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CHAPTER VI

MIXED AND CRACK TYPE PROBLEMS

In this hapter we study the basi mixed BVPs, the rak type prob-

lems, and the mixed interfae problems formulated in Chapter II. Applying

the boundary integral equation method we prove the existene theorems

in Sobolev spaes and establish the almost best regularity results for solu-

tions near the boundary of raks and at the ollision urves of hanging

boundary and transmission onditions.

Throughout this hapter the interfae surfaes, the ollision urves and

the rak boundaries are assumed to be C

1

-smooth. Moreover, the param-

eters r and ! in the steady state osillation problems are subjeted to the

requirement (15.3).

16. Basi Mixed BVPs

16.1 In this subsetion we present some results from the theory of ellipti

pseudodi�erential equations on manifolds with boundary in Bessel-potential

and Besov spaes. They will be the main tools for proving existene the-

orems for the above mentioned mixed and rak type problems. All the

results outlined below in this subsetion an be found, for example, in [4℄,

[20℄, [43℄, [69℄, [15℄, [70℄, [71℄, [72℄.

Let S 2 C

1

be a ompat n-dimensional manifold with the boundary

�S 2 C

1

and let A be a strongly ellipti m�m matrix pseudodi�erential

operator of order � 2 IR on S. Denote by �(A)(x; �) the prinipal homo-

geneous symbol matrix of the operator A in some loal oordinate system.

Here x 2 S; � 2 IR

n

n f0g. Consider the following m�m matrix funtion

A

(0)

�

(x; �) = j�j

��

�(A)(x; j�

0

j�; �

n

); (16.1)

where �

0

= (�

1

; :::; �

n�1

) and � belongs to the unit sphere �

(n�2)

in IR

n�1

.

It is known that the matrix A

(0)

�

in (16.1) admits the fatorization

A

(0)

�

(x; �) = A

�

�

(x; �)D(�; x; �)A

+

�

(x; �) for x 2 �S;

where [A

�

�

(x; �)℄

�1

and [A

+

�

(x; �)℄

�1

are matries, whih are homogeneous

of degree 0 in � and admit analyti bounded ontinuations with respet to

�

n

into the lower and upper omplex half-planes, respetively. Moreover,

D(�; x; �) is a bounded lower triangular matrix with entries of the form

�

�

n

� ij�

0

j

�

n

+ ij�

0

j

�

Æ

j

(x)

; j = 1; :::m;

on the main diagonal; here

Æ

j

(x) = (2�i)

�1

ln�

j

(x); j = 1; :::;m;

where �

1

(x); :::; �

m

(x) are the eigenvalues of the matrix

A(x) = [�(A)(x; 0; :::0;�1)℄

�1

[�(A)(x; 0; :::; 0;+1)℄:
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The branh in the logarithmi funtion is hosen with regard to the inequal-

ity 1=p � 1 < Re Æ

j

(x) < 1=p; j = 1; :::;m; p > 1: The numbers Æ

j

(x) do

not depend on the hoie of the loal o-ordinate system.

Note that, if �(A)(x; �) is a positive de�nite matrix for every x 2 S and

� 2 IR

n

n f0g, then

Re Æ

j

(x) = 0 for j = 1; :::;m; (16.2)

sine, in this ase, the eigenvalues of the matrix A(x) are positive numbers

for any x 2 S .

The Fredholm properties of suh operators are haraterized by the fol-

lowing lemma.

Lemma 16.1. Let 1 < p < 1; s 2 IR, 1 � q � 1; and let A be a

strongly ellipti pseudodi�erential operator having a positive de�nite prin-

ipal homogeneous symbol matrix, i.e., �(A)(x; �)� � � �  j�j

2

for x 2

S; � 2 IR

n

with j�j = 1; and � 2 CI

m

;

where  is a positive onstant.

Then the operators

A :

e

H

s

p

(S)! H

s��

p

(S); (16.3)

:

e

B

s

p;q

(S) ! B

s��

p;q

(S); (16.4)

are bounded Fredholm operators of index zero if and only if

1=p� 1 < s� �=2 < 1=p: (16.5)

Moreover, the null-spaes and indies of the operators (16:3), (16:4) are

the same for all values of the parameter q 2 [1;+1℄, and for all values of

the parameters p 2 (1;1) and s 2 IR satisfying the inequality (16:5).

16.2. First we onsider the basi mixed BVP (P

mix

)

+

�

for the pseudo-

osillation equations of thermoelastiity (see (5.9){(5.10)).

We assume that the boundary data meet the following onditions

f

(1)

j

2 B

1�1=p

p;p

(S

1

); F

(2)

j

2 B

�1=p

p;p

(S

2

); j = 1; 4; 1 < p <1; (16.6)

and look for the solution U in the spae W

1

p

(


+

).

Let f

0

= (f

01

; � � � ; f

04

)

>

2 B

1�1=p

p;p

(S) be some �xed extention of the

given vetor funtion f

(1)

= (f

(1)

1

; � � � ; f

(1)

4

)

>

2 B

1�1=p

p;p

(S

1

) onto the whole

surfae S = �


+

: Then an arbitrary extention, preserving the funtional

spae, is represented as

f = f

0

+ ' 2 B

1�1=p

p;p

(S); (16.7)

where ' 2

e

B

1�1=p

p;p

(S

2

): Clearly, f j

S

1

= f

0

j

S

1

= f

(1)

:

Let us seek the solution of the mixed BVP (P

mix

)

+

�

in the form of a single

layer potential

U(x) = V

�

(H

�1

�

f)(x); x 2 


+

; (16.8)

where V

�

is given by (11.1), H

�1

�

is the operator inverse to H

�

(see (11.3)

and Remark 12.13), and f is given by formula (16.7).
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Applying Theorem 11.3 we an easily see that the onditions (5.9) are

automatially satis�ed, while the onditions (5.10) lead to the 	DE for the

unknown vetor funtion '

[B(D;n)U ℄

+

= [�2

�1

I

4

+K

1;�

℄H

�1

�

(f

0

+ ') = F

(2)

on S

2

; (16.9)

where f

0

and F

(2)

= (F

(2)

1

; � � � ; F

(2)

4

)

>

2 B

�1=p

p;p

(S

2

) are given vetor-

funtions, and where the operator K

1;�

is de�ned by (11.4).

Let

N

+

�;mix

:= [�2

�1

I

4

+K

1;�

℄H

�1

�

: (16.10)

Then the equation (16.9) is written as

r

S

2

N

+

�;mix

' = g on S

2

; (16.11)

where r

S

2

is the restrition operator on S

2

, and

g = F

(2)

� r

S

2

N

+

�;mix

f

0

2 B

�1=p

p;p

(S

2

): (16.12)

The properties of the operators N

+

�;mix

and r

S

2

N

+

�;mix

are desribed by the

following lemmata.

Lemma 16.2. The prinipal homogeneous symbol matrix of the 	DO

N

+

�;mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Proof. It is verbatim the proof of Lemma 14.2 for the operator N

1;�

. �

Lemma 16.3. The operators

r

S

2

N

+

�;mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (16.13)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (16.14)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition

1=p� 3=2 < s < 1=p� 1=2 (16.15)

holds.

Proof. The boundedness and Fredholmity of the operators (16.13) and

(16.14) under the restrition (16.15) follow from Lemmata 16.2 and 16.1

with s + 1 and 1 in the plae of s and �. Due to these lemmata the Fred-

holm indies of the operators (16.13) and (16.14) are equal to zero and the

dominant singular part of the operator N

+

�;mix

is formally self-adjoint.

It remains to prove that the operators under onsideration have the trivial

null-spaes. Obviously, if we are able to �nd two numbers s

1

2 IR and

p

1

2 (1;1) satisfying the inequalities (16.15) suh that the homogeneous

equation

r

S

2

N

+

�;mix

' = 0 (16.16)

has no nontrivial solutions in the spae

e

B

s

1

+1

p

1

;p

1

(S

2

) [

e

H

s

1

+1

p

1

(S

2

)℄, then due to

Lemma 16.1 we an onlude that the null-spaes of the operators (16.13),

(16.14) are trivial for all values of the parameters s and p subjeted to the

ondition (16.15).
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To this end let us take

s

1

= �1=2; p

1

= 2; q = 2; (16.17)

whih satisfy inequalities (16.15). We reall that

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

).

Let some vetor funtion '

0

2

e

B

1=2

2;2

(S

2

) solve the homogeneous equation

(16.16) and let us onstrut the single layer potential

U

0

(x) = V

�

(H

�1

�

'

0

)(x); x 2 


+

: (16.18)

By Theorem 11.3 and Remark 12.13 we have

U

0

(x) 2 H

1

2

(


+

) =W

1

2

(


+

); (16.19)

and, moreover, U

0

satis�es the onditions orresponding to the homogeneous

mixed BVP (P

mix

)

+

�

due to the the homogeneous equation (16.16) and the

inlusion '

0

2

e

B

1=2

2;2

(S

2

). With regard to Theorem 8.3 we then infer that

U

0

= 0 in 


+

, and, onsequently, [U

0

℄

+

= '

0

= 0: This ompletes the

proof. �

Now we an formulate the following existene result.

Theorem 16.4. Let 4=3 < p < 4 and onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed problem (P

mix

)

+

�

is uniquely solvable in

the spae W

1

p

(


+

) and the solution is representable in the form of the single

layer potential (16:8), where the density f is given by (16:7) and where ' is

the unique solution of the 	DE (16:11).

Proof. First we note that, in aordane with Lemma 16.3, the 	DE (16.11)

is uniquely solvable for s = �1=p and 4=3 < p < 4, where the last inequality

follows from the ondition (16.15). This implies the solvability of the prob-

lem (P

mix

)

+

�

in the spae W

1

p

(


+

) with p as above. Next we show that this

problem is uniquely solvable in the spae W

1

p

(


+

) for arbitrary p 2 (4=3; 4)

(for p = 2 it has been proved in Theorem 8.3).

We proeed as follows. Let U 2 W

1

p

(


+

) be some solution of the homo-

geneous problem (P

mix

)

+

�

. Clearly, then

[U ℄

+

2

e

B

1�1=p

p;p

(S

2

): (16.20)

By Remark 12.13 we have the following representation for the vetor U (see

(12.55))

U(x) = V

�

(H

�1

�

[U ℄

+

)(x); x 2 


+

: (16.21)

Sine U satis�es the homogeneous onditions (5.10), from (16.21) we get

r

S

2

N

+

�;mix

[U ℄

+

= 0 on S

2

: (16.22)

Whene [U ℄

+

= 0 on S follows due to the inlusion (16.20), Lemma 16.3,

and the inequality 4=3 < p < 4. Therefore, U = 0 in 


+

. �

Now we an prove the main regularity result for the solution to the mixed

BVP (P

mix

)

+

�

.
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Theorem 16.5. Let the onditions (16:6) be ful�lled,

4=3 < p < 4; 1 < t <1; 1 � q �1; 1=t� 3=2 < s < 1=t� 1=2; (16.23)

and let U 2 W

1

p

(


+

) be the unique solution to the mixed problem (P

mix

)

+

�

.

In addition to (16:6),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); F

(2)

2 B

s

t;t

(S

2

); (16.24)

then

U 2 H

s+1+1=t

t

(


+

); (16.25)

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); F

(2)

2 B

s

t;q

(S

2

); (16.26)

then

U 2 B

s+1+1=t

t;q

(


+

); (16.27)

iii) if

f

(1)

2 C

�

(S

1

); F

(2)

2 B

��1

1;1

(S

2

); for some � > 0; (16.28)

then

U 2 C

�

(


+

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g: (16.29)

Proof. Theorem 11.3 and Remark 12.13 (see (12.53)) together with the

onditions (16.24) [(16.26)℄ imply g 2 B

s

t;t

(S

2

) [B

s

t;q

(S

2

)℄, where g is de�ned

by (16.12). Note that f

0

2 B

s+1

t;t

(S) [B

s+1

t;q

(S)℄ is some extension of the

vetor f

(1)

onto the whole of S.

Next, by Lemma 16.3 and onditions (16.23) we onlude that the equa-

tion (16.11) is uniquely solvable in the spae

e

B

s+1

t;t

(S

2

) [

e

B

s+1

t;q

(S

2

)℄. There-

fore, we have that in the representation (16.8) of the unique solution U to

the problem (P

mix

)

+

�

in the spae W

1

p

(


+

) the density vetor f = f

0

+ '

satis�es inlusion

f = f

0

+ ' 2 B

s+1

t;t

(S) [B

s+1

t;q

(S)℄ (16.30)

as well (together with the inlusion (16.7)).

Applying again Theorem 11.3 and Remark 12.13 onerning the mapping

properties of the single layer operator V

�

and the 	DO H

�1

�

we �nd that

(16.25) [(16.27)℄ holds.

For the last assertion (item iii)) we use the following embeddings (see,

e.g., [78℄, [79℄)

C

�

(S) = B

�

1;1

(S) � B

��"

1;1

(S) � B

��"

1;q

(S) �

� B

��"

t;q

(S) � C

��"�k=t

(S); (16.31)

where " is an arbitrary small positive number, S � IR

3

is a ompat k-

dimensional (k = 2; 3) smooth manifold with smooth boundary, 1 � q � 1,

1 < t < 1, � � " � k=t > 0, � and � � " � k=t are not integer numbers.

From the assumption iii) of the theorem and the embeddings (16.31), it is

easily seen that the ondition (16.26) follows with any s � �� "� 1:
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Bearing in mind (16.23), and taking t suÆiently large and " suÆiently

small, we are able to put s = �� "� 1 if

1=t� 3=2 < �� "� 1 < 1=t� 1=2; (16.32)

and s 2 (1=t� 3=2; 1=t� 1=2) if

1=t� 1=2 < �� "� 1: (16.33)

By (16.27) the solution U belongs then to B

s+1+1=t

t;q

(


+

) with s+1+1=t=

��"+1=t if there holds (16.32), and with s+1+1=t 2 (2=t�1=2; 2=t+1=2) if

there holds (16.33). In the last ase we an take s+1+1=t = 2=t+1=2� ".

Therefore, we have either U 2 B

��"+1=t

t;q

(


+

) or U 2 B

2=t+1=2�"

t;q

(


+

) in

aordane with inequalities (16.32) and (16.33). Now the last embed-

ding in (16.31) (with k = 3) yields that either U 2 C

��"�2=t

(


+

) or

U 2 C

1=2�"�1=t

(


+

), whih lead to the inlusion

U 2 C

�

0

�"�2=t

(


+

); (16.34)

where �

0

:= minf�; 1=2g: Sine t is suÆiently large and " is suÆiently

small, the embedding (16.34) ompletes the proof. �

16.3. The basi mixed exterior BVP (P

mix

)

�

�

(see (5.9){(5.10)) an be

onsidered by applying quite the same approah and by the word for word

arguments. Therefore, in this subsetion we formulate only the basi results

onerning the existene and regularity of solutions.

Let the boundary data f

(1)

j

and F

(2)

j

(j = 1; 4) of the BVP (P

mix

)

�

�

sat-

isfy the onditions (16.6), and f

0

, f , and ' be as in the previous subsetion.

We again look for the solution in the form of the single layer potential

U(x) = V

�

(H

�1

�

f)(x); x 2 


�

; (16.35)

where

f = f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

): (16.36)

As above f

0

is the given vetor funtion satisfying the ondition f

0

j

S

1

= f

(1)

;

while ' is the unknown vetor funtion whih has to be de�ned by the 	DE

r

S

2

N

�

�;mix

' = g on S

2

; (16.37)

where r

S

2

is again the restrition operator on S

2

, and

N

�

�;mix

= [2

�1

I

4

+K

1;�

℄H

�1

�

; (16.38)

g = F

(2)

� r

S

2

N

�

�;mix

f

0

2 B

�1=p

p;p

(S

2

): (16.39)

Lemma 16.6. The prinipal homogeneous symbol matrix of the 	DO

N

�

�;mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Lemma 16.7. The operators

r

S

2

N

�

�;mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

;

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

;

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.
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These operators are invertible if the ondition (16:15) holds.

Theorem 16.8. Let 4=3 < p < 4 and let the onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed problem (P

mix

)

�

�

is uniquely solvable in

the spae W

1

p

(


�

) and the solution is representable in the form (16:35),

where the density f is given by (16:36) and where ' is the unique solution

of the 	DE (16:37).

Theorem 16.9. Let the onditions (16:6) and (16:23) be ful�lled, and

let U 2 W

1

p

(


�

) be the unique solution to the mixed problem (P

mix

)

�

�

.

In addition to (16:6),

i) if there hold the inlusions (16:24), then

U 2 H

s+1+1=t

t

(


�

);

ii) if there hold the inlusions (16:26), then

U 2 B

s+1+1=t

t;q

(


�

);

iii) if there hold the inlusions (16:28), then

U 2 C

�

(


�

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

The proofs of these propositions are verbatim the proofs of Lemmata

16.2, 16.3, and Theorems 16.4, 16.5.

16.4. In this subsetion we shall study the basi mixed exterior BVP

(P

mix

)

�

!

for the steady state osillation equations of the thermoelastiity

theory formulated in Setion 5 (see (5.9){(5.10)). Again let f

(1)

, F

(2)

, f

0

,

f , and ' be the same as in Subsetion 16.2.

We look for a solution to the BVP (P

mix

)

�

!

in the form

U(x) = (W + p

0

V ) ([N

�

1

℄

�1

f)(x); x 2 


�

; (16.40)

where V andW are the single and double layer potentials given by formulae

(10.1) and (10.2), respetively, p

0

is de�ned by (13.5),

f = f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

); (16.41)

and [N

�

1

℄

�1

is an ellipti SIO inverse to the operator (f. (13.6))

N

�

1

:= �2

�1

I

4

+K

2

+ p

0

H: (16.42)

Note that [N

�

1

℄

�1

is an ellipti SIO due to Lemma 10.2. Moreover, the

mapping

[N

�

1

℄

�1

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

; 1 < p <1; 1 � q �1; s2IR; (16.43)

is an isomorphism aording to Lemma 13.13.

Applying Theorem 10.8, item i), one an easily see that the vetor U rep-

resented by formula (16.40) automatially satis�es the boundary onditions

(5.9) on S

1

sine [U ℄

�

= f on S and f j

S

1

= f

0

j

S

1

= f

(1)

. It remains to ful�l

the onditions (5.10) on S

2

whih lead to the 	DE for the unknown vetor

'

[B(D;n)U ℄

�

= [L+ p

0

(2

�1

I

4

+K

1

)℄[N

�

1

℄

�1

(f

0

+') = F

(2)

on S

2

; (16.44)
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where L is de�ned by (10.36) and (10.6), while K

1

is given by (10.4).

Next we set

N

�

mix

:= �[L+ p

0

(2

�1

I

4

+K

1

)℄ [N

�

1

℄

�1

; (16.45)

and rewrite the equation (16.44) as

r

S

2

N

�

mix

' = q on S

2

; (16.46)

where r

S

2

is again the restrition operator on S

2

, and

q = �F

(2)

+ r

S

2

N

�

mix

f

0

2 B

�1=p

p;p

(S

2

): (16.47)

The inlusion (16.47) for the right-hand side vetor funtion q follows from

Theorem 10.8 and the mapping property (16.43). Further, we present the

properties of the operators N

�

mix

and r

S

2

N

�

mix

.

Lemma 16.10. The prinipal homogeneous symbol matrix of the 	DO

N

�

mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Proof. First we note that the prinipal homogeneous symbol matrix of the

operator N

�

mix

reads as

�(N

�

mix

) = ��(L)�([N

�

1

℄

�

) =

=�

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

"

[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

3�3

[0℄

3�1

[0℄

1�3

�2

#

4�4

=

=

"

[� �(L

(0)

)[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2�(L

(0)

4

)

#

4�4

;

due to formulae (10.25), (10.30), (10.49). As we have already mentioned in

the proof of Lemma 15.5, the matrix [ � �(L

(0)

)[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

℄

3�3

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g (for details see [59℄,

[41℄, [34℄, [57℄), while the funtion 2�(L

(0)

4

) is positive in aordane with

the inequality (10.50). �(N

�

mix

) is positive de�nite. �

Lemma 16.11. The operators

r

S

2

N

�

mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (16.48)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (16.49)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 16.3. Indeed, the bound-

edness and Fredholmity of the operators in question and that the Fredholm

indies are equal to zero follow from Lemma 16.10 and Lemma 16.1 with

s+ 1 and 1 in the plae of s and �.

Further, due to Lemma 16.10 the dominant singular part of the operator

N

�

mix

is formally self-adjoint.
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To prove that their null-spaes are trivial, as in the proof of Lemma 16.3,

we onider the homogeneous 	DE

r

S

2

N

�

mix

' = 0 on S

2

; (16.50)

and prove that it has only the trivial solution in the spae

e

B

1=2

2;2

(S

2

) =

e

H

1=2

2

(S

2

). It orresponds to the partiular values of the parameters s and

p (and q) given by (16.17).

Let some vetor funtion '

0

2

e

B

1=2

2;2

(S

2

) solve the equation (16.50), and

onstrut the vetor

U

0

(x) = (W + p

0

V ) ([N

�

1

℄

�1

'

0

)(x); x 2 


�

: (16.51)

By Theorem 10.8, Lemma 13.13 and the mapping property (16.43) we on-

lude

U

0

(x) 2W

1

2;lo

(


�

) \ SK

m

r

(


�

): (16.52)

Moreover, U

0

satis�es the boundary onditions of the homogeneous mixed

BVP (P

mix

)

�

!

due to the homogeneous equation (16.50) and the inlusion

'

0

2

e

B

1=2

2;2

(S

2

). By virtue of the uniqueness results (see Theorem 9.6) the

vetor funtion (16.51) then vanish in 


�

, and, onsequently, [U

0

℄

�

= '

0

=

0 on S. The proof is ompleted. �

These lemmata imply the foolowing existene results.

Theorem 16.12. Let 4=3 < p < 4 and let the onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed exterior problem (P

mix

)

�

!

is uniquely solv-

able in the lass W

1

p;lo

(


�

)\SK

m

r

(


�

) and the solution is representable in

the form (16:40), where the density f is given by (16:41) and where ' is the

unique solution of the 	DE (16:46).

Proof. Again it is quite similar to the proof of Theorem 16.4. If we �x

s = �1=p, then the nonhomogeneous equation (16.46) is uniquely solvable

in the spae

e

B

1�1=p

p;p

(S

2

) for arbitrary p 2 (4=3; 4) whih follows from Lemma

16.11 and the inequality (16.15) (with s = �1=p). This implies the solv-

ability of the nonhomogeneous mixed exterior problem (P

mix

)

�

!

in the lass

W

1

p;lo

(


�

) \ SK

m

r

(


�

), indiated in the theorem.

Now we show that this problem is uniquely solvable for arbitrary p 2

(4=3; 4) (for p = 2 it has already been proved in Theorem 9.6).

To this end let us onsider the homogeneous problem (P

mix

)

�

!

in the

lass W

1

p;lo

(


�

) \ SK

m

r

(


�

) with p 2 (4=3; 4), and let a vetor funtion U

be its arbitrary solution. Sine [U ℄

�

2 B

1�1=p

p;p

(S) we onlude that U is

uniquely representable in the form

U(x) = (W + p

0

V ) ([N

�

1

℄

�1

[U ℄

�

)(x); x 2 


�

; (16.53)

due to Theorem 13.14.

Moreover, [U ℄

�

2

e

B

1�1=p

p;p

(S

2

) and

[B(D;n)U ℄

�

S

2

= r

S

2

N

�

mix

[U ℄

�

= 0 on S

2

; (16.54)
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inasmuh as U is a solution to the homogeneous problem (P

mix

)

�

!

. Further,

Lemma 16.11 together with the onditions s = �1=p and p 2 (4=3; 4) implies

that [U ℄

�

= 0 on S. Now the representation formula (16.53) ompletes the

proof. �

Finally, we formulate the following regularity results.

Theorem 16.13. Let the onditions (16:6) and (16:23) be ful�lled, and

let the vetor-funtion U 2 W

1

p;lo

(


�

) \ SK

m

r

(


�

) be the unique solution

to the mixed problem (P

mix

)

�

!

.

In addition to (16:6),

i) if there hold the inlusions (16:24), then

U 2 H

s+1+1=t

t;lo

(


�

) \ SK

m

r

(


�

); (16.55)

ii) if there hold the inlusions (16:26), then

U 2 B

s+1+1=t

t;q;lo

(


�

) \ SK

m

r

(


�

); (16.56)

iii) if there hold the inlusions (16:28), then

U 2C

�

(


�

) \ SK

m

r

(


�

) with any �2(0; �

0

); �

0

:=minf�; 1=2g: (16.57)

The proof of these propositions is verbatim the proof of Theorem 16.5.

We only emphasize here that every solution of the equation (1.10) in 


�

in

the distributional sene, atually, is C

1

-regular in the domain 


�

. There-

fore, the inlusions (16.55)-(16.56) should be established in some ompat

(exterior) neigbourhood of the boundary S where we an apply the embed-

dings (16.31) and the arguments employed in the proof of Theorem 16.5.

17. Crak Type Problems

In this setion we shall investigate the rak type problems (CR:D)

!

and

(CR:N )

!

for the steady state osillation equations of the thermoelasti-

ity theory formulated in Setion 6. We note that the rak type problems

(CR:D)

�

and (CR:N )

�

for the pseudo-osillation equations of the thermoe-

lastiity theory are onsidered in detail in the referene [16℄.

17.1. First we treat the problem (CR:D)

!

(see (6.1)). Let S

1

, �S

1

, f

(�)

,

e

f

(�)

, f

(�)

j

(j = 1; 4), be the same as in Setion 6. Here we again assume

that

f

(�)

j

2 B

1�1=p

p;p

(S

1

); f

(+)

j

� f

(�)

j

2

e

B

1�1=p

p;p

(S

1

); j = 1; 4; p > 1: (17.1)

We reall that S

1

is a submanifold of the losed C

1

-regular surfae S sur-

rounding the bounded domain 


+

, IR

3

S

1

= IR

3

n S

1

, and 


�

= IR

3

n


+

.

Let U 2 W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) be some solution to the steady state

osillation equations (1.10). Then U 2 C

1

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and, more-

over,

[U ℄

+

S

2

= [U ℄

�

S

2

; [B(D;n)U ℄

+

S

2

= [B(D;n)U ℄

�

S

2

; (17.2)

where S

2

= S n S

1

.
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Due to Theorem 10.8 and the representations (3.2){(3.3) we have the

following formulae

W

�

[U ℄

+

S

�

(x) � V

�

[B(D;n)U ℄

+

S

�

(x) =

�

U(x) for x 2 


+

;

0 for x 2 


�

;

(17.3)

�W

�

[U ℄

�

S

�

(x) + V

�

[B(D;n)U ℄

�

S

�

(x) =

�

0 for x 2 


+

;

U(x) for x 2 


�

;

(17.4)

sine U j




+
2W

1

p

(


+

) and U j




�
2 W

1

p;lo

(


�

)\SK

m

r

(


�

) and A(D;�i!)U

= 0 in IR

3

S

1

. Here V and W are single and double layer potentials de�ned

by (10.1) and (10.2), respetively.

By adding these equations term by term and using the onditions (17.2),

we obtain the following general integral representation of the above vetor

funtion U :

U(x) = W (')(x) � V ( )(x); x 2 IR

3

S

1

; (17.5)

where

' = [U ℄

+

S

1

� [U ℄

�

S

1

2

e

B

1�1=p

p;p

(S

1

); (17.6)

 = [B(D;n)U ℄

+

S

1

� [B(D;n)U ℄

�

S

1

2

e

B

�1=p

p;p

(S

1

): (17.7)

We remark that the double and single layer potentials in (17.5) with den-

sities (17.6) and (17.7) are C

1

-regular vetor funtions in IR

3

S

1

and belong

to the lass W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) in aordane with Theorem 10.8.

Furthermore, if the representation (17.5) holds for some vetor funtion

U 2 W

1

p;lo

(IR

3

S

1

) with ' 2

e

B

1�1=p

p;p

(S

1

) and  2

e

B

�1=p

p;p

(S

1

), then automat-

ially U 2 SK

m

r

(IR

3

S

1

), and the densities ' and  are related to the vetor

U by the equations (17.6) and (17.7) (whih follow from the jump relations

of the surfae potentials involved in (17.5)).

Next, we transform the boundary onditions of the problem (CR:D)

!

to

the equivalent equations on S

1

:

[U ℄

+

S

1

� [U ℄

�

S

1

= f

(+)

� f

(�)

; (17.8)

[U ℄

+

S

1

+ [U ℄

�

S

1

= f

(+)

+ f

(�)

: (17.9)

Now, we look for the solution in the form (17.5), where ' and  are

unknown densities having the mehanial sense desribed by the equations

(17.6)-(17.7) due to the above remark.

It is evident that ' is then represented expliitly by formula

' = f

(+)

� f

(�)

2

e

B

1�1=p

p;p

(S

1

) (17.10)

in aordane with (17.8), while the seond boundary ondition (17.9) leads

to the 	DE for  on S

1

:

�r

S

1

H = g on S

1

; (17.11)
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here the operator H is given by (10.3), r

S

1

is the restrition operator to S

1

,

and

g = 2

�1

(f

(+)

+ f

(�)

)� r

S

1

K

2

(f

(+)

� f

(�)

) 2

e

B

1�1=p

p;p

(S

1

); (17.12)

where the SIO K

2

is de�ned by (10.5).

The inlusion (17.12) follows from Theorem 10.8.

The operator r

S

1

H possesses the following properties.

Lemma 17.1. The prinipal homogeneous symbol matrix of the pseu-

dodi�erential operator �H is positive de�nite for arbitrary x 2 S

1

and

e

� 2 IR

2

n f0g.

Proof. It follows from Remark 10.4. �

Lemma 17.2. The operators

r

S

1

H : [

e

B

s

p;q

(S

1

)℄

4

! [B

s+1

p;q

(S

1

)℄

4

; (17.13)

: [

e

H

s

p

(S

1

)℄

4

! [H

s+1

p

(S

1

)℄

4

; (17.14)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. The mapping properties, boundedness, and Fredholmity of the op-

erators (17.13)-(17.14) follow from Theorem 10.8 and Lemma 16.1 (with

� = �1). Further, by Lemma 17.1 we onlude that the Fredholm indies

of the operators in question are equal to zero.

To prove that the null-spaes are trivial, we take again s = �1=2 and p =

q = 2 (whih satisfy the inequalities (16.15)) and onsider the homogeneous

equation

�r

S

1

H = 0 on S

1

(17.15)

in the spae

e

B

�1=2

2;2

(S

1

) =

e

H

�1=2

2

(S

1

).

Let  

0

2

e

B

�1=2

2;2

(S

1

) be some solution to the equation (17.15) and on-

strut the vetor funtion

U

0

(x) = �V ( 

0

)(x); x 2 IR

3

S

1

: (17.16)

Obviously, U

0

2 W

1

2;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

). Moreover, U

0

solves the homo-

geneous rak problem (CR:D)

!

in IR

3

S

1

due to the hoie of the density  

0

and the ontinuity of the single layer potential (see Theorem 10.8). By The-

orem 9.7 we then infer that U

0

= 0 in IR

3

S

1

, and, onsequently, by Theorem

10.8 we have [B(D;n)U

0

℄

+

S

1

� [B(D;n)U

0

℄

�

S

1

= � 

0

= 0: This shows that

ker[r

S

1

H℄ is trivial in

e

B

�1=2

2;2

(S

1

). Now by Lemma 16.1 we onlude that,

if s and p satisfy inequality (16.15), the operators (17.13) and (17.14) have

trivial kernels and, therefore, are invertible. �

This lemma implies the following existene theorem.

Theorem 17.3. Let 4=3 < p < 4 and let the onditions (17:1) be ful�lled.

Then the nonhomogeneous rak type problem (CR:D)

!

is uniquely solvable

in the lass W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and the solution is representable in
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the form (17:5), where ' is given by (17:10) and  is the unique solution of

the 	DE (17:11).

Proof. If we set s = �1=p, then the ondition (16.15) yields the inequalities

for p: 4=3 < p < 4. Therefore, due to Lemma 17.2, the nonhomogeneous

equation (17.11) with the right-hand side q given by (17.12) is uniquely

solvable. This shows that the nonhomogeneous rak type problem (CR:D)

!

is solvable in the lass W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

), and the vetor U de�ned

by (17.5) represents a solution to the problem in question.

Next, we prove that the problem is uniquely solvable for arbitrary p 2

(4=3; 4).

Let 4=3 < p < 4 and let U be any solution to the homogeneous problem

(CR:D)

!

from the lass indiated in the theorem. Due to the above men-

tioned results, U is then representable by the formula (17.5) where ' and

 are de�ned by (17.6) and (17.7). Therefore, ' = 0, and

U(x) = �V ( )(x); x 2 IR

3

S

1

: (17.17)

Further, the homogeneous boundary onditions on S

1

yield that

�r

S

1

H = 0 on S

1

; (17.18)

where  2

e

B

�1=p

p;p

(S

1

) with 4=3 < p < 4. From this equation by Lemma

17.2 it follows that  = 0 on S

1

, sine for s = �1=p and p 2 (4=3; 4)

the ondition (16.15) holds and the homogeneous equation (17.18) does not

possess nontrivial solutions. Now by (17.17) we get U = 0 in IR

3

S

1

whih

ompletes the proof. �

As in the ase of the basi mixed BVPs here we have the following reg-

ularity results.

Theorem 17.4. Let the onditions (17:1) and (16:23) be ful�lled, and

let the vetor funtion U 2 W

1

p;lo

(IR

3

S

1

)\SK

m

r

(IR

3

S

1

) be the unique solution

to the problem (CR:D)

!

.

In addition to (17:1),

i) if

f

(�)

2 B

s+1

t;t

(S

1

); f

(+)

� f

(�)

2

e

B

s+1

t;t

(S

1

); (17.19)

then

U 2 H

s+1+1=t

t;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

); (17.20)

ii) if

f

(�)

2 B

s+1

t;q

(S

1

); f

(+)

� f

(�)

2

e

B

s+1

t;q

(S

1

); (17.21)

then

U 2 B

s+1+1=t

t;q;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

); (17.22)

iii) if

f

(�)

2 C

�

(S

1

); [f

(+)

� f

(�)

℄

�S

1

= 0; for some � > 0; (17.23)

then

U j




+

2 C

�

(


+

);

U j




�

2 C

�

(


�

) \ SK

m

r

(


�

)

(17.24)
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with any � 2 (0; �

0

), �

0

:= minf�; 1=2g.

Proof. It is again verbatim the proof of Theorem 16.5 (see also the remark

after Theorem 16.13). �

17.2. In this subsetion we onsider the problem (CR:N )

!

(see (6.2)).

The orresponding boundary onditions (6.2) we transform to the equivalent

equations on the rak surfae S

1

:

[B(D;n)U ℄

+

S

1

� [B(D;n)U ℄

�

S

1

= F

(+)

� F

(�)

; (17.25)

[B(D;n)U ℄

+

S

1

+ [B(D;n)U ℄

�

S

1

= F

(+)

+ F

(�)

; (17.26)

where we assume that

F

(�)

j

2 B

�1=p

p;p

(S

1

); F

(+)

j

� F

(�)

j

2

e

B

�1=p

p;p

(S

1

); j = 1; 4; p > 1: (17.27)

We look for a solution

U 2 W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) (17.28)

in the form (17.5), where the densities ' and  are related to the sought

for vetor U again by the realations (17.6) and (17.7). Therefore, we an

de�ne  expliitly

 = F

(+)

� F

(�)

2

e

B

�1=p

p;p

(S

1

); (17.29)

while the boundary ondition (17.26) implies the 	DE (of order 1) for the

unknown vetor-funtion '

r

S

1

L' = g on S

1

; (17.30)

here the 	DO L is given by (10.6) and

g = 2

�1

(F

(+)

+ F

(�)

) + r

S

1

K

1

(F

(+)

� F

(�)

) 2 B

�1=p

p;p

(S

1

); (17.31)

where the SIO K

1

is de�ned by (10.4). Note that the inlusion (17.31) for

the right-hand side vetor g follows again from Theorem 10.8 and onditions

(17.27).

Now we show that the equation (17.30) is uniquely solvable in the spae

e

B

1�1=p

p;p

(S

1

). To this end we remark that the prinipal homogeneous symbol

matrix of the operator L is positive de�nite for arbitrary x 2 S

1

and

e

� 2

IR

2

nf0g due to Lemma 10.7. The basi invertibility property of the operator

r

S

1

L is desribed by the following proposition.

Lemma 17.5. The operators

r

S

1

L : [

e

B

s+1

p;q

(S

1

)℄

4

! [B

s

p;q

(S

1

)℄

4

; (17.32)

: [

e

H

s+1

p

(S

1

)℄

4

! [H

s

p

(S

1

)℄

4

; (17.33)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 17.2. �

With the help of this lemma and by the arguments employed in the proofs

of Theorems 17.3 and 16.5 one an easily derive the following existene and

uniqueness results and establish the regularity of solutions.



17

Theorem 17.6. Let 4=3 < p < 4 and let the onditions (17:27) be ful�lled.

Then the nonhomogeneous rak type problem (CR:N )

!

is uniquely solvable

in the lass W

1

p;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and the solution is representable in

the form (17:5), where  is given by (17:29) and ' is the unique solution of

the 	DE (17:30).

Theorem 17.7. Let the onditions (17:27) and (16:23) be ful�lled, and

let the vetor-funtion U 2 W

1

p;lo

(IR

3

S

1

)\SK

m

r

(IR

3

S

1

) be the unique solution

to the problem (CR:N )

!

.

In addition to (17:27),

i) if

F

(�)

2 B

s

t;t

(S

1

); F

(+)

� F

(�)

2

e

B

s

t;t

(S

1

);

then

U 2 H

s+1+1=t

t;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

);

ii) if

F

(�)

2 B

s

t;q

(S

1

); F

(+)

� F

(�)

2

e

B

s

t;q

(S

1

);

then

U 2 B

s+1+1=t

t;q;lo

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

);

iii) if

F

(�)

2 B

��1

1;1

(S

1

); F

(+)

� F

(�)

2

e

B

��1

1;1

(S

1

); for some � > 0;

then

U j




+

2 C

�

(


+

);

U j




�

2 C

�

(


�

) \ SK

m

r

(


�

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

Remark 17.8. For an arbitrary solution U 2 W

1

p

(IR

3

S

1

) of the pseudo-

osillation equation (1.9) there also holds the representation formula by

potential type integrals similar to (17.5) with the densities ' and  related

to the vetor U by relations (17.6) and (17.7). Therefore, for the rak type

problems (CR:D)

�

and (CR:N )

�

the existene and uniqueness theorems,

and the regularity results analogous to the above ones an be proved with

quite the same arguments (for details see [16℄).

18. Mixed Interfae Problems of Steady State Osillations

In this setion �rst we shall prove the existene and uniqueness theorems

for the mixed interfae problems for the steady state osillation equations of

the thermoelastiity theory formulated in Setion 7. Afterwards, as in the

previous setions, we shall establish the smoothness properties of solutions.

Throughout this setion we shall keep and employ the notations of Setion

15.

18.1. Problem (C�DD)

!

. To examine the existene of solutions to the

problem in question (see (7.13){(7.14)) we shell exploit the representation

formulae (15.61){(15.62), and use again the Fredholm properties of 	DOs
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on manifold with boundary desribed by Lemma 16.1. First, let us note

that the onditions (7.14) on S

2

are equivalent to the following equations

[U

(1)

℄

+

� [U

(2)

℄

�

= '

(+)

� '

(�)

; [U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

; on S

2

:

Aording to (7.21) and (7.23) we require that

f

(1)

2 B

1�1=p

p;p

(S

1

); '

(�)

2 B

1�1=p

p;p

(S

2

); F

(1)

2 B

�1=p

p;p

(S

1

); (18.1)

and, moreover,

[U

(1)

℄

+

� [U

(2)

℄

�

= f 2 B

1�1=p

p;p

(S);

where f =

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

:

(18.2)

Clearly, this last inlusion is the neessary ompatibility ondition for the

problem (C � DD)

!

.

In view of the third inlusion in (18.1), the vetor F

(1)

an be extended

from S

1

onto S

2

preserving the funtional spae B

�1=p

p;p

(S). Denote some

�xed extension by F

0

;

F

0

2 B

�1=p

p;p

(S); F

0

j

S

1

= F

(1)

: (18.3)

Evidently, any arbitrary extension F of F

(1)

onto the whole of S whih

preserves the funtional spae an be represented as

F = F

0

+ ' 2 B

�1=p

p;p

(S); where ' 2

e

B

�1=p

p;p

(S

2

): (18.4)

Now we an reformulate the interfae problem (C � DD)

!

in the following

equivalent form: Find a pair of vetor funtions

(U

(1)

; U

(2)

) = (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

)) (18.5)

satisfying the di�erential equations (7.2) and the interfae onditions

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.6)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S

1

; (18.7)

[U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

on S

2

; (18.8)

where B

(�)

(D;n) is de�ned by (1.25), f and F are given by (18) and (18.4),

respetively. Let us note that f and F

0

are onsidered now as the known

vetor funtions on the whole of S, while F is given only on S

1

(F j

S

1

=

F

0

j

S

1

= F

(1)

), and '

(�)

are given vetor funtions on S

2

.

We look for the solution to the problem (C � DD)

!

in the form (f.

(15.61){(15.62))

U

(1)

(x) =W

(1)

�

	 [F

0

+ '℄�		

2

�

�1

2

f

�

(x); (18.9)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	 [F

0

+ '℄ �

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f

�

(x); (18.10)
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where ' 2

e

B

�1=p

p;p

(S

2

) is the unknown vetor-funtion, and F

0

and f are as

above. Furthermore, W

(�)

and V

(�)

are the double and single layer poten-

tials of steady state osillations, the omplex number p

0

and the boundary

operators 	, 	

j

, �

j

are de�ned by equations (13.5) and (15.58), (15.9),

(15.10).

It is easy to verify that the interfae onditions (18.6) and (18.7) are

satis�ed automatially, sine from (18.9) and (18.10) it follows that

[U

(1)

℄

+

�[U

(2)

℄

�

= f; [B

(1)

(D;n)U

(1)

℄

+

�[B

(2)

(D;n)U

(2)

℄

�

= F

0

+' on S:

It remains only to satisfy the ondition (18.8) whih leads to the 	DE for

'

[U

(1)

℄

+

+ [U

(2)

℄

�

= �

1

	 [F

0

+ '℄��

1

		

2

�

�1

2

f +�

1

	 [F

0

+ '℄�

�[�

1

		

2

�

�1

2

+ I ℄ f = '

(+)

+ '

(�)

on S

2

; (18.11)

whih an be rewritten as

r

S

2

[�

1

	'℄ = r

S

2

K

H

' = q on S

2

; (18.12)

where r

S

2

is the restrition operator on S

2

, the 	DO (of order �1) K

H

has

been de�ned by (15.105), while the given right-hand side q reads as follows

q = 2

�1

('

(+)

+ '

(�)

)� r

S

2

f�

1

	F

0

�

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg 2 B

1�1=p

p;p

(S

2

): (18.13)

Due to Lemma 15.14 the prinipal homogeneous symbol matrix of the

operator K

H

= �

1

	 is positive de�nite. Therefore, we an apply Lemma

16.1 to study the equation (18.12).

Lemma 18.1. The operators

r

S

2

K

H

: [

e

B

s

p;q

(S

2

)℄

4

! [B

s+1

p;q

(S

2

)℄

4

; (18.14)

: [

e

H

s

p

(S

2

)℄

4

! [H

s+1

p

(S

2

)℄

4

; (18.15)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. The mapping properties (18.14) and (18.15), boundedness and Fred-

holmity of the above operators follow from equations K

H

= �

1

	, �

1

=

2

�1

I

4

+ K

(1)

2

, 	 = [	

1

� 	

2

�

�1

2

�

1

℄

�1

, and Corollary 15.6, Theorem 10.8

and Lemma 16.1 (with � = �1). From the positive de�niteness of the

prinipal homogeneous symbol matrix �(K

H

) it follows that the Fredholm

indies of the operators (18.14) and (18.15) are equal to zero.

It remains to prove that the orresponding null-spaes are trivial. To this

end, let us take s = �1=2 and p = q = 2, whih meet inequalities (16.15),

and show that the homogeneous equation

r

S

2

K

H

' = 0 on S

2

(18.16)

has no nontrivial solutions in the spae

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

).
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Let ' 2

e

B

�1=2

2;2

(S

2

) be any solution to the equation (18.16) and onstrut

the vetor funtions

U

(1)

0

(x) =W

(1)

(	') (x); x 2 


1

; (18.17)

U

(2)

0

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	'

�

(x); x 2 


2

: (18.18)

Clearly, 	' 2 B

1=2

2;2

(S) and �

�1

2

�

1

	' 2 B

1=2

2;2

(S). Therefore, by Theorem

10.8 we have

(U

(1)

0

; U

(2)

0

) 2 (W

1

2

(


1

) ; W

1

2;lo

(


2

) \ SK

m

r

(


2

)): (18.19)

Moreover, these vetors satisfy homogeneous di�erential equations of steady

state osillations (7.2) in the orresponding domains 


1

and 


2

, and the

homogeneous interfae onditions of the problem (C � DD)

!

on S, sine

[U

(1)

0

℄

+

S

= [U

(2)

0

℄

�

S

; [B

(1)

(D;n)U

(1)

0

℄

+

S

1

� [B

(2)

(D;n)U

(2)

0

℄

�

S

1

= 'j

S

1

=0;

[U

(1)

0

℄

+

S

2

+ [U

(2)

0

℄

�

S

2

= r

S

2

K

H

'=0 on S

2

:

These onditions follow from the formulae (18.17), (18.18), de�nition of

the operator 	 (see (15.58)) and the fat that ' solves the homogeneous

equation (18.16).

Therefore, by Theorem 9.12 we onlude that U

(1)

0

= 0 in 


1

and U

(2)

0

= 0

in 


2

. Whene ' = 0 on S follows. Thus, the null-spaes of the operators

(18.14) and (18.15) are trivial in the spae

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

). Now,

Lemma 16.1 ompletes the proof for arbitrary p and s satisfying the in-

equalities (16.15), and arbitrary q 2 [1;1℄. �

This lemma implies the following existene theorems.

Theorem 18.2. Let 4=3 < p < 4 and let the onditions (18:1){(18) be

ful�lled. Then the nonhomogeneous problem (C �DD)

!

is uniquely solvable

in the lass (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

)) (with the parameters r and

! as in (15:3)) and the solution is representable in the form (18:9){(18:10),

where ' is the unique solution of the 	DE (18:12).

Proof. First we observe that, if s = �1=p, then the inequality (16.15)

yields 4=3 < p < 4. Therefore, by Lemma 18.1 the nonhomogeneous 	DE

(18.12) with the right-hand side q given by (18.13) is uniquely solvable

in the spae

e

B

1�1=p

p;p

(S

2

). This shows that the nonhomogeneous problem

(C � DD)

!

is solvable under the onditions indiated in the theorem, and

the pair (U

(1)

; U

(2)

) de�ned by (18.9)-(18.10) represents a solution to the

problem in question.

Further, we prove that the problem is uniquely solvable for any p 2

(4=3; 4).

Let some pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

)) (with

the parameters p, r, and ! as in the theorem) represents a solution to the

homogeneous problem (C�DD)

!

. In aordane with (18.6)-(18.7) then we
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have

[U

(1)

℄

+

S

� [U

(2)

℄

�

S

= 0;

[B

(1)

(D;n)U

(1)

℄

+

S

� [B

(2)

(D;n)U

(2)

℄

�

S

= F 2

e

B

�1=p

p;p

(S

2

);

[U

(1)

℄

+

+ [U

(2)

℄

�

= 0 on S

2

:

(18.20)

Clearly, F may di�er from zero only on the submanifold S

2

due to the

homogeneous ondition (18.7).

Further, by Theorem 15.8 we onlude that the vetor funtions U

(1)

and

U

(2)

are uniquely representable in the form

U

(1)

(x) =W

(1)

(	F ) (x); x 2 


1

;

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F

�

(x); x 2 


2

;

where F is de�ned by the seond equation in (18.20).

The third equation in (18.20) then yields

r

S

2

K

H

F = 0 on S

2

;

where F 2

e

B

�1=p

p;p

(S

2

) and p 2 (4=3; 4). Therefore, F = 0 on S due to

Lemma 18.1 (with s = �1=p) whih implies U

(�)

= 0 in 


�

(� = 1; 2): �

Now we an formulate the following regularity results.

Theorem 18.3. Let the onditions (18:1), (18), and (16:23) be ful�lled,

and let the pair (U

(1)

; U

(2)

) = (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

)) be the

unique solution to the problem (C � DD)

!

.

In addition to (18:1){(18),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); '

(�)

2 B

s+1

t;t

(S

2

); F

(1)

2 B

s

t;t

(S

1

); f 2 B

s+1

t;t

(S);

(18.21)

then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t;lo

(


2

) \ SK

m

r

(


2

)); (18.22)

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); '

(�)

2 B

s+1

t;q

(S

2

); F

(1)

2 B

s

t;q

(S

1

); f 2 B

s+1

t;q

(S);

(18.23)

then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q;lo

(


2

) \ SK

m

r

(


2

)); (18.24)

iii) if

f

(1)

2 C

�

(S

1

); '

(�)

2 C

�

(S

2

); F

(1)

2 B

��1

1;1

(S

1

); f 2 C

�

(S); (18.25)

for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

) \ SK

m

r

(


2

))

with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

(18.26)
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Proof. Here it is again verbatim the proof of Theorem 16.5 (see also the

remark after Theorem 16.13). �

18.2. Problem (C � NN )

!

. As in the previous subsetion we start

with the reformulation of the problem. In partiular, the onditions (7.13)

and (7.15) are equivalent to the following equations

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.27)

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S

1

; (18.28)

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

= �

(+)

+�

(�)

on S

2

; (18.29)

where

F :=

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

:

F 2B

�1=p

p;p

(S); �

(�)

2B

�1=p

p;p

(S

2

);(18.30)

f := f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

); (18.31)

here f

0

is some �xed extension of the vetor f

(1)

from S

1

onto S

2

preserving

the funtional spae: f

0

j

S

1

= f

(1)

, and, therefore, f = f

0

+ ' with ' as

in (18.31), represents an arbitrary extension of f

(1)

onto the whole of S:

f j

S

1

= f

0

j

S

1

= f

(1)

.

Obviously, the inlusion F 2 B

�1=p

p;p

(S) is the neessary ompatibility

ondition for the problem under onsideration.

Let us now look for the solution to the problem (C �NN )

!

in the form

(f. (15.61){(15.62))

U

(1)

(x) =W

(1)

�

	F �		

2

�

�1

2

[f

0

+ '℄

�

(x); (18.32)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F �

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ [f

0

+ '℄

�

(x); (18.33)

where f

0

and F are the given vetor funtions on S, while ' is the unknown

vetor funtion.

It an be easily seen that the onditions (18.27) and (18.28) are satis�ed

automatially, sine

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S:

due to the above representations.

It remains only to ful�l the ondition (18.29) whih yields the following

	DE on S

2

for the unknown vetor ':

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

=

= 	

1

	F �	

1

		

2

�

�1

2

[f

0

+ '℄ + 	

2

�

�1

2

�

1

	F �

�	

2

�

�1

2

[�

1

		

2

�

�1

2

+ I ℄ [f

0

+ '℄ = �

(+)

+�

(�)

; (18.34)
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With the help of equations (15.9), (15.10), (15.58) we an simplify this

equation:

r

S

2

[�	

1

		

2

�

�1

2

'℄ = r

S

2

K

G

' = q on S

2

; (18.35)

where the 	DE (of order +1) K

G

has been de�ned by (15.86), while the

right-hand side vetor funtion q reads as follows

q=2

�1

(�

(+)

+�

(�)

)� r

S

2

f	

1

	� 2

�1

I ℄F+K

G

f

0

g 2 B

�1=p

p;p

(S

2

): (18.36)

Aording to Lemma 15.9 the prinipal homogeneous symbol matrix of

the operator K

G

is positive de�nite. Therefore, we an again apply Lemma

16.1 to examine the equation (18.35), and employ the same arguments as

in the previous setion to prove the following propositions.

Lemma 18.4. The operators

r

S

2

K

G

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (18.37)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (18.38)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Theorem 18.5. Let 4=3 < p < 4 and let the onditions (18:30){(18:31) be

ful�lled. Then the nonhomogeneous problem (C�NN )

!

is uniquely solvable

in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

)) (with the

parameters r and ! as in (15:3)) and the solution is representable in the

form (18:32){(18:33), where ' is the unique solution of the 	DE (18:35).

Theorem 18.6. Let the onditions (18:30), (18:31), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C �NN )

!

.

In addition to (18:30){(18:31),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); F

(1)

2 B

s

t;t

(S

1

); �

(�)

2 B

s

t;t

(S

2

); F 2 B

s

t;t

(S); (18.39)

then there holds the inlusion (18.22);

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); F

(1)

2 B

s

t;q

(S

1

); �

(�)

2 B

s

t;q

(S

2

); F 2 B

s

t;q

(S);

(18.40)

then there holds the inlusion (18.24);

iii) if

f

(1)

2C

�

(S

1

); F

(1)

2B

��1

1;1

(S

1

); �

(�)

2B

��1

1;1

(S

2

); F 2B

��1

1;1

(S);

(18.41)

for some � > 0, then there holds the inlusion (18:26).

The proofs of the above assertions are verbatim the proofs of Lemma

18.1 and Theorems 18.2 and 16.5.
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18.3. Problem (C �DC)

!

. In this ase the interfae onditions read as

follows (see Subsetion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.42)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

�[P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.43)

[u

(1)

℄

+

= e'

(+)

; [u

(2)

℄

�

= e'

(�)

on S

2

; (18.44)

where

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

e'

(�)

= ('

(�)

1

; '

(�)

2

; '

(�)

3

)

>

2 [B

1�1=p

p;p

(S

2

)℄

3

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

;

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

:

(18.45)

Let

e

F

0

= (F

0

1

; F

0

2

; F

0

3

)

>

be some �xed extension of the vetor

e

F

(1)

from S

1

onto S

2

preserving the funtional spae, i.e.,

e

F

0

2 [B

�1=p

p;p

(S)℄

3

;

e

F

0

j

S

1

=

e

F

(1)

: (18.46)

Then an arbitrary extension of

e

F

(1)

onto the whole of S preserving the

funtional spae an be written as follows

e

F = (F

1

; F

2

; F

3

)

>

=

e

F

0

+ e' 2 [B

�1=p

p;p

(S)℄

3

; (18.47)

where e' is an arbitrary vetor funtion with the support in S

2

, i.e.,

e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

: (18.48)

Next we set

F = (F

1

; � � � ; F

4

)

>

:= F

0

+ ' 2 [B

�1=p

p;p

(S)℄

4

; (18.49)

where

F

0

= (

e

F

0

; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

(18.50)

is the given vetor funtion, and

' = (e'; 0)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

4

(18.51)

with e' subjeted to the ondition (18.48).

It is easily seen that the onditions (18.42)-(18.44) are equivalent to the

equations

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.52)

[B

(1)

(D;n)U

(1)

℄

+

k

� [B

(2)

(D;n)U

(2)

℄

�

k

= F

k

on S

1

; k = 1; 2; 3; (18.53)

[B

(1)

(D;n)U

(1)

℄

+

4

� [B

(2)

(D;n)U

(2)

℄

�

4

= F

4

on S; (18.54)

[U

(1)

℄

+

k

+ [U

(2)

℄

�

k

= '

(+)

k

+ '

(�)

k

on S

2

; k = 1; 2; 3; (18.55)
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where f is the given vetor funtion

f = (f

1

; � � � ; f

4

)

>

=:

�

(

e

f

(1)

; f

4

)

>

on S

1

;

(e'

(+)

� e'

(�)

; f

4

)

>

on S

2

;

(18.56)

satisfying the following neessary ompatibility ondition (f. (7.25))

f 2 [B

1�1=p

p;p

(S)℄

4

; (18.57)

and F

k

and e'

�

are as above.

After this reformulation of the problem in question let us look for the

solution in the form (18.9)-(18.10), where f , F

0

, and ' are de�ned by

formulae (18.56), (18.50), and (18.51), respetively. These representations

imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ':

(18.58)

Therefore, the onditions (18.52), (18.53), and (18.54) are satis�ed auto-

matially. It remains to meet the onditions (18.55) whih, by virtue of

(18.11) and (18.12), lead to the system of 	DEs for the vetor funtion

' = (e'; 0)

>

on S

2

:

r

S

2

[�

1

	'℄

k

= r

S

2

[(K

H

)

kj

'

j

℄ = q

k

on S

2

; k = 1; 2; 3; (18.59)

where the summation over the repeated index j is meant from 1 to 3, and

(see (18.13))

q

k

= 2

�1

('

(+)

k

+ '

(�)

k

)� r

S

2

f�

1

	F

0

�

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg

k

2 B

1�1=p

p;p

(S

2

); (18.60)

here K

H

is again the 	DO of order �1 de�ned by (15.105) with properties

desribed by Lemmata 15.14 and 18.1.

Let

e

K

H

:= [(K

H

)

kj

℄

3�3

; k; j = 1; 2; 3; eq := (q

1

; q

2

; q

3

)

>

: (18.61)

Then (18.59) an be written in the matrix form as

r

S

2

e

K

H

e' = eq (18.62)

where e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

is the sought for vetor.

The following properties of the 	DO

e

K

H

are immediate onsequenes of

Lemmata 15.14 and 18.1.

Lemma 18.7. The prinipal homogeneous symbol matrix of the operator

e

K

H

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g. The following

operators

r

S

2

e

K

H

: [

e

B

s

p;q

(S

2

)℄

3

! [B

s+1

p;q

(S

2

)℄

3

; (18.63)

: [

e

H

s

p

(S

2

)℄

3

! [H

s+1

p

(S

2

)℄

3

; (18.64)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.
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These operators are invertible if the ondition (16:15) holds.

Proof. The �rst assertion of the lemma follows from the proof of Lemma

15.14 (see (15.106){(15.107)), sine �(

e

K

H

) = X , where X is the positive

de�nite 3 � 3 matrix given by formula (15.107) (for arbitrary x 2 S and

e

� 2 IR

2

n f0g).

The boundedness of the operators (18.63)-(18.64) is a onsequene of

Lemma 18.1.

It is evident that the Fredholm indies of these operators are equal to

zero. This follows from the positive de�niteness of the prinipal symbol

matrix �(

e

K

H

). Therefore, to prove the last proposition of the lemma, we

have to show that the orresponding null-spaes are trivial for any s and p

satisfying the inequalities (16.15).

Again, we take s = �1=p and p = q = 2 to prove that the homogeneous

	DE

r

S

2

e

K

H

e' = 0 (18.65)

has no nontrivial solutions. Let e'

0

= ('

01

; '

02

; '

03

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

be

any solution to the equation (18.65) and using the formulae (18.17) and

(18.18) onstrut the vetor funtions U

(1)

0

and U

(2)

0

, where the density '

is represented as follows

' = (e'

0

; 0)

>

2 [B

�1=2

2;2

(S

2

)℄

4

:

Therefore, the inlusion (18.19) remains valid, and, moreover, U

(1)

0

and U

(2)

0

satisfy the homogeneous interfae onditions (18.52)-(18.55):

[U

(1)

0

℄

+

= [U

(2)

0

℄

�

on S;

[B

(1)

(D;n)U

(1)

0

℄

+

k

� [B

(2)

(D;n)U

(2)

0

℄

�

k

= '

0k

on S

1

; k = 1; 2; 3;

[B

(1)

(D;n)U

(1)

0

℄

+

4

� [B

(2)

(D;n)U

(2)

0

℄

�

4

= 0 on S;

[U

(1)

0

℄

+

k

+ [U

(2)

0

℄

�

k

= [ r

S

2

�

1

	' ℄

k

= [ r

S

2

e

K

H

e' ℄

k

= 0 on S

2

; k = 1; 2; 3:

Due to Theorem 9.12 we infer U

(�)

0

in 


�

(� = 1; 2), whih, in turn, yields

that '

0k

= 0, k = 1; 2; 3: Thus the null-spaes of the operators (18.63)-

(18.64) are trivial in the spaes

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

). Now Lemma 16.1

ompletes the proof. �

This lemma implies the following existene and regularity results.

Theorem 18.8. Let 4=3 < p < 4 and let the onditions (18:45), (18:57)

be ful�lled. Then the nonhomogeneous problem (C � DC)

!

is uniquely solv-

able in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p;lo

(


2

)\SK

m

r

(


2

)) (with

the parameters r and ! as in (15:3)) and the solution is representable by

formulae (18:9){(18:10), where f , F

0

, and ' are given by (18:56), (18:50)

and (18:51), respetively, and e' is the unique solution of the 	DE (18:62).
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Theorem 18.9. Let the onditions (18:45), (18:57), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C � DC)

!

.

In addition to (18:45), (18:57),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S); e'

(�)

2 [B

s+1

t;t

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

; f 2 [B

s+1

t;t

(S)℄

4

;

(18.66)

then there holds the inlusion (18.22);

ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S); e'

(�)

2 [B

s+1

t;q

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

; f 2 [B

s+1

t;q

(S)℄

4

;

(18.67)

then there holds the inlusion (18.24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S); e'

(�)

2 [C

�

(S

2

)℄

3

;

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

; f 2 [C

�

(S)℄

4

;

(18.68)

for some � > 0, then there holds the inlusion (18:26).

The proofs of these theorems are again verbatim the proofs of Theorems

18.2 and 16.5.

18.4. Problem (C � NC)

!

. The investigation of this problem an be

arried out by quite the same approah as in the previous subsetion. The

interfae onditions of the problem now have the following form:

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.69)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.70)

[P

(1)

(D;n)U

(1)

℄

+

=

e

�

(+)

; [P

(2)

(D;n)U

(2)

℄

�

=

e

�

(�)

; on S

2

; (18.71)

where

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

e

�

(�)

= (�

(�)

1

;�

(�)

2

;�

(�)

3

)

>

2 [B

�1=p

p;p

(S

2

)℄

3

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

;

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

:

(18.72)

Let

e

f

0

= (f

0

1

; f

0

2

; f

0

3

)

>

be some �xed extension of the vetor

e

f

(1)

from S

1

onto S

2

preserving the funtional spae, i.e.,

e

f

0

2 [B

1�1=p

p;p

(S)℄

3

;

e

f

0

j

S

1

=

e

f

(1)

: (18.73)
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Again an arbitrary extension of

e

f

(1)

onto the whole of S preserving the

funtional spae an be represented as the sum

e

f = (f

1

; f

2

; f

3

)

>

:=

e

f

0

+ e' 2 [B

1�1=p

p;p

(S)℄

3

;

e

f j

S

1

=

e

f

0

j

S

1

=

e

f

(1)

; (18.74)

where e' is an arbitrary vetor funtion supported on S

2

e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

3

: (18.75)

Further, let us introdue the notations

f = (f

1

; � � � ; f

4

)

>

:= f

0

+ ' 2 [B

1�1=p

p;p

(S)℄

4

; (18.76)

where

f

0

= (

e

f

0

; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

(18.77)

is the given vetor funtion, and

' := (e'; 0)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

4

(18.78)

with e' subjeted to the ondition (18.75).

Next we redue the onditions (18.69)-(18.71) to the following equivalent

equations

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.79)

[U

(1)

℄

+

4

� [U

(2)

℄

�

4

= f

4

on S; (18.80)

[U

(1)

℄

+

k

� [U

(2)

℄

�

k

= f

k

; on S

1

; k = 1; 2; 3; (18.81)

[B

(1)

(D;n)U

(1)

℄

+

k

+ [B

(2)

(D;n)U

(2)

℄

�

k

=

= �

(+)

k

+�

(�)

k

on S

2

; k = 1; 2; 3; (18.82)

where F is the given vetor funtion

F = (F

1

; � � � ; F

4

)

>

:=

(

(

e

F

(1)

; F

4

)

>

on S

1

;

(

e

�

(+)

�

e

�

(�)

; F

4

)

>

on S

2

;

(18.83)

satisfying the neessary ompatibility ondition (f. (7.26))

F 2 [B

�1=p

p;p

(S)℄

4

; (18.84)

and f

k

and

e

�

�

are as above.

Now we look for a solution to the reformulated problem (18.79)-(18.82) in

the form (18.32)-(18.33), where the density vetors f

0

, F , and ' are de�ned

by formulae (18.77), (18.83), and (18.78), respetively. By virtue of these

representations we have

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F:

(18.85)

Therefore, the onditions (18.79), (18.80), and (18.81) are ful�lled auto-

matially. The remaining onditions (18.82), in aordane with the equa-

tion (18.34), lead to the system of 	DEs for the unknown vetor funtion
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' = (e'; 0)

>

on S

2

:

r

S

2

[�	

1

		

2

�

�1

2

'℄

k

= r

S

2

[(K

G

)

kj

'

j

℄ = q

k

on S

2

; k = 1; 2; 3; (18.86)

where K

G

= �	

1

		

2

�

�1

2

is the same 	DO of order +1 as in Subsetion

16.2 (see also (15.86)), the summation over the repeated index j is again

meant from 1 to 3, and (see (18.36))

q

k

= 2

�1

(�

(+)

k

+�

(�)

k

)� r

S

2

f[	

1

	 � 2

�1

I ℄F +K

G

f

0

g

k

2

2 B

�1=p

p;p

(S

2

); k = 1; 2; 3: (18.87)

Next we set

e

K

G

:= [(K

G

)

kj

℄

3�3

; k; j = 1; 2; 3; eq := (q

1

; q

2

; q

3

)

>

: (18.88)

The system (18.86) an be then rewritten in the matrix form as follows

r

S

2

e

K

G

e' = eq (18.89)

where e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

3

is the sought for vetor funtion.

Lemma 18.10. The prinipal homogeneous symbol matrix of the operator

e

K

G

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g. The operators

r

S

2

e

K

G

: [

e

B

s+1

p;q

(S

2

)℄

3

! [B

s

p;q

(S

2

)℄

3

; (18.90)

: [

e

H

s+1

p

(S

2

)℄

3

! [H

s

p

(S

2

)℄

3

; (18.91)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 18.7 and follows from

Lemmata 15.9, 18.4, and 16.1. �

With the help of this lemma one an easily derive the following exitene

and regularity results.

Theorem 18.11. Let 4=3 < p < 4 and let the onditions (18:72) and

(18:84) be ful�lled. Then the nonhomogeneous problem (C�NC)

!

is uniquely

solvable in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

))

(with the parameters r and ! as in (15:3)) and the solution is representable

by formulae (18:32){(18:33), where F , f

0

, and ' are given by (18:83),

(18:77) and (18:78), respetively, and e' is the unique solution of the 	DE

(18:89).

Theorem 18.12. Let the onditions (18:72), (18:84), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C �NC)

!

.

In addition to (18:72), (18:84),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e

�

(�)

2 [B

s

t;t

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

; F 2 [B

s

t;t

(S)℄

4

;

(18.92)

then there holds the inlusion (18:22);
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ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e

�

(�)

2 [B

s

t;q

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

; F 2 [B

s

t;q

(S)℄

4

;

(18.93)

then there holds the inlusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e

�

(�)

2 [B

��1

1;1

(S

2

)℄

3

;

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

; F 2 [B

��1

1;1

(S)℄

4

;

(18.94)

for some � > 0, then there holds the inlusion (18:26).

The proofs of these propositions are again word for word of the proofs of

Theorems 18.2 and 16.5.

18.5. Problem (C � G)

!

. The interfae onditions of the problem

(C � G)

!

read as (see Subsetion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.95)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.96)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

;

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

;

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

�

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

�

(+)

m

;

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(�)

m

;

9

>

>

>

=

>

>

>

;

onS

2

;(18.97)

where the boundary data belong to the following natural spaes

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

; f

4

2 B

1�1=p

p;p

(S);

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

; F

4

2 B

�1=p

p;p

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

�1=p

p;p

(S

2

);

e

f

(2)

n

2 B

1�1=p

p;p

(S

2

);

(18.98)

These interfae onditions imply that the vetor funtion

F :=

8

<

:

(

e

F

(1)

; F

4

)

>

on S

1

;

�

[

e

�

(+)

l

�

e

�

(�)

l

℄l+[

e

�

(+)

m

�

e

�

(�)

m

℄m+

e

F

(2)

n

n; F

4

�

>

on S

2

;

(18.99)

represents the di�erene [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

on S, and,

therefore, we assume the following natural ompatibility ondition (f.

(7.28))

F = (F

1

; � � � ; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

: (18.100)

Analogously, the funtion

e

f

n

:=

(

e

f

(1)

� n on S

1

;

e

f

(2)

n

on S

2

;

(18.101)
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represents the di�erene [u

(1)

� n℄

+

� [u

(2)

� n℄

�

on S, and, we again provide

the natural ompatibility ondition

e

f

n

2 B

1�1=p

p;p

(S): (18.102)

Further, let us represent the boundary vetor funtions

e

f

(1)

in the form

e

f

(1)

=

e

f

(1)

l

l +

e

f

(1)

m

m+

e

f

(1)

n

n onS

1

; (18.103)

where

e

f

(1)

l

=

e

f

(1)

� l;

e

f

(1)

m

=

e

f

(1)

�m;

e

f

(1)

n

=

e

f

(1)

� n: (18.104)

We denote by

e

f

(0)

l

and

e

f

(0)

m

some �xed extensions of the funtions

e

f

(1)

l

and

e

f

(1)

m

from S

1

onto S

2

preserving the funtional spae. Then arbitrary

extensions an be represented as

e

f

l

=

e

f

(0)

l

+ '

l

;

e

f

m

=

e

f

(0)

m

+ '

m

; (18.105)

where

e

f

l

;

e

f

(0)

l

;

e

f

m

;

e

f

(0)

m

2 B

1�1=p

p;p

(S); '

l

; '

m

2

e

B

1�1=p

p;p

(S

2

);

e

f

l

j

S

1

=

e

f

(0)

l

j

S

1

=

e

f

(1)

l

e

f

m

j

S

1

=

e

f

(0)

m

j

S

1

=

e

f

(1)

m

:

(18.106)

Clearly, here '

l

and '

m

are arbitrary salar funtions of the spae

e

B

1�1=p

p;p

(S

2

).

Finally, let us set

f = (f

1

; � � � ; f

4

)

>

:= f

0

+ ' 2 [B

1�1=p

p;p

(S)℄

4

;

e

f = (f

1

; f

2

; f

3

)

>

; (18.107)

where f

4

is the same funtion as in (18.95), while

f

0

= (

e

f

(0)

l

l+

e

f

(0)

m

m+

e

f

n

n; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

; (18.108)

' = ('

l

l + '

m

m; 0)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

4

; (18.109)

here

e

f

(0)

=

e

f

(0)

l

l +

e

f

(0)

m

m+

e

f

n

n and

e

f

n

is given by (18.101).

It an be easily seen that (see (18.101) and (18.103))

e

f j

S

1

=

e

f

(0)

j

S

1

=

e

f

(1)

on S

1

; (18.110)

e

f � nj

S

2

=

e

f

(0)

� nj

S

2

=

e

f

n

=

e

f

(2)

n

on S

2

: (18.111)

Now we are able to redue the interfae onditions (18.95)-(18.97) to the

following equivalent equations in terms of the above introdued funtions:

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.112)

[U

(1)

℄

+

4

� [U

(2)

℄

�

4

= f

4

on S; (18.113)

[U

(1)

℄

+

k

� [U

(2)

℄

�

k

= f

k

; k = 1; 2; 3; on S

1

; (18.114)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f � n on S

2

; (18.115)

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(+)

l

+

e

�

(�)

l

on S

2

; (18.116)

[P

(1)

(D;n)U

(1)

�m℄

+

+[P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(+)

m

+

e

�

(�)

m

onS

2

;(18.117)

where F ,

e

f , and f

k

are given by (18.99), (18.107)-(18.109).
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After this reformulation we look for the solution of the problem under

onsideration in the form (18.32)-(18.33), where now F and f

0

de�ned by

(18.99) and (18.108) are the given vetor funtions on S, while the vetor

funtion ' given by (18.109) is unknown. We observe that the onditions

(18.112), (18.113), (18.114), and (18.115) are satis�ed automatially, sine

the repesentations (18.32)-(18.33) yield

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F:

(18.118)

It remains only to meet onditions (18.116) and (18.117) whih lead to the

following system of 	DEs on S

2

for the unknown funtions '

l

and '

m

(see

Subsetion 15.2, formulae (15.73), (15.74))

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

= [B

(1)

(D;n)U

(1)

� l

�

℄

+

+ [B

(2)

(D;n)U

(2)

� l

�

℄

�

=

= [	

1

	F �	

1

		

2

�

�1

2

(f

0

+ ')℄ � l

�

+

+[	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(f

0

+ ')℄ � l

�

=

=

e

�

(+)

l

+

e

�

(�)

l

;

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

= [B

(1)

(D;n)U

(1)

�m

�

℄

+

+ [B

(2)

(D;n)U

(2)

�m

�

℄

�

=

= [	

1

	F �	

1

		

2

�

�1

2

(f

0

+ ')℄ �m

�

+

+[	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(f

0

+ ')℄ �m

�

=

=

e

�

(+)

m

+

e

�

(�)

m

;

where l

�

= (l

1

; l

2

; l

3

; 0)

>

and m

�

= (m

1

;m

2

;m

3

; 0)

>

are the 4-vetors in-

trodued in Setion 14 (see (14.48)).

With the help of (15.80) we arrive at the system of equations

r

S

2

K

G

('

l

l

�

+ '

m

m

�

) � l

�

= q

l

;

r

S

2

K

G

('

l

l

�

+ '

m

m

�

) �m

�

= q

m

;

�

on S

2

; (18.119)

where the 	DE K

G

is de�ned by (15.86), and

q

l

= 2

�1

(�

(+)

l

+�

(�)

l

) � r

S

2

f	

1

	 � 2

�1

I ℄F+

+K

G

f

0

g � l

�

2 B

�1=p

p;p

(S

2

);

q

m

= 2

�1

(�

(+)

m

+�

(�)

m

) � r

S

2

f	

1

	 � 2

�1

I ℄F+

+K

G

f

0

g �m

�

2 B

�1=p

p;p

(S

2

):

(18.120)

Now, taking into aount the formula (15.85), we an rewrite the above

system in the matrix form

r

S

2

M

G

h = g on S

2

; (18.121)

where g = (q

l

; q

m

)

>

2 [B

�1=p

p;p

(S

2

)℄

2

is the given vetor on S

2

, and h =

('

l

; '

m

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

2

is the unknown vetor. Due to Lemma 15.9
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the prinipal homogeneous symbol matrix of the 	DOM

G

is positive de�-

nite. Therefore, by quite the same arguments as in the previous subsetions

and invoking Theorem 9.12 and Lemma 16.1, one an prove the following

propositions.

Lemma 18.13. The operators

r

S

2

M

G

: [

e

B

s+1

p;q

(S

2

)℄

2

! [B

s

p;q

(S

2

)℄

2

; (18.122)

: [

e

H

s+1

p

(S

2

)℄

2

! [H

s

p

(S

2

)℄

2

; (18.123)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Theorem 18.14. Let 4=3 < p < 4 and let the onditions (18:98),

(18:100), and (18:102) be ful�lled. Then the nonhomogeneous problem (C �

G)

!

is uniquely solvable in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p;lo

(


2

)\

SK

m

r

(


2

)) (with the parameters r and ! as in (15:3)) and the solution is

representable by formulae (18:32){(18:33), where F , f

0

, and ' are given

by (18:99), (18:108) and (18:109), respetively, and ('

l

; '

m

)

>

is the unique

solution of the 	DE (18:121).

Theorem 18.15. Let the onditions (18:98), (18:100), (18:102), and

(16:23) be ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \

SK

m

r

(


2

)) be the unique solution to the problem (C � G)

!

.

In addition to (18:98), (18:100), (18:102),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

s

t;t

(S

2

);

e

f

(2)

n

2 B

s+1

t;t

(S

2

);

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

;

F 2 [B

s

t;t

(S)℄

4

;

e

f

n

2 B

s+1

t;t

(S);

(18.124)

then there holds the inlusion (18:22);

ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

s

t;q

(S

2

);

e

f

(2)

n

2 B

s+1

t;q

(S

2

);

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

;

F 2 [B

s

t;q

(S)℄

4

;

e

f

n

2 B

s+1

t;q

(S);

(18.125)

then there holds the inlusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

��1

1;1

(S

2

);

e

f

(2)

n

2 C

�

(S

2

);

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

;

F 2 [B

��1

1;1

(S)℄

4

;

e

f

n

2 C

�

(S);

(18.126)

for some � > 0, then there holds the inlusion (18:26).
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18.6. Problem (C �H)

!

. Again we start with the reformulation of the

original interfae onditions (see Subsetion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.127)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.128)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

;

[P

(1)

(D;n)U

(1)

� n℄

+

�[P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

;

[u

(1)

� l℄

+

= e'

(+)

l

; [u

(1)

�m℄

+

= e'

(+)

m

;

[u

(2)

� l℄

�

= e'

(�)

l

; [u

(2)

�m℄

�

= e'

(�)

m

;

9

>

>

>

=

>

>

>

;

on S

2

; (18.129)

where

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

; f

4

2 B

1�1=p

p;p

(S);

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

; F

4

2 B

�1=p

p;p

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

1�1=p

p;p

(S

2

);

e

F

(2)

n

2 B

�1=p

p;p

(S

2

):

(18.130)

The vetor funtion

f :=

8

<

:

(

e

f

(1)

; f

4

)

>

on S

1

;

�

[e'

(+)

l

� e'

(�)

l

℄l+[e'

(+)

m

� e'

(�)

m

℄m+

e

f

(2)

n

n; f

4

�

>

on S

2

;

(18.131)

represents the di�erene [U

(1)

℄

+

� [U

(2)

℄

�

on the interfae S, and, therefore,

we require the natural ompatibility ondition (f. (7.28))

f = (f

1

; � � � ; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

: (18.132)

Moreover, the funtion

e

F

n

:=

(

e

F

(1)

� n on S

1

;

e

F

(2)

n

on S

2

;

(18.133)

orresponds to the di�erene [P

(1)

(D;n)U

(1)

�n℄

+

� [P

(2)

(D;n)U

(2)

�n℄

�

on

S, and, we again assume the natural ompatibility ondition

e

F

n

2 B

�1=p

p;p

(S): (18.134)

Next, let us represent the boundary vetor funtion

e

F

(1)

in the form

e

F

(1)

=

e

F

(1)

l

l +

e

F

(1)

m

m+

e

F

(1)

n

n on S

1

; (18.135)

where

e

F

(1)

l

=

e

F

(1)

� l;

e

F

(1)

m

=

e

F

(1)

�m;

e

F

(1)

n

=

e

F

(1)

� n: (18.136)

Denote by

e

F

(0)

l

and

e

F

(0)

m

some �xed extensions of the funtions

e

F

(1)

l

and

e

F

(1)

m

from S

1

onto S

2

preserving the funtional spae. Arbitrary extensions
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then an be represented as

e

F

l

=

e

F

(0)

l

+ '

l

;

e

F

m

=

e

F

(0)

m

+ '

m

; (18.137)

where

e

F

l

;

e

F

(0)

l

;

e

F

m

;

e

F

(0)

m

2 B

�1=p

p;p

(S); '

l

; '

m

2

e

B

�1=p

p;p

(S

2

);

e

F

l

j

S

1

=

e

F

(0)

l

j

S

1

=

e

F

(1)

l

;

e

F

m

j

S

1

=

e

F

(0)

m

j

S

1

=

e

F

(1)

m

:

(18.138)

Obviously, here '

l

and '

m

are arbitrary funtions from

e

B

�1=p

p;p

(S

2

).

Further, we set

F = (F

1

; � � � ; F

4

)

>

:= F

0

+ ' 2 [B

�1=p

p;p

(S)℄

4

;

e

F = (F

1

; F

2

; F

3

)

>

; (18.139)

where F

4

is the same funtion as above, while

F

0

:= (

e

F

(0)

l

l +

e

F

(0)

m

m+

e

F

n

n; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

(18.140)

with

' = '

l

l

�

+ '

m

m

�

= ('

l

l + '

m

m; 0)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

4

: (18.141)

Moreover,

e

F

(0)

=

e

F

(0)

l

l+

e

F

(0)

m

m+

e

F

n

n; the funtion

e

F

n

is given by (18.133),

and the 4-vetors l

�

, m

�

, and n

�

are de�ned by (14.48).

We note that (see (18.135))

e

F j

S

1

=

e

F

(0)

j

S

1

=

e

F

(1)

on S

1

;

e

F � nj

S

2

=

e

F

(0)

� nj

S

2

=

e

F

n

=

e

F

(2)

n

on S

2

:

(18.142)

Now we an easily see that the original interfae onditions (18.127)-

(18.129) are equivalent to the equations:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.143)

[B

(1)

(D;n)U

(1)

℄

+

4

� [B

(2)

(D;n)U

(2)

℄

�

4

= F

4

on S; (18.144)

[B

(1)

(D;n)U

(1)

℄

+

k

� [B

(2)

(D;n)U

(2)

℄

�

k

= F

k

on S

1

; k = 1; 2; 3; (18.145)

[B

(1)

(D;n)U

(1)

� n

�

℄

+

� [B

(2)

(D;n)U

(2)

� n

�

℄

�

= F � n

�

on S

2

; (18.146)

[U

(1)

� l

�

℄

+

+ [U

(2)

� l

�

℄

�

= e'

(+)

l

+ e'

(�)

l

;

[U

(1)

�m

�

℄

+

+ [U

(2)

�m

�

℄

�

= e'

(+)

m

+ e'

(�)

m

;

)

on S

2

; (18.147)

where f and F are given by (18.131) and (18.139), respetively.

Let us look for the solution of the reformulated problem in the form

(18.9)-(18.10), where now f , F

0

, and ' are de�ned by (18.131), (18.140),

and (18.141). These representation formulae imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f; [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ';

whih show that the onditions (18.143)-(18.146) are satis�ed automatially.

The remaining onditions (18.147) yield the following system of 	DEs

on S

2

for the unknown salar funtions '

l

and '

m

(see (18.11))

r

S

2

�

1

	' � l

�

= q

l

;

r

S

2

�

1

	' � m

�

= q

m

;

�

on S

2

; (18.148)



36

where

q

l

= 2

�1

('

(+)

l

+ '

(�)

l

)�

� r

S

2

f�

1

	F

0

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg � l

�

;

q

m

= 2

�1

('

(+)

m

+ '

(�)

m

)�

�r

S

2

f�

1

	F

0

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg �m

�

:

(18.149)

In aordane with the formula (15.104) this system an be written also

as

r

S

2

M

H

h = g on S

2

; (18.150)

where g = (q

l

; q

m

)

>

2 [B

1�1=p

p;p

(S

2

)℄

2

is the given vetor on S

2

, and h =

('

l

; '

m

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

2

is the unknown vetor.

By virtue of Lemma 15.14 the prinipal homogeneous symbol matrix of

the 	DO M

H

is positive de�nite whih together with Theorem 9.12 and

Lemma 16.1 implies the following existene and regularity results.

Lemma 18.16. The operators

r

S

2

M

H

: [

e

B

s

p;q

(S

2

)℄

2

! [B

s+1

p;q

(S

2

)℄

2

; (18.151)

: [

e

H

s

p

(S

2

)℄

2

! [H

s+1

p

(S

2

)℄

2

; (18.152)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Theorem 18.17. Let 4=3 < p < 4 and let the onditions (18:130),

(18:132), and (18:134) be ful�lled. Then the nonhomogeneous problem (C �

H)

!

is uniquely solvable in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p;lo

(


2

)\

SK

m

r

(


2

)) (with the parameters r and ! as in (15:3)) and the solution is

representable by formulae (18:9){(18:10), where f , F

0

, and ' are given by

(18:131), (18:140), and (18:141), respetively, and ('

l

; '

m

)

>

is the unique

solution of the 	DE (18:150).

Theorem 18.18. Let the onditions (18:130), (18:132), (18:134), and

(16:23) be ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo

(


2

) \

SK

m

r

(


2

)) be the unique solution to the problem (C �H)

!

.

In addition to (18:130), (18:132), (18:134),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

s+1

t;t

(S

2

);

e

F

(2)

n

2 B

s

t;t

(S

2

);

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

;

f 2 [B

s+1

t;t

(S)℄

4

;

e

F

n

2 B

s

t;t

(S);

(18.153)

then there holds the inlusion (18:22);
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ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

s+1

t;q

(S

2

);

e

F

(2)

n

2 B

s

t;q

(S

2

);

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

;

f 2 [B

s+1

t;q

(S)℄

4

;

e

F

n

2 B

s

t;q

(S);

(18.154)

then there holds the inlusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 C

�

(S

2

);

e

F

(2)

n

2 B

��1

1;1

(S

2

);

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

;

f 2 [C

�

(S)℄

4

;

e

F

n

2 B

��1

1;1

(S);

(18.155)

for some � > 0, then there holds the inlusion (18:26).

19. Mixed Interfae Problems of Pseudo-Osillations

The mixed interfae problems for the system of pseudo-osillation equa-

tions are investigated by the approah developed in the previous setion. In

this ase we have to apply the \expliit" representation formulae (14.24){

(14.25), obtained for the solution of the basi interfae problem (C)

�

, to re-

due the mixed interfae problems to the orresponding 	DEs. For illustra-

tion of the method in this setion we onsider only the problems (C �DD)

�

and (C � NN )

�

. The other mixed problems of pseudo-osillations an be

studied quite analogously.

19.1. Problem (C � DD)

�

. Let S, S

1

, and S

2

, be the same as in

Setion 18. The original formulation of the problem (C � DD)

�

is the fol-

lowing (see Setion 7): Find the pair of vetor-funtions (U

(1)

; U

(2)

) 2

(W

1

p

(


1

) ; W

1

p

(


2

)) satisfying the di�erential equations

A

(�)

(D; �)U

(�)

= 0 in 


(�)

; � = 1; 2; (19.1)

and the mixed interfae onditions on S

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

on S

1

;

(19.2)

[U

(1)

℄

+

= '

(+)

; [U

(2)

℄

�

= '

(�)

on S

2

;
(19.3)

moreover, U

(2)

satis�es the deay ondition (1.30) at in�nity.

Here p > 1 and

f

(1)

= (f

(1)

1

; � � � ; f

(1)

4

)

>

2 B

1�1=p

p;p

(S

1

);

F

(1)

= (F

(1)

1

; � � � ; F

(1)

4

)

>

2 B

�1=p

p;p

(S

1

);

(19.4)

'

(�)

= ('

(�)

1

; � � � ; '

(�)

4

)

>

2 B

1�1=p

p;p

(S

2

): (19.5)
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Further, we assume that the vetor funtion

f :=

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

;

(19.6)

meets the neessary ompatibility ondition

f 2 B

1�1=p

p;p

(S): (19.7)

Next, denote by F

0

2 B

�1=p

p;p

(S) some �xed extension of the vetor funtion

F

(1)

from the submanifold S

1

onto the whole surfae S (i.e., F

0

j

S

1

= F

(1)

on S

1

).

Evidently, an arbitrary extension (preserving the funtional spae) an

be then represented as

F = F

0

+ ' 2 B

�1=p

p;p

(S); (19.8)

where ' = ('

1

; � � � ; '

4

)

>

2

e

B

�1=p

p;p

(S

2

) is an arbitrary funtion supported

on S

2

.

Now we an reformulate the interfae onditions (19.2)-(19.3) in the fol-

lowing equivalent form:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (19.9)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S

1

; (19.10)

[U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

on S

2

; (19.11)

where B

(�)

(D;n) is de�ned again by (1.25), and f and F are given by (19.6)

and (19.8), respetively.

Let us now look for the solution (U

(1)

; U

(2)

) to the problem (C � DD)

�

as follows (f. (14.24){(14.25))

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

[(F

0

+ ') +N

2;�

f ℄

�

(x); x 2 


1

; (19.12)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

[(F

0

+ ')�N

1;�

f ℄

�

(x); x 2 


2

; (19.13)

where ' 2

e

B

�1=p

p;p

(S

2

) is the unknown vetor funtion,W

(�)

�

and V

(�)

�

are the

double and single layer potentials of pseudo-osillations (see (11.1){(11.2)),

the boundary operatorsH

(�)

�

, N

�

, N

1;�

, and N

2;�

are the same as in Setion

14 (see (14.12)). Note that here and in what follows we keep all notations

of Setions 11 and 14.

One an easily hek that the interfae onditions (19.9) and (19.10) are

satis�ed automatially, sine (19.12) and (19.13) together with (14.12) imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ' on S:

(19.14)

It remains only to ful�l the ondition (19.11) whih yield the 	DE for the

unknown vetor funtion '

r

S

2

N

�1

�

' = q on S

2

; (19.15)
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where r

S

2

is again the restrition operator on S

2

, the right-hand side vetor

q is given by

q = 2

�1

('

(+)

+'

(�)

)�r

S

2

[N

�1

�

F

0

+2

�1

N

�1

�

(N

2;�

�N

1;�

)f ℄ 2 B

1�1=p

p;p

(S

2

):

The operator r

S

2

N

�1

�

possesses the following properties.

Lemma 19.1. The operators

r

S

2

N

�1

�

: [

e

B

s

p;q

(S

2

)℄

4

! [B

s+1

p;q

(S

2

)℄

4

; (19.16)

: [

e

H

s

p

(S

2

)℄

4

! [H

s+1

p

(S

2

)℄

4

; (19.17)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

Proof. Due to Theorem 11.3 and Lemma 14.2 we onlude that the map-

pings (19.16)-(19.17) are bounded and that their Fredholm indies equal

zero, sine the prinipal homogeneous symbol matrix of the operator N

�1

�

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

nf0g. It remains to prove

that the orresponding null-spaes are trivial, i.e., we have to show that the

homogeneous equation

r

S

2

N

�1

�

' = 0 on S

2

(19.18)

has only the trivial solution in the spaes

e

B

s

p;q

(S

2

) and

e

H

s

p

(S

2

) with s and

p satisfying the inequalities (16.15). We again onsider the partiular ase

s = �1=2 and p = q = 2 for whih the ondition (16.15) is ful�lled. Further,

let ' 2

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

) be some solution to the equation (19.18),

and onstrut the potentials:

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

'

�

(x); x 2 


1

; (19.19)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

'

�

(x); x 2 


2

: (19.20)

Theorem 11.3 implies that the pair (U

(1)

; U

(2)

) represents a solution to

the homogeneous problem (C � DD)

�

in the spae (W

1

2

(


1

) ; W

1

2

(


2

)).

By Theorem 8.6 we then onlude U

(�)

= 0 in 


�

, � = 1; 2; whene

[B

(1)

(D;n)U

(1)

℄

+

�[B

(2)

(D;n)U

(2)

℄

�

= ' = 0 follows. Therefore, the above

homogeneous equation has no nontrivial solutions in the spae

e

B

�1=2

2;2

(S

2

).

Now Lemma 16.1 ompletes the proof. �

Theorem 19.2. Let 4=3 < p < 4 and let the onditions (19:4), (19:5),

and (19:7) be ful�lled. Then the problem (C � DD)

�

is uniquely solvable in

the lass (W

1

p

(


1

) ; W

1

p

(


2

)) and the solution is representable in the form

(19:12){(19:13), where ' is the unique solution of the 	DE (19:15).

Proof. First we note that the ondition (16.15) with s = �1=p implies the

inequality 4=3 < p < 4. Next, Lemma 19.1, with s = �1=p and 4=3 <

p < 4, shows that the 	DE (19.15) is uniquely solvable. This together

with the representation formulae (19.12)-(19.13) yields the solvability of the

nonhomogeneous problem (C �DD)

�

in the spae indiated in the theorem.
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It remains to prove the uniqueness of solution for 4=3 < p < 4. Let

(U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p

(


2

)) be some solution of the homogeneous

problem (C � DD)

�

. Clearly, then [U

(1)

℄

+

; [U

(2)

℄

�

2 B

1�1=p

p;p

(S) and

[B

(1)

(D;n)U

(1)

℄

+

; [B

(2)

(D;n)U

(2)

℄

�

2B

�1=p

p;p

(S). In addition, f :=[U

(1)

℄

+

�

[U

(2)

℄

�

= 0 on S and F := [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= 0 on S

1

.

Therefore, F 2

e

B

�1=p

p;p

(S

2

). Due to Theorem 14.6, suh solution is uniquely

representable by formulae (14.24){(14.25) whih in the ase in question read

as

U

(�)

(x) = V

(�)

�

�

(H

(�)

�

)

�1

N

�1

�

F

�

(x); x 2 


�

; � = 1; 2; (19.21)

with F 2

e

B

�1=p

p;p

(S

2

).

The homogeneous versions of the onditions (19.2)-(19.3) (i.e., (19.9)-

(19.11)) then shows that F has to satisfy the equation

r

S

2

N

�1

�

F = 0 on S

2

;

from whih F = 0 on S

2

follows for arbitrary p 2 (4=3; 4) due to Lemma

19.1. Therefore, U

(�)

= 0 in 


�

(� = 1; 2) in view of (19.21). This ompletes

the proof. �

The next theorem deals with the smoothness of solutions to the mixed

interfae problem (C � DD)

�

.

Theorem 19.3. Let the onditions (19:4), (19:5), (19:7), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;

(


2

)) be the unique

solution to the problem (C � DD)

�

.

In addition to (19:4), (19:5), (19:7),

i) if onditions (18:21) are satis�ed, then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t

(


2

));

ii) if onditions (18:23) are satis�ed, then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q

(


2

));

iii) if onditions (18:25) are satis�ed for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

))

with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

Proof. It is verbatim the proof of Theorem 16.5. �

19.2. Problem (C � NN )

�

. The original interfae onditions for the

problem (C �NN )

�

read as

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

on S

1

;

(19.22)

[B

(1)

(D;n)U

(1)

℄

+

= �

(+)

; [B

(2)

(D;n)U

(2)

℄

�

= �

(�)

on S

2

; (19.23)
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where

f

(1)

2 B

1�1=p

p;p

(S

1

); F

(1)

2 B

�1=p

p;p

(S

1

);

�

(�)

= (�

(�)

1

; � � � ;�

(�)

4

)

>

2 B

�1=p

p;p

(S

2

):

(19.24)

We require that the vetor funtion

F :=

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

:

(19.25)

satis�es the neessary ompatibility ondition

F 2 B

�1=p

p;p

(S): (19.26)

Denote by f

0

2 B

1�1=p

p;p

(S) some �xed extension of the vetor funtion

f

(1)

from the submanifold S

1

onto the whole surfae S. Then an arbitrary

extension preserving the funtional spae is represented by formula

f = f

0

+ ' 2 B

1�1=p

p;p

(S); (19.27)

where ' 2

e

B

1�1=p

p;p

(S

2

).

Next, we again redue the above original interfae onditions (19.22)-

(19.23) to the equivalent equations:

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (19.28)

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S

1

; (19.29)

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

= �

(+)

+�

(�)

on S

2

; (19.30)

where F and f are given by (19.25) and (19.27), respetively.

Further, we look for the solution (U

(1)

; U

(2)

) to the problem (C �NN )

�

in the form (f. (14.24){(14.25))

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

[F +N

2;�

(f

0

+ ')℄

�

(x); x 2 


1

; (19.31)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

[F �N

1;�

(f

0

+ ')℄

�

(x); x 2 


2

; (19.32)

where f

0

and F are the given vetor funtions on S and ' 2

e

B

1�1=p

p;p

(S

2

) is

the unknown vetor funtion.

The onditions (19.28) and (19.29) are then satis�ed automatially, while

the ondition (19.30) leads to the 	DE for the unknown vetor '

r

S

2

[N

1;�

N

�1

�

N

2;�

'℄ = q on S

2

; (19.33)

where the right-hand side vetor q 2 B

�1=p

p;p

(S

2

) reads as

q = 2

�1

(�

(+)

+�

(�)

) + r

S

2

[2

�1

(N

2;�

�N

1;�

)N

�1

�

F�

�N

1;�

N

�1

�

N

2;�

f

0

℄: (19.34)

In the proof of Lemma 14.8 it has been shown that the prinipal ho-

mogeneous symbol matrix of the 	DO N

1;�

N

�1

�

N

2;�

is positive de�nite.

Therefore, by the arguments employed above one an prove the following

assertion (see the proof of Lemma 19.1).
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Lemma 19.4. The operators

r

S

2

N

1;�

N

�1

�

N

2;�

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (19.35)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (19.36)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the ondition (16:15) holds.

This lemma implies the existene and regularity results quite in the same

way as in the previous subsetion.

Theorem 19.5. Let 4=3 < p < 4 and let the onditions (19:24) and

(19:26) be ful�lled. Then the nonhomogeneous problem (C�NN )

�

is uniquely

solvable in the lass of vetor funtions (W

1

p

(


1

) ; W

1

p

(


2

)) and the solution

is representable in the form (19:31){(19:32), where ' is the unique solution

of the 	DE (19:33).

Theorem 19.6. Let the onditions (19:24), (19:26), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p

(


2

)) be the unique

solution to the problem (C �NN )

�

.

In addition to (19:24), (19:26),

i) if onditions (18:39) hold, then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t

(


2

));

ii) if onditions (18:40) hold, then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q

(


2

));

iii) if onditions (18:41) hold for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

))

with any � 2 (0; �

0

); �
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