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M. ALVES

ABOUT A PROBLEM ARISING IN CHEMICAL REACTOR THEORY

(Reported on December 23, 1998)

1. NOTATION

Throughout this paper C = C[0,1] denotes the Banach space of continuous functions
x:[0,1] — R,

def
T = max |z(t)|;
lwlle < mas le(0);

Ly = Lp[0,1] (1 < p < 00) denotes the Banach space of summable in p-th degree functions

x:[0,1] — R,
1
i/p
def
lellz, 2 ( / P a)
0

Lo = Loo[0,1] denotes the Banach space of essentially bounded measurable functions
z:[0,1] — R,

def .
llz|Loe = vraisup|z(t)];
0<t<1

W2 = W2[0,1] denotes the Banach space of continuous functions = : [0,1] — R with

the absolutely continuous derivative & such that & € Ly,
def | .. .
lzllwz = [1&llz, +[2(0)] + |2(0)]-

2. THE SPACE OF SOLUTIONS D,

Consider the boundary-value problem
def .. k .
(Sox)(®) < (t) + Fa(t) = (1), t=e[0,1],
(0) =0, x(1)=a,

1 1 1
Wherek>*—,,f€Lp,1<p§OO,Oé€R1,—+—,:1,p’:1ifp:00.
p p p

Considering this problem on the traditional space W;, we see that &g is not defined
as an operator acting from Wg into Lp. Following the scheme given in the monograph
[1], we will investigate this problem on the space D, C W2 of functions z : [0,1] — R!,
such that #(0) = 0 and defined by

t
z(t) = /(t —35)z(s)ds +
0
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for each pair {2, 8} € L, x R!. The space D, is isomorphic to the direct product L, x R!.
The isomorphisms J : L, x R! — Dp and J~' : D, — L, x R! we define by the
equalities 7 = {A, Y}, 71 = [§,7], where

(Az)(t) = /(t —s)z(s)ds, (YB)(t) =8,

dx =&, rxz=xz(0).

The space D) becomes a Banach one under the norm

def ..
lzllp, =%z, +lz(0)].
The principal part of the operator Sg : Dp — Ly is

d

(@) < (SoA2)(t) = 2(1) + (P2)(0),
¢
where (Pz)(t) = % /z(s) ds is the Cesaro operator [2] on the space L,. The functions

0
u(t) = 1 and v(t) = t'~F satisfy the equation Sgz = 0. Nevertheless the fundamental
system of Spx = 0 consists only of u(t) = 1, such as the other element v(t) = t'~=%
does not belong to the space D,. By virtue of the results of [5, p. 102] it follows that, if

1
k> - the operator @ : L, — L, has the bounded inverse
p

t

(Q7l2)(t) = 2(t) — kt_(1+k)/skz(s)ds.

0
The solution of the problem (1) on the space D, is given by the expression
r=Wf+a,

where the Green operator W : L, — D, is defined by

1
wn < / W (t, s)f(s) ds,
0

kipl—k
tk
% fo<s<t<l,
. =
wit,s)
k(. 1—k
1
ST octes<,
1 &
1
fork>——, k#1,or
p/
oy [ st if0<s<e<
W(t,s) =

sins ifo<t<s<l,



135

for k = 1. Really, using the equality

z(t) = /z(s) ds

0
for € D), we rewrite the problem (1) on the space Dp in the form

t

i(t) = f(t) —kt’“*k)/skf(s)ds, telo,1], =z(1)=a.

0
Immediate computations show that
t s
z(t) 7/(#5) [f(s) fks*<1+k>/rkf(r) d’r] ds + z(0) =
0 0
t t
= / [t — 5 —ks® /(t — ) (k) dT] f(s)ds + z(0).
0 s
The condition z(1) = 0 gives
1 1
z(0) = 7/ [1 —s—ks* /(1 — 1)~ (1+k) d'r] f(s)ds
0 s

Consequently
1
z(t) = /W(t, s)f(s)ds+a, te€]0,1].
0

Bellow we will use results of [4] about estimation of the spectral radius p(#) of the
isotonic operator H : C — C. We formulate this result in the form satisfying our aims:

Lemma 1. Suppose that the isotonic operator H enjoys the property (H¢)(1) = 0 for
each ¢ € C. The following statements are equivalent:
1) There ezists y € C such that

y(t) >0, y(t) — (Hy)(t) >0, te0,1);
2) p(H)<1. 0O

Lemma 2. The integral operator W : L, — C' is completely continuous, for all
1< p<oo.

1
Proof. We consider only the case k > ——, k # 1, the case k = 1 can be proved
p

analogously. To prove the compactness of the operator W it suffices to show [5, p. 102]
that, for any to € [0, 1] the equality

t—tg

1
lim /\W(t, s) — W(to,s)|P ds =0
0
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holds. For 1 <p’ < 00,0 < tp < t <1 we have that

1 to
/|W(t,s) — W(to, )" ds :/
0 0

t

f

to

’

p

- 1k
sk@l=F —1)  sk(ty™" - 1) ds +

1-k 1-k

sk(si=k —1)  sk(tgTF 1)

1-k 1—-k

ds <

U
p k+1
tO

< 1—k _ 4 1—kyp' p'+1 '+l +
*|1—lc|P’(p’lc+1)(t ts )P +O(t tg ) >0, t—tg

0

Analogously we prove the respective statement for 0 =tp <t <land 0 <t <tp <1. O

3. THE DE LA VALLEE-POUSSIN LIKE THEOREM
Consider the boundary-value problem
d
(Sa)(t) < (Som)(t) — (Tw)(1) = £(1), € [0,1], o
#(0) =0, z(1) = a,

1 d

where k > ——, T': C — Ly is a linear antitonic operator, f € Lp. Denote A <] WT :
p

Cc —C.

Lemma 3. The following statements are equivalent:
1) There ezists an element y € D), such that

() >0, ot) Y (Soy)(t) — (Ty)(t) <0, te0,1), and

1
y(1) - /¢(8) ds > 0;
0

2) p(A) < 1;

3) The boundary value-problem (2) is uniquely solvable on Dy for each f € Ly, a €
R!, and its Green operator G is antitonic;

4) There exists a positive solution u € Dy, on [0,1] of the homogeneous equation
Sz =0.

Proof. Since y(-) satisfies
(Sox)(t) = (Tz)(t) = &(t), tel0,1], =(1)=y(1)
on the space D)y, it follows that
y— Ay =Wo+y(1) >0

on the space C. By virtue of Lemma 1 it follows that p(A) <= 1. The implication
1) = 2) is proved.
Supposing « > 0 we consider the problem (2), which is equivalent to the equation

r=Az+g
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on the space C. Here
1
d
9() éf/W(-,S)f(S)GlerOé-
0

Since p(A) < 1, it follows that
G=(T+A+ A+ )W.

Consequently the implication 2) = 3) is proved.
The problem
Sox—Tr =0, z(l)=a«
is equivalent to the equation

r = Az + a.

Since p(A) < 1, we have * = a + Aa + A%a +--- > 0 if @ > 0. Thus the implication
3) = 4) is proved.

The implication 4) = 1), follows from Lemma 1 because the positive solution u(t)
of the equation Sz = 0 satisfies the inequalities

u(t) >0, u(t)— (Au)t) =a >0, te[0,1]. O

4. THE MAIN RESULT

Consider the nonlinear boundary-value problem
Soz = f(-,0z), z(0) =0, z(1) =a, (3)

1
where © : C' — L, is a linear isotonic operator, 1 < p < 00, k > ——, the function
p

f(-,+) satisfies the Carathéodory conditions. By definition put © = Ov, z = Oz, [v, Z] def
{rely,:1<z<z}.

Following [5], we will say that the function f(-,-) satisfies the condition £[v,Z2], i =
1, 2, if it is possible the decomposition

flt u(®)] = qi(@u(t) + Mi[t, u(t)], u € [v,2],
where g; € Lo, i = 1, 2, the operator M; : [,2]r, — Ly, is defined by (M,u)(-) =
M;[-,u(-)], M is isotonic and Mo is antitonic.

Theorem 1. Let v,z € Dy be a pair of functions such that v(t) < z(t), t € [0,1], and
Sov > f(+,0v), Soz < f(-,02), (1) <a<2(1). (4)

Suppose that the function f(-,-) satisfies the condition L2[v,Z] with g2 € Lso, ga2(-)
< 0. Then the problem (3) has at least one solution x € [v,2]p, .

If besides the L1[v, 2] condition is fulfilled with a coefficient q1 € Loo, and the Green
operator of the auziliary problem

Sz def Soz — q1©x =, (1) =0, (5)

is antitonic, then the problem (3) has only one solution x € [v, z].



138

Proof. Rewrite (3) in the form

($22)() € (S02)() — 02()(©2)() = Ma[,(O2)()], (1) = a
on the space Dp. This problem is equivalent to the equation
z = Asx (6)
with the completely continuous isotonic operator As : [v,z]c —> C, defined by

1

(A22)(-) déf/Gz(ws)Mﬂs,(@fv)(S)] ds + u2(-),
0

where ua(+) is the solution of the semi-homogeneous problem
(S22)(t) =0, tel0,1], =(1)=a,
G3(+,-) is the Green function of the problem
oz =€, (1) =0. (7)

We use here the fact that the Green operator Go of the problem (7) has the representation
G2 = WI [1,p.19], where I" : L, — L, is a linear homeomorphism, consequently G
is a completely continuous operator because of Lemma 2. Each continuous solution of
the equation (6) belongs to the space D,, because the operator A» is defined on the
order interval [v, z]¢ of the space C' and maps this interval into the space Dj,. Obviously
the isotonic operator © : C — L, maps the order interval [v, z]¢ into order interval
[0,2]L,. The operator My : [0,2]r, — Lj is antitonic, therefore it maps the order
d
interval [7, 2], into [M2Z, M27]L,. Let y S 4 . Then y(t) > 0,t € [0,1],
oy < M20z — M20v <0,

because of the antitonicity of M»> and

y(1) — /(%zy)(s) ds > 0.
0

Consequently, by Lemma 3 we have that the Green operator Gz : L, — D, C C of the
problem (7) is antitonic. Thus

[GaM2D, G2 M2Z]|p, C [GoaM2T,GaMoZ]c.

Therefore the equation (6) may be considered in the order interval [v, z]¢ of the space
C'. By virtue of the conditions (4) it follows that z(t) > (A22)(t) and v(t) < (A2v)(t) for
all t € [0,1]. Because of the isotonicity of the operator As : [v,2]c — C this guarantees
As[v,z]c C [v,z]¢. For 1 < p < oo the operator As : [v,z]c — [v, z]¢ is completely
continuous as a product of the operators © : [v,z]c — [0,Z]L,, M2 : [0,Z]L, —
[MQZ,MQI_I]LP and the completely continuous Gz : L, — C'.

Thus, the operator A maps the closed convex set [v, 2] of the Banach space C' into
itself. In accordance with the Schauder’s fixed point theorem the equation (6) has at
least one solution z € [v, 2]c.

Let us show that the set of all solutions z € [v,z]c has a superior element T €
[v,2]c (the upper solution) and an inferior element z € [v,z]c (the lower solution).
Let = € [v,2]c be a solution of the equation (6). The sequence {zt}, zit! = Ajz?
29 = » monotonically decreases and is bounded by = € [v,2]c, because the operator
As maps the set [v,z]c into itself. A compact monotone sequence {z!} converges [2,
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p. 38] to Z = lim z'. Since this limit is a solution, the inequality & > x for any solution
11— 00

z € [v,z]c is proved. Analogously we show the existence of the inferior solution z.

Now we have to show that if the condition £![5, z] is fulfilled, the solution of the
problem (3) is unique, i.e. # = z. Using the £![7, 2], condition we rewrite the problem
(3) in the form

(S12)(1) = Mu[,(©2)()], =(1) = o
This problem is equivalent to the equation
r=Az

on the order interval [v,2z]c of the space C' with antitonic operator A; : [v,2]c — C,
defined by

1
d
) [ Gt © =l +
0
where G1(+,-) is the Green function of the problem (5), u1(-) is the solution of semi-ho-
mogeneous problem
(Slx)(t) =0, te [07 1]7 1‘(1) =a.
Consider the equality Z — x = A1Z — A1z. The left-hand side of the equality is non
negative and the right-hand side is non positive, thus we get x = z. O

5. EXAMPLES

Example 1. Consider the boundary-value problem

! ), t€0,1],

. Lon - gon (=L
B0 + 150 = ~pexp (- o

(8)
#(0) =0, =z(1)=0,

where 0 < B < e2. This problem describes processes arising in chemical reactor theory

with cilindrical symmetry [7, p. 326], under the Arrhenius law. We consider this problem

on the space Doo.
As comparison functions we choose

o(t) =0, z(t) = g(l —12) + %

A trivial verification shows that the conditions (4) are fulfilled:

0 1y
’U(t)‘l‘T‘i‘ﬂeXp (—W) —0,
0 1 ~ .
#)+ 2+ e (- ) <-pa=0, te

1
v(l) =0=12z(1) < 2(1) = 3
1
The function f(-,z) = —fexp (fﬂ) satisfies the condition £2[v,z] with the coeffi-
T
cient g2 = 0. The boundary-value problem
Sozx =&, z(1) =0,

has for each £ € Lo a unique solution z € Do, and its Green function W (t,s) < 0 on
the square [0,1] x [0, 1].
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Besides, the function f(-,z) = —fexp (f—) satisfies the condition £1[v, z] with the

||
coefficient q; = —48e~2.
B
4

(S19)(t) = (Soy)(t) + 4Be™?y(t) = =B + e (1 = *) < f(=1 + Be™?) <0

Taking the function y(t) = =(1 — t2) we have:

and
1 1

2
y(1) - /(sly)(s) ds = /[ﬁ — 8% (1= s%)]ds = (8 — 26%7?) >0,
0 0
since B < e?. Consequently, by Lemma, 3, the Green operator G; of the problem

Sox +4Be 2z =€, z(1)=0

is antitonic. Then, because of Theorem 1 the problem (8) has a unique solution z € Do
such that
B

1
2
ng(t)gz(l—t )+§, te[o,1]. O
Example 2. Let
2 1
i(t) + ;x(t) = —Bexp (—m) , tefo,1],

()

17/2

12
be a nonlinear boundary-value problem, 37.28 < 8 < — e . This problem describes

processes arising in chemical reactor with spherical symmetry [7, p. 326].
The problem (9) with such 8 has more than one solution on the space Dp, 1 < p < co.
Indeed, there are at least two pairs of functions

vi(t) =0, =zi(t)= 2(117?52), va(t) = 4ferf(1) — erf(t?)], z2(t) = g(l —t%).
The conditions (4) are fulfilled:
" 201 (t) 1\
1(t) + ; —I—ﬁexp(—‘v (t)|)_0’

s + 210 | gey p(

/ ()\) so (- 37-75) 17 <°

|2
az(t)+2' +6ex( ‘W ) 1Bexp=th) ya g,

N

—025
L

+hexp — erf(t2

2200

6
s+ 220 g p( ) gexp (— ) <0,
\Z2( )l B —1?)
12
since 37.28 < 8 < T, e'7/2,t € [0,1]. The existence of solution of the problem (9) on

each interval [v;, 2;], ¢ = 1,2, follows from Theorem 1. Since the intervals [v1, 21], [v2, 22]
are disjoint, the problem (9) has at least two solutions z1, 2 € Dp, 1 < p < o0, such
that v1 <z1 <z, v2 <2 <22. 0O
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