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1. INTRODUCTION AND THE MAIN RESULTS

Consider the Cauchy-Dirichlet mixed problem for Bellman’s equation

Se(tyx) + max %0’2(t, z,0)Szz(t,x) + b(t, z,a)Se(t, x))| =0 (1)
S(T,z) = g(x), S(t,0) = h1(t), S(t,1) = ha(t) (2)

under the following conditions on the coefficients b, o and on the terminal reward functions
9, hi ) ha:
A1) the functions b, o are measurable and bounded, i.e.,

Ib(t, 2, 0)| + |o(t,2,a)] < C

for some C' > 0,
A2) there exists some constant A > 0 such that

a?(t,z,a) > X

forall t € [0,T], z € [0,1], a € A,

A3) the functions b, o are continuous in a for each t € [0,T], z € [0,

A4) the functions g, h1, ha belong to the Sobolev space W' and g(
hz(T).

The purpose of this paper is to show the existence of a unique generalized solution of
the problem (1),(2).

The novelty (of this paper) is that the question of existence of optimal controls is
solved without any regularity assumptions on the coefficients and the use is made of the
integral equations. The problem for the full space was studied in [6].

Our method is as follows: For the problem (1),(2) we compose a system of nonlinear
integral equations

]

1,
) =hi(T),9(l) =

l

e e LR
0
T 1
+//p;(Tf'u.,:z:,y)Gl(u,y,w(u,y),'x/:v(u,y))dydu, (3)
t 0

1991 Mathematics Subject Classification. 35K55.
Key words and phrases. Controlled diffusions, Bellman’s equation, integral equation.



143

l

Dt a) = /sz(T —t,2,y)91(y)dy +

0

—5(Fm)?

where p(t, z,y)

T
//pzm tCE,y)Gl( 7y7¢(u7y)7$(u7y))dydu7 (4)
Z

"sin Fnasin Tny, g1(y) = 9(y) —9(0) — ¥(9(1) — 9(0)),
n=
1
G(t,@,p,0) = max(3 (0(t,2,0) = p + bl 2, 0)q), G1 = G = By (6) = T (Rh(t) — By (1).
a
This system can be obtained from the equation
Se(t,z) + gsm(t, ) + G(t, @, Su(t, 3), Sua (1, 7)) = 0,

equivalent to (1) using the Cauchy formula

l
S0 = 1a0) + 5020~ (@) + [ 570 = 55,000 )

0
T 1
+//pr(s—t,x,y)Gl(s,y,Sz(s,y),Sm(s,y))dsdy (5)
0

and taking the first and second derivatives in z.

It is well known the that equation (1), (2) is closely connected to a stochastic control
problem for a system whose dynamics is discribed by the stochastic differential equation
(SDE)

dX: = b(t, X¢,ue)dt + o(t, X¢,ue)dWe, Xo = zo € (0,1). (6)

Here (Wi, t > 0) is a standard Wiener process defined on some complete probability
space (2, F,P) and the control u = (u¢,t € [0,T]) is a feedback of the current state,
i.e., ug = u(t, X¢) for some given function (¢, z) taking values in a decision set A which
is assumed to be a separable metric space. To each control u we associate one (fixed)
solution of SDE (1) (the conditions A1) — A3) imply the existence of a weak solution of
SDE (1) ([3])) and the notation P}’ is used for the distributon of this solution starting
at Xy = x, before the exit time 7 from the set (0,7). The problem is to maximize the
expected cost E¥g(T A 7, X1a,), where g is a function on {(,0),t € [0, T]}U{(T,z),z €
[0,1]} U {(¢t,1),t € [0,T]} and coincides with g,h1,hs on {(T,z),z € [0,(]},{(¢,0),t €
[0,T1},{(t,1),t € [0, T]}, respectively, by a suitable choice of feedback controls.

The formal application of Bellman’s “dynamic programming” idea leads to the Bell-
man equation (1), (2) whose solution, if it exists, is easily shown to be the value function

S(t,l‘) = EZL,:E;;(T A TaXT/\T)7 (7)

of the control problem ( E} . is the expectation relative to the measure P’ »). Moreover,
if S solves (1),(2) then the optimal control u* may be constructed by ‘the pointwise
maximization of the hamiltonian

H(t,z,a) = %UQ(t,:L’,a)Sm(t, 2) + b(t, 7, a)S» (£, ). (8)

Therefore the main problem consists of finding conditions under which the solution of
Bellman’s equation exists.
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We use the notation Lg([O,T] x [0,1]), (resp. Lg([O,T])) for the space of p-integrable

functions under the weight e~ ?5(T—tdtdx, (resp. e PP(T'~t)dt) and the notation W$’2
for the Sobolev space with the norm

[1fllyr2 = sup Lft @) + 1 fellpz +Ifellpz + | faallpz -
Ws (t,2)€[0,T1x[0,1] s s s

W1[0,1] denotes the space with the norm
l
1
2 2 2
51w = ([ W@ +15:01700)
0
and W[0,1] denotes its subspace {f € W[0,i], f(0) = f(I)}. The following statements

are proved in section 3 of this paper.

Theorem 1. Let the conditions Al) and A4) be satisfied. Then

a) If V is a solution of Bellman’s equation (1), (2) from the class Wé[’f for some Bo,

then the pair (Vz,Vzz) of generalized derivatives will be a solution of the system (3) for
each B,r > 0.

b) If for some r > 0,8 there exists a pair (1,v) from the class L%([O,T] x [0,1]) x
L%([O,T] x [0,1]) which solves the system (3), (4) then the function

I
V(ta) = hi(0)+ T (ha(t) = ha(8) + / 91()e" (T = t,,)dy +

0
T 1
+//Gl(“:yﬂﬁ(“:?!)ai(”a?/))ﬁr(v—tyl"yy)dydv (9)
t 0

will be a solution of the problem (1), (2).

Theorem 2. Let Al)-A4) be satisfied. Then there exists (r*,8*) such that for any
r>r* B> * the operator defined by (3), (4) is a contraction. Consequently the system
(3), (4) has a unique solution which belongs to the class L%([O,T] x [0,1]) x L%([O,T] X

[0,1]).

As a corollary of Theorems 1 and 2 we obtain an existence of a generalized solution of
Bellman’s equation. Moreover, it is shown in Section 3 that this solution coincides with
the value function of the optimal control problem under consideration.

Theorem 3. The value function (7) uniquely solves the problem (1), (2) in the class
wk2, If the decision set A is a compact subset of a metric space, then there exists an op-
timal control in the class of Markovian strategies. The optimal control u* is constructed
from the mazimizing of the Hamiltonian (8)

H(t,z,u"(t,z)) = max H(t,z,a)
a€A
for each (t,z) € [0,T] x [0,1].
Moreover, u*(t,z) can be found from the maximizing of the expression
1 ~
30" (b2,0)0(t,2) + b(t, @, )yt 2),

for each (t,z) € [0,T] x [0,!], where 12 and 1 are solutions of equation (3),(4).
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The dynamic programming method to prove the existence of an optimal control in
the case of diffusion processes for the first time was applied in [5] (Rishel) and [2] (Davis,
Varaiya). Theorem 3 was proved in [3] (Krylov) under the Lipschitz condition on the
coefficients b and o.

2. ESTIMATES OF THE NORMS OF SOME INTEGRAL OPERATORS

Consider the operators

1

T
el / *T/2"2(S*t)ds/en(y)dy:

0

T
//pz (s — t,z,y)p(s, y)dsdy (10)

t

T
J(tw) Ze/ / —’“/2”2(5—t)ds/en(y)dy:

MS

Y(t,z) =

n=1

n=1 0
T

://pzz(s_taxay)‘p(s7y)d8dy (11)
t 0

in L2 2([0,T] x [0,1]), where en(z) = 4/ /l sin Fng is an orthonormal system in L2[0,1].
Us1ng the expansion ¢(t,z) Ecn on(z),p € L% with E \cn|L2 < 00, the system

(10),(11) may be rewritten as operators

T
K: Z en(z)en(t) — Ze%(:p) /cn(s)efr/z'ﬁ(sft)ds, (12)
t

T
K: Zen(m)cn(t) . Ze;;(x)/cn(s)e—’”/w(s—”ds. (13)

Lemma 1. The norm of the operator Qx : c(t) — fT c(s)e 25—t ds in the space

¢
Lg [0,T] is estimated by H%

Proof. At First we consider the case 8 = 0. We have

T T
D l/p
(/dt‘/e—x(s—t)c(s)ds ) /dt‘/ CS+tI(S<T t)ds
0 t

By generalized Holder inequality [4,134 p.] the second expression is less than

T T

» i/p
/efsk(/|c(s+t)| I(s<T—t)dt) ds,
0 0

)1/17
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which is estimated by %‘C|LP [0,7]°
10,

Now consider the case 8 > 0. It is clear that
T T

/8—pB(T—t) / —B(s=t)¢(s)ds dt /‘/ —B(T=8)=B(s=t)=A(s=t)¢(5)d Spdt:
0
/‘/ —(A+8)(s=t) g g)e= (BN (T=5) 4

By the obtained result for the case f = 0 we have the estimation

T T
/‘/e—(A+B)(s—t)C(s)e—(B+>\)(T—S)ds ?
0 t
T
1 \? 1 \?
< | —— e B(T=35)¢(g pds:(—) cf,. O
*(ﬂ+>\) /' @l 5a) ey
0

Lemma 2. The norms of K and K are estimated by \/% and % respectively.
T

dt.

dt <

Proof. For simplicity we consider the case a = w. By the Parseval identity we have

||,¢1||L2 — Z / —2B(T~-t) // ’y dye—n 2(s— t)?‘/?ds d L.

2 2
% n2/(Irnd 4 rfn? 4 67) < max,y Ay = b

By Lemma 1 we have HwHiQ =3
B

n=1

~ ~ 2
Similarly, for the operator K we have ||K|| < max,>1 B-JLW O
- 2

Lemma 3. A mapping ¥(t,z) = fOT pz(T —t,z,y)p(y)dy is a bounded operator from
L2[0,1] into L%([O,T] x [0,1]) and a mapping w (t, x) f pez(T — t,z,y)0(y)dy is

bounded as an operator W1[0,1] — L%.

Proof. 1t is clear that (¢, z) Zne z)e ~5n*(T-1) fol en(y)p(y)dy. We have

l

1—e— (Tn +8)T
[0llzz =D n’eh g, where en = [ en(y)o(v)dy

n2r + B
n>1 0

Since a sequence {%(1 - 8_(T"2+6))}n21 is bounded and ) ¢2 = [|y||?, then we
have |[9]] 3 < const. ]
The second operator is bounded by the equality
W1l- e—(2n2=p)T

2
T — —Zn2(T—t)—B(T—t ~ _
”‘””‘HZE BT e @i | =D M e

n>1 n>1

if >~ n?%c2 < oo, which is equivalent to ¢ € W[0,1]. O
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Proposition 1. The norm of the operator ¢ — (K, I~(Lp) from L% nto L% X L% is
1 241 _1 T
estimated by 3 + ke 2+ \/;)

Proof. It is sufficient to seethat||(ch,[~(<p)H:(Hch||2+HI~(cp||2)1/2g(%Jrﬁ)HcpH. O

3. CONTRACTION PROPERTY OF INTEGRAL EQUATIONS AND PROOFS OF MAIN RESULTS

Now consider the nonlinear part of the operators (3),(4). The function G (t,z,p,q)
defines the nonlinear operator

(@, ZE) — 5(‘»07 Z»Z) = {Gl(t7 T, ‘p(t7 CL'), L’E(t, m))}(t,z)E[O,T]X[O,l]
from L3([0,77] x [0,1])* into LZ([0,T] x [0,1]).

Lemma 4. For each r > f* = max((c + 1)2,
satisfy the Lipschitz condition with the constant

Proof. See [6]. O

Proposition 2. The system (3), (4) defines the contractive operator in the space
L%([O,T] x [0,1])2 for some constants r, 5.

Proof. By Lemma 2 and Lemma 4 the Lipschitz constant for the mapping (3.1) is equal
1 1y(2 1y 11 1
tos(r—P)G+ G =1-m 35— —W)'
1 2 1 1y/2 1
Ifﬁ<r—3then 5(T*;)(;+\/T)<l D
Proof of Theorem 1. If the pair (w,J) belongs to L%, then the function G also belongs

to the same class and therefore the function V(¢,z) defined by (9) is a solution of the
problem

Vi(t, o) +1/2Vea (t, ) = G(t, z,9(t, 2), ¥(t, 2)),
V(T,z) = g(x), V(t,0) = hy(t), V(t,1) = ha(t).

Since the pair (¢,) is a solution of (3),(4) taking the first and second derivatives (at z)

in (9) we obtain that V; =, Vipx =1 dtdx — a.e. Therefore, (3) and (4) imply that
%(ta l’) + T'/Zsz (t7 I) = G(t7 , Vm (t7 I)a sz (ta l‘)) (14)

which gives that the function V satisfies the Bellman equation (1),(2).
Now suppose that there exists a solution of the problem (1),(2), which belongs to the
class Wl;[‘f. Let r be a strictly positive constant. Then S is a solution of (12). Clearly

G(t,z, Sz, Szz) belongs to the class L%. By the Cauchy formula

1

S(t.2) = ha(0) + J(ha(t) = a (1) + / 91 W)p(T = Lz 9)dy +

0
T 1
//Gl(s,y,Sz(s,y),Sm(s,y))p(sft,r,y)dsdy
t 0

The differentiation of this equation in = implies that the pair (Sz, Sza) satisfies the system
(3),(4)- O
As a corollary of this theorem and Proposition 2 we obtain Theorem 2.
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Proof of Theorem 3. Let V be a solution of the problem (1),(2) from the class Wé‘Q. Let
us show that it coincides with the value function of the optimal control problem. Applying
the generalized Tt6 formula ([2],[1]) for the function V and the controlled process X* we
have

tAT

V(AT Xin)=V(0,X0) + / Vo (s, X))o (s, X, us)dWs +

0
= /(L"V)(sté‘)dsy (15)
0

where 7 is a first exit time of X}* from the open set (0,!) and
1
(LU X)) = felt, X)) + b(E, Xi' ue) fa (8, X') + 502(& Xty ut) fou (8, X{).

Since the process V (¢, X}*) is bounded and E fOTAT [(L*V)(s, X¥)|ds < oo, the stochastic
integral in the right-hand side of (15) is a uniformly integrable martingale. On the other
hand we have from (1) that L*V (s, X¥) < 0 and taking expectations in (15) we obtain
from the boundary condition (2) that

VAT, X}, > EY(V(T AT, X%, )/ F) = E¥(g(T A7, XE5) ) Fr).

Therefore,

V(t,z) > sup E;‘,m(g(T ATXPA.) = S(t, ). (16)
w

Let us prove the inverse inequality. Since the function H defined by (8) is continuous
in a for each (¢, ) and the decision set A is compact, by Philippov’s lemma a measurable
function u* = (u*(¢,z),t € [0,T],z € [0,1]) exists such that

H(t,z,u"(t,z)) = max H(t,z,a).
a€A

Therefore (L*V)(s, X*") = 0 and using again the Ttd formula we obtain that
V(t,z) = EeoV(T AT, X% ) = Erog(T AT, XE,0),
hence V(t,z) = S(t, z).
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