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1. Notation

Throughout this paper C � C[0; 1℄ denotes the Bana
h spa
e of 
ontinuous fun
tions

x : [0; 1℄ �! R

1

,

kxk

C

def

= max

0�t�1

jx(t)j;

L

p

� L

p

[0; 1℄ (1 � p <1) denotes the Bana
h spa
e of summable in p-th degree fun
tions

x : [0; 1℄ �! R

1

,

kxk

L

p

def

=

�

1

Z

0

jx(t)j

p

dt

�

1=p

;

L

1

� L

1

[0; 1℄ denotes the Bana
h spa
e of essentially bounded measurable fun
tions

x : [0; 1℄ �! R

1

,

kxk

L

1

def

= vrai sup

0�t�1

jx(t)j;

W

2

p

� W

2

p

[0; 1℄ denotes the Bana
h spa
e of 
ontinuous fun
tions x : [0; 1℄ �! R

1

with

the absolutely 
ontinuous derivative _x su
h that �x 2 L

p

,

kxk

W

2

p

def

= k�xk

L

p

+ jx(0)j+ j _x(0)j:

2. The Spa
e of Solutions D

p

Consider the boundary-value problem

8

<

:

(=

0

x)(t)

def

= �x(t) +

k

t

_x(t) = f(t); t =2 [0; 1℄;

_x(0) = 0; x(1) = �;

(1)

where k > �

1

p

0

, f 2 L

p

, 1 < p � 1, � 2 R

1

,

1

p

+

1

p

0

= 1, p

0

= 1 if p =1.

Considering this problem on the traditional spa
e W

2

p

, we see that =

0

is not de�ned

as an operator a
ting from W

2

p

into L

p

. Following the s
heme given in the monograph

[1℄, we will investigate this problem on the spa
e D

p

�W

2

p

of fun
tions x : [0; 1℄ �! R

1

;

su
h that _x(0) = 0 and de�ned by

x(t) =

t

Z

0

(t � s)z(s) ds+ �
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for ea
h pair fz; �g 2 L

p

�R

1

. The spa
e D

p

is isomorphi
 to the dire
t produ
t L

p

�R

1

.

The isomorphisms J : L

p

�R

1

�! D

p

and J

�1

: D

p

�! L

p

�R

1

we de�ne by the

equalities J = f�; Y g, J

�1

= [Æ; r℄, where

8

>

>

>

<

>

>

>

:

(�z)(t) =

t

Z

0

(t � s)z(s) ds; (Y �)(t) = �;

Æx = �x; rx = x(0):

The spa
e D

p

be
omes a Bana
h one under the norm

k x k

D

p

def

= k �x k

L

p

+jx(0)j:

The prin
ipal part of the operator =

0

: D

p

�! L

p

is

(Qz)(t)

def

= (=

0

�z)(t) = z(t) + (Pz)(t);

where (Pz)(t)

def

=

k

t

t

Z

0

z(s) ds is the Ces�aro operator [2℄ on the spa
e L

p

. The fun
tions

u(t) � 1 and v(t) = t

1�k

satisfy the equation =

0

x = 0. Nevertheless the fundamental

system of =

0

x = 0 
onsists only of u(t) � 1, su
h as the other element v(t) = t

1�k

does not belong to the spa
e D

p

. By virtue of the results of [5, p. 102℄ it follows that, if

k > �

1

p

0

, the operator Q : L

p

�! L

p

has the bounded inverse

(Q

�1

z)(t) = z(t) � kt

�(1+k)

t

Z

0

s

k

z(s) ds:

The solution of the problem (1) on the spa
e D

p

is given by the expression

x =Wf + �;

where the Green operator W : L

p

�! D

p

is de�ned by

(Wf)(t)

def

=

1

Z

0

W (t; s)f(s) ds;

W (t; s)

def

=

8

>

>

<

>

>

:

s

k

(t

1�k

� 1)

1� k

if 0 � s � t � 1;

s

k

(s

1�k

� 1)

1� k

if 0 � t < s � 1;

for k > �

1

p

0

; k 6= 1; or

W (t; s)

def

=

(

s ln t if 0 � s � t � 1;

s ln s if 0 � t < s � 1;
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for k = 1. Really, using the equality

_x(t) =

t

Z

0

�x(s) ds

for x 2 D

p

we rewrite the problem (1) on the spa
e D

p

in the form

�x(t) = f(t) � kt

�(1+k)

t

Z

0

s

k

f(s) ds; t 2 [0; 1℄; x(1) = �:

Immediate 
omputations show that

x(t) =

t

Z

0

(t � s)

h

f(s)� ks

�(1+k)

s

Z

0

�

k

f(�) d�

i

ds+ x(0) =

=

t

Z

0

h

t� s� ks

k

t

Z

s

(t� �)�

�(1+k)

d�

i

f(s) ds+ x(0):

The 
ondition x(1) = 0 gives

x(0) = �

1

Z

0

h

1� s� ks

k

1

Z

s

(1� �)�

�(1+k)

d�

i

f(s) ds:

Consequently

x(t) =

1

Z

0

W (t; s)f(s) ds+ �; t 2 [0; 1℄:

Bellow we will use results of [4℄ about estimation of the spe
tral radius �(H) of the

isotoni
 operator H : C �! C. We formulate this result in the form satisfying our aims:

Lemma 1. Suppose that the isotoni
 operator H enjoys the property (H�)(1) = 0 for

ea
h � 2 C. The following statements are equivalent:

1) There exists y 2 C su
h that

y(t) > 0; y(t) � (Hy)(t) > 0; t 2 [0; 1);

2) �(H) < 1. �

Lemma 2. The integral operator W : L

p

�! C is 
ompletely 
ontinuous, for all

1 < p � 1.

Proof. We 
onsider only the 
ase k > �

1

p

0

, k 6= 1, the 
ase k = 1 
an be proved

analogously. To prove the 
ompa
tness of the operator W it suÆ
es to show [5, p. 102℄

that, for any t

0

2 [0; 1℄ the equality

lim

t!t

0

1

Z

0

jW (t; s)�W (t

0

; s)j

p

0

ds = 0
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holds. For 1 � p

0

<1, 0 < t

0

< t � 1 we have that

1

Z

0

jW (t; s)�W (t

0

; s)j

p

0

ds =

t

0

Z

0

�

�

�

s

k

(t

1�k

� 1)

1� k

�

s

k

(t

1�k

0

� 1)

1� k

�

�

�

p

0

ds+

+

t

Z

t

0

�

�

�

s

k

(s

1�k

� 1)

1� k

�

s

k

(t

1�k

0

� 1)

1� k

�

�

�

p

0

ds �

�

t

p

0

k+1

0

j1� kj

p

0

(p

0

k + 1)

(t

1�k

� t

1�k

0

)

p

0

+O(t

p

0

+1

� t

p

0

+1

0

)! 0; t! t

+

0

:

Analogously we prove the respe
tive statement for 0 = t

0

< t � 1 and 0 � t < t

0

� 1. �

3. The de la Vall

�

ee-Poussin Like Theorem

Consider the boundary-value problem

8

<

:

(=x)(t)

def

= (=

0

x)(t) � (Tx)(t) = f(t); t 2 [0; 1℄;

_x(0) = 0; x(1) = �;

(2)

where k > �

1

p

0

, T : C �! L

p

is a linear antitoni
 operator, f 2 L

p

. Denote A

def

= WT :

C �! C.

Lemma 3. The following statements are equivalent:

1) There exists an element y 2 D

p

su
h that

y(t) > 0; �(t)

def

= (=

0

y)(t) � (Ty)(t) � 0; t 2 [0; 1); and

y(1) �

1

Z

0

�(s) ds > 0;

2) �(A) < 1;

3) The boundary value-problem (2) is uniquely solvable on D

p

for ea
h f 2 L

p

, � 2

R

1

, and its Green operator G is antitoni
;

4) There exists a positive solution u 2 D

p

on [0; 1℄ of the homogeneous equation

=x = 0.

Proof. Sin
e y(�) satis�es

(=

0

x)(t) � (Tx)(t) = �(t); t 2 [0; 1℄; x(1) = y(1)

on the spa
e D

p

, it follows that

y �Ay =W�+ y(1) > 0

on the spa
e C. By virtue of Lemma 1 it follows that �(A) <= 1. The impli
ation

1) =) 2) is proved.

Supposing � � 0 we 
onsider the problem (2), whi
h is equivalent to the equation

x = Ax+ g
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on the spa
e C. Here

g(�)

def

=

1

Z

0

W (�; s)f(s) ds+ �:

Sin
e �(A) < 1, it follows that

G = (I +A+A

2

+ � � � )W:

Consequently the impli
ation 2) =) 3) is proved.

The problem

=

0

x� Tx = 0; x(1) = �

is equivalent to the equation

x = Ax+ �:

Sin
e �(A) < 1, we have x = � + A� + A

2

� + � � � � 0 if � > 0. Thus the impli
ation

3) =) 4) is proved.

The impli
ation 4) =) 1), follows from Lemma 1 be
ause the positive solution u(t)

of the equation =x = 0 satis�es the inequalities

u(t) > 0; u(t) � (Au)(t) = � > 0; t 2 [0; 1℄: �

4. The Main Result

Consider the nonlinear boundary-value problem

=

0

x = f(�;�x); _x(0) = 0; x(1) = �; (3)

where � : C �! L

p

is a linear isotoni
 operator, 1 < p � 1, k > �

1

p

0

, the fun
tion

f(�; �) satis�es the Carath�eodory 
onditions. By de�nition put �v = �v; �z = �z, [�v; �z℄

def

=

fx 2 L

p

: �v � x � �zg.

Following [5℄, we will say that the fun
tion f(�; �) satis�es the 
ondition L

i

[�v; �z℄, i =

1; 2; if it is possible the de
omposition

f [t; u(t)℄ = q

i

(t)u(t) +M

i

[t; u(t)℄; u 2 [�v; �z℄;

where q

i

2 L

1

, i = 1; 2; the operator M

i

: [�v; �z℄

L

p

�! L

p

is de�ned by (M

i

u)(�)

def

=

M

i

[�; u(�)℄, M

1

is isotoni
 and M

2

is antitoni
.

Theorem 1. Let v; z 2 D

p

be a pair of fun
tions su
h that v(t) < z(t), t 2 [0; 1℄, and

=

0

v � f(�;�v); =

0

z � f(�;�z); v(1) � � � z(1): (4)

Suppose that the fun
tion f(�; �) satis�es the 
ondition L

2

[�v; �z℄ with q

2

2 L

1

, q

2

(�)

� 0. Then the problem (3) has at least one solution x 2 [v; z℄

D

p

.

If besides the L

1

[�v; �z℄ 
ondition is ful�lled with a 
oeÆ
ient q

1

2 L

1

, and the Green

operator of the auxiliary problem

=

1

x

def

= =

0

x� q

1

�x = '; x(1) = 0; (5)

is antitoni
, then the problem (3) has only one solution x 2 [v; z℄.
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Proof. Rewrite (3) in the form

(=

2

x)(�)

def

= (=

0

x)(�)� q

2

(�)(�x)(�) =M

2

[�; (�x)(�)℄; x(1) = �

on the spa
e D

p

. This problem is equivalent to the equation

x = A

2

x (6)

with the 
ompletely 
ontinuous isotoni
 operator A

2

: [v; z℄

C

�! C, de�ned by

(A

2

x)(�)

def

=

1

Z

0

G

2

(�; s)M

2

[s; (�x)(s)℄ ds+ u

2

(�);

where u

2

(�) is the solution of the semi-homogeneous problem

(=

2

x)(t) = 0; t 2 [0; 1℄; x(1) = �;

G

2

(�; �) is the Green fun
tion of the problem

=

2

x = �; x(1) = 0: (7)

We use here the fa
t that the Green operator G

2

of the problem (7) has the representation

G

2

= W� [1,p.19℄, where � : L

p

�! L

p

is a linear homeomorphism, 
onsequently G

2

is a 
ompletely 
ontinuous operator be
ause of Lemma 2. Ea
h 
ontinuous solution of

the equation (6) belongs to the spa
e D

p

, be
ause the operator A

2

is de�ned on the

order interval [v; z℄

C

of the spa
e C and maps this interval into the spa
e D

p

. Obviously

the isotoni
 operator � : C �! L

p

maps the order interval [v; z℄

C

into order interval

[�v; �z℄

L

p

. The operator M

2

: [�v; �z℄

L

p

�! L

p

is antitoni
, therefore it maps the order

interval [�v; �z℄

L

p

into [M

2

�z;M

2

�v℄

L

p

. Let y

def

= z � v. Then y(t) > 0, t 2 [0; 1℄,

=

2

y �M

2

�z �M

2

�v � 0;

be
ause of the antitoni
ity of M

2

and

y(1) �

1

Z

0

(=

2

y)(s) ds > 0:

Consequently, by Lemma 3 we have that the Green operator G

2

: L

p

�! D

p

� C of the

problem (7) is antitoni
. Thus

[G

2

M

2

�v;G

2

M

2

�z℄

D

p

� [G

2

M

2

�v;G

2

M

2

�z℄

C

:

Therefore the equation (6) may be 
onsidered in the order interval [v; z℄

C

of the spa
e

C. By virtue of the 
onditions (4) it follows that z(t) � (A

2

z)(t) and v(t) � (A

2

v)(t) for

all t 2 [0; 1℄. Be
ause of the isotoni
ity of the operator A

2

: [v; z℄

C

�! C this guarantees

A

2

[v; z℄

C

� [v; z℄

C

. For 1 < p � 1 the operator A

2

: [v; z℄

C

�! [v; z℄

C

is 
ompletely


ontinuous as a produ
t of the operators � : [v; z℄

C

�! [�v; �z℄

L

p

, M

2

: [�v; �z℄

L

p

�!

[M

2

�z;M

2

�v℄

L

p

and the 
ompletely 
ontinuous G

2

: L

p

�! C.

Thus, the operator A

2

maps the 
losed 
onvex set [v; z℄

C

of the Bana
h spa
e C into

itself. In a

ordan
e with the S
hauder's �xed point theorem the equation (6) has at

least one solution x 2 [v; z℄

C

.

Let us show that the set of all solutions x 2 [v; z℄

C

has a superior element �x 2

[v; z℄

C

(the upper solution) and an inferior element x 2 [v; z℄

C

(the lower solution).

Let x 2 [v; z℄

C

be a solution of the equation (6). The sequen
e fz

i

g, z

i+1

= A

2

z

i

;

z

0

= z monotoni
ally de
reases and is bounded by x 2 [v; z℄

C

, be
ause the operator

A

2

maps the set [v; z℄

C

into itself. A 
ompa
t monotone sequen
e fz

i

g 
onverges [2,
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p. 38℄ to �x = lim

i!1

z

i

. Sin
e this limit is a solution, the inequality �x � x for any solution

x 2 [v; z℄

C

is proved. Analogously we show the existen
e of the inferior solution x.

Now we have to show that if the 
ondition L

1

[�v; �z℄ is ful�lled, the solution of the

problem (3) is unique, i.e. �x = x. Using the L

1

[�v; �z℄, 
ondition we rewrite the problem

(3) in the form

(=

1

x)(�) = M

1

[�; (�x)(�)℄; x(1) = �:

This problem is equivalent to the equation

x = A

1

x

on the order interval [v; z℄

C

of the spa
e C with antitoni
 operator A

1

: [v; z℄

C

�! C,

de�ned by

(A

1

x)(�)

def

=

1

Z

0

G

1

(�; s)M

1

[s; (� = x)(s)℄ ds+ u

1

(�);

where G

1

(�; �) is the Green fun
tion of the problem (5), u

1

(�) is the solution of semi-ho-

mogeneous problem

(=

1

x)(t) = 0; t 2 [0; 1℄; x(1) = �:

Consider the equality �x � x = A

1

�x � A

1

x. The left-hand side of the equality is non

negative and the right-hand side is non positive, thus we get x = �x. �

5. Examples

Example 1. Consider the boundary-value problem

8

<

:

�x(t) +

1

t

_x(t) = �� exp

�

�

1

jx(t)j

�

; t 2 [0; 1℄;

_x(0) = 0; x(1) = 0;

(8)

where 0 � � � e

2

. This problem des
ribes pro
esses arising in 
hemi
al rea
tor theory

with 
ilindri
al symmetry [7, p. 326℄, under the Arrhenius law. We 
onsider this problem

on the spa
e D

1

.

As 
omparison fun
tions we 
hoose

v(t) � 0; z(t) =

�

4

(1� t

2

) +

1

2

:

A trivial veri�
ation shows that the 
onditions (4) are ful�lled:

�v(t) +

_v(t)

t

+ � exp

�

�

1

jv(t)j

�

= 0;

�z(t) +

_z(t)

t

+ � exp

�

�

1

jz(t)j

�

� �� + � = 0; t 2 [0; 1℄;

v(1) = 0 = x(1) < z(1) =

1

2

:

The fun
tion f(�; x) = �� exp

�

�

1

jxj

�

satis�es the 
ondition L

2

[v; z℄ with the 
oeÆ-


ient q

2

� 0. The boundary-value problem

=

0

x = �; x(1) = 0;

has for ea
h � 2 L

1

a unique solution x 2 D

1

, and its Green fun
tion W (t; s) � 0 on

the square [0; 1℄� [0; 1℄:
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Besides, the fun
tion f(�; x) = �� exp

�

�

1

jxj

�

satis�es the 
ondition L

1

[v; z℄ with the


oeÆ
ient q

1

= �4�e

�2

.

Taking the fun
tion y(t) =

�

4

(1� t

2

) we have:

(=

1

y)(t) = (=

0

y)(t) + 4�e

�2

y(t) = �� + �

2

e

�2

(1� t

2

) < �(�1 + �e

�2

) � 0

and

y(1) �

1

Z

0

(=

1

y)(s) ds =

1

Z

0

[� � �

2

e

�2

(1� s

2

)℄ ds = (� �

2

3

�

2

e

�2

) > 0;

sin
e � � e

2

: Consequently, by Lemma 3, the Green operator G

1

of the problem

=

0

x+ 4�e

�2

x = �; x(1) = 0

is antitoni
. Then, be
ause of Theorem 1 the problem (8) has a unique solution x 2 D

1

su
h that

0 � x(t) �

�

4

(1� t

2

) +

1

2

; t 2 [0; 1℄: �

Example 2. Let

8

<

:

�x(t) +

2

t

_x(t) = �� exp

�

�

1

jx(t)j

�

; t 2 [0; 1℄;

_x(0) = 0; x(1) = 0;

(9)

be a nonlinear boundary-value problem, 37:28 � � �

12

17

e

17=2

. This problem des
ribes

pro
esses arising in 
hemi
al rea
tor with spheri
al symmetry [7, p. 326℄.

The problem (9) with su
h � has more than one solution on the spa
e D

p

, 1 < p � 1.

Indeed, there are at least two pairs of fun
tions

v

1

(t) � 0; z

1

(t) =

2(1� t
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17

; v
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(t) = 4[erf(1) � erf(t
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)℄; z

2

(t) =

�

6

(1 � t

2

):

The 
onditions (4) are ful�lled:

�v

1

(t) +

2 _v

1

(t)

t

+ � exp

�

�

1

jv

1

(t)j

�

= 0;

�z

1

(t) +

2 _z

1

(t)

t
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�
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�

(4t

4
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�
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�

> 0;
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�

�
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�

�
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�

� � < 0;

sin
e 37:28 � � �

12

17

e

17=2

, t 2 [0; 1℄. The existen
e of solution of the problem (9) on

ea
h interval [v

i

; z

i

℄, i = 1; 2, follows from Theorem 1. Sin
e the intervals [v

1

; z

1

℄, [v

2

; z

2

℄

are disjoint, the problem (9) has at least two solutions x

1

, x

2

2 D

p

, 1 < p � 1, su
h

that v

1

� x

1

� z

1

, v

2

� x

2

� z

2
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