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ESTIMATES OF HIGHER DERIVATIVES OF THE CAUCHY
PROBLEM SOLUTION WITH RESPECT TO INITIAL VALUES

(Reported on November 30, 1998)

For ordinary differential equations the question of estimation of higher derivatives of
the Cauchy problem solution with respect to initial values is considered, when the field of
the equation is continuous with respect to time and has higher derivatives with respect
to phase variable. The used technique is close to [1] and is developed in [2] and especially
in [3]. We will formulate the basic result (similar, but more general results are proved in
[3]) in the near-ring of special type, and we will obtain the estimates from it.

Let us determine C’Zip(X), where X is a Banach space, n € Zy (Z4 is the set
of non-negative integer numbers). g € C7, (X), if ¢ € C™(X) (9 : X = X is n-
times continuously differentiable function) and, for each i € {0, 1,...,n},f(i) X =
L;(X, X) is a Lipschitz mapping, where £;(X,Y") denotes the Banach space consisting

of the continuous multilinear forms A : X X --- x X — Y with the norm (see [4]):
i—times
[|Allz; =sup|A(z1,...,2;)| when [lz1]] <1,...,[|z <1
As usual, we assume Lo(X,Y) = Y. In the sequel, when A € £;(X,Y) and z1,...,z; € X,
we will use the notation (...(Az1)z2 ... z;) insted of its equivalent one A(z1,...,z;); thus

it is clear that Az; € £;—1(X,Y).
Let us determine the convergence on C?. (X). For each m € N, it is correctly defined

Lip
the bounded deviation dm, : C’Zl.p(X) X Cgip(X) — Ry:

dm(91,92) = sup |lgi(z) — g2(z)ll,

[z|<m

and for each i € {1,...,n+ 1}

g1 (x1) = 9" D (@2)lle,
s = sw | L wecp, ),
T F£To HIl - 172”
z1,0€X
d; ¢ Cgip(X) — R4 will be called by the restriction.
It is easy to verify that
i(9) = sup [lgV (@)lle;, Vg € CLip(X), Vi€ {L,....n}, (1)
T€

when n > 1.
Let {g:}52, C Cgip(X). We will say that {g;}2, converges to go, if:
a) lim dm(gi,g90) = 0,Ym € N;
11— 00
b) sup{dm(9:)}52, < oo,Vm € {1,...,n+ 1}.
We say that {g;}2, is fundamental in C7, (X)), if:
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a) Ve > 0 and Ym € N Jig € N such that dm(9i,,9i,) < € when i1,iz > io;

b) sup{dm(9i)}52, < oo, Vm € {1,...,n +1}.

The convergent and fundamental directednesses can be defined analogously, but we
do not need such definitions, because the convergent sequences and the convergent di-
rectednesses determine the same limit structure in C7, (X) (as in metric space).

C’gip(X) is a complete space and each §,, is lower semi-continuous, i.e., from 11_1)120 gi =
go it follows

dm(g0) < sup{dm(gi)}i21 < oo,Vme {l,...,n+1}.

The operations + and 0 (null function) introduce a structure of additive group, o
(composition) and Ix(Ix : X — X is the identical mapping) introduce a structure of
monoid, and

(g1 +g2)09=g109+g209, Vg,91,92 € CL;,(X),
so CF;,(X) is a near-ring.

The restrictions have very interesting properties:

dm(0) =0, dm(g1 4 92) < Im(g1) + Im(g2),

(Ix)=1,0;(Ix)=0 if i>1,
Sm(g10g2) < Z _m [61(92)] Y [M]%%ﬁ---ﬂ'k (91),

il L1 k!

where the sum Z is spread over all collections (i1,...,i) such that i; € Z4 and 141 +
st ki = n.

Let us determine a special sequence of polynorms {Pn}S°_, as follows: Py = 1, and
for m > 1 and each {ni,...,mm} C [0,00)

— m! Py i1 Pr(n1y--- Mk ik
Pm(ﬁly---anm)ZHIZm [F] [% Miy+-+igs (2)

where the sum E is spread over all the solutions of equation 1iy+---+kip, =m (i; € Z4)
except im =1 (i.e., k =m and i1 = -+ =im—1 =0, iy, = 1); therefore P, do not take
part in the right-hand side of (2). Thus, (2) is the recurrent formula.

Let us formulate the basic result in the form which is sufficient for our purposes.*

Theorem 1. Let {f(t,")}icla,b) be a continuous family in some C7, (X), —oo <

a < b < 400. Then there exists a two-parameter continuous family {‘Pto,t}to,te[a,b] mn
Cgip(X), such that for each (to,zo) € [a,b] x X the equalities
d
2 Ptost(20) = f(t pro,(20)), VL € (a,D),
Pto,t(T0) = To

are valid in X and for each m € {1,...,n + 1}
dm (to,t) < Pm (|t —tol, 72, ..., Ym) exp(mm|t — to]) 3)
holds, where
vi = sup{d;(f(t,") }ee[a,p) ond v €[0,00), Vi€ {l,...,n+1}.
Let us use Theorem 1 to analyse the following Cauchy problem:
z = f(t,x), z(to) =m0, = € X, (t,z)ET — an open area. (4)

The following result gives a sufficiant condition imposed on the field (¢,z) — f(t,x) for

{f(t,)}te[a,b) to be continuous in some C7; (R").

*The way of the proof permits us to find out the explicit form of ¢y, ¢.
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Lemma 1. Let r,n € N, there exist (a,b) C R such that [a,b] x R" C T,
{f(t,2)}tea,p) is continuous for every z € R”, {f(t,-)}ig[a,p) C C™(R"), and

ai
ks Esup{H L 4,2 |z € Bt € [a,b],]al :i} < o0, (5)
o™
”
where i € {1,...,n}, a = (a1,...,a;) €27, |a| = > ay, 0z = dxTt - DTy
i=1

Then {f(t,*)}ie[a,b] 25 continuous in C’g;pl (R™) and

sup{di (f(t, ")) }eefa,p) < r'kis Vi€ {1,...,n}. (6)

Scheme of Proof. Take arbitrary ¢ € {1,...,n}, t € [a,b] and z € R". The multilinear
form (f(t,-))® () ((f(t,-))®, as usual, denotes the derived function of order i and acts
as follows:

r

(P ND@hhs - hi)= > () -+ (ha)

J1s-nji=1
vhj = ((hj)1,...,(hj)r)T € R", i €{1,...,n). Therefore
o f

oz

o' f

(),
B T CE0

(t,x) (t,x)||-

sup
la|=1

< DD @)lle; < v osup

l|=1i

(7) and Taylor’s formula give:

(£t ) (@2) = (F(& )N D (@1)le,_, <
1
< /l(f(t,'))(i)(fl?l + Mzz — 71)) |z, [lw2 — 21]|dX < riksl|ze — @1,
0

thus f(t,-) € C}, ' (R") and (6) holds.
In accordance with the conditions of Lemma 1, {(¢,z) — f(t,2)} : [a,b] xR" — R" is a
continuous mapping, i.e., it is uniformly continuous on each compact subset of [a, b]x R".

Therefore if {t;}2, C [a,b] and lim t; = to, then
11— 00

dm(f(tzy ) - f(t07 )) 12}0 0,
Vim € N, which together with (6) proves that {f(,)}+¢c[q4,p) is continuous in C’Z;pl (R™). O

Proposition 1. Let r,n € N, there exist (a,b) C R such that [a,b] x R" C T,
{f(t,2)}tea,p) is continuous for every z € R”, {f(t,-)}ie[q,p) C C™(R"), and

ki:sup{‘

Then there exists a continuous two-parameter family {pty,t}1y,tcla,b] C’ZZ._;,I(RT), such
that for each (to, o) € [a,b] X R" the equalities

%@to,t(fbo) = f(t7 tho,t(xo))a vt € (aa b))
©to,t(20) = z0

ﬁ(t, z)

- veR, 1€ o], foll =i} <oo.

are valid, and for each i € {1,...,n — 1} and every t € (a,b)

su
llell =1

67: Pto,t (

ppws < Pr(|t = to|,r%ka, ..., v ki) exp(irk: [t — to]). (8)

t, o)
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Proof. By virtue of Lemma 1, {f(t,")}1c[q,s] is continuous in Czi_pl (R™), therefore we
can use Theorem 1. Now we need to show that from (3) it follows (8).
According to (1),

8i(#to.t) = sup ||(¢eo.e(1) P (x) 9)
zeR" L;
By virtue of the hypotheses of the theorem we have
vi < rik;, Yie{l,...,n}. (10)
Let us take into consideration that (9) gives
ot
sup || 2224 0) | < ipro.0), v € R, (1)
laj=ill 07

in accordance with (7).
Finally, taking into consideration (9), (10) and (11), we deduce (8) from (3) when
i€{l,...,n—1},and t € (a,b). O
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