =€D, DCR™,

are Noetherian in Hélder spaces with weight.
A partial account of the above results is given in [5].
In the paper we use the following notation:

sz{z:xeRm, wm>0}, RT:{x:zERm, wm<0},
B(a:,a):{y:yeRm, |y_x| <a}7 S(a:,a):{y:yeRm, |y—£l’,‘| :a}'



§ 1. SINGULAR INTEGRAL OPERATORS ON R

A function u defined on R belongs to the space Hg’”(R)

(0<v <1, >0,k is a nonnegative integer) iff:

OVeeR  |ru(x)] < (1 + a7, p=0,...k o= ()"

dz
(i) Vo,y e B |0 u(z) — 0 u(y)| < clz —y|"pzy =",
where p,, = min(1+ |z|, 1+ |y|).
The norm in this space is defined by the equality

k
O*u(z) — 0*uly
il = 3 sup(L + 2} |07u(z)| + sup pkio+ ] (| )~ ; W,
p:OIGR z,yER T )

It is easy to show that Hg’”(R) is a Banach space.

Let a function b defined on R be representable in the form
b(z) = b(c0)+ b () where b€ HY" (R) (A > 0). Then
(i) the operator

o(z) = Au)(z) = /R vw) g

r—=y

is bounded in the space Hg.’"(r) (0<B<l);
(ii) the operator

b(x) — b(y)

pray u(y) dy

v(z) = B(u)(x) :/
R
is completely continuous in the space Hg"’(r) 0<pB<l,v<u).
Proof. (i) Setting
Dy = B(z, 5(1 + |z])), D2 = B(0,2|z| + 1)\Dy, D5 = R\(D1UDs)

we have

v(z) = /D CEUNCORIOIEDS /D (=) ) dy.

Hence, taking into account that

pry > c(L+z]) (y €D1), |y—=|>c(l+]z]) (y € D2),
ly —z| > c(1+y]) y € Ds),

we obtain

()] < e(1+ |2) 77 full. (1.1)
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Let us estimate the difference v(z)—v(z). Assume that |z—z| < £(1+]z|)
(otherwise the required estimate follows from (1.1)). Then 1+ |z| ~ 1 + |7
(ie., 1+ |z| < c1(1 4+ |z]) < e2(1 + |z)). Introduce the sets:

Dy = B(z,2|z — z|)), Dy = B(z,3]z —z|), D3 = Bz, L1+ |z)\|z — 2)).

Clearly 251 C 252 C 253 C D;.
The following representation holds:

o) =) = ([+ [ )e-0 " lul) - o) dy -

Do D1\53
- / (2 — ) fuly) —u(=)|dy+ / (=)~ — (2 =) fu(y) —u())dy -
Do 53\52
5
- / (e—y) “uly)dy+ / (w—9) " = (z—p) Nul)dy=Y" iz, 2).
D1\ Ds RN\D, =

To estimate J; (x, z) note that
D, C B(z,4|z — z|), Bz, Tl +1z)) =2z —2|) C Ds,
1 v 1 v
(Ga+12D) = (50 +lah —20e —2]) <co—2P".
Therefore
1, 2)] < oL+ [2) =" — 2|Jull.
Ja(z, z) can be estimated quite similarly.
Further, B(z, £(1+ |z|)) C B(z,5(1 +|z|) + |z — 2), so that
14 |z| + 2|z -
1+ |z
<e(l+ 27w — 2| |full.

zZ
a(2,2)] < e(1 + [2)) " In Ll <

Note that if y €Dy, then |z — y| ~ |z — y| and since

1 1 ‘_ |z — z|
r—y z-yl Jr—yllz—y|’

we shall have

| Js(2,2)| < clz — 2|(1+ [2) 77 /~ _ly =2 dy |l <
D3\ D2

<c(l+|z)7PV |z - 2|”.
Considering the sets Dy and D3, we obtain by virtue of (1.2)
|J5(2,2)| < el — 2" (L+[a]) 7"



Thus we have proved (i).
(ii). From the proof of (i) it follows that B is a bounded operator from
Hg"’(R) into Hgi’jv(R) where 7 is an arbitrary positive number satisfying

v <min(A\,v; —v,1— ).
Indeed, it is obvious that

o

jo(2)] < /D b (@)= b @)z — o]~ u(y)] dy +
w [ h@I+ 1B DI~ ] do

Hence in view of b€ HY7(R) we obtain
[o(@)] < e(1+ |2) =7 Jull.

Now assume that |z — z| < £(1 + |z]) and estimate the difference v(z) —
v(z). We have

lo(z) — o |</|b @) 2 — | July)| dy +

)

+ / b (25 W) |z—y|*1|u(y>|dy+ / (15 @b ()] Jz—y]~ fuly)|dy+

D2 R\D,

s [ @-b @l -0 - -0 ) |dy_2mz

which yields
i, 2)| < o1+ [a]) ™71 e — 2" ful| <
<e(L+|z) 77 e — 2P ) (i =1,2).

Represent term J3(x, z) as

T2 =1b @b @I [ le-yluldy+ [ oyl uwldy) <
D1\ D2 R\D,

14|z

ERE]

<c(l+fz) 7 B e — 2 .

<o -2 (14 [o) ™ (In + ) Jull <

To estimate Jy(x,z) we shall consider this integral on each of the sets
D1\ D5, Dy and D3. By virtue of (1.2) we obtain

[ a(z,2)] < e(L+|al) 77|z — 2 Jull.



Thus the operator B is bounded from HB’V(R) into Hgi’jv(R). Now
the validity of (ii) follows from the completely continuity of the embedding

operator from Hgi’jV(R) into HB’V(R). ]

The boundedness of singular operators in spaces Hg;” is studied in [9].
Consider a one-dimensional matrix singular integral operator

K@) = A@puls) + —BG) [ ) g

i RY—Z
A(z) = llaij(@)llnxn, B(@) = [1bij(@)llnxn, w=(u, ..., un).
Let ®(K) denote the matrix symbol of the operator K:

B0, = Ale) + &1 Bla), €€ R\{0}
Thus
Alw) = 3 [#(K) @, +1) + BEK)(x, ~1)],
B(x) = %[(}(’C)(w,+1) - ®(K)(z, —1)].

Let aij = a;j (00)'*‘ azw ij = bij (0o bzy ; a” ) bwe Hk "(R)

(A>0), det ®(K)(z,£) #0, z € R (R = RU {oc}). Then

(i) The operator K is Noetherian both in the space [] Hg"(R) 0< B <

i=1
1, v < 1) and in the space [] Ly, (R) (p; > 1) (Lp(R) is the linear normed
i=1

space of functions which are summable with degree p on R);

(ii) any solution of the equation

Kw@ =g, se]lmr@NIlmm, 03

from the space [] Ly, (R) belongs to the space H Hk Y(R)N H L,.(R). I
i=1 ]

order that equation (1.3) to be solvable it is necessary and suﬂiczent that

v) E/ Zgﬁidz =0,
R =1

where v is an arbitrary solution of the equation
1 B*
K*(v) = A*(2)v(z) + —,/ B yl) 4
T JR

y—x

from the space H Hk"( R)N ﬁ Ly (R) (pL

+ % = 1) and A* (B*) we
denotes the conjugate matrix of A (B).
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Proof. Let
u(y) dy ko
v(z) = ——, uw € Hy (R) (8>0).
@)= [ =02 B(R) (6> 0)
Then
P
o) = [ Wy p<i,
R Y—T
and since
p—1 N N\ p
i T (wti 1y+i TR (a(:y++z')Zerl ( +(l;);:(2) o 1D
y @+ -1) = y
we obtain
p—1 1
OPv(z) = — ;0 m R(y +14)"0%u(y) dy +
1 (y +1)P0%u(y)
+(a;+i)1’/ y— dy-
Performing integration by parts we find that
/ (y+1)"0"u(y)dy =0, r<p-1
R
Therefore
1 (y +9)P0u(y)
D = . 1.
0la) = oy | (15)

Now Theorem 1.1 directly implies that in the conditions of the theorem the
singular integral operator M defined by the equality (M) =d"4K) is a

two-sided regularizer of the operator K in the space H Hy h *Y(R). According

to M. Riesz’s and S. G. Mikhlin’s theorems on boundedness of a singular
integral and complete continuity of a commutator in spaces L,(R) (see [7],

[12]), the operator M is a regularizer in the space [] Ly, (R) as well.
=1

The validity of (ii) follows from the fact that the o_perator KC has the same
regularizer in a pair of densely embedded spaces (see [4]). W

Remark 1.1. Tt is clear that the solvability conditions of equation (1.3)
can be formulated using the adjoint operator

I B,
K'(v) = A'(x m/ WU gy,

where A’ (B') denotes the matrix obtained by transposing the matrix A
(B).
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If AB = BA, then the regularizer M of the operator X can be defined
by the equality
£
—= B(z).
14

Let 0,7 be natural numbers (0,7 > 1), 6 = (J,...,d,),

O(M) = A(z) —

1 1
—§<Re6j§§, j=1...,n, Redy > s > -+ > Redy, (16)

and let ¢ be an infinitely differentiable function on R satisfying #(t) = 0
for |t] < %, ¢(t) =1 for |t| > 1.
Define the vector-function

¢ (0-77-76;') = (¢1 (U7T76;')7"'7¢n (0-77—76;') (S: 17"'7”)
by the equality

bi (o,7,6:1) =
o pT
D(t) 30 X el A+ )P (14 1), £ > 0;
_ p=1¢=0"T *
= P
U(t) Z Z DI+ )7P=% 0 In?(1 - 1), t <0,
where jc:ff are certain constants.
Assume further that the numbers 3; (i = 1,...,n) are chosen so that
Red; — Red, < B; <1+ Red; — Red;. (1.7)
A function u defined on R belongs to the space H s (1)
iffue H’c »Y(R) and there exist constants ¢j’) (p=1,...,0;¢= 0,1, )
dependlng on u such that
8
(U— Y; (0,7,6; )) Hﬁfﬁ (). (1.8)

(1.6)—(1.8) imply that constants ¢ are uniquely defined by u.

In the linear space H 3. R) we shall define the norm by the equality

O'TS(

s
— . p,q
Il = Ul gy + I (705 Mg,y 500 I

Now I}Z;'jg’r,s(R) will be a Banach space.
By (1+t)% (t>0,6=(5 ...,8,)) we denote a diagonal matrix of order
n on whose diagonal there are functions (1 + )% i.e.

(1+1)° =diag [(1+1)™,..., (1 +1)].
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Define the matrix-function 6(o,7 — 1,4;-) by the equality

O(o, 7 —1,0;t) =
B S (1L + =T+ )P (1 + (1 +1)°, 30,
_ p=1¢=0 +
- o 7—1
) S S (L =) 0TvP(1 — ) PIn?(1 —t)(1 —1)%, t<O0,
p=1q=0 n

where 1:”” (T"?) denotes a constant matrix of order n.

Let the matriz B € HY"(R) (A > 0), det(I + B(x)) # 0,
z € R, and there exist matrices 01 (0,7 — 1,0:-), 62(0, 7 — 1,8;-) such that
(B—61(0,7 - 1,8;-)) € HY'\(R),
(I+B) ' —I—6s(0,7—1,6;-)) € HY/\(R).

Then the one-dimensional matrixz singular integral operator

K(u)(x) = (21 + B(x))u(z) +  B(z) /R u(y) 4,

m y—zx

s Noetherian in the space H Hﬁz R) and any solution of the equation

O'TS(

K(u) =g, geHHﬁl,m R I1 £n () (1.9)

from the space H L, (R) belongs to the space H Hﬁuars( n H L,,(R).

In order that equatwn (1.9) to be solvable zt 18 mecessary and suﬁiczent
that (g,v) = 0 where v is an arbitrary solution of the equation K*(v) =0

from the space H Hﬁ s (B)N T Ly (R) (i-{—% =1).

i=1

Proof. Applying equality (1.4), we represent the operator

B(x) /R (v — 2) " u(y) dy
in the form

B(x) /R (v —2) Muly) dy = —[B(x) — b1 (0,7 — 1,6;2)] x
XZ%H / (y+3)" " [uly)— ¥ (0,7,8:9)]dy +

+B() @ +i)° / (=) My + i) [uly)— o (0,7, 8;5)]dy +

R



13

+|:B($) - 61(0-77- - 156727)] /R(y - w)_l {Z (Ua Ta(say)dy -

g

1= 1,80) Yo+ ) [ (i) fulw)- o Gw]dy o+

r=1 R

+61 (0,7 — 1,0;x) /R(y —z) ! {Z (o,7,0;y)dy. (1.10)

Similarly
[ =2 Bl dy =
R
==Y+ [ @i B )~ b (oS
+(x i) /R(y +i)7(y — ) B(y) [uly)— ¥ (0,7, 63)]dy -
N @+i) T /R(y +i)" M [B(y) — 01(0, 7 — 1,6;9)] b (0,78 y)dy +
+(z+i)7° /R(y +1i)°(y —2) "' [B(y) — b1(o,7 — 1,6;y)] b (0,7, 65 y)dy +

+ / (= 2)"0,(0, 7 — 1,6:9) 4 (0,783 y)dy. (L.11)
R

It is not difficult to verify that the singular integral makes the asymptotics of

8 S
the vectors ¢ (o, 7,6;+), 61(0,7,0;) ¢ (0,7,0; ) worse only by a logarithm.
Representations (1.10), (1.11) immediately imply the boundedness of the
operator K and the complete continuity of the commutator in the space

[1 I}I;,);Vc, , o(R) for k = 0. When k > 0 these representations are based on
Moo,
equality (1.5). It is likewise clear that the operator M defined by

S(M)=2I+B- B

€]

regularizes the operator K. H
Assume that

AR {z =1z +iTs, Ty > 0}, Z_ = {z =21 +ix2, Ty < 0} (1.12)

and consider the singular potential

()= o [ Ml

T 2mi g y—2

We shall finish this section with
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Let u € HS’"(R) (8 > 0). Then the function v is analytic
both in the domain Z, and in the domain Z_,

. 1 1 u(y) dy
1 — = —
Z+921T16R,U(Z) 2 u(z) + 2mi /R y—x’

1.13
lim wv(z2) = —lu(x) + L/ uly) dy e
Z_3:-z€R 2 2mi Jp y—x
Moreover, the function v™ (v™) defined by
v(z), z€Zy, v(2), z€Z_,
vi(z) = lim wo(n), z€R vT(2) = lim wo(n), z€R
Zion—z ’ Z_2n—z ’

belongs to the space Hg’"(7+) [Hg’"(77)], i.e.

020 (2)| < c(1+|2)) P77, p=1,...,k,
OhE(!) = bt ()] < el — 2 pu
where py »» = min((1 + |2'],1+ |2"]).
The theorem can be proved using the equality
1 [ dy {%, e 7.,
o2mi Jpy —z —%, z€Z_

and (1.5). The procedure is in the main similar to the one used in prov-
ing the corresponding properties of singular potentials in bounded domains
(see [6]).

One can obtain quite complete information on one-dimensional singular
integral operators from the momographs [7], [8].

§ 2. FACTORIZATION OF HOMOGENEOUS MATRIX-FUNCTIONS

Consider a matrix-function A(§) = ||4i; (€)l|lnxn. It will be assumed that

AN = A(§) (A>0), A € C*(R™\{0}) (m >2),

det A(€) £0 (€ #0). (21)

Put
Ag = A7H0,...,0,—-1)A(0,...,0,+1).
Let A\; (j =1,...,s) be the eigenvalues of the matrix Ag, i.e. det(4y —

AjI) = 0, and r; be their multiplicities (3°;_, r; = n). Clearly A; # 0
j=1,...,9).
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We introduce the matrices B,.(a) = ||Byr(@)||rxr where

0, v<k,

Byk(a) = 1, vV = k‘,
v—k

ﬁ , V> k',

B(ri;a) = diag By, (a), ..., By, (a)]
(riv 4+ +1rip, =13).

It is easy to verify that
B.(0) =1, By(ai+ as)= B.(ai)B,(as). (2.2)

This in particular implies that the matrices B, (1), B,(as2) are commutative
and B,.(—a) = B (a).

Following Jordan’s theorem the matrix Ay can be represented as

Ao =gBg ",
where det g # 0, B is the modified Jordan form of Ay and
B = diag [\ B(r1;1),...,A:B(rs; 1)].
Introduce the notation:

1
& = —
k™ omi

k—1 k
d; =6y, for Zrl,<j§2rl,, j=1,...,n.
v=1 v=1

InXg, k=1,...,s;

It will be assumed that Red; > Reds > -+ > Re by,

6 0@ = m S E e,

5=(5,... 3

By In z we denote the logarithm branch defined by —7 < argz < T,

(fmiﬂg’”)éj 5; In €m‘i£fl‘ﬁ’\l’

€' =°
(ﬁm Ij;I'E II)5 = ding [(Em Elf II)‘”,‘__, (fm |i£12||£ II)‘S"],

B (¢) = diag [B(rl; ayg(§),...,B(rs; ai(f)].
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Clearly
1 1
3 < Reéj < >
lim [0y —a (9 =0, lm_[ar(©=a (6 =1, (2.3)

i (En +11€1)% (En = €D =1,

k—1 k
lim (& + €)% (6m — i€’ 7% = My fo y<J< ) e, (24
(im (G o+l (6m — 1€ ¢ for zzj J_;r (24)

m

lim B.(§)-BT'() =1,

e e (2.5)
Jim  Bi(§) BZ'(€) = diag [B(ri;1),..., B(rs; 1)].
Put
A,(6) = (%)_631(5)9—%—1(0, D) X
SICERCICaS (2.
T(E) =g A (0,..., +1)A(E)g —
— B (&)(&m —il€']) (&m + 16N BL (),
T(0,&m) = Jim T(€&n)
Then
P I FAINE)
1o -1= (2 T erone (=) e
and from (2.3)-(2.5) we find that lim T(§) =0.

Em—rEo0
Introduce the set

1 3
G={(',r.&n) 0 € R™, 5 <If| <5, (r,6m) € R2\{0}, 7 > 0}
and define the function T, on this set by the equality

T*(ﬂ', r, Em) = T(U'T, Em)

It is easy to see that the matrix-function 7 is positively homogeneous of
order zero with respect to variables (r,&,,) and is infinitely differentiable
on G.

Let

E—T' =1, Bi(|§—:|,t) = B.(1)
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(this matrix-function does not depend on é—jl) Then the matrix-function
A, (&) can be rewritten as

¢ N6 3
m,t):[+(t—z) SIB=(t)T. (|€,|

Define the new functions A, and T, on (R™ \{0}) x R by the equality

A=A ( LB ()(t+i). (28)

A**(E’,t):A*(%,t), T (€, t) = (|§|,1,t). (2.9)

|) A, (€) and
JE ) =T+ (t— i) OB () Tou (€, ) By () (t +0)°.

The following theorem is true.

Then A,. (f T

The matriz-function A..(&',t) is a positively homogeneous
function of order zero with respect to the variable £ and is infinitely differ-
entiable on (R™~'\{0}) x R. When t >0 (t < 0) it admits, for any natural
number k, the expansion

k 2n—2
A (€ )=T4> > (1+1) ‘5T”"1 €Y (1+1) " In? (1+8)(1+1)° +
v=1 ¢=0
2n—2
+ Z(1+t)_5f}r’k+1’q(§’,t)(l+t)_k_11nq(1+t)(1+t)‘5
q=0

k 2n—2
( **E t I+ZZ 1— t 6Tllq )( t)—ulnq(l_t)(l_t)5+(210)
v=1 ¢=0
2n—2

+ Y A=) T (1= T I (1) (1)),

q=0
where Z:“”’q are positively homogeneous matriz-functions of order zero which
are infinitely differentiable on R™ '\{0}, the matriz-functions z:kﬂ’q

(Tk+1’q) are positively homogeneous of order zero with respect to the variable

¢ and are infinitely differentiable on (R™\{0})x Ry ((R™ '\{0})x R_)
and

0%, 83Tk+1’q (€, 0)| < epsl|7PHA + [£) 5. (2.11)

Proof. The fact that the matrix-function A..(&',t) is a positively homoge-
neous function of order zero with respect to the variable ¢ and is infinitely
differentiable on (R™~!'\{0}) x R immediately follows from the definition
of this function.
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To obtain expansion (2.10) we first assume that ¢ > 0, then apply the
Taylor formula

k

)= 3 = Pulz)y— o) +
lp]=0 "
> Bly-or [y -m)-ntar
pl=k+1 0

and expand the matrix-function Ty (0,7, t) = Tu (7, o TLH) in a series near
the point (n',0,1). Keeping in mind that T.(n’,0,1) = 0, we obtain

i P W i

' _
T, (77 T t) = p1ips! Orp1 9tz (7- + t)P1+pz +

p1+p2=1
—1P2(k +1 k+1
by EDREsD

pl!pQ! (7“ + t)k+1

X
p1+p2=k+1

1 ~

op1+p2 T. l, Jt

X / — (ﬂ rt) ~ . (1= T)de.
0 orr1 Htr2 B

Hence

(f’ ) Xk: —1yr2 9Ty, 0,1)

, , 1 t)y P1—Pp2
|§I p1lps! OrpP1 Otp2 ( + ) +

+ Z w (]_ + t)*(kﬁLl) %

1Dy !
p1+p2=k+1 prp2:
1 ap1+p2T ,
x/ (\ﬁl ) ~ (].—T)kd’l'.
0 o1 9> =T
t:lfl;ﬂ
Now from (2.8) it follows that
A (€1 I+Z (T () (1+1) "By (t)(t+i)°+
Ht—i) *BZUOTIH(E ) (1+1) F BL () (t+i)°, (2.12)

where T} is a positively homogeneous matrix-function of order zero which
is infinitely differentiable on R™~1\{0}, TF¥*! is a positively homogeneous
matrix-function of order zero with respect to the variable &' and is infinitely
differentiable on (R™1\{0}) x R and

OF OFTETH(E )] < epl€ TP (14 0)7°
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Keeping in mind the structure of matrices B+ (t) and the fact that for large
positive values of ¢ we have

In(t i) =In(t+ 1) + > _ci(1+1)7F,
k=1
(t£0)7 = (E+1) Y G (L+6)7F,
k=0

we obtain the desired result from (2.12).
When ¢ < 0 the matrix-function Ty (1, r,t) = Ti(r, ==, —£) should be
expanded in a Taylor series near the point (n',0,—1). W

Theorem 2.1 is valid for the matriz-function A} (&', t) =
ATY(E 1) as well.

Let k, o be natural numbers (k> 0,0 >1),0<v <1 and
0<A<1—(Reds —Red,). Then

An(€,) -1, ANE, ) — 1€ HYY(R);
Au(€,) =T —01(0,2n - 2,0;) € HE\(R),
AZNE ) =T —6s(0,2n - 2,6;) € HY!\(R).

Here the j-th column of each of the matrices A, (¢',:) —1T and A7} (¢, ) —1T
belongs to the space [] H’E;VJ +.;(B) (1 =2n —2) where numbers f3; satisfy
AL BT,

conditions (1.7).
Now we are able to prove the main result of this section.

Let a positively homogeneous matriz-function A(§) =
> 2)

|A4i; (€)lnxn of order zero be infinitely differentable on R™\{0} (m
and be strongly elliptic (i.e.
Re A(§)n -1 =Re Ay (En;7; #0 (£ #0)
for any nonzero complex vector n = (n,...,n,)). Then it admits the expan-
sion
A(g) = ch— (gla €M)D(£)A+ (€I7 gm)g_la
where

c=A(0,...,+1), D(€) = B-(&)(&m —il€')°(Em +ilE'N T BL(€),
Ax(A) = A+ (§) (A >0), det AL(§) #0 (£ #0).
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The matrices Ay, A7' (A_, A”") admit analytic continuations with respect
to &n to the lower (upper) complex half-plane, these continuations being
bounded. Moreover, for any natural k the matrices Ay admit the expansions

k (p+1)(2n—1)

€6 =142, 2 (i) ()™

x In? fm |£’T|€ | + 4(e), (2.13)

where
k k k .
CBT e C(R™I\{0}), AN =AE) (A>0), Ael"R™\{0}).
The expansions of the same kind hold for the inverse matrices A;l as well.

Proof. Let Z, Z_ be the domains defined by (1.12) and A.. be the matrix-
function defined by (2.9).

Consider the Hilbert homogeneous problem:

Find a matrix-function ®(¢,-) which is analytic in Z; U Z_, continuous
on R from Z, and Z_and satisfies the conditions

(€' to) = A (&, t0)®T (¢, 0), to € R,
lim ®F(¢,z)=1, _lim & (¢,2)=1. (2.14)

Z 413200 Z _3z—00

A solution will be sought for in the form

B(¢,2) = %/R t(f_ Dt pe HEY(R). (2.15)

To define the matrix ¢, by Theorem 1.4 we obtain a system of singular
integral equations

(Aunl€,10) + D)pl€' 10) + = (Aua(€'10) = T) /R i(fl’t?

=2(I — A (€, t0)). (2.16)

dt =

Denote by K¢ the singular integral operator corresponding to this system.
It is clear that the determinant of the symbolic matrix of this operator
is not zero and by Theorems 1.2, 1.3 and Corollary 2.2 K¢ is Noetherian

both in the space H H “(R) and in the space H Hﬁ“ars(R) (k >0,

o>1, 0<V<1 T—2n—1 Red; — Red, <ﬁz<1+Re5—Re61,
i =1,. n) Note that since the matrix A is strongly elliptic, we have
|Re5 | <ii=1,.
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Show that the operator K¢ is invertible both in the space [] Hg"(R)

i=1

(R). To this effect, by Theorems 1.2, 1.3 it is

o,T,8

and in the space H o g

enough to prove that the homogeneous equations K¢ (u) = 0 and K (v) = 0
(ng, denotes the adjoint operator of K¢) have only trivial solutions in the

space [] HS”(R)
i=1
Let ¢ be a solution of the equation K¢ (u) = 0 from the space [] HS" (R).
i=1

Then by Theorem 1.2 @ will belong to the space [Hg”(R)]” where

1
§+max|Re5j| <pB <1

° 6]
® (€,2) = 2m/R t—2z dt.

® (&',+) is analytic in Zy U Z_, satisfies the boundary condition

(€)= A€ 1) B H(E L) (2.17)
and by virtue of Theorem 1.4

Put

/ | & (¢, t+ir)P(L+ |t +r)¥dt < e,
(2.18)
/ | ® (¢t —ir)2(1 + |t + 1) 2dt < e,

1 1
T >0, §+maX|Re6|< +s<p.

Recalling now that

An(€t) = (|§| t) =

= (t =) "B L (H)g ' A7H(0,...,+1)A (|§,| t 9By (t)(t +1)’,

from (2.17) we obtain

A, +1)gB_(t)(t —i)° & ~(¢',t) = A (If’l Bt +3) & *(€,0).

Due to inequalities (2.18) the conditions of the Paley—Wiener theorem (see
[3]) is fulfilled for the vector-functions

A(0,...,+1)gB ()(t—l) (¢ 1),
gB (1)t +1)° & *(€,1),
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and if we denote by F(u) the Fourier transform of the function wu,

F)(@) = [ () dy
R
then we shall get

A(Ov"'7+1)gB—( )(t _7') (glvt) F( ( Iﬂ'))(t)a

gB+()(t+l) T =F((E))®),
FH(€,) € Ly (R)
(L (R) denotes a subspace of the space Ly(R) consisting of functions with

support on the closed semi-axis R.).
We have

[A(E ) PHe N0 FEENw-
:/ F(f’(f’,-))(t)-mdt:%/ (€, Fr@Ddt =0
R R

Hence since the matrix A is strongly elliptic, F/(fT(¢',+))(t) = 0. Therefore
(¢, 1) = 0 and from Theorem 1.4 it follows that ¢ (£',-) = 0

Now assume that ¢ (£',-) is a solution of the equation K}, (v) = 0 from

n
the space [] Hg;"(R), ie.
i=1

o A’ ! _ 1)
Mm&m+0w&m—iéﬁﬁﬁLl¢@ﬁm

™ t—to

Put

21 t—to

[e] AI ! —_ o
m@@:iéﬁ&ilwww

T (&', 2) is analytic in Z; U Z_ and satitisfies by virtue of (1.13) the bound-
ary condition

710

_(Elato) = [A;*(fl,to)] +(£Iat0)'

Hence, in view of the fact that the strong ellipticity of the matrix A im-
plies that the matrix [A']~! is strongly elliptic, we find, as above, that

1/) (fla ) =0
Thus the operator K¢ is invertible both in the space [] Hg”(R) and in

i=1
the space H Hﬁl vrs(1D).

Therefore, by virtue of Corollary 2.2, for any ¢ € (R™~'\{0}) there
exists a matrix ¢(¢',-) = ||¢i; (€', )|lnxn which satisfies system (2.16) and
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whose j-th column belong both to the space H Hk *Y(R) and to the space
i=1

H }*IZ."U +.s(R) (1 =2n — 1); this matrix is unique.

The uniqueness of a solution of system (2.16) implies that ¢ is a positively
homogeneous matrix-function of order zero with respect to a variable &'.

Taking into account the differential properties of coefficients of the oper-
ator K¢, we find that this operator is infinitely differentiable with respect

n
to the parameter ¢’ in the norm of operators in the spaces [] HS;"(R),

i=1
H HB“J T, s(R)

The invertibility of the operator K¢ implies that the inverse operator
IC;1 also possesses this property, which in view of Theorem 2.1 implies in
turn that the matrix p(¢’,t) is infinitely differentiable with respect to the
variable &' (' # 0) and the j-th column of the matrix Bp,go(f’, -) belongs

both to the space H Hk (R) and to the space H HB“ (R) uniformly

o,T,8

with respect to &’ near €'l = 1.
In particular we have

C
eI+ e |

102,07 015 (€, 0)] < Pls=01,..., (219)

and there exist positively homogeneous and infinitely differentiable on
R™=1\{0} functions jc[fjjg (¢') such that if we define the function v;;(o, 7,0;-)

Vij(o,7,0;& 1) =

o pT
V() E1 of-zp’yq(l +1) P (1 + 1), ¢>0,
— p=1g=
- gl
¥(t) 21 . DI +4)7P0 5 InY(1 — 1), <0,
p=1q=

then

Cc
T+ e

|0, 07 (¢4 (&', t) — ij (0,7, 8;€',1))| <
lal,r =0,1,....

(2.20)

Now consider the matrix ®(¢', z) defined by equality (2.15)

@(g',z):i/lzg"(f D g+ 1.

211 t—z
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By Theorem 1.4 it follows from (2.19) that ®(¢', ) is analytic in Z, U Z_
and
c
=) < .
)OS

08,05 (@35 (¢, 2 (2.21)

Show that det ®*(¢',2) # 0, 2 € Z4. Assume the contrary. For the sake
of definiteness let det ®1(¢',29) = 0 for some zp € Z,. Then there exist
numbers 7, ...,7¥n not all equal to zero and such that the linear combination

Z vi ® T(€,2) of the columns of the matrix ®T(¢', ) vanishes at z = 2.
We put

,(Z}(EI,Z) — Zl:lz’l/l_q;o(g aZ) )

(&', ) is analytic in Z, U Z_ and satisfies the boundary condition
A** (é-,a t)¢+ (5,7 t) = ¢7 (517 t)

(except at the point ¢t = 2o when 2z, € R), and by virtue of (2.21) conditions
(2.18) are fulﬁlled for 1/Ji. Therefore, as shown above, ¥+ (¢',2) =0, z €

7, and thus Z v ® T(¢',2) =0, z € Z,. Passing to the limit when

Z, 3z 00, we obtam v; = 0,4 =1,...,n, which is impossible. Therefore
the matrix ®1(¢', 2) is also analytic in Z, U Z_ and (2.21) is valid for its
elements. Further, by (2.20) it is not difficult to show that the elements of
the matrices ®*(¢', 2), z € Z4, admit the expansion

o pt+1
=6+, >, O EN i) PO (2 £ ) +
p=1 ¢=0
+05 (¢,2), 2z € Zs, (2.22)

where
CBINE) = OB, BE, (0 2) = B5,(€.2) (> 0),
gf]zq € C(R™"\{0}), &} L (¢',-) is analytic in Z4 and

ROPE(€,2)] < ¢
| (& 2)] < |EM|IPH(1 + |z])ots+0:

ij,0

€7y (2.23)

In order to obtain a similar expansion for the elements of the matrix
[®*(¢', 2)]~! we should proceed as follows.

Clearly the matrix [®'(¢/,2)]7! is analytic in Zy U Z_ and satisfies the
boundary condition

-1

[(o=€,0) ™" = [A€.0] ™ [(@* €))
_ lim [(@+(£/,2))’]71:I, B lim [((I)f(gl,z))l]fl:]_‘

Z13z—00 Z_>z—00
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On other hand, consider the problem: by the boundary condition (2.24)
find an analytic in Z; U Z_ matrix-function ¥'(¢’,-) which is completely
continuous on R from Z, and Z_. Repeat our reasoning above, we can
find the expansion of ¥*(¢’,-). But since the solution of the boundary
value problem (2.24) is unique in the space of nonsingular matrices, we
have ¥ = [¢']!

Thus the elements @ZJ% (¢', 2) of matrices [®* (¢, 2)]~! admit the expansion

o pr+l1
Y 2) =6+ Y Z CPU(E) (2 £ )P % In(z £ i) +
p=1 ¢=0
+¢z] a'(é- ) )7 z E Zﬂ:) (225)

where
CHINE) = CHIE), b5, 2) = 0 ,(€,2) (A >0),

gff € C°(R™1\{0}), v;5 (&',-) is analytic in Z4 and

z]a

Lot (€,2)| < c .
1902045, (- 2 < T 1 oo (2.26)

Red; —Red; <v; <1—(Red; —Red,).

From now on expansion (2.13) is obtained in an elementary way. W

Remark 2.1. The fact that the partial indices of the strongly elliptic ma-
trix A are zero is proved in [3]. In the same paper an expansion of form
(2.13) is obtained when A is a scalar function.

§ 3. REGULARIZATION OF SINGULAR INTEGRAL OPERATORS ON
MANIFOLDS WITH BOUNDARY

Let G(R™) be the space of infinitely differentiable functions v on R™
quickly decreasing at infinity, i.e. possessing the property that

sup (1 + |z|)N Z [0%u(z)] < o0

m
zER la|<n

for any nonnegative integers n, N.
Denote by F(p) the Fourier transform of the function ¢, i.e.

)@ = [ o) dy = Frosoly).

The inverse Fourier transform F~! is written as

F*l(d,)(g;) = r)m /m e*iz-yw(y) dy




26

Define the functions ¢+ by the equalities

1, t>0, 0, t>0,
KJF(t)Z{O t<0 L(t):{l t<0

Let m > 2 and consider the pseudodifferential operator

) = o [ e AOF @O dE weGERM, @1
where
A© = a€) (7 1) W ([ £1), €= (@)

n,p (n > 1, p > 0) are natural numbers and a is a positively homogeneous
function of order zero which is infinitely differentiable on R™~1\{0}.

The pseudodifferential operator A defined by (3.1) can be
represented as a singular integral operator

A(u)(z) = aou(z) + . K(z —y)u(y) dy, (3-2)

where
P e
Zﬁi(%)&” [Kj,q(a:)(%) 11nq %],

K , is a positively homogeneous function of order 1 —m which is infinitely
differentiable on R™\{0} and

4y = [mes5(0,1)]‘1/ A(E) ds.

S(0,1)

w_»

Proof. We shall prove the theorem only for the case “+”, since the case
is proved similarly. After differentiating the equality

o0
(o +ir)t = c(,u)/ t~hteTleltoqt Rep <0, >0, (3.3)
0

p-times with respect to the parameter p, where c¢(u) = i*/T'(—pu) (see, for
example, [3]), we obtain

P
(o +iT)*1InP (0 + i) = Z cgFiso (L ()t F e In ¢).
g=0
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Therefore
é‘ N é' . Ld > ne1 —t ifm.¢
(ﬁ +l) In? (ﬁ +Z) chq 0 t" et T InT tdt =
q=0
(t =1¢lzm)

= ¢ |"Z / I i (| ) it

Apply this equality to get

Aw)@) = F (@ FC L, (5 +1) e (S +i) Fae)] =
= F§7Hz'a(fl)|fl|n icq/ L (Tm = Ym) (Tm — ym)n71 X
q=0 e

x ¢ €1 =um) In €| (2, — )~ U (€', Yom) Ay,
where

.
u (& ym) = Fy e (w(y', ym))-
m—1
Noting that |{'| = > é—{|§j and assuming that a;.(£') = a(f’)%cq, we
i=1

find

K—i—(wm _ym)(xm _ym)n_lFﬁ’—)x’ajﬂl(fl)|£I|n_1€_‘£l‘(wm_ym)lnq |€I|($m _ym) =

Co(Tm — Ym) (@m — ym)n_1 7 +m—3
— n+m=3] — Y
@m)m 0 r(zy, — ym)dr X

0

8 / aj7q(gl)eir((zm7yM)+izI-£,)d£IS =

|€'[=1
é T xr 1% 2 —ym iz’ €’
— +( m 327271) mm1 ym / a;, q dﬁlS/ - mryrwytn T&mi3 In? rdr.
)
|€" =L
But
/ el gy g =
0
_ (T — ym)" T2 Z cs In® Tm = Ym
((a:m Y )+le é’l)TH*m 2 s m—ym-l-zx’f’

Therefore

AWE) = 3 Y [ Quale = woysuw) dy 3.4
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where
bj,q(&') In’ zmﬁfiyé’&’
(zm + 7:17’ . é‘l)n—i—m—?

Qi (@) = Ly ()l / deS

€=t

and b; 4 is a positively homogeneous function of order zero which is infinitely
differentiable on R™~'\{0}.
Rewrite @ 4(z) as

Q) = o) (22)" Mm ; ZQM, n* 1

where

s \
Qj,q,S(x) = (Zm 4 izl - gryntm =2 ’

Show that @jg,s is infinitely differentiable on R™\{0} (Qj,q4,s(z',0)
= limwm_m Qj7q7s(w))-

Let ¢ € C*°(R), 1(t) = 1 for |t| < 2 and ¢(¢) = 0 for [¢| > %. It will be
assumed that = (2/,2,), || > ¢ > 0. The fact that the function Q; 4 s
is infinitely differentiable in the domain |z,,| > |2| is beyond any doubt.
Assume now that |z'| > |z,,| and represent Q; s(z) as

bias (€)™ (2 i €) vy 'gl)dg S+

QJ'JLS(:E) = ]
Tm 4 glT ] 2 e
€= (|x| s e

- , n+m—2
oo (52 +itr-€)
= Qf4,5(2) + QF ¢ 5(2).

It is clear that ] 4.5 18 inﬁnitely differentiable. Introducing the new spher-
ical coordinates (t,n") : W & n" = (m,...,0m—2) and applying
integration by parts we ascertain that Q'
in the domain |2'| > 3|z |.

From now on the theorem is proved by means of equality (3.4). H

s is also infinitely differentiable

Let m > 2, —1 < Red < 1. Then the pseudodifferential
operator (3.1), where

A(E) = (Em + €D Em — 1€
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can be represented as the singular integral operator (3.2), where

K(z) = ¢(m, §) Sif;?+ 0 [z+(| |)K+() (%)K_(z)]+

m—1 1

S ()t ()

Jj=1 ¢=
Ky, Qj,q are positively homogeneous functions of order 1 — m which are
inﬁni;ly differentiable on R™\{0}, and K+ (0,2') = 0.
Proof. Assume that 0 < Red < 1. Then
(Em +ilE')" = (&m +il€'D(Em + 1€

and by virtue of equality (3.3)

o0

A(u)(z) = e(m, O F2,, / o (@ — 1) (@ — 1) e 1€ 1@m—t) 5

oo

a _ ’
X (a+|£l|) / K_(t—ym)(ym_t)a 16\5 |(tym) E (glaym)dymdt =

= clm )Fg o [ (o =) S 1m0 x
X/ -1t ym>( 9 €)1 (€ ym)dymat.
t ym

Changing the integration order, we get

Aw@) = clm ) F | [ (G 4 1€1) ) o

Ym ,
(T — 1) "0 (ym — )0 eI N @mtym=20) gy o

> 0 n\ e
+ ; (ay—m_‘_|£|)u(£aym)dymx
X /Im (wm - t)ié(ym - t)élelgrl(mm+ym2t)dt:| =

Tom a n
_ —1 . ! !

o0
y / B — g + 1) e € 1 —vmt20) g 4
0
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o0
0 n\ e
a m d m
+/xm (aym+lfl)U(£,y ) dYm X
<[ T (o — 10 e 20 gy
0
Note that

ngz,e_”’"‘gl‘ = ¢(m) Lm_

where

Kj(z) = ¢j(m, 6) [{4 (xm) K ;(z) + (—(2m) K ;(z)],

+ —
> - dt
K@) = [ 5 Y(om+1) ) o Tm >0,
+J($) /0 (Tm ) (zm + 2t)2 + |22) % Tm

2

j=1,....m—1;
o + 2t
K = O Nz + )70 T = dt, >0,
K () / (am + 07 o oy E W
o dt
K (x) / 0 (—wm + 1) &
- 0

=y Tm <0,
(mzm +2t)2 + [2'[?) =

2
j=1....m—1;
o —x,, + 2t
0 (= + )01 m = dt, x, <O0.
[ S Canr2p o P)%

2

K, (z)

Using the transform ¢ = z,,,t1, we rewrite the functions K ;(z) as follows:

& dt
K;i(z) = (1 + )70 i =,
@) = [0y 0120 + [ P)%
o0 1+2t)
K — t5—1 1 t—(5 .'Em( _
nie) = [ 074 @0+ 202 + [0P)F
Similarly
0 - dt
Ki(z)= [ t°Q+¢t)°"! a -
K () / () e
0 — 1+ 2t
Ifm(w):/ 01+ 1) Zm(l+ 26)
0

= dt.
(2, (14 2)2 + [2']?) 2
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Simple transformations lead us to

_ [Zm| . _
Ifj(x)—ff],l-l-ff],gln R j=1,...,m—1,
o dt
K, = ——— + Kn, )
i (1') /zml (t2+|a:’|2)7 + g (ar)

where Ii{j’l’ Ii{m’ Ii{m are positively homogeneous functions of order 1 —m

which are infinitely differentiable on R™\{0}, and ij m(0,2") = 0.

The theorem is proved for the case 0 < Red < 1. The case —1 < Red < 0
is treated similarly.

If Red = 0, then we have to consider a pseudodifferential operator with
the symbol

A©) = (G + il DT (Em —ile') 0
and the theorem is proved by passing to the limit. H

In a similar manner we prove our next theorem.

Let m > 2. Then the pseudodifferential operator (3.1) with
the symbol

A(§) = In(m +il€']) — In(&m —il€])

can be represented as the singular integral operator (3.2), where

0 . . -
K(z) = o [cl(m) % + cz(m)% In %] n
m—1 1 0 |7, | || ||
+ j; FZO Oz [(KJF(W)QM(@ +0_ (W)@M(w)) In? W]’

and Qj,4 are positively homogeneous functions of order 1 — m which are
+
infinitely differentiable on R™\{0}.
Let

Hw©O% = [ U ) g,

Al
Po= (I+H), P =3 (I-H)
b () = (Em +TIED, w0 (€) = (Em — ilE'))°.

We know (see, for example, [3]) that

F(lyu) = PL(F(u), F(l-u)=P_(F(u)). (3.6)
There is
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Let m > 2, n (n > 0) be a natural number and —1 <
Red < 1. Then the operator

M (u)(x) = Fy, (§m +il€')7°
Xi/ (1 +1€')° (I (1 +i]E']) —In(Em +il€'])"

i Nm _fm
R

F(u)(fla Nm)dNm, (3.7)

u e G(R™),

can be represented as the integral operator

n

EO cp(m, ) [pm |z = y|~m (Ll = x

Tm

x InP %u(y)dy + dpou(x), Tm >0, (3.8)
—Onou(z), Ty <0,
where 6y, is the Kronecker symbol.
Proof. Let 0 < Red < 1. Assume first that n = 0 and consider the operator
B(u)(w) = F 5w, (§)H (w F(u))(8). (3.9)
If z,, <0, then by (3.3) and (3.6)
B(u)(z) = 2F;_,, w0} P (wp F(u) () —u(z) =

= 2¢(m,0)F., " / Ly (x — )0 e El@Em =t gt

£I_>ml

A N A

< (g +1€1) 7€ m) dum = ) = —u(o).
If however z,, > 0, then by (3.3) and (3.6) we get
B(u)(z) = —2F_,wi' P_(wi F(u) () +u(z) =

- Cl m, 5 £I_>m// £+ t)éileflgrl(mmft)dt X
0 et =yt - ) )

0 N ~
X (aym +1¢ |) u (&, ym) dym + u(x) =
0
= cr(m.0)F L, / (2 — )~ €m0 gt

— 00

t ! 8 Il
% / (t _ ym)—ée—\f [(t—ym) (6y—m + |£I|) u (5',ym) Ay _‘_u(x)

—00
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Changing of the integration order leads us to

0

0
B(a) = am )P, [ (5= + 1€1) B (€ m) duim

0
* / (@m = )77 (t = ym) e N Em It 4 () =

m

0
_ 0
= cl(m,6)F§,LI,/ (—By + |£'|) u (& ym) dym x

1 _ 6—1 ,

x / (M — t) t e €1 @m=ym) gt 4 ().
0 —Ym

Integration by parts gives us

0 m
B)(e) = calm, ) Fg [ (€)%

—00

1 — ) ,
X a:_2m (M - t) t 01N @m=ym) gt 4y (2).
Ym Jo —Ym

Hence, taking into account that

1 _ 5—2 é

T T Y - Lm_ -
o, G =t) =) e =™
v2, Jo Ym |ym|

we find by equality (3.5) that

B(u)(z) = c(m,a)/ |z — y|7m(M)76u(y) dy + u(z), @m > 0.

m Tm

For n > 0 equality (3.8) is obtained by differentiating equality (3.9) n-
times with respect to the parameter §.

The proof of the theorem for the case —1 < Red < 0 is similar.

The case Red = 0 is proved by passing to the limit. H

By the same technique we prove our next

Let m > 2, n (n > 0) be a natural number and —1 <
Red < 1. Then the operator

M (u)(2) = F_j, (Em — il€'])° x
1 (g = AlE' D (g —4l€']) = In(&m — il€])"
i /R Nm — &m F

ue G(R™),

X (U)(f',nm)dnm,
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can be represented as the integral operator
Onou(z), Tm >0,
n _ -5
M(u)(z) = EO cp(m, ) [pm |2 =yl ™" (327) %
p:
x InP fé—zlu(y)dy — Opou(z), xm <O0.
Put
I={z:2z€R™ z, =0}
A function u defined on R™\I' belongs to the space
HY 5(R™I) (0<rv,a<1,8>0,a+3<m)iff
(i) Ve € R™\T  Ju(z)| < clom| (L +J2]) 7%
(ii) Vo € R™\T, Vy € B(z, 1|z

Ju(@) —u(y)] < clem] T 1+ |2)) Pl —y]".
The norm in HY ;(R™\T') is defined by

lull = sup |zm|*(L +|2])%u(z)] +
z€R™\I

u(x) —u
b (L e D]
zER™\T |z -yl
yEB(z,3|zm])
HY ;(R™\T') is a Banach space.
The following theorem on the boundedness of a singular integral operator

Au)(z) = K(z,z —y)u(y) dy,
Bm ; (3.10)
K(r,2) = f (o 7)1

in a Holder space with weight is proved in [5].

Let the characteristic f of the singular integral operator
(3.10) defined on (R™\T") x (S(0,1)\I') satisfy the conditions:
(a) Yz € R™\I' [ f(z,2)d.S =0;
5(0,1)
(b) V& € R™\TI', Vz € S(0,1)\I" |f(z,2)] <clzm| 7 (0<0<a);
(c) Yo,y € R™\TI', Vz,0,w e S(0,1)\I'

|f(z,2) = f(y,2)| < clz = y|” (min(|zm], [ym))) " zml =7,

|f(,60) = f(z,w)| < ¢lf —w]” (min(|fn], lwnl) """,
v >v, vp+o<l

Then operator (3.10) is bounded in the space HY 5(R™\I).
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By virtue of this theorem and the Calderon-Zygmund theorem [1] we can
readily formulate the conditions whose fullfilment will make the singular in-
tegral operators from Theorems 3.1-3.3 bounded in the spaces H/; 5(R™\I')
and L,(R™).

Introduce the notation:

+ _
ap(R™) = {u tu € Hy 5(R™\TI'), suppu € Ri},
LER™) ={u:u € Ly(R™), suppu € Ry}.

Let the integral operator M be defined by

S Nz =yl (=) ™ ® el yyy, -, > 0,

T Tm

0, Tm <0,

M (u)(x) = {

where s is a non-negative integer, —1 < Red < 1. Then
(i) If Red < a <14+ Red, a+ 8 < m+ Red, then the integral operator

- +
M is bounded from the space HY, 5(R™) into the space Hy, 5(R™);
(ii) If Red < 1% < 1+ Red, then M is bounded from the space L, (R™)
into the space L (R™) (p > 1).

Proof. (i) is proved in the same manner as Theorem 3.6. (ii) is proved in
a rather simple way by using the Holder integral inequality. Indeed, let
01 = Red < 0 and % < 14 Red. Choose a positive number v from the
conditions

vq < 1+ Red,

1 1
vp > — Red, (5-1-5:1).
p < 1—Red

By the Holder inequality we have

Aw@I< ([ | o=t (120 e ] Pl Pdy)”

01 1
X (/ |z — yl’m(—wm') ‘lns L] ‘ lym| 1y ) <
m Tm Tm

— —n ([ym N s Yml] P vy’
<ea? ([ ey () e B ) i)
m m m

Jon

Yp _ m ,,—YpP |ym| o 1 s |ym| d < pd
X |yl |z —y|™e,, (=) |In® = dz <c [ Ju(y)’dy.
R Tm R™

Hence

Aw@Pdr<e [ Jut)Pdy

Tm

The case 0 < Red < 1 can be treated similarly. H
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Consider the matrix singular integral operator

A(u)(z) / K(z —y)u(y) dy, (3.11)
a = |laijllnxn, K(2) = [[Kij(2)[lnxn,
u=(u,...,up), KAz)=X""K(z) (A>0).

It will be assumed that K € C*°(R™\{0}) and [ K(z)dS =0.
|z]=1
Denote by ®(A4)(&) the symbolic matrix of the operator A and let §; (i =
1,...,n) be the expansion indices of the matrix ®(A) (see Theorem 2.2).
Now we are ready to prove

(i) If the symbolic matriz ®(A) of the operator A is strongly
elliptic and
1
maxRed; < — <1+ minRed; (p>1),
k3 p (2
maxRed; < a <1+ minRed;, a+ 3 <m+minRed;,

then the operator (LA (({+A(u)(z) = y(x)A(u)(x)) is invertible both in

+
the space [L;f (R™)]" and in the space [HY, 5(R™)]";
(ii) In particular if the strongly elliptic symbolic matriz ®(A) of the op-
erator A is additionally assumed to be Hermitian or even, then the inte-
+
gral operator £, A is invertible in spaces [L; (R™)|" (p > 1), [HY, 5(R™)]"
O<v,a<1f8>0,a+p<m).

Proof. By Theorem 2.2 the matrix ®(A) admits the expansion

B(A)() = egA_(OD_ (O (O A4(€)g™", (3.12)
where
D9 = (2 e = (2D T

Denote by A_ the singular integral operator with the symbol cgA_(£), and
by A, the singular integral operator with the symbol A (£)g~!. Assuming
further that M denotes the operator

M (u)(z) = Fg L, , Dy Py (D= F (w)(6),

§—a
we make the composition
B=A7"oMoAZ". (3.13)
From Theorems 2.2, 3.1-3.7 it follows that B is a bounded operator in

+
the spaces [L,} (R™)]" and [HY, 5(R™)]™ (note that in the case (ii) we have
Red; =0,i=1,...,n).
By (3.12) and (3.13) it is easy to prove that B inverse to £1A. W
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Let M be an (m — 1)-dimensional compact manifold without boundary
of the class C'9 (0 < 6 < 1) in R™. Put

d =d(x,M) = inf — R™.
(z) (z, M) ylélM|a? yl, z¢€

A function u defined on R™\M belongs to the space
HY s(R™\M) (0<v,a<1,32>0,a+3<m)iff
(i) Vo € R™M  Ju(z)] < ed”*(2)(1 +|a]) =7
(ii) Vo € R™\M, Vy € B(z, 3d(z))
Ju(@) —u(y)] < ed” T (@) (1 + |2)) |z —y|".
The norm in the space HY 5(R™\M) is defined by
lull = sup d*(z)(1 + |z])”|u(z)] +
zER™\M

slute) = )]

+ sup  d"T(z)(1 + |z|) P

z€ER™\M
yEB(x,5d(x))

H} ;(R™\M) is a Banach space.
Now present some theorems proved in [5].

Let M € C'° (0 < § < 1) and the characteristic f of the
singular integral operator (3.10) be defined on (R™\M) x S(0,1) and satisfy

the conditions:
(a) Yz € R™\M, Vz € 5(0,1)

|f(£l’,‘,2)| <g /S(O 1 f(Z‘,Z)dZSZO;

(b) Vz,y € R™\M, V0,w € S(0,1)

-V

|f(2,0) = f(y,0)| < el —y|" (min(d(z),d(y))
f(z,0) — f(z,0)[ <l —w]”, >0

Then operator (3.10) is bounded in the space Hy 5(R™\M).

Let the characteristic f of the singular integral operator
(3.10) satisfy the conditions of Theorem 3.6 with 0 < « and the first in-
equality of the condition (c) fulfilled in a stronger form

|f(@,2) = f(y,2)| < el =y (min(jm ], [yml) ™" 12m| 7

Assume, moreover, that the function a is represented as a(z) = a(co)+ a (z)
where a€ Hg’yl (R™) (X > 0) (see Definition 1.1). Then the integral operator

Cwa) = [ fale) - aly)]K (e, - puly) dy

is completely continuous in the space HY 5(R™\I).
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Let M € C'° (0 < 6 < 1) and the characteristic f of the
singular integral operator (3.10) satisfy the conditions of Theorem 3.9 with
the first inequality of the condition (b) replaced by a stronger one

|f(2,0) = £(y,0)| < el — y|” (min(d(x), d(y))

Let the function a satisfy the conditions of Theorem 3.10. Then the integral
operator C is completely continuous in the space HY 5(R™\M).

—vy

Let D be a finite or infinite domain in R™ bounded by a compact manifold
M without boundary of the class C1-¥1.
We shall consider the matrix singular integral operator

Aw)@) = aeyute) + [ (o Tl ) e =yl muwyay, (6319
where
a(e) = llagy (@)l F22) = iy Dllmsens v = (),

in the spaces [H ;(D)]" (0 < a,v <1, v <wi, >0, a+ 3 <m)and
Ly, (L + )0 (> 1, —2 <y < B g = L),

we LD, (1+]a])") = /D (@) P(1 + [2])™Pdz < oo.

Taking into account the character of a bounded operator acting in a space
with two norms, the theorems we have proved above enable us to prove

Let a € H;:l (D)’ f(xa ) € COO(Rm\{O})’ f f(xaz)dls
S(0,1)
=0, 02f(-,z) € HY*(D), |p| = 0,1,... if D is bounded. Let there exists

lzlliinooa(z) = a(o0), lzlliinoof(a;,z) f(00,2) and (a — a(x)) € HY' (D),

OP(f(-,2) — f(oo,2)) € HI(D), |p| = 1,2,... if D is unbounded. Let,
moreover, the determinant of the symbolic matriz ®(A)(z,£) of the singu-
lar integral operator (3.14) be not zero, Vo € M the matriz ®(A)(z,£) be
strongly elliptic and

1
maxRed;(z) < — <1+ minRed;i(z) (p > 1),
i, P i,

max Red;(z) < @ <1+ minRed;(z),

a+ f < m + minRe d;(x).

Then operator (3.14) is Noetherian both in the space [Ly(D, (1+|z|)Y)]™ and
in the space [H, 5(D)]" and any solution of the equation

A(u)(z) = g(2), g€ [Lp(D, (L +|e))]" [ [HE (D))" (3.15)
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from the space [Ly(D, (14 |x|)Y)]"™ belongs to the space [L,(D, (1+]|z]|)7)]"N
[H! ,(D)]".

In order that equation (1.15) to be solvable it is necessary and sufficient
that (g,v) = 0, where v is an arbitrary solution of the formally conjugate
equation A*(v) =0 from the space [L,(D, (1 + |z[)~7)]" N [H 5(D)]".

Proof. The fact that A is Noetherian is proved by constructing a regularizer.
After investigating the invertibility of local representations of the operator
A, the regularization problem is solved in the standard manner (see [3]). We
take the finite covering of D by open neighbourhoods Q; Gj=1,...,k). In
such neighbourhoods @), where Q; N M # @, the regularizer is constructed
by means of an operator of form (3.13), whereas in inner neighbourhoods
the regularizer is constructed by means of the singular integral operator By
with the symbol [®(A4)(x,£)]" 1. W

For the investigation of multidimensional integral operators on manifolds
with boundary in spaces L, see [2], [3], [10], [11], [13].
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