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1. Introdu
tion and the Main Results

Consider the Cau
hy-Diri
hlet mixed problem for Bellman's equation

S

t

(t; x) + max

a2A

h

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x))

i

= 0 (1)

S(T; x) = g(x); S(t; 0) = h

1

(t); S(t; l) = h

2

(t) (2)

under the following 
onditions on the 
oeÆ
ients b; � and on the terminal reward fun
tions

g; h

1

; h

2

:

A1) the fun
tions b; � are measurable and bounded, i.e.,

jb(t; x; a)j + j�(t; x; a)j � C

for some C > 0,

A2) there exists some 
onstant � > 0 su
h that

�

2

(t; x; a) > �

for all t 2 [0; T ℄, x 2 [0; l℄, a 2 A,

A3) the fun
tions b; � are 
ontinuous in a for ea
h t 2 [0; T ℄, x 2 [0; l℄;

A4) the fun
tions g; h

1

; h

2

belong to the Sobolev spa
e W

1

and g(0) = h

1

(T ); g(l) =

h

2

(T ):

The purpose of this paper is to show the existen
e of a unique generalized solution of

the problem (1),(2).

The novelty (of this paper) is that the question of existen
e of optimal 
ontrols is

solved without any regularity assumptions on the 
oeÆ
ients and the use is made of the

integral equations. The problem for the full spa
e was studied in [6℄.

Our method is as follows: For the problem (1),(2) we 
ompose a system of nonlinear

integral equations

 (t; x) =

h

2

(t) � h

1

(t)

l

+

l

Z

0

�

r

x

(T � t; x; y)g

1

(y)dy +

+

T

Z

t

l

Z

0

�

r

x

(T � u; x; y)G

1

(u; y;  (u; y);

^

 (u; y))dydu; (3)
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e

 (t; x) =

l

Z

0

�

r

xx

(T � t; x; y)g

1

(y)dy +

+

T

Z

t

l

Z

0

�

r

xx

(u� t; x; y)G

1

(u; y;  (u; y);

e

 (u; y))dydu; (4)

where �(t; x; y) =

2

l

P

n=1

e

�

r

2

(

�

l

n)

2

t

sin

�

l

nx sin

�

l

ny; g

1

(y) = g(y)� g(0)�

y

l

(g(l)� g(0));

G(t; x; p; q) = max

a

[

1

2

(�

2

(t; x; a)� r)p+ b(t; x; a)q℄; G

1

= G� h

0

1

(t) �

x

l

(h

0

2

(t) � h

0

1

(t)):

This system 
an be obtained from the equation

S

t

(t; x) +

r

2

S

xx

(t; x) +G(t; x; S

x

(t; x); S

xx

(t; x)) = 0;

equivalent to (1) using the Cau
hy formula

S(t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

�

r

(T � s; x; y)g

1

(y)dy

+

T

Z

t

l

Z

0

�

r

(s� t; x; y)G

1

(s; y; S

x

(s; y); S

xx

(s; y))dsdy (5)

and taking the �rst and se
ond derivatives in x.

It is well known the that equation (1), (2) is 
losely 
onne
ted to a sto
hasti
 
ontrol

problem for a system whose dynami
s is dis
ribed by the sto
hasti
 di�erential equation

(SDE)

dX

t

= b(t;X

t

; u

t

)dt + �(t; X

t

; u

t

)dW

t

; X

0

= x

0

2 (0; l): (6)

Here (W

t

; t � 0) is a standard Wiener pro
ess de�ned on some 
omplete probability

spa
e (
;F ; P ) and the 
ontrol u = (u

t

; t 2 [0; T ℄) is a feedba
k of the 
urrent state,

i.e., u

t

= u(t;X

t

) for some given fun
tion u(t; x) taking values in a de
ision set A whi
h

is assumed to be a separable metri
 spa
e. To ea
h 
ontrol u we asso
iate one (�xed)

solution of SDE (1) (the 
onditions A1) � A3) imply the existen
e of a weak solution of

SDE (1) ([3℄)) and the notation P

u

t;x

is used for the distributon of this solution starting

at X

t

= x, before the exit time � from the set (0; l): The problem is to maximize the

expe
ted 
ost E

u

eg(T ^ � ;X

T^�

); where eg is a fun
tion on f(t; 0); t 2 [0; T ℄g[f(T; x); x 2

[0; l℄g [ f(t; l); t 2 [0; T ℄g and 
oin
ides with g; h

1

; h

2

on f(T; x); x 2 [0; l℄g; f(t; 0); t 2

[0; T ℄g; f(t; l); t 2 [0; T ℄g, respe
tively, by a suitable 
hoi
e of feedba
k 
ontrols.

The formal appli
ation of Bellman's \dynami
 programming" idea leads to the Bell-

man equation (1), (2) whose solution, if it exists, is easily shown to be the value fun
tion

S(t; x) = E

u

t;x

eg(T ^ � ;X

T^�

); (7)

of the 
ontrol problem ( E

u

t;x

is the expe
tation relative to the measure P

u

t;x

). Moreover,

if S solves (1),(2) then the optimal 
ontrol u

�

may be 
onstru
ted by the pointwise

maximization of the hamiltonian

H(t; x; a) =

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x): (8)

Therefore the main problem 
onsists of �nding 
onditions under whi
h the solution of

Bellman's equation exists.
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We use the notation L

p

�

([0; T ℄� [0; l℄); (resp. L

p

�

([0; T ℄)) for the spa
e of p-integrable

fun
tions under the weight e

�p�(T�t)

dtdx; (resp. e

�p�(T�t)

dt) and the notation W

1;2

�

for the Sobolev spa
e with the norm

jjf jj

W

1;2

�

= sup

(t;x)2[0;T ℄�[0;l℄

jf(t; x)j+ jjf

t

jj

L

2

�

+ jjf

x

jj

L

2

�

+ jjf

xx

jj

L

2

�

:

W

1

[0; l℄ denotes the spa
e with the norm

jjf jj

W

1

=

�

l

Z

0

(jf(x)j

2

+ jf

x

(x)j

2

)dx

�

1

2

and W

1

0

[0; l℄ denotes its subspa
e ff 2 W [0; l℄; f(0) = f(l)g: The following statements

are proved in se
tion 3 of this paper.

Theorem 1. Let the 
onditions A1) and A4) be satis�ed. Then

a) If V is a solution of Bellman's equation (1), (2) from the 
lass W

1;2

�

0

for some �

0

,

then the pair (V

x

; V

xx

) of generalized derivatives will be a solution of the system (3) for

ea
h �; r > 0.

b) If for some r > 0; � there exists a pair ( ;

e

 ) from the 
lass L

2

�

([0; T ℄ � [0; l℄) �

L

2

�

([0; T ℄� [0; l℄) whi
h solves the system (3), (4) then the fun
tion

V (t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

g

1

(y)�

r

(T � t; x; y)dy +

+

T

Z

t

l

Z

0

G

1

(v; y;  (v; y);

e

 (v; y))�

r

(v � t; x; y)dydv (9)

will be a solution of the problem (1), (2).

Theorem 2. Let A1)-A4) be satis�ed. Then there exists (r

�

; �

�

) su
h that for any

r > r

�

; � > �

�

the operator de�ned by (3), (4) is a 
ontra
tion. Consequently the system

(3), (4) has a unique solution whi
h belongs to the 
lass L

2

�

([0; T ℄� [0; l℄)� L

2

�

([0; T ℄�

[0; l℄).

As a 
orollary of Theorems 1 and 2 we obtain an existen
e of a generalized solution of

Bellman's equation. Moreover, it is shown in Se
tion 3 that this solution 
oin
ides with

the value fun
tion of the optimal 
ontrol problem under 
onsideration.

Theorem 3. The value fun
tion (7) uniquely solves the problem (1), (2) in the 
lass

W

1;2

�

. If the de
ision set A is a 
ompa
t subset of a metri
 spa
e, then there exists an op-

timal 
ontrol in the 
lass of Markovian strategies. The optimal 
ontrol u

�

is 
onstru
ted

from the maximizing of the Hamiltonian (8)

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a)

for ea
h (t; x) 2 [0; T ℄� [0; l℄.

Moreover, u

�

(t; x) 
an be found from the maximizing of the expression

1

2

�

2

(t; x; a)

e

 (t; x) + b(t; x; a) (t; x);

for ea
h (t; x) 2 [0; T ℄� [0; l℄, where

e

 and  are solutions of equation (3),(4).
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The dynami
 programming method to prove the existen
e of an optimal 
ontrol in

the 
ase of di�usion pro
esses for the �rst time was applied in [5℄ (Rishel) and [2℄ (Davis,

Varaiya). Theorem 3 was proved in [3℄ (Krylov) under the Lips
hitz 
ondition on the


oeÆ
ients b and �.

2. Estimates of the Norms of Some Integral Operators

Consider the operators

 (t; x) =

1

X

n=1

e

0

n

(x)

T

Z

t

e

�r=2n

2

(s�t)

ds

l

Z

0

e

n

(y)dy =

=

T

Z

t

l

Z

0

�

x

(s� t; x; y)'(s; y)dsdy (10)

e

 (t; x) =

1

X

n=1

e

00

n

(x)

T

Z

t

e

�r=2n

2

(s�t)

ds

l

Z

0

e

n

(y)dy =

=

T

Z

t

l

Z

0

�

xx

(s� t; x; y)'(s; y)dsdy (11)

in L

2

�

([0; T ℄ � [0; l℄), where e

n

(x) =

p

2=l sin

�

l

nx is an orthonormal system in L

2

[0; l℄:

Using the expansion '(t; x) =

P




n

(t)'

n

(x); ' 2 L

2

�

with

P

j


n

j

2

L

2

�

< 1, the system

(10),(11) may be rewritten as operators

K :

1

X

n=1

e

n

(x)


n

(t)!

1

X

n=1

e

0

n

(x)

T

Z

t




n

(s)e

�r=2n

2

(s�t)

ds; (12)

e

K :

1

X

n=1

e

n

(x)


n

(t)!

1

X

n=1

e

00

n

(x)

T

Z

t




n

(s)e

�r=2n

2

(s�t)

ds: (13)

Lemma 1. The norm of the operator Q

�

: 
(t) !

R

T

t


(s)e

��(s�t)

ds in the spa
e

L

p

�

[0; T ℄ is estimated by

1


+�

:

Proof. At First we 
onsider the 
ase � = 0: We have

�

T

Z

0

dt

�

�

�

T

Z

t

e

��(s�t)


(s)ds

�

�

�

p

�

1=p

�

�

T

Z

0

dt

�

�

�

T

Z

0

e

��s


(s+ t)I

(s<T�t)

ds

�

�

�

p

�

1=p

:

By generalized H�older inequality [4,134 p.℄ the se
ond expression is less than

T

Z

0

e

�s�

�

T

Z

0

�

�


(s+ t)

�

�

p

I

(s<T�t)

dt

�

1=p

ds;
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whi
h is estimated by

1

�

j
j

L

p

�

[0;T ℄

:

Now 
onsider the 
ase � > 0. It is 
lear that

T

Z

0

e

�p�(T�t)

�

�

�

T

Z

t

e

��(s�t)


(s)ds

�

�

�

p

dt =

T

Z

0

�

�

�

T

Z

t

e

��(T�s)��(s�t)��(s�t)


(s)ds

�

�

�

p

dt =

=

T

Z

0

�

�

�

T

Z

t

e

�(�+�)(s�t)


(s)e

�(�+�)(T�s)

ds

�

�

�

p

dt:

By the obtained result for the 
ase � = 0 we have the estimation

T

Z

0

�

�

�

T

Z

t

e

�(�+�)(s�t)


(s)e

�(�+�)(T�s)

ds

�

�

�

p

dt �

�

�

1

� + �

�

p

T

Z

0

je

��(T�s)


(s)j

p

ds =

�

1

� + �

�

p

j
j

p

L

p

�

: �

Lemma 2. The norms of K and

e

K are estimated by

1

p

�r

and

2

r

respe
tively.

Proof. For simpli
ity we 
onsider the 
ase a = �: By the Parseval identity we have

jj jj

2

L

2

�

=

1

X

n=1

n

2

T

Z

0

e

�2�(T�t)

�

�

�

T

Z

t

�

Z

0

e

n

(y)'(s; y)dye

�n

2

(s�t)r=2

ds

�

�

�

2

dt:

By Lemma 1 we have jj jj

2

L

2

�

=

P

1

n=1

n

2

=(

r

2

4

n

4

+ r�n

2

+ �

2

) � max

n�1

n

2

r�n

2

=

1

r�

:

Similarly, for the operator

e

K we have jj

e

Kjj � max

n�1

n

2

�+n

2

r

2

:

Lemma 3. A mapping  (t; x) =

R

T

0

�

x

(T � t; x; y)'(y)dy is a bounded operator from

L

2

[0; l℄ into L

2

�

([0; T ℄ � [0; l℄) and a mapping

e

 (t; x) =

R

T

0

�

xx

(T � t; x; y)e'(y)dy is

bounded as an operator W

1

[0; l℄! L

2

�

:

Proof. It is 
lear that  (t; x) =

P

ne

0

n

(x)e

�

r

2

n

2

(T�t)

R

l

0

e

n

(y)'(y)dy: We have

jj jj

L

2

�

=

X

n�1

n

2




2

n

1� e

�(rn

2

+�)T

n

2

r + �

; where 


n

=

l

Z

0

e

n

(y)'(y)dy

Sin
e a sequen
e f

n

2

rn

2

+�

(1 � e

�(rn

2

+�)

)g

n�1

is bounded and

P




2

n

= jj'jj

2

, then we

have jj jj

L

2

�

� 
onst:jj'jj:

The se
ond operator is bounded by the equality

jj

e

 jj =










X

n�1

e

�

r

2

n

2

(T�t)��(T�t)

e

n

(x)e


n










2

=

X

n�1

n

4

1� e

�(2n

2

��)T

n

2

r=2 + �

if

P

n

2

e


2

n

<1; whi
h is equivalent to e' 2W

1

0

[0; l℄:
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Proposition 1. The norm of the operator '! (K';

e

K') from L

2

�

into L

2

�

� L

2

�

is

estimated by

2

r

+

1

p

r�

=

1

r

(2 +

p

r

�

):

Proof. It is suÆ
ient to see that jj(K';

e

K')jj=(jjK'jj

2

+jj

e

K'jj

2

)

1=2

�(

2

r

+

1

p

r�

)jj'jj:

3. Contra
tion Property of Integral Equations and Proofs of Main Results

Now 
onsider the nonlinear part of the operators (3),(4). The fun
tion G

1

(t; x; p; q)

de�nes the nonlinear operator

('; e')!

e

G('; e') � fG

1

(t; x; '(t; x); e'(t; x))g

(t;x)2[0;T ℄�[0;l℄

from L

2

�

([0; T ℄� [0; l℄)

2

into L

2

�

([0; T ℄� [0; l℄):

Lemma 4. For ea
h r > f

�

= max((
+ 1)

2

;

1

�

) the fun
tion G

1

and the operator

e

G

satisfy the Lips
hitz 
ondition with the 
onstant

1

2

(r �

1

r

):

Proof. See [6℄.

Proposition 2. The system (3), (4) de�nes the 
ontra
tive operator in the spa
e

L

2

�

([0; T ℄� [0; l℄)

2

for some 
onstants r; �:

Proof. By Lemma 2 and Lemma 4 the Lips
hitz 
onstant for the mapping (3.1) is equal

to

1

2

(r �

1

r

)(

2

r

+

1

p

�r

) = 1�

1

r

2

+

1

2

(

p

r

�

�

1

p

�r

3

):

If

1

p

�

<

2

r

3

then

1

2

(r �

1

r

)(

2

r

+

1

p

�r

) < 1:

Proof of Theorem 1. If the pair ( ;

e

 ) belongs to L

2

�

, then the fun
tion

e

G also belongs

to the same 
lass and therefore the fun
tion V (t; x) de�ned by (9) is a solution of the

problem

V

t

(t; x) + r=2V

xx

(t; x) = G(t; x;  (t; x);

e

 (t; x));

V (T; x) = g(x); V (t; 0) = h

1

(t); V (t; l) = h

2

(t):

Sin
e the pair ( ;

e

 ) is a solution of (3),(4) taking the �rst and se
ond derivatives (at x)

in (9) we obtain that V

x

=  ; V

xx

=

e

 dtdx� a:e: Therefore, (3) and (4) imply that

V

t

(t; x) + r=2V

xx

(t; x) = G(t; x; V

x

(t; x); V

xx

(t; x)) (14)

whi
h gives that the fun
tion V satis�es the Bellman equation (1),(2).

Now suppose that there exists a solution of the problem (1),(2), whi
h belongs to the


lass W

1;2

�

0

. Let r be a stri
tly positive 
onstant. Then S is a solution of (12). Clearly

G(t; x; S

x

; S

xx

) belongs to the 
lass L

2

�

. By the Cau
hy formula

S(t; x) = h

1

(t) +

x

l

(h

2

(t) � h

1

(t)) +

l

Z

0

g

1

(y)�(T � t; x; y)dy +

T

Z

t

l

Z

0

G

1

(s; y; S

x

(s; y); S

xx

(s; y))�(s � t; x; y)dsdy:

The di�erentiation of this equation in x implies that the pair (S

x

; S

xx

) satis�es the system

(3),(4). �

As a 
orollary of this theorem and Proposition 2 we obtain Theorem 2.
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Proof of Theorem 3. Let V be a solution of the problem (1),(2) from the 
lass W

1;2

�

: Let

us show that it 
oin
ides with the value fun
tion of the optimal 
ontrol problem. Applying

the generalized Itô formula ([2℄,[1℄) for the fun
tion V and the 
ontrolled pro
ess X

u

we

have

V (t ^ �;X

u

t^�

) = V (0; X

0

) +

t^�

Z

0

V

x

(s;X

u

s

)�(s;X

u

s

; u

s

)dW

s

+

=

t^�

Z

0

(L

u

V )(s;X

u

s

)ds; (15)

where � is a �rst exit time of X

u

t

from the open set (0; l) and

(L

u

f)(t;X

u

t

) = f

t

(t;X

u

t

) + b(t;X

u

t

; u

t

)f

x

(t;X

u

t

) +

1

2

�

2

(t;X

u

t

; u

t

)f

xx

(t;X

u

t

):

Sin
e the pro
ess V (t;X

u

t

) is bounded and E

R

T^�

0

j(L

u

V )(s;X

u

s

)jds <1, the sto
hasti


integral in the right-hand side of (15) is a uniformly integrable martingale. On the other

hand we have from (1) that L

u

V (s;X

u

s

) � 0 and taking expe
tations in (15) we obtain

from the boundary 
ondition (2) that

V (t ^ �;X

u

t^�

) � E

u

(V (T ^ �;X

u

T^�

)=F

t

) = E

u

(eg(T ^ �;X

u

T^�

)=F

t

):

Therefore,

V (t; x) � sup

u

E

u

t;x

(eg(T ^ �X

u

T^�

) = S(t; x): (16)

Let us prove the inverse inequality. Sin
e the fun
tion H de�ned by (8) is 
ontinuous

in a for ea
h (t; x) and the de
ision set A is 
ompa
t, by Philippov's lemma a measurable

fun
tion u

�

= (u

�

(t; x); t 2 [0; T ℄; x 2 [0; l℄) exists su
h that

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a):

Therefore (L

u

V )(s;X

u

�

s

) = 0 and using again the Itô formula we obtain that

V (t; x) = E

t;x

V (T ^ �;X

u

�

T^�

) = E

t;x

eg(T ^ �;X

u

�

T^�

);

hen
e V (t; x) = S(t; x).
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