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Abstract. In the present paper we consider the equation
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= p(t)juj

�

ju
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1��

sgnu;

where � 2]0; 1], the function p :]a; b[! R is locally integrable, and

R

b

a

(s �

a)

�

(b� s)

�

jp(s)jds < +1. Su�cient conditions for the existence of a solu-

tion having at least two zeros on the segment [a; b] are established.
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Introduction

Below we will use the following notation:

R is the set of real numbers;

L

loc

(]a; b[) is the set of functions p :]a; b[! R which are Lebesgue inte-

grable on each segment contained in ]a; b[;

e

C([a; b]) is the set of functions u : [a; b] ! R absolutely continuous on

the segment [a; b];

e

C

loc

(I), where I � R, is the set of functions u : I ! R absolutely

continuous on each segment contained in I;

e

C

0

loc

(I), where I � R, is the set of functions u 2

e

C

loc

(I) for which

u

0

2

e

C

loc

(I);

u(s+) and u(s�) are the limits of the function u at the point s from the

right and from the left, respectively;

[p(t)]

�

=

1

2

(jp(t)j � p(t)):

Consider the equation

u

00

= p(t)juj

�

ju

0

j

1��

sgnu; (1.1)

where � 2]0; 1], a; b 2 R, and p 2 L

loc

(]a; b[). Under a solution of the equa-

tion (1.1) is understood a function u 2

e

C

0

loc

(]a

1

; b

1

[), where a

1

2 [a; b[ and

b

1

2]a

1

; b], which satis�es the equation (1.1) almost everywhere in ]a

1

; b

1

[.

Throughout the paper we will assume that

Z

b

a

(s � a)

�

(b � s)

�

jp(s)jds < +1: (1.2)

Below we will see (see Lemma 2.2) that all non-continuable solutions of

the equation (1.1) are de�ned on the whole segment [a; b]; note that under

the values of a solution u at the points a and b we understand respectively

the limits u(a+) and u(b�), whose existence (and �niteness) is quaranteed

by the condition (1.2). Moreover, it is found that none of non-trivial so-

lutions of the equation (1.1) may have an in�nite number of zeros on the

segment [a; b] (see Remark 2.1 and Lemma 2.8).

In the case of the linear equation, i.e., for � = 1, the number of zeros

of two arbitrary non-trivial solutions di�er from each other by not more

than 1. This fact does not, generally speaking, take place for the equation

(1.1) with � 6= 1, since any constant function turns out to be its solution;

however it remains valid for a de�nite subset of the set of solutions, which

in the sequel will be called the set of proper solutions.

De�nition 1.1. A solution u of the equation (1.1) is said to be proper, if

there exists A �]a; b[ such that mesA = 0 and ft 2]a; b[: u

0

(t) = 0g � ft 2

]a; b[: p(t) = 0gUA:

Below we shall show (see Lemma 2.9) that the set of proper solutions

of the equation (1.1) is non-empty and, moreover, almost every Cauchy

problem has at least one proper solution (see Remark 2.4).
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According to the above-said, the following de�nition is substantial and

meaningful.

De�nition 1.2. We say that the function p belongs to the set O

�

(]a;b[), if

there exists a proper solution of the equation (1.1) having at least two zeros

on the segment [a; b].

In other words, p =2 O

�

(]a; b[) if and only if there is no proper solution u of

the equation (1.1) satisfying for some a

1

2 [a; b[ and b

1

2]a; b] the conditions

u(a

1

+) = 0; u(b

1

�) = 0: (1.3)

De�nition 1.3. We say that the function p belongs to the set U

�

(]a;b[), if

for any a

1

2 [a; b[ and b

1

2]a

1

; b] the problem (1.1), (1.3) has no non-zero

(not necessarily proper) solution.

It is clear that if p 2 U

�

(]a; b[), then p =2 O

�

(]a; b[). In the case, where

� = 1, or � 2]0; 1[ and p(t) � 0 for a < t < b, the converse assertion is

valid, i.e., if p =2 U

�

(]a; b[), then p 2 O

�

(]a; b[). The problem on a mutual

complement ability of these two sets remains as yet unstudied in the general

case.

Note that if p 2 O

1

(]a; b[), then the (linear) equation (1.1) is called conju-

gate, but if p =2 O

1

(]a; b[) (and hence p 2 U

1

(]a; b[)), then it is disconjugate.

A vast number of works (see, e.g., [1{6] and references therein) are devoted

to the question of an e�ective description of the sets O

1

(]a; b[) and U

1

(]a; b[).

As to the sets O

�

(]a; b[) and U

�

(]a; b[), they are studied not well enough even

in the regular case, where the function p is integrable on [a; b].

The aim of the present work is to �ll in the above-mentioned gap. Below

we give some new integral criteria for belonging of the function p to sets

O

�

(]a; b[) and U

�

(]a; b[), not excepting the possibility for p to have noninte-

grable singularities at the points a and b (see condition (1.2)). The paper is

organized as follows: the main results are formulated in Section 1; auxiliary

propositions are given in Section 2; proofs of the main results can be found

in Section 3.

1. Statement of the Main Results

Theorem 1.1. Let there exist � 2]a; b[ and � 2]�; b[ such that

��

Z

�

�

p(s)ds �

1

(� � a)

�

+

1

(b� �)

�

+

�

(� � a)

�+1

Z

�

a

(s � a)

�+1

p(s)ds +

+

�

(b � �)

�+1

Z

b

�

(b� s)

�+1

p(s)ds: (1.4)

Then p 2 O

�

(]a; b[).
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Introduce the notation

Q(t; t

0

; �) =

8

>

>

>

<

>

>

>

:

�(t� a)

�

Z

t

0

t

p(s)ds for a < t < t

0

;

�(b� t)

�

Z

t

t

0

p(s)ds for t

0

< t < b;

Q

�

(t

0

; �) = inffQ(t; t

0

; �) : a < t < bg;

Q

�

(t

0

; �) = supfQ(t; t

0

; �) : a < t < bg:

Corollary 1.1. Let

�(� + 1)

Z

b

a

Q

�

s;

a+ b

2

; �

�

ds > b � a: (1.5)

Then p 2 O

�

(]a; b[).

Corollary 1.2. Let t

0

2]a; b[,

p(t) � 0 for a < t < b; (1.6)

Q

�

(t

0

; �) � �1�max

n�

t

0

� a

b� t

0

�

�

;

�

b� t

0

t

0

� a

�

�

o

: (1.7)

Then p 2 O

�

(]a; b[).

In the case where the condition (1.6) is satis�ed, Theorem 1.1 can be

somewhat improved; to be more exact, the following theorem is valid.

Theorem 1.1

0

. Let (1:6) be satis�ed and let there exist � 2]a; b[, � 2]�; b[

and a natural number n such that

�

Z

�

�

jp(s)jds �

1

a

�

n

(�)

+

1

b

�

n

(�)

; (1.8)

where

a

1

(t) = t � a; a

k+1

(t) = t� a+

Z

t

a

a

�+1

k

(s)jp(s)jds for a < t < b;

b

1

(t) = b� t; b

k+1

(t) = b� t +

Z

b

t

b

�+1

k

(s)jp(s)jds for a < t < b:

Then p 2 O

�

(]a; b[).

Theorem 1.2. Let there exist c 2]a; b[ and the functions f 2

e

C([a; c]) and

g 2

e

C([c; b]) such that f(a) = 0, g(b) = 0, f(t) > 0 for a < t < c, g(t) > 0

for c < t < b,

jf

0

j

�+1

f

�

and

jg

0

j

�+1

g

�

be integrable on [a; c] and [c; b], respectively,

and

��

�

g(c)

Z

c

a

f(s)p(s)ds + f(c)

Z

b

c

g(s)p(s)ds

�

>
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>

1

(�+ 1)

�+1

�

g(c)

Z

c

a

jf

0

(s)j

�+1

f

�

(s)

ds+ f(c)

Z

b

c

jg

0

(s)j

�+1

g

�

(s)

ds

�

: (1.9)

Then p 2 O

�

(]a; b[).

Corollary 1.3. Let at least one of the following three conditions be ful-

�lled:

��

Z

b

a

(s � a)

�+1

(b� s)

�+1

p(s)ds >

(b� a)

�+2

�+ 2

; (1.10)

��

�

Z

a+b

2

a

(s � a)

�

p(s)ds +

Z

b

a+b

2

(b� s)

�

p(s)ds

�

>

>

2�

�+1

(�� �)(�+ 1)

�+1

�

b� a

2

�

���

; where � > �; (1.11)

��

Z

b

a

sin

�+1

h

�(s � a)

b� a

i

p(s)ds>

2(�+ 2)

�

(�+ 1)

�+1

�

�

b� a

�

�

: (1.12)

Then p 2 O

�

(]a; b[).

Remark 1.1. As we will see from the proofs below, in the conditions of

the above-given results not only p 2 O

�

(]a; b[), but every proper solution of

the equation (1.1) has at least one zero in the interval ]a; b[.

Finally, we present theorems concerning the case where the function p be-

longs to the set U

�

(]a; b[) and also theorems with this function not belonging

to the set O

�

(]a; b[).

Theorem 1.3. Let supfA

�

(t)jB(t)j

1��

: a < t < bg < b� a; where

A(t) =

(b � t)

1��

(t � a)

�

Z

t

a

(s � a)

1+��

(b� s)

��

[p(s)]

�

ds+

+

(t� a)

1��

(b� t)

�

Z

b

t

(s � a)

��

(b� s)

1+��

[p(s)]

�

ds;

B(t) =

Z

t

a

(s � a)

1+��

(b� s)

��

[p(s)]

�

ds�

�

Z

b

t

(s � a)

��

(b� s)

1+��

[p(s)]

�

ds for a < t < b;

and � 2 [0; 1]. Then p 2 U

�

(]a; b[).

Corollary 1.4. Let C

1��

�

R

b

a

(s � a)

�

(b � s)

�

[p(s)]

�

ds < (b� a)

1

�

; where

C=max

�

Z

b

a

(s� a)

1+�

(b� s)

�

[p(s)]

�

ds;

Z

b

a

(s� a)

�

(b� s)

1+�

[p(s)]

�

ds

�

:

Then p 2 U

�

(]a; b[).
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In particular, this corollary implies that if

Z

b

a

(s � a)

�

(b� s)

�

[p(s)]

�

ds � (b� a)

�

;

then p 2 U

�

(]a; b[).

Denote by '(�), where � > �

1

�+1

(

�

�+1

)

�

, the largest positive root of the

equation x� jxj

�

�+1

� � = 0:

Theorem 1.4. Let Q

�

(t

0

; �) � �

1

�+1

(

�

�+1

)

�

and

Q

�

(t

0

; �) < '(Q

�

(t

0

; �)): (1.13)

Then p 2 U

�

(]a; b[).

Corollary 1.5. Let �

1

�+1

(

�

�+1

)

�

� Q

�

(t

0

; �), Q

�

(t

0

; �)< (

�

�+1

)

�+1

: Then

p 2 U

�

(]a; b[).

Theorem 1.5. Let Q

�

(t

0

; �) � �

1

�+1

(

�

�+1

)

�

and either

Q

�

(t

0

; �) 6= 0 and Q

�

(t

0

; �) � 2'(Q

�

(t

0

; �))� Q

�

(t

0

; �); (1.14)

or

Q

�

(t

0

; �) = 0 and Q

�

(t

0

; �) < 2: (1.15)

Then p =2 O

�

(]a; b[).

Corollary 1.6. Let �

1

�+1

(

�

�+1

)

�

�Q

�

(t

0

; �) and Q

�

(t

0

; �)�

2�+1

�+1

(

�

�+1

)

�

:

Then p =2 O

�

(]a; b[).

Corollary 1.7. Let � = 1, Q

�

(t

0

; 1) � �

1

4

and either Q

�

(t

0

; 1) 6= 0,

Q

�

(t

0

; 1) � 1+Q

�

(t

0

; 1)+

p

1 + 4Q

�

(t

0

; 1), or Q

�

(t

0

; 1) = 0, Q

�

(t

0

; 1) < 2:

Then p =2 O

1

(]a; b[) (i.e., p 2 U

1

(]a; b[) ).

2. Some Auxiliary Propositions

In this section we establish some properties of solutions of the equation

u

00

= p(t)juj

�

ju

0

j

1��

sgnu: (2.1)

Below, throughout all the paper, the function p :]a; b[!R will be zassumed

to belong to the set L

loc

(]a; b[) and to satisfy the condition (1.2).

First of all, for the convenience of reference we will quote one simple

proposition without proving it.

Proposition 2.1. The equalities

lim

t!a+

(t� a)

�

Z

a+b

2

t

jp(s)jds = 0; lim

t!b�

(b � t)

�

Z

t

a+b

2

jp(s)jds = 0

take place.
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Lemma 2.1. There exist solutions u

1

and u

2

of the equation (2:1) satis-

fying the initial conditions

u

1

(a+) = 0; u

0

1

(a+) = 1; (2.2)

u

2

(b�) = 0; u

0

2

(b�) = �1: (2.3)

Moreover, all non-continuable solutions of the problems (2:1), (2:2) and

(2:1), (2:3) are de�ned on the entire segment [a; b].

Proof. We will prove only the existence of u

1

. The existence of u

2

can be

proved similarly.

Let x 2]a; b[. Denote by A

x

the set of all non-continuable to the right

solutions of the equation (2.1) satisfying the initial conditions

u(x) = 0; u

0

(x) = 1: (2.4)

Let u(�; x) 2 A

x

, and let us show that this solution is de�ned in the interval

[x; b[. Suppose I

x

= ft 2]x; b[: ju(s; x)j<+1, ju

0

(s; x)j<+1 for x�s� tg.

Integrating (2.1) and taking into account (2.4), we obtain

u

0

(t; x) =1 +

Z

t

x

p(s)ju(s; x)j

�

ju

0

(s; x)j

1��

sgnu(s; x)ds for t2I

x

; (2.5)

u(t; x) = t� x+

+

Z

t

x

(t� s)p(s)ju(s; x)j

�

ju

0

(s; x)j

1��

sgnu(s; x)ds for t2I

x

; (2.6)

whence we readily �nd that

ju

0

(t; x)j � 1 +

Z

t

x

(s � a)

�

jp(s)j

�

�

�

u(s; x)

s� x

�

�

�

�

ju

0

(s; x)j

1��

ds for t 2 I

x

;

�

�

�

u(t; x)

t� x

�

�

�

� 1 +

Z

t

x

(s � a)

�

jp(s)j

�

�

�

u(s; x)

s � x

�

�

�

�

ju

0

(s; x)j

1��

ds for t 2 I

x

:

If we add these inequalities and take into account the fact that

y

�

< 1 + y for y � 0; (2.7)

we obtain

�

�

�

u(t; x)

t� x

�

�

�

+ju

0

(t; x)j�2+2

Z

t

x

(s�a)

�

jp(s)j

�

�

�

�

u(s; x)

s� x

�

�

�

+

�

�

u

0

(s; x)

�

�

�

ds for t2I

x

:

According to the Gronwall-Bellmann lemma, we now have

�

�

�

u(t; x)

t � x

�

�

�

+ ju

0

(t; x)j � 2 exp

�

2

Z

t

a

(s � a)

�

jp(s)jds

�

for t 2 I

x

: (2.8)

Consequently, sup I

x

= b. Moreover, from (2.8) and (2.5) we also get

ju(t; x)j � 2(t� a) exp

�

2

Z

t

a

(s � a)

�

jp(s)jds

�

for x � t < b; (2.9)
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ju

0

(t; x)j � 2 exp

�

2

Z

t

a

(s � a)

�

jp(s)jds

�

for x � t < b; (2.10)

ju

0

(t; x)� 1j � 2

Z

t

a

(s � a)

�

jp(s)jds�

� exp

�

2

Z

t

a

(s � a)

�

jp(s)jds

�

for x � t < b: (2.11)

Let x

k

2]a; b[, x

k+1

< x

k

for k = 1; 2; : : : , lim

k!+1

x

k

= a. Suppose

v

k

(t) = u(t; x

k

) for x

k

� t < b, k = 1; 2; : : : . By (2.9) and (2.10), the

sequences (v

k

)

+1

k=1

and (v

0

k

)

+1

k=1

are uniformly bounded and equicontinuous

in ]a; b[ (i.e., on each segment contained in ]a; b[). Hence, without loss of

generality, by the Arzela-Ascoli lemma we may assume that lim

k!+1

v

(i)

k

(t) =

u

(i)

1

(t), i = 0; 1, uniformly in ]a; b[. It is easily seen that the function u

1

is a

solution of the equation (2.1). On the other hand, by (2.9) and (2.11) the

function u

1

satis�es the conditions (2.2) as well. Thus we have proved that

the set of solutions A of the problem (2.1), (2.2) is non-empty. Let us now

show that all functions from A are de�ned on the entire segment [a; b].

Let u

1

2 A be a non-continuable solution. Analogously to that as it has

been done above, we see that

u

0

1

(t)=1+

Z

t

a

(s � a)

�

p(s)

�

�

�

u

1

(s)

s� a

�

�

�

�

ju

0

1

(s)j

1��

�sgn u

1

(s)ds for t2I;

u

1

(t)

t� a

= 1 +

1

t � a

�

�

Z

t

a

(s � a)

�

(t� s)p(s)

�

�

�

u

1

(s)

s � a

�

�

�

�

ju

0

1

(s)j

1��

sgnu

1

(s)ds for t 2 I; (2.12)

where I = ft 2]a; b[: ju

1

(s)j < +1; ju

0

1

(s)j < +1 for a � s � tg. These

two equalities immediately yield

(b� t)ju

0

1

(t)j�b� a+

Z

t

a

(s � a)

�

(b� s)

�

jp(s)j

�

�

�

u

1

(s)

s� a

�

�

�

�

j(b� s)u

0

1

(s)j

1��

ds

for t 2 I;

ju

1

(t)j

t � a

�1+

1

b� a

Z

t

a

(s�a)

�

(b�s)

�

jp(s)j

�

�

�

u

1

(s)

s�a

�

�

�

�

j(b�s)u

0

1

(s)j

1��

ds for t2I:

Adding these inequalities, taking into account (2.7) and using the Gron-

wall-Bellman lemma, we obtain

ju

1

(t)j(t � a)

�1

+ (b � t)ju

0

1

(t)j � (1 + b� a)�

� exp

�

1 + b� a

b� a

Z

b

a

(s � a)

�

(b� s)

�

jp(s)jds

�

for t 2 I: (2.13)
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Consequently, sup I = b.

The equality (2.12) results in

u

1

(t) = t� a� (b� t) �

�

Z

t

a

[(s� a)(b � s)]

�

b� s

p(s)

�

�

�

u

1

(s)

s � a

�

�

�

�

j(b� s)u

0

1

(s)j

1��

sgnu

1

(s)ds +

+

Z

t

a

[(s� a)(b � s)]

�

p(s)

�

�

�

u

1

(s)

s � a

�

�

�

�

j(b� s)u

0

1

(s)j

1��

sgnu

1

(s)ds

for a < t < b;

from which by (2.13) and Proposition 2.1 we conclude that there exists a

�nite limit u

1

(b�).

In a similar manner we can see that the following lemma is valid.

Lemma 2.2. All non-continuable solutions of the equation (2:1) are de-

�ned on the entire segment [a; b].

Remark 2.1. We can be easily convinced that if c 2]a; b[, and u is a

solution of the equation (2.1) satisfying the conditions u(c) = 0, u

0

(c) = 0,

then u is identically equal to zero (see also [5]).

Lemma 2.3. Let u be a solution of the equation (2:1). Then

lim

t!a+

(t � a)ju

0

(t)j = 0 ( lim

t!b�

(b� t)ju

0

(t)j = 0): (2.14)

Proof. First let us show that

lim

t!a+

inf(t � a)ju

0

(t)j = 0 ( lim

t!b�

inf(b� t)ju

0

(t)j = 0): (2.15)

Assume to the contrary that (2.15) violated. Then there exist c 2]a; b[ and

" > 0 such that

ju

0

(t)j >

"

t � a

for a < t < c

�

ju

0

(t)j >

"

b� t

for c < t < b

�

:

The integration of this inequality from t to c (from c to t) yields

ju(t)� u(c)j > " ln

c � a

t � a

for a < t < c

�

ju(t)� u(c)j > " ln

b� c

b� t

for c < t < b

�

;

which is impossible because the function u is bounded. Thus (2.15) is

ful�lled.
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Multiplying both parts of (2.1) by t � a (by b� t) and integrating from

� to t (from t to � ), we obtain

(t � a)u

0

(t) = (� � a)u

0

(� ) + u(t)� u(� ) +

+

Z

t

�

(s � a)p(s)ju(s)j

�

ju

0

(s)j

1��

sgnu(s)ds for a < � < t < b

�

(b� t)u

0

(t) = (b � � )u

0

(� ) + u(� ) � u(t)�

�

Z

�

t

(b� s)p(s)ju(s)j

�

ju

0

(s)j

1��

sgnu(s)ds for a < t < � < b

�

;

(2.16)

from which, by (2.7), we can conclude that

(t� a)ju

0

(t)j � (� � a)ju

0

(� )j+ ju(t)� u(� )j+

+

Z

t

�

(s � a)

�

jp(s)j(ju(s)j+ (s � a)ju

0

(s)j)ds for a < � < t < b

�

(b � t)ju

0

(t)j � (b � � )ju

0

(� )j+ ju(t)� u(� )j+

+

Z

�

t

(b � s)

�

jp(s)j(ju(s)j+ (b � s)ju

0

(s)j)ds for a < t < � < b

�

:

(2.17)

Suppose

c(x) = 2maxfju(t)� u(a+)j : a � t � xg+

+

Z

x

a

(s � a)

�

jp(s)j ju(s)jds for a < x < b

�

c(x) = 2maxfju(t)� u(b�)j : x � t � bg+

+

Z

b

x

(b� s)

�

jp(s)j ju(s)jds for a < x < b

�

;

M (�; x) = (� � a)ju

0

(� )j+ c(x) for a < � � x < b

(M (�; x) = (b� � )ju

0

(� )j+ c(x) for a < x � � < b):

(2.18)

From (2.17) we �nd that

(t�a)ju

0

(t)j�M (�; x)+

Z

t

�

(s�a)

�

jp(s)j

�

(s�a)ju

0

(s)j

�

ds for a<� <t<x<b

�

(b�t)ju

0

(t)j�M (�; x)+

Z

�

t

(b�s)

�

jp(s)j

�

(b�s)ju

0

(s)j

�

ds for a<x<t<�<b

�

;

which in its turn by the Gronwall{Bellman lemma gives

(t�a)ju

0

(t)j�M (�; x) exp

�

Z

x

a

(s�a)

�

jp(s)jds

�

for a<� <t<x<b:
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�

(b�t)ju

0

(t)j�M (�; x) exp

�

Z

b

x

(b�s)

�

jp(s)jds

�

for a<x<t<�< b

�

:

Taking now into account (2.15) and (2.18), we easily �nd that

(t�a)ju

0

(t)j � c(x) exp

�

Z

x

a

(s� a)

�

jp(s)jds

�

for a<t<x<b

�

(b�t)ju

0

(t)j � c(x) exp

�

Z

b

x

(b�s)

�

jp(s)jds

�

for a<x<t<b

�

:

Since lim

x!a+

c(x) = 0 ( lim

x!b�

c(x) = 0), the above inequality makes it possible

to conclude that (2.14) is ful�lled.

Remark 2.2. In proving the above lemma(see the beginning of the proof),

it has been shown that if v 2

e

C

0

loc

(]a; b[) is bounded and there exists a �nite

limit v(a+) (v(b�)), then lim

x!a+

inf(t�a)jv

0

(t)j=0 ( lim

x!b�

inf(b�t)jv

0

(t)j=0).

Lemma 2.4. Let a

1

2]a; b[; b

1

2]a

1

; b[ and let u and w be solutions of the

equation (2:1) satisfying the conditions

u(a

1

) = 0; u

0

(a

1

) > 0

�

u(b

1

) = 0; u

0

(b

1

) < 0

�

;

w(t) > 0 for a

1

� t � b

1

; w

0

(b

1

) = 0 (w

0

(a

1

) = 0):

(2.19)

Let further v 2

e

C

0

([a

1

; b

1

]) be such that

v(t) > 0; v

0

(t) > 0 for a

1

� t � b

1

�

v(t) > 0; v

0

(t) < 0 for a

1

� t � b

1

�

;

v

00

(t) � p(t)jv(t)j

�

jv

0

(t)j

1��

for a

1

< t < b

1

:

Then

u

0

(t) > 0 for a

1

� t � b

1

�

u

0

(t) < 0 for a

1

� t � b

�

(2.20)

and

w

0

(t)

w(t)

<

v

0

(t)

v(t)

for a

1

� t � b

1

�

w

0

(t)

w(t)

>

v

0

(t)

v(t)

for a

1

� t � b

1

�

: (2.21)

Proof. Suppose that (2.20) violated. Then by (2.19) there exists c 2]a

1

; b

1

[

such that u

0

(t) > 0 for a

1

< t < c (u

0

(t) < 0 for c < t � b

1

), and u

0

(c) = 0.

Assume �(t) = j

v

0

(t)

v(t)

j

�

sgn v

0

(t) for a

1

< t < b

1

and �(t) = j

u

0

(t)

u(t)

j

�

sgnu

0

(t)

for a

1

< t � c (for c � t < b

1

). Clearly,

�

0

(t) � �p(t)� �j�(t)j

�+1

�

for a

1

< t < b

1

; (2.22)

�

0

(t) = �p(t) � �j�(t)j

�+1

�

for a

1

< t < c (for c < t < b

1

); (2.23)

�(a

1

+) = +1; �(c) = 0 (�(b

1

�) = �1; �(c) = 0): (2.24)
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By (2.24), there exist c

1

2]a

1

; c[ and c

2

2]c

1

; c[ (c

1

2]c; b

1

[ and c

2

2]c; c

1

[)

such that

�(t) > �(t) > 0 for c

1

< t < c

2

; �(c

1

) = �(c

1

)

�

�(t) < �(t) < 0 for c

2

< t < c

1

; �(c

1

) = �(c

1

)

�

:

(2.25)

On account of this fact, from (2.22) and (2.23) we have

�(t) =�(c

1

) + �

Z

t

c

1

p(s)ds � �

Z

t

c

1

j�(s)j

�+1

�

ds > �(c

1

) +

+ �

Z

t

c

1

p(s)ds � �

Z

t

c

1

j�(s)j

�+1

�

ds � �(t) for c

1

< t < c

2

�

�(t) =�(c

1

) � �

Z

c

1

t

p(s)ds + �

Z

c

1

t

j�(s)j

�+1

�

ds < �(c

1

)�

� �

Z

c

1

t

p(s)ds + �

Z

c

1

t

j�(s)j

�+1

�

� �(t) for c

2

< t < c

1

�

;

which contradicts (2.25). Hence there takes place (2.20). Quite in a similar

manner we can easily be convinced that (2.21) is valid. Thus the lemma is

proved.

Lemma 2.5. Let u be a nontrivial solution of the equation (2:1) satisfying

the condition

u(a+) = 0 (u(b�) = 0); (2.26)

and let v 2

e

C

0

loc

(]a; c]) (v 2

e

C

0

loc

([c; b[)), where c 2]a; b[, have a �nite limit

v(a+) � 0 (v(b�) � 0) and satisfy the conditions

v

0

(t) > 0 for a < t � c (v

0

(t) < 0 for c � t < b);

v

00

(t) � p(t)jv(t)j

�

jv

0

(t)j

1��

for a < t < c (for c < t < b):

Then

u

0

(t) 6= 0 for a < t � c (for c � t < b): (2.27)

Proof. Let u

1

be a solution of the problem (2.1), (2.2). First let us show

that

u

0

1

(t) > 0 for a < t � c: (2.28)

Assume the contrary. Then there exists c

1

2]a; c[ such that u

0

1

(t) > 0 for

a < t < c

1

; u

0

1

(c

1

) = 0. By Lemma 2.4 we have

u

0

1

(t)

u

1

(t)

<

v

0

(t)

v(t)

for a < t < c

1

: (2.29)

Suppose

w(t) = v

0

(t)u

1

(t)� u

0

1

(t)v(t) for a < t < c

1

;
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h(t) =

jv

0

(t)u

1

(t)j

1��

� ju

0

1

(t)v(t)j

1��

v

0

(t)u

1

(t) � u

0

1

(t)v(t)

for a < t < c

1

;

g(t) = p(t)h(t)(u

1

(t)v(t))

�

for a < t < c

1

: (2.30)

Since the function f(x) =

jxj

1��

�1

x�1

is bounded, there exists M

0

> 0 such

that jh(t)j �

M

0

(v(t)u

0

1

(t))

�

for a < t < c

1

. Bearing this in mind, from (2.30)

we have

jg(t)j�M

0

(t�a)

�

jp(t)j

�

u

1

(t)

(t�a)u

0

1

(t)

�

�

�M (t� a)

�

jp(t)j for a<t <

a+c

1

2

;

where

M = M

0

� sup

n�

u

1

(t)

(t� a)u

0

1

(t)

�

�

: a < t <

a+ c

1

2

o

:

Thus the function g is integrable on the segment [a;

a+c

1

2

].

It can be easily seen that w

0

(t) � g(t)w(t) for a < t < (a + c

1

)=2. Ac-

cording to the theorem on di�erential inequalities, the above inequality

yields

w(t) � w

�

a+ c

1

2

�

exp

�

�

Z

a+c

1

2

t

g(s)ds

�

�

� w

�

a+ c

1

2

�

exp

�

�

Z

a+c

1

2

a

jg(s)jds

�

for a < t � (a+ c

1

)=2:

The latter inequality, owing to (2.29), results in

lim

t!a+

inf w(t) > 0: (2.31)

On the other hand, by Remark 2.2 and condition (2.2) we have

lim

t!a+

inf w(t) = lim

t!a+

inf

�

(t� a)v

0

(t)

u

1

(t)

t� a

� u

0

1

(t)v(t)

�

� 0;

which contradicts (2.31). Thus we have proved that (2.28) is ful�lled.

Let us now show that (2.27) is satis�ed. By Lemma 2.4, there exists

c

0

2]a; c[ such that u(t) 6= 0 for a < t < c

0

. Without loss of generality we

will assume that

u(t) > 0 for a < t < c

0

: (2.32)

Show that

u

0

(t) > 0 for a < t < c

0

: (2.33)

Assume that (2.33) violated. Then there exists c

2

2 ]a; c

0

[ such that u

0

(c

2

) =

0. By Lemma 2.4 we have

u

0

(t)

u(t)

<

u

0

1

(t)

u

1

(t)

for a < t < c

2

: From what has been

done above we can see that bw

0

(t) = bg(t) bw(t) for a < t < c

2

; where

bw(t) = u

0

(t)u

1

(t) � u

0

1

(t)u(t) for a < t < c

2

;
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bg(t) = p(t)

b

h(t)(u(t)u

1

(t))

�

for a < t < c

2

;

b

h(t) =

ju

0

(t)u

1

(t)j

1��

� ju

0

1

(t)u(t)j

1��

u

0

(t)u

1

(t)� u

0

1

(t)u(t)

for a < t < c

2

;

which, as above, leads to the contradiction 0 > 0.

Thus we have proved that if for some c

0

2]a; c[ the inequality (2.32) is

ful�lled, then (2.33) also holds. On the basis of the above-said we readily

conclude that u(t) > 0 for a < t � c, and hence (2.27) takes place.

Remark 2.3. Let u

1

(u

2

) be a solution of the problem (2.1), (2.2) ((2.1),

(2.3)). It is clear that there exists c 2]a; b[ such that u

0

1

(t) > 0 for a < t � c

(u

0

2

(t) < 0) for c � t < b). Using Lemma 2.5 for the case v(t) = u

1

(t) for

a < t � c (v(t) = u

2

(t) for c � t < b), we �nd that if u is a nontrivial

solution of the equation (2.1) satisfying the condition (2.26), then there

exists c 2]a; b[ such that (2.27) holds.

Lemma 2.6. Let u be a nontrivial solution of the equation (2:1) satisfying

the conditions

u(a+) = 0; lim

t!a+

inf(t � a)

�

�

�

u

0

(t)

u(t)

�

�

�

< +1;

�

u(b�) = 0; lim

t!b�

inf(b � t)

�

�

�

u

0

(t)

u(t)

�

�

�

< +1

�

:

(2.34)

Then

lim

t!a+

(t� a)

u

0

(t)

u(t)

= 1;

�

lim

t!b�

(b� t)

u

0

(t)

u(t)

= �1

�

: (2.35)

Proof. By Remark 2.3, without loss of generality we can assume that for

some c

0

2]a; b[

u

0

(t) > 0 for a < t < c

0

(u

0

(t) < 0 for c

0

< t < b): (2.36)

Multiplying both parts of (2.1) by t�a (by b� t) and integrating from �

to t (from t to � ), we obtain equality (2.16), which with account for (2.36)

and (2.7) yields

(t� a)u

0

(t)

u(t)

� 1 +

(� � a)u

0

(� )

u(� )

+

+

Z

t

�

(s � a)

�

jp(s)j

h

1 +

(s � a)u

0

(s)

u(s)

i

ds for a < � < t < c

0

�

(b � t)ju

0

(t)j

u(t)

� 1 +

(b� � )ju

0

(� )j

u(� )

+

+

Z

�

t

(b� s)

�

jp(s)j

h

1 +

(b� s)ju

0

(s)j

u(s)

i

ds for c

0

< t < � < b

�

(2.37)
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and

�

�

�

(t� a)u

0

(t)

u(t)

� 1

�

�

�

�

(� � a)u

0

(� )+u(� )

u(t)

+

+

Z

t

�

(s � a)

�

jp(s)j

h

1+

(s � a)u

0

(s)

u(s)

i

ds for a < � < t < c

0

�

�

�

�

(b � t)u

0

(t)

u(t)

+ 1

�

�

�

�

(b� � )ju

0

(� )j+u(� )

u(t)

+

+

Z

�

t

(b� s)

�

jp(s)j

h

1+

(b� s)ju

0

(s)j

u(s)

i

ds for c

0

< t < � < b

�

:

(2.38)

From (2.37) we have

(t�a)u

0

(t)

u(t)

�M (� )+

Z

t

�

(s�a)

�

jp(s)j

�

(s � a)u

0

(s)

u(s)

�

ds for a<� <t<c

0

�

(b�t)ju

0

(t)j

u(t)

�M (� )+

Z

�

t

(b�s)

�

jp(s)j

�

(b� s)ju

0

(s)j

u(s)

�

ds for c

0

<t<� <b

�

;

where

M (� )=1+

(� � a)u

0

(� )

u(� )

+

Z

c

0

a

(s � a)

�

jp(s)jds for a<� <c

0

�

M (� )=1+

(b� � )ju

0

(� )j

u(� )

+

Z

b

c

0

(b� s)

�

jp(s)jds for c

0

<� <b

�

:

By the Gronwall{Bellman lemma the last inequality results in

(t � a)u

0

(t)

u(t)

�M (� ) exp

h

Z

t

a

(s � a)

�

jp(s)jds

i

for a < � < t < c

0

�

(b� t)ju

0

(t)j

u(t)

�M (� ) exp

h

Z

b

t

(b� s)

�

jp(s)jds

i

for c

0

< t < � < b

�

:

Taking now into account (2.34), it is not di�cult to conclude that there

exists M

0

> 0 such that

(t� a)u

0

(t)

u(t)

�M

0

for a < t < c

0

�

(b� t)ju

0

(t)j

u(t)

�M

0

for c

0

< t < b

�

:

On the basis of the above-said, from (2.38) we �nd that

�

�

�

(t� a)u

0

(t)

u(t)

� 1

�

�

�

�

(� � a)u

0

(� ) + u(� )

u(t)

+ (1 +M

0

)

Z

t

a

(s � a)

�

jp(s)jds

for a < � < t < c

0
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�

�

�

�

(b� t)u

0

(t)

u(t)

+ 1

�

�

�

�

(b� � )ju

0

(� )j+ u(� )

u(t)

+ (1 +M

0

)

Z

b

t

(b� s)

�

jp(s)jds

for c

0

< t < � < b

�

:

This, by virtue of Lemma 2.3, allows us to conclude that

�

�

�

(t� a)u

0

(t)

u(t)

�1

�

�

�

� (1 +M

0

)

Z

t

a

(s� a)

�

jp(s)jds for a<t<c

0

�

�

�

�

(b� t)u

0

(t)

u(t)

+1

�

�

�

� (1 +M

0

)

Z

b

t

(b� s)

�

jp(s)jds for c

0

<t<b

�

:

Hence (2.35) is ful�lled.

Lemma 2.7. Let u be a non-trivial solution of the equation (2:1) satisfying

the condition (2:26). Then (2:35) is satis�ed.

Proof. By Remark 2.3, without loss of generality we can assume that (2.36),

where c

0

2]a; b[ is some point, is ful�lled. Multiplying both parts of (2.1)

by t� a (by b� t), integrating from a to t (from t to b) and taking Lemma

2.3 into account, we obtain

(t � a)u

0

(t)=u(t)+

Z

t

a

(s� a)p(s)ju(s)j

�

ju

0

(s)j

1��

ds for a < t < c

0

�

(b� t)ju

0

(t)j=u(t) +

Z

b

t

(b � s)p(s)ju(s)j

�

ju

0

(s)j

1��

ds for c

0

<t<b

�

:

(2.39)

By Lemma 2.6,

lim

t!a+

inf(t� a)

u

0

(t)

u(t)

> 0

�

lim

t!b�

inf(b� t)

ju

0

(t)j

u(t)

> 0

�

:

Hence there exist " > 0 and c

1

2]a; c

0

[, (c

1

2]c

0

; b[) such that

u(t)<"(t�a)u

0

(t) for a<t<c

1

; (u(t)<"(b�t)ju

0

(t)j for c

1

<t<b): (2.40)

Owing to (2.36) and (2.40), it follows from (2.39) that

(t� a)u

0

(t)�u(x)+"

�

Z

t

a

(s � a)

�

jp(s)j((s � a)ju

0

(s)j)ds for a <t�x <c

1

�

(b�t)ju

0

(t)j�u(x)+"

�

Z

b

t

(b � s)

�

jp(s)j((b� s)ju

0

(s)j)ds for c

1

<x� t<b

�

;

from which by the Gronwall-Bellman lemma we �nd that

(x � a)u

0

(x)

u(x)

�exp

h

"

�

Z

x

a

(s� a)

�

jp(s)jds

i

for a <x <c

1

�

(b� x)ju

0

(x)j

u(x)

�exp

h

"

�

Z

b

x

(b� s)

�

jp(s)jds

i

for c

1

<x<b

�

:



144

Consequently (2.34) is ful�lled and Lemma 2.6 allows one to conclude that

the equality (2.35) holds.

Lemma 2.8. Let u be a solution of the equation (2:1), satisfying the con-

ditions

u(a+) = 0; lim

t!a+

inf ju

0

(t)j = 0

�

u(b�) = 0; lim

t!b�

inf ju

0

(t)j=0

�

: (2.41)

Then u is identically equal to zero.

Proof. Assume to the contrary that u is a non-trivial solution of the equa-

tion (2.1) satisfying the conditions (2.41). By Remark 2:3, without loss of

generality we will assume that (2.36), where c

0

2]a; b[, is ful�lled. From

(2.1) we �nd that

u

0

(t)=u

0

(� )+

Z

t

�

p(s)ju(s)j

�

ju

0

(s)j

1��

sgnu(s)ds for a <� <t < b;

u(t)=u(� )+(t � � )u

0

(� )+

Z

t

�

(t�s)p(s)ju(s)j

�

ju

0

(s)j

1��

sgnu(s)ds

for a < � < t < b:

This, with regard for (2.7), allows one to conclude that

ju

0

(t)j � ju

0

(� )j+

Z

t

�

(s � a)

�

jp(s)j

h

ju(s)j

s � a

+ ju

0

(s)j

i

ds for a < � < t < b;

ju(t)j

t � a

�

ju(� )j

� � a

+ju

0

(� )j+

Z

t

�

(s�a)

�

jp(s)j

h

ju(s)j

s�a

+ju

0

(s)j

i

ds for a<� <t<b:

By Lemma 2.7, there exist " > 0 and c

1

2]a; c

0

[ such that (2.40) is ful�lled.

Combining the last two inequalities, using the Gronwall-Bellman lemmaand

condition (2.40), we obtain

ju(t)j

t� a

+ju

0

(t)j� (2+")u

0

(� ) exp

�

Z

t

a

(s�a)

�

jp(s)jds

�

for a<� <t<b; � <c

1

:

If we now take into account (2.41), then from the above inequality we will

arrive at ju(t)j + (t � a)ju

0

(t)j = 0 for a < t < b; which contradicts our

assumption.

Lemma 2.9. The set of proper solutions of the equation (2:1) is non-

empty.

Proof. Let 
 2 [a; b[ and � 2]
; b]. Denote by B([
; �]) the set of all non-

trivial solutions of (2.1) satisfying the condition

mes

n

ft 2]
; �[: u

0

(t) = 0gnft 2]
; �[: p(t) = 0g

o

= 0:

We have to show that B([a; b]) 6= ?.
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First we show that if u

0

2 B([
; �]), where � < b, then there exist �

1

2]�; b[

and a non-trivial solution u

0

of (2.1) such that

u

0

(t) = u

0

(t) for 
 � t � �; u

0

2 B([
; �

1

]): (2.42)

Indeed, by Remark 2.1, either

u

0

(�) 6= 0; (2.43)

or

u

0

(�) = 0; u

0

0

(�) 6= 0: (2.44)

Suppose that (2.43) is ful�lled. Denote by �

0

the solution of the Cauchy

problem

�

0

= �p(t)� �j�j

�+1

�

; �(�) =

�

�

�

u

0

0

(�)

u

0

(�)

�

�

�

�

sgnu

0

0

(�):

Assume �

0

is de�ned on [�; �

1

]. Let

u(t) =

(

u

0

(t) for 
 � t � �;

u

0

(�) exp

h

R

t

�

j�

0

(s)j

1

�

sgn �

0

(s)ds

i

for � < t � �

1

:

The function u, as is easily seen, satis�es (2.1) for t 2]
; �

1

[. By Lemma

2.2, there exists a solution u

0

of (2.1) such that u

0

(t) = u(t) for t 2 [
; �

1

].

Clearly, u

0

satis�es (2.42).

Suppose now that (2.44) is ful�lled. Denote by v

0

a solution of the Cauchy

problem u

00

= p(t)juj

�

ju

0

j

1��

sgnu; u(�) = 0, u

0

(�) = u

0

0

(�): Obviously,

there exists �

1

2]�; b[ such that v

0

0

(t) 6= 0 for t 2 [�; �

1

]. Suppose

u(t) =

(

u

0

(t) for 
 � t � �;

v

0

(t) for � < t � �

1

:

Further, as above, we can easily see that there exists a solution u

0

of the

equation (2.1) satisfying (2.42).

Let now u

1

be a solution of the problem (2.1), (2.2). It is not di�cult

to see that there exists a

1

2]a; b[ such that u

1

2 B([a; a

1

]): Denote by I the

set of those � 2 [a

1

; b] for which there exists a solution u of the equation

(2.1), satisfying the conditions u(t) = u

1

(t) for a � t � a

1

, u 2 B([a; �]).

Let b

1

= sup I. By Lemma 2.2, to prove the lemma it su�ces to show that

b

1

= b.

Assume to the contrary that b

1

< b. Then, as is shown above, if � 2 I,

there exists �

1

2]�; b[ such that �

1

2 I. Consequently, I 6= ?, and I is a

connected set whose every point, except the point a

1

, is an interior point.

In view of this fact,

b

1

=2 I: (2.45)
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Choose a sequence of points (t

k

)

+1

k=1

� I and a sequence of functions

(v

k

)

+1

k=1

such that

t

k

< t

k+1

; k = 1; 2; : : : ; a

1

< t

1

; lim

k!+1

t

k

= b

1

;

v

k

2 B([a; t

k

]); k = 1; 2; : : : ; (2.46)

v

1

(t) = u

1

(t) for a < t < a

1

;

v

k+1

(t) = v

k

(t) for a < t < t

k

; k = 1; 2; : : : :

Assume

u(t) =

(

v

1

(t) for a � t < t

1

;

v

k

(t) for t

k�1

� t < t

k

; k = 2; 3; : : : :

(2.47)

It is seen that u 2

e

C

0

loc

(]a; b

1

[) and u satis�es (2.1) for t 2]a; b

1

[. Hence

by Lemma 2.2 there exists a solution u of (2.1) such that u(t) = u(t) for

a � t < b

1

. From (2.46) and (2.47) we have

ft 2]a; t

k

[: v

0

k

(t) = 0g�ft2]a; t

k

[: p(t)=0g [A

k

; mesA

k

=0; k=1; 2: : : :;

ft 2]a; b

1

[: u

0

(t) = 0g�ft 2]a; b

1

[: p(t)=0g [A; A

k

=

1

[

k=1

A

k

:

Since mesA =

+1

P

k=1

mesA

k

= 0, this implies that u 2 B([a; b

1

]) and, conse-

quently, b

1

2 I, which contradicts (2.45).

Remark 2.4. In the above lemma we have, in fact, proved that the prob-

lem (2.1), (2.2) has at least one proper solution. Similarly we can see

that the problem (2.1), (2.3) has at least one proper solution, and for any

t

0

2]a; b[ and c

1

, c

2

2 R, jc

1

j+ jc

2

j 6= 0, the Cauchy problem

u

00

= p(t)juj

�

ju

0

j

1��

sgnu; u(t

0

) = c

1

; u

0

(t

0

) = c

2

has at least one proper solution.

Lemma 2.10. Let there exist c 2]a; b[ and a continuous function v 2

e

C

0

loc

(]a; c[[]c; b[) having �nite limits v(a+) � 0, v(b�) � 0, v

0

(c�) > 0,

v

0

(c+) < 0 and satisfying the conditions

v

00

(t) � p(t)jv(t)j

�

jv

0

(t)j

1��

for a < t < b;

v(t) > 0 for a < t < b; v

0

(t)>0 for a < t < c; v

0

(t)<0 for c < t < b:

Then p 2 U

�

(]a; b[).

Proof. Assume the contrary. Let p =2 U

�

(]a; b[). Then there exist a

1

2 [a; b[,

b

1

2]a

1

; b] and a solution u

0

of the equation (2.1) satisfying the conditions

u

0

(t) > 0 for a

1

< t < b

1

; u

0

(a

1

+) = 0; u

0

(b

1

�) = 0: (2.48)
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By Lemma 2.8 and Remark 2.1, there exist �

1

2]a

1

; b

1

[ and �

2

2 [�

1

; b

1

[ such

that

u

0

0

(t) > 0 for a

1

< t < �

1

; u

0

0

(�

1

) = 0;

u

0

0

(t) < 0 for �

1

< t < b

1

; u

0

0

(�

2

) = 0:

Let u

1

and u

2

be some solutions of the problems (2.1), (2.2) and (2.1), (2.3),

respectively. Then by Lemmas 2.4 and 2.5 (with v(t) = u

1

(t), u(t) = u

0

(t)

and v(t) = u

2

(t), u(t) = u

0

(t), respectively), there exist t

1

2]a; �

1

] and

t

2

2 [�

2

; b[ such that

u

0

1

(t) > 0 for a < t < t

1

; u

0

1

(t

1

) = 0;

u

0

2

(t) < 0 for t

2

< t < b; u

0

2

(t

2

) = 0:

By Lemma 2.4 (with u(t) = u

1

(t) and u(t) = u

2

(t), respectively), we have

t

1

> c and t

2

< c, which is impossible, since t

2

� t

1

.

Lemma 2.11. Let there exist c 2]a; b[ and a function � 2

e

C

loc

(]a; c[[]c; b[)

having �nite limits �(c�) � �(c+) and satisfying the conditions

�

0

(t) � �p(t)� �j�(t)j

�+1

�

for a < t < b; (2.49)

lim

t!a+

inf(t� a)

�

�(t) < 1; lim

t!b�

sup(b� t)

�

�(t) > �1: (2.50)

Then p =2 O

�

(]a; b[).

Proof. Assume to the contrary that p 2 O

�

(]a; b[). Then there exist a

1

2

[a; b[, b

1

2]a

1

; b] and a proper solution u

0

of the equation (2.1) satisfying

the conditions (2.48). Suppose a

1

= a and b

1

= b (the lemma for the rest

cases is proved analogously). Let us introduce the function � by �(t) =

�

�

�

u

0

(t)

u(t)

�

�

�

�

sgnu

0

(t) for a < t < b. Clearly,

�

0

(t) = �p(t)� �j�(t)j

�+1

�

for a < t < b: (2.51)

By Lemma 2.6,

lim

t!a+

(t� a)

�

�(t) = 1; lim

t!b�

(b� t)

�

�(t) = �1: (2.52)

From (2.50) and (2.52) we readily conclude that there exist t

1

2]a; b[ and

" 2]0; b� t

1

[ such that � 2

e

C([t

1

; t

1

+ "]) and

�(t) > �(t) for t

1

< t < t

1

+ "; �(t

1

) = �(t

1

): (2.53)

Suppose w(t) = �(t) � �(t) for t

1

� t � t

1

+ ".

It is easy to see that there exists an integrable on [t

1

; t

1

+ "] function

h :]t

1

; t

1

+ "[! R such that

�

�

�(t)

�

�

�+1

�

�

�

�

�(t)

�

�

�+1

�

=

�

�(t) � �(t)

�

h(t) for

t

1

< t < t

1

+ ". Owing to this fact, from (2.49) and (2.51) we obtain

w

0

(t) � ��h(t)w(t) for t

1

< t < t

1

+ "; which allows us to conclude that

w(t) < 0 for t

1

< t < t

1

+", since w(t

1

) = 0. But this contradicts (2.53).
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3. Proof of the Basic Results

Proof of Theorem 1:1. Let u

0

be a proper solution of the equation (1.1) (see

Lemma 2.9). Let us show that u

0

has at least one zero in the interval ]a; b[.

Assume to the contrary that

u

0

(t) > 0 for a < t < b: (3.1)

Suppose

�(t) =

�

�

�

u

0

0

(t)

u

0

(t)

�

�

�

�

sgnu

0

0

(t) for a < t < b: (3.2)

Clearly,

�

0

(t) = �p(t)� �

�

�

�(t)

�

�

�+1

�

for a < t < b: (3.3)

We can easily see that

�

t 2]a; �] : (t� a)

�

�(t) = 1

	

[

[

�

t 2 [�; b[: (b� t)

�

�(t) = �1

	

[

�

t 2 [�; �] : �(t) = 0

	

6=]a; b[: (3.4)

Multiplying both parts of (3.3) by (t � a)

�+1

, integrating from a to � and

taking into account Lemmas 2.3 and 2.7, we obtain

(� � a)

�

�(�) =

�

� � a

Z

�

a

(s � a)

�+1

p(s)ds +

+

1

� � a

Z

�

a

h

(�+ 1)(s� a)

�

�(s) � �(s � a)

�+1

�

�

�(s)

�

�

�+1

�

i

ds: (3.5)

Multiplying now both parts of (3.3) by (b � t)

�+1

, integrating from � to b

and taking into account Lemmas 2.3 and 2.7, we obtain

(b � �)

�

�(�)=

�

b� �

Z

b

�

(b� s)

�+1

p(s)ds+

+

1

b� �

Z

b

�

h

(�+ 1)(b� s)

�

�(s) + �(b� s)

�+1

�

�

�(s)

�

�

�+1

�

i

ds: (3.6)

Finally, integrating (3.3) from � to �, we obtain

��

Z

�

�

p(s)ds = �(�) � �(�) � �

Z

�

�

�

�

�(s)

�

�

�+1

�

ds: (3.7)

We readily see that

(�+ 1)x� �

�

�

x

�

�

�+1

�

< 1 for x 2 Rnf1g;

(�+ 1)x+ �

�

�

x

�

�

�+1

�

> �1 for x 2 Rnf�1g:

(3.8)
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Taking into account (3.4) and (3.8), from (3.5){(3.7) we obtain three in-

equalities

(� � a)

�

�(�) � 1 +

�

� � a

Z

�

a

(s � a)

�+1

p(s)ds; (3.9)

(b� �)

�

�(�) � �1 �

�

b� �

Z

b

�

(b� s)

�+1

p(s)ds; (3.10)

��

Z

�

�

p(s)ds � �(�) � �(�); (3.11)

of which at least one is ful�lled in the strong sense. Owing to (3.9) and

(3.10), the inequality (3.11) enables us to conclude that the condition (1.4)

violated. Consequently, every proper solution of the equation (1.1) has at

least one zero in the interval ]a; b[. In particular, the proper solution of

the problem (2.1), (2.2) (see Remark 2.4) has also at least one zero in the

interval ]a; b[, and hence p 2 O

�

(]a; b[). �

Proof of Corollary 1:1. By the condition (1.5), one can choose � 2]a;

a+b

2

]

and � 2 [

a+b

2

; b[ such that

��(�+ 1)

�

1

(� � a)

�+1

Z

�

a

Q

�

s;

a+ b

2

; �

�

ds+

+

1

(b� �)

�+1

Z

b

�

Q

�

s;

a+ b

2

; �

�

ds

�

�

1

(� � a)

�

+

1

(b� �)

�

: (3.12)

Taking into account Proposition 2.1, we can easily verify that

Z

�

a

Q

�

s;

a+ b

2

; �

�

ds=

1

�+ 1

�

(� � a)

�+1

Z

a+b

2

�

p(s)ds+

Z

�

a

(s � a)

�+1

p(s)ds

�

;

Z

b

�

Q

�

s;

a+ b

2

; �

�

ds=

1

�+ 1

�

(b� �)

�+1

Z

�

a+b

2

p(s)ds+

Z

b

�

(b � s)

�+1

p(s)ds

�

:

In view of that fact we �nd from (3.12) that the inequality (1.4) is ful�lled.

Hence, by Theorem 1.1, p 2 O

�

(]a; b[). �

Proof of Corollary 1:2. By (1.7), there exists c 2]a; b[nft

0

g such that

�Q(c; t

0

; �) � 1 +max

n�

t

0

� a

b� t

0

�

�

;

�

b� t

0

t

0

� a

�

�

o

: (3.13)

Suppose

� =

(

c if c < t

0

;

t

0

if c > t

0

;

� =

(

t

0

if c < t

0

;

c if c > t

0

:

From (3.13) we easily conclude that ��

R

�

�

p(s)ds �

1

(��a)

�

+

1

(b��)

�

: This

and the inequality (1.6) show that (1.4) is ful�lled, and hence by Theorem

1.1, p 2 O

�

(]a; b[). �
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Proof of Theorem 1:1

0

. Let u

1

be a proper solution of the problem (2.1),

(2.2) (see Remark 2.4). Let us show that u

1

has at least one zero in the

interval ]a; b[. Assume the contrary. Then by (1.6) either

u

0

1

(t) > 0 for a < t < b; (3.14)

or there exist c

1

2]a; b[ and c

2

2 [c

1

; b[ such that

u

0

1

(t) > 0 for a < t < c

1

; u

0

1

(t) < 0 for c

2

< t < b;

u

0

1

(t) = 0 for c

1

� t � c

2

:

(3.15)

Suppose �(t) = j

u

0

1

(t)

u

1

(t)

j

�

sgn u

0

1

(t) for a < t < b. It is clear that (3.3) is

ful�lled.

Assume that (3.15) is ful�lled. Multiplying both parts of (3.3) by (t �

a)

�+1

and integrating from a to t, we obtain

(t� a)

�

�(t) = �

�

t� a

Z

t

a

(s � a)

�+1

jp(s)jds+

+

1

t � a

Z

t

a

h

(�+ 1)(s� a)

�

�(s)��(s � a)

�+1

�

�

�(s)

�

�

�+1

�

i

ds for a<t <b;

which, according to (3.8), results in �(t) �

1

a

�

1

(t)

for a < t < b: Assume now

that for some natural k

�(t) �

1

a

�

k

(t)

for a < t < b: (3.16)

From (3.3) with regard for (3.16) we have

�

�

�

1

�

(t)

�

0

= jp(t)j

�

�(t)

�

�

�+1

�

+ 1 � 1 + a

�+1

k

(t)jp(t)j for a < t < c

1

:

Integrating the above inequality from a to t, we arrive at

1

�

1

�

(t)

� t� a+

Z

t

a

a

�+1

k

(s)jp(s)jds for a < t < c

1

:

Owing to (3.15), we �nd

�(t) �

1

a

�

k+1

(t)

for a < t < b:

Thus it is proved by induction that for any natural k the inequality (3.16)

is ful�lled. Analogously, we can see that for any natural k

�(t) � �

1

b

�

k

(t)

for a < t < b: (3.17)

Suppose now that (3.14) is ful�lled. Then, as above, we see that (3.16)

holds and the inequality (3.17) is trivial in this case.
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Integrating now (3.3) from � to � and taking into account (3.16) and

(3.17) (for k = n), we obtain

��

Z

�

�

jp(s)jds �

1

a

�

n

(�)

+

1

b

�

n

(�)

;

which contradicts (1.8). �

Proof of Theorem 1:2. Let u

0

be a proper solution of the equation (1.1).

Let us show that u

0

has at least one zero in the interval ]a; b[. Assume to

the contrary that (3.1) is ful�lled. Introduce the function � by (3.2). It is

clear that (3.3) holds. We can easily verify that

(�+1)f

1

�+1

(t)�

Z

t

a

jf

0

(s)j

f

�

�+1

(s)

ds�(t� a)

�

�+1

�

Z

t

a

jf

0

(s)j

�+1

f

�

(s)

ds

�

1

�+1

for a<t<c;

(�+1)g

1

�+1

(t)�

Z

b

t

jg

0

(s)j

g

�

�+1

(s)

ds�(b� t)

�

�+1

�

Z

b

t

jg

0

(s)j

�+1

g

�

(s)

ds

�

1

�+1

for c<t<b:

By Lemmas 2.3 and 2.7 we have

lim

t!a+

f(t)�(t) = 0; lim

t!b�

g(t)�(t) = 0: (3.18)

Multiplying both parts of (3.3) by f and integrating from a+ " to c, where

" 2]0; c� a[, we obtain

��

Z

c

a+"

f(s)p(s)ds + f(c)�(c) � f(a + ")�(a + ") =

=

Z

c

a+"

h

f

0

(s)�(s) � �f(s)

�

�

�(s)

�

�

�+1

�

i

ds �

�

Z

c

a+"

f(s)

h

jf

0

(s)j

f(s)

j�(s)j � �

�

�

�(s)

�

�

�+1

�

i

ds: (3.19)

Analogously, multiplying both parts of (3.3) by g and integrating from c to

b� �, where � 2]0; b� c[, we arrive at

��

Z

b��

c

g(s)p(s)ds + g(b � �)�(b � �)� g(c)�(c) �

�

Z

b�"

c

g(s)

h

jg

0

(s)j

g(s)

j�(s)j � �

�

�

�(s)

�

�

�+1

�

i

ds: (3.20)

It can be easily veri�ed that

�jxj � �jxj

�+1

�

�

�

�

�+ 1

�

�+1

for x 2 R:
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Taking this and the equalities (3.18) into account, from (3.19) and (3.20)

we conclude that

��g(c)

Z

c

a

f(s)p(s)ds + g(c)f(c)�(c) �

g(c)

(�+ 1)

�+1

Z

c

a

jf

0

(s)j

�+1

f

�

(s)

ds;

��f(c)

Z

b

c

g(s)p(s)ds � f(c)g(c)�(c) �

f(c)

(� + 1)

�+1

Z

b

c

jg

0

(s)j

�+1

g

�

(s)

ds:

Adding the last two inequalities, we see that (1.9) violated. �

Proof of Corollary 1:3. The condition (1.10) follows from the condition (1.9)

in the case where f(t) = [(t� a)(b� t)]

�+1

and g(t) = [(t� a)(b� t)]

�+1

for

a < t < b, the condition (1.11) is obtained in the case where f(t) = (t�a)

�

,

and g(t) = (b� t)

�

, for a < t < b, and the condition (1.12) in the case where

f(t) = sin

�(t�a)

b�a

and g(t) = sin

�(t�a)

b�a

for a < t < b. �

Proof of Theorem 1:3. Suppose that [p]

�

6� 0, since otherwise p 2 U

�

(]a; b[).

Choose " > 0 such that supf(A(t)+ ")

�

� jB(t)j

1��

: a < t < bg < b� a: Let

v

0

(t) = " + A(t) for a < t < b: (3.21)

Clearly, v

0

(t) > 0 for a < t < b, v

0

(a+) = ", v

0

(b�) = ", and there exists

c

0

2]a; b[ such that v

0

0

(t) sgn(c

0

� t) > 0 for a < t < b and t 6= c

0

and

v

0

0

(t) = �

1

b � a

B(t) for a < t < b;

v

00

0

(t)=�[p(t)]

�

�

(t�a)(b�t)

�

��

�p(t)

�

�

v

0

(t)

�

�

�

�

�

v

0

0

(t)

�

�

1��

for a<t<b: (3.22)

Let u

1

and u

2

be some proper solutions of the problems (2.1), (2.2) and

(2.1), (2.3), respectively. By Lemma 2.5 (in case v(t) = v

0

(t) for a < t < b),

there exist t

1

2 [c

0

; b[ and t

2

2]a; c

0

] such that

u

0

1

(t) > 0 for a < t < t

1

; u

0

1

(t

1

) = 0;

u

0

2

(t) < 0 for t

2

< t < b; u

0

2

(t

2

) = 0:

(3.23)

Suppose that t

1

= t

2

. Then by (3.23), the function

u(t) =

(

u

1

(t) for a < t � c

0

;

u

2

(t)

u

1

(c

0

)

u

2

(c

0

)

for c

0

< t < b

will be a proper solution of the equation (1.1), and hence

p 2 O

�

(]a; b[): (3.24)

Suppose

�(t) =

�

�

�

v

0

0

(t)

v

0

(t)

�

�

�

�

sgn v

0

0

(t) for a < t < b:

By (3.21), (3.22) and Proposition 2.1 we can easily see that � satis�es

the conditions of Lemma 2.11, and hence p =2 O

�

(]a; b[), which contradicts

(3.24).
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Consequently, t

1

> t

2

. Then by (3.23), there exists c 2]t

1

; t

2

[ such that

u

0

1

(c) > 0 > u

0

2

(c). It can be easily veri�ed that the function

v(t) =

(

u

1

(t) for a < t � c;

u

2

(t)

u

1

(c)

u

2

(c)

for c < t < b

satis�es the conditions of Lemma 2.10, and hence p 2 U

�

(]a; b[). �

Proof of Theorem 1:4. Let k = '(Q

�

(t

0

; �)),

�(t) =

(

�

Q(t;t

0

;�)�k

(t�a)

�

for a < t < t

0

;

Q(t;t

0

;�)�k

(b�t)

�

for t

0

� t < b:

(3.25)

By (1.13) we have

k � k

�

�+1

� Q(t; t

0

; �) < k for a < t < b; (3.26)

from which we conclude that �(t) sgn(t

0

� t) > 0 for a < t < b, t 6= t

0

and

�

�

�(t)

�

�

�+1

�

� kh(t) for a < t < b; (3.27)

where

h(t) =

(

1

(t�a)

�+1

for a < t � t

0

;

1

(b�t)

�+1

for t

0

< t < b:

(3.28)

Suppose v(t) = exp

�

sgn(t

0

�t)

R

t

t

0

�

�

�(s)

�

�

1

�

ds

�

for a < t < b:By (3.25){(3.27)

we can see that v 2

e

C

0

loc

(]a; t

0

[[]t

0

; b[), v

0

(t) sgn(t

0

� t) > 0 for a < t < b,

t 6= t

0

, v

0

(t

0

+) > 0 > v

0

(t

0

�), v(a+) = 0, v(b�) = 0 and

v

00

(t) = p(t)

�

�

v(t)

�

�

�

�

�

v

0

(t)

�

�

1��

+ v(t)

�

�

�(t)

�

�

1��

�

�

�

�

�(t)

�

�

�+1

�

� kh(t)

�

�

� p(t)

�

�

v(t)

�

�

�

�

�

v

0

(t)

�

�

1��

for a < t < b:

Hence by Lemma 2.10 we have p 2 U

�

(]a; b[). �

Proof of Theorem 1:5. Let

k =

(

'(Q

�

(t

0

; �)) for Q

�

(t

0

; �) 6= 0;

k

1

for Q

�

(t

0

; �) = 0;

where k

1

2](

�

�+1

)

�+1

; 1[ is chosen in such a way that Q

�

(t

0

; �) < k

1

+k

�

�+1

1

.

It is easy to see that k 2]0; 1[.

Introduce the function � by the equality (3.25). Clearly,

�2

e

C

loc

(]a; t

0

[[]t

0

; b[); �(t

0

�)=

k

(t

0

� a)

�

; �(t

0

+)=�

k

(b� t

0

)

�

;

lim

t!a+

(t � a)

�

�(t) = k < 1; lim

t!b�

(b� t)

�

�(t) = �k > �1:
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According to (1.14) and (1.15) we readily conclude that k � k

�

�+1

�

�Q(t; t

0

; �) � k + k

�

�+1

for a < t < b. Thus (3.27), where h is the function

de�ned by (3.28), is ful�lled. In view of this fact

�

0

(t) = �p(t)� �kh(t) � �p(t) � �j�(t)j

�+1

�

for a < t < b:

By Lemma 2.11 we now have p 2 O

�

(]a; b[). �

The validity of Corollaries 1.5 and 1.6 follows from the fact that '(Q

�

(t

0

;

�)) � (

�

�+1

)

�+1

.
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