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Abstract. In the present paper we consider the equation
u” = p(t)|ul*|u' '~ sgnu,

where « €]0, 1], the function p :]a,b[— R is locally integrable, and fab(s —
a)®(b— s)*|p(s)|ds < +o0. Sufficient conditions for the existence of a solu-
tion having at least two zeros on the segment [a, b] are established.
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INTRODUCTION

Below we will use the following notation:

R is the set of real numbers;

Lioc(]a, b]) is the set of functions p :]a,b[— R which are Lebesgue inte-
grable on each segment contained in ]a, b[;

6’([a, b]) is the set of functions u : [a,b] — R absolutely continuous on
the segment [a, b];

éloc(f), where I C R, is the set of functions u : I — R absolutely
continuous on each segment contained in [ B

Cl,.(I), where I C R, is the set of functions u € Cic(I) for which

lo¢
U/ € CIOC(I);

u(s+) and u(s—) are the limits of the function u at the point s from the
right and from the left, respectively;

[p(1)]- = 3(Ip()] = p(1)).

Consider the equation
u" = p(t)|u]®|w’ |~ sgn u, (1.1)

where « €]0,1], a,b € R, and p € Lioc(]a, b]). Under a solution of the equa-

tion (1.1) is understood a function u € é{oc(]al, b1[), where a1 € [a, b and

by €Jay, b], which satisfies the equation (1.1) almost everywhere in Jay, b1][.
Throughout the paper we will assume that

/ (s —a)*(b—9)%|p(s)|ds < +0. (1.2)

Below we will see (see Lemma 2.2) that all non-continuable solutions of
the equation (1.1) are defined on the whole segment [a, b]; note that under
the values of a solution u at the points a and b we understand respectively
the limits u(a+) and u(b—), whose existence (and finiteness) is quaranteed
by the condition (1.2). Moreover, it is found that none of non-trivial so-
lutions of the equation (1.1) may have an infinite number of zeros on the
segment [a, b] (see Remark 2.1 and Lemma 2.8).

In the case of the linear equation, i.e., for ¢ = 1, the number of zeros
of two arbitrary non-trivial solutions differ from each other by not more
than 1. This fact does not, generally speaking, take place for the equation
(1.1) with « # 1, since any constant function turns out to be its solution;
however it remains valid for a definite subset of the set of solutions, which
in the sequel will be called the set of proper solutions.

Definition 1.1. A solution u of the equation (1.1) is said to be proper, if
there exists A Cla, b such that mes A = 0 and {t €]a,b[: &/(t) =0} C {t €
la, b[: p(t) = 0}U A.

Below we shall show (see Lemma 2.9) that the set of proper solutions
of the equation (1.1) is non-empty and, moreover, almost every Cauchy
problem has at least one proper solution (see Remark 2.4).
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According to the above-said, the following definition is substantial and
meaningful.

Definition 1.2. We say that the function p belongs to the set Oy(]a,b[), if
there exists a proper solution of the equation (1.1) having at least two zeros
on the segment [a, b].

In other words, p ¢ Oy(]a, b]) if and only if there is no proper solution v of
the equation (1.1) satisfying for some a1 € [a, b[ and b1 €]a, b] the conditions

w(lai+) =0, u(b—)=0. (1.3)

Definition 1.3. We say that the function p belongs to the set Uy(]a,b[), if
for any a; € [a,b] and by €]ay, b] the problem (1.1), (1.3) has no non-zero
(not necessarily proper) solution.

Tt is clear that if p € Uy(Ja,b[), then p ¢ O]a,b]). In the case, where
a =1, or a €]0,1] and p(¢t) < 0 for a < t < b, the converse assertion is
valid, i.e., if p & Uq(]a, b)), then p € Oy(Ja,b[). The problem on a mutual
complement ability of these two sets remains as yet unstudied in the general
case.

Note that if p € O;1(]a, b]), then the (linear) equation (1.1) is called conju-
gate, but if p ¢ O1(]a, b]) (and hence p € Uy(]a, b[)), then it is disconjugate.
A vast number of works (see, e.g., [1-6] and references therein) are devoted
to the question of an effective description of the sets Oy (]a, b]) and Uy (]a, b]).
As to the sets O4(]a, b)) and Uy (Ja, b]), they are studied not well enough even
in the regular case, where the function p is integrable on [a, b].

The aim of the present work is to fill in the above-mentioned gap. Below
we give some new integral criteria for belonging of the function p to sets
O]a,b]) and Uy]a, b]), not excepting the possibility for p to have noninte-
grable singularities at the points @ and b (see condition (1.2)). The paper is
organized as follows: the main results are formulated in Section 1; auxiliary
propositions are given in Section 2; proofs of the main results can be found
in Section 3.

1. STATEMENT OF THE MAIN RESULTS

Theorem 1.1. Lel there exist A €]a,b] and p €)X, b[ such that

—a /\“ p(s)ds > o ja)a + T _1ﬂ)“ + o _(jl)a+1 /a (s — a)**p(s)ds +

«

-I-W/ (b — 5)*T1p(s)ds. (1.4)

Then p € O4(]a, b]).
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Introduce the notation

alt —a)® ds for a<t<ty,

to
- [ o)
Q(t, to, ) = ‘
a(b— t)a/ p(s)ds for tg <t <b,
to

Q. (to, ) = inf{Q(t, 0, v) : a < t < b},

Q" (tg, ) = sup{Q(t, 1o, 0) 1 a < t < b}.
Corollary 1.1. Let

b
b
_(a+1)/ Q(s,a+ ,a)ds>b—a. (1.5)
a 2
Then p € O4(]a, b]).
Corollary 1.2. Lel to €]a, b],

p(t) <0 for a<t<b, (1.6)

Q. (tg, ) < —1—max{(1;0__t;l)a, (fo__tZ)a}. (1.7)
Then p € Oq(]a, bl).

In the case where the condition (1.6) is satisfied, Theorem 1.1 can be
somewhat improved; to be more exact, the following theorem is valid.

Theorem 1.1'. Let (1.6) be satisfied and let there exist A €]a, b[, p €]A, b[
and a natural number n such that

H 1 1
o Ip(s)|ds > + , 1.8
[ welds 2 s+ s s
where
a(t) =t —a, aps1(t a—i—/ a"'l s)lds for a <t <b,
b
bi(t) =b—t, brp41(?) t—i—/ ba‘H s)lds for a<t<b.

Then p € O4(]a, b]).

Theorem 1.2. Let there exist ¢ €]a, b[ and the functions f € 6’([a, c]) and
g € C([c,b]) such that f(a) =0, g(b) =0, f(t) >0 fora<t<c, g(t) >0
fore <t <b, |f}z+

and
[ /f @+ﬂy[<m@4>

a1
and |gS|]C, be integrable on [a, c] and [¢, ], respectively,
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>(a_|_1)a+1|:g()/a fa(s) d +f()/c ga(s) d:|. (1.9)
Then p € Oq(]a, b[).

Corollary 1.3. Let at least one of the following three conditions be ful-
filled:

—a /ab(s — @)t (b — s)*Flp(s)ds > % (1.10)
— [/GT(S — a)*p(s)ds + /:rb (b— S)Ap(s)ds] >
> (A—QQ)/(\:-: 1)t (b;a)k_a, where A > «, (1.11)

o fon [ e SRR GTD) o

Then p € Ogy(]a, b]).

Remark 1.1. As we will see from the proofs below, in the conditions of
the above-given results not only p € O(]a, b[), but every proper solution of
the equation (1.1) has at least one zero in the interval ]a, b[.

Finally, we present theorems concerning the case where the function p be-
longs to the set Uy (Ja, b]) and also theorems with this function not belonging
to the set Oq4(]a, b]).

Theorem 1.3. Let sup{A“(¢)|B(t)|'~® :a <t < b} < b— a, where

A =S [ o= ) ds +

+ % / (o= )b - ()]s,
B = [ = 00— ) o) ds -
- /tb(s — )b — )T p(s)]_ds for a<t<b,
and X €[0,1]. Then p € Us(]a, b]).
Corollary 1.4. Let 5" [1(s — a)*(b — 5)*[p(s)]ds < (b— a)=, where
C’:max{ /ab(s—a)1+a(b—5)a[p(5)]_ds, /ab(s—a)a(b—s)l‘l'a[p(s)]_ds}.

Then p € Uy(]a, b]).
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In particular, this corollary implies that if

[ == s e)-ds < (0 a)"

then p € Uy (a, b]).
Denote by ¢(A), where A > — a+1( )%, the largest positive root of the
equation z — |74 — X = 0.

Theorem 1.4. Let Q. (to, a) > ——(=%)% and
Q" (1o, @) < (R« (to, @)). (1.13)
Then p € Uy(]a, b]).

Corollary 1.5. Let — a_l_l(afr_l)“ < Qu(to, o), @*(to, ) < (afr_l)“‘l'1 Then
p € Ua(]a, b).

Theorem 1.5. Let Q. (to, o) > — and either

oz+1( +1 )oz

Q«(to, @) #0 and Q"(to, o) < 20(Qx(to, @) — Qu(to, ), (1.14)
or
Qulto,0) =0 and Q*(to,a) < 2. (1.15)
Then p ¢ Ou(]a, b]).
Corollary 1.6. Let —%H(%H)agcz*(to,a) and Q*(tg, a)< 25:11
Then p ¢ Ou(]a, b]).

Corollary 1.7. Let o = 1, Q.(to,1) > —% and either Q.(to,1) # 0,

Q" (to, 1) < 1+ Qu(to, )‘1‘ 14+4Q.(to, 1), or Qu(to, 1) =0, Q" (to,1) < 2.
Then p ¢ O1(]a,b]) (i.e., p € Ui(la,b]) ).

2. SOME AUXILIARY PROPOSITIONS

In this section we establish some properties of solutions of the equation

"= p(t)|u] | [T sgn u. (2.1)
Below, throughout all the paper, the function p :]a, )[— R will be zassumed
to belong to the set Ligc(]a, b]) and to satisfy the condition (1.2).
First of all, for the convenience of reference we will quote one simple
proposition without proving it.
Proposition 2.1. The equalilies

atb

3 1
lim (¢ — a)® ds =0, lim (b—1)" ds =
Jim = a)® [ p)lds =0, Jlim (-0 /_ Ip(s)lds = 0

take place.
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Lemma 2.1. There exist solutions uy and us of the equation (2.1) satis-
fying the initial conditions

ui(a+) =0, uj(at)=1, (2.2)
us(b=) =0, ubh(b—)=—1. (2.3)

Moreover, all non-continuable solutions of the problems (2.1), (2.2) and
(2.1), (2.3) are defined on the entire segment [a, b].

Proof. We will prove only the existence of u;. The existence of us can be
proved similarly.

Let « €]a,b[. Denote by A, the set of all non-continuable to the right
solutions of the equation (2.1) satisfying the initial conditions

u(z) =0, o'(z)=1. (2.4)

Let u(-,2) € Az, and let us show that this solution is defined in the interval
[, b[. Suppose I, = {t €]z, b[: |u(s, z)| <+oo, |4/(s, x)| <400 for # <s<t}.
Integrating (2.1) and taking into account (2.4), we obtain

u'(t,z) =1 —|—/tp(5)|u(5, )|’ (s, )" " sgnu(s, x)ds for t€l,, (2.5)
u(t,z)=1— J:x—l—
+ /t(t — s)p(s)|ul(s, &)|“|u' (s, x)|' ~“sgnu(s,x)ds for t€l,, (2.6)
whence we readily find that

<+ [ G- alnts)
L9 <1t [ -0 b

If we add these inequalities and take into account the fact that

(a4
M‘ |u'(s, )|'~%ds for t & I,
s—w

u(s, x)

s —

‘ |u'(s, x)|'~%ds for t & I,.

t—a:

y* <14y for y>0, (2.7)

we obtain
' a uls, )|

‘ e ‘—|—|u ()| <242 | (s—a)¥|p(s)] —‘—|—|u (s,2)||ds for t€l,.
- s—u

According to the Gronwall-Bellmann lemma, we now have

482 4 e, )] < 2esp [2/(:(5—a)a|p(s)|ds] for t€ L. (2.8)

Consequently, sup I = b. Moreover, from (2.8) and (2.5) we also get

|u(t, )] < 2(t — a)exp [2/ (s — a)a|p(5)|d5] for #<t<b, (2.9)
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| (t, z)] < 2exp [2 /t(s - a)a|p(5)|d5] for z<t<b, (2.10)

W(t2) =112 [ (5= ) pls)lds x

t
X exp [2/ (s — a)a|p(5)|d5] for = <t <b. (2.11)

Let ap €la,b[, vp41 < ap for k = 1,2,.. ., khT rr = a. Suppose
vp(t) = u(t,ey) for o <t < b, k = 1,2,.... By (2.9) and (2.10), the
sequences (vg)f25 and (v}){2] are uniformly bounded and equicontinuous

in Ja,b[ (i.e., on each segment contained in Ja,b[). Hence, without loss of

generality, by the Arzela-Ascoli lemma we may assume that i lim vl(j)(t) =
— 400

u(ll)(t), i = 0,1, uniformly in Ja, b[. Tt is easily seen that the function wu; is a
solution of the equation (2.1). On the other hand, by (2.9) and (2.11) the
function w; satisfies the conditions (2.2) as well. Thus we have proved that
the set of solutions A of the problem (2.1), (2.2) is non-empty. Let us now
show that all functions from A are defined on the entire segment [a, b].

Let u; € A be a non-continuable solution. Analogously to that as it has
been done above, we see that

t (a4
u’l(t):l—l—/(s —a)*p(s) zl—(sc)z | (s)|' ™ xsgn ui(s)ds for t€T,
Ul(t) _ 1
t—a b+ t—a .
t (a4
x/(s —a)¥(t — s)p(s) zl—(sc)z |u (s)|' = sgnuy(s)ds for t €1, (2.12)

where T = {t €]a,b[: |ui(s)| < +o0, |uj(s)] < +o00 for a < s <t}. These
two equalities immediately yield

t

(=010 <8 = o[ (5= ) - ) ln(o) [

a

(a4

(b — s)ul(s)]'~ds

for t €1,

(a4

|(b—s)u)(s)|'~“ds for t€I.

< o om0 o) |22

t—a b—a s—

Adding these inequalities, taking into account (2.7) and using the Gron-
wall-Bellman lemma, we obtain
s (DIt — )™ + (b =) ()] < (1 +b—a)

X exp [ﬂig“/ab(s_a)a(b_5)a|p(5)|ds] for t€1. (2.13)
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Consequently, sup I = b.
The equality (2.12) results in

w(t)y=t—a—(b—1) x

N RCEIELI

|(b— s)ull(s)|1_a sgn ui(s)ds +

GO

s—a

|(b— s)ull(s)|1_a sgn ui(s)ds

+/ﬁ@—@@—@ﬁﬂ@

for a <t < b,

from which by (2.13) and Proposition 2.1 we conclude that there exists a
finite limit w1 (b—). O

In a similar manner we can see that the following lemma is valid.

Lemma 2.2. All non-continuable solutions of the equation (2.1) are de-
fined on the entire segment [a,b].

Remark 2.1. We can be easily convinced that if ¢ €]a,b], and u is a

solution of the equation (2.1) satisfying the conditions u(e¢) = 0, /(¢) = 0,
then u is identically equal to zero (see also [5]).

Lemma 2.3. Let u be a solution of the equation (2.1). Then

lim (t — a)lu'(t)| = 0 (lim (b— )| (1)] = 0). (2.14)

t—a+ t—b—

Proof. First let us show that
tlim_l_ inf(t —a)|[u'(¢)] =0 (tlirgl inf(b —t)|u'(¢)| = 0). (2.15)

Assume to the contrary that (2.15) violated. Then there exist ¢ €]a, b[ and
¢ > 0 such that

2
") > — f <t<
[’ (2)] ;T for a e
(|u/(t)| > I)E—t for e <t < b).
The integration of this inequality from ¢ to ¢ (from ¢ to t) yields

for a<t<e

|u(t) — u(e)| > eln ; —

(|u(t)—u(c)|>61nb ; for c<t<b),

which is impossible because the function u is bounded. Thus (2.15) is

fulfilled.
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Multiplying both parts of (2.1) by t — @ (by & — t) and integrating from
T to t (from ¢ to 7), we obtain

(t —a)u'(t) = (r — a)u'(7) + u(t) — u(r) +

—1—/ (s — a)p(s)|u(s)|“|u'(s)|' " ¥ sgnu(s)ds for a<T<t<b

/ / (2.16)
(0= 000 = 6= /() + u(r) = ult) -
- /tT(b — s)p(s)|u(s)|*|w' ()| sgnu(s)ds for a<t<rT< b),
from which, by (2.7), we can conclude that
(t = a)ld' ()] < (r = @)/ ()] + |u(t) — u(r)| +
—1—/ (s — a)*|p(s)|(Ju(s)| + (s — a)|u'(s)])ds for a<T<t<b
/ / (2.17)
(0= 0l < (0= D+ 1)~ utr)] +
—|—/t7(b —5)*p(s)|(Ju(s)| + (b — )|/ (s)])ds for a<t<T< b).
Suppose
e(z) = 2max{|u(t) —u(a+)| ca <t <z} +
—1—/ (s —a)¥|p(s)] |u(s)|ds for a<az<b
(c(x) = 2max{|u(t) —u(b—)| :x <t < b} +
—1—/ (b—35)%|p(s)||u(s)|ds for a<x< b),
M(r,z)=(t—a)W/(7)|+c(z) for a<T<z<b (2.18)

(M(r,2) = (b—1)|u'(T)| + c(x) for a<z<T<Dh).
From (2.17) we find that

t
(t—a)|u'(t)|<M (7, ar:)—i—/(s—a)CY Ip(s)|(s—a)|u/(s)])ds for a<T<t<z<b
((b—t)|u/(t)|§M(T, ar:)—l—/(b—s)CY Ip(s)|((b—s)|u'(s)|)ds for a<z <t <1< b),
t
which in its turn by the Gronwall-Bellman lemma gives

xr

(t—a)|u'(t)| <M (7, z)exp [/ (s—a)a|p(5)|d5] for a<r<t<z<b.

a
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b

((b—t)|u’(t)|§M(r, z)exp [/ (b—s)a|p(5)|d5] for a<z<t<r1< b).

Taking now into account (2.15) and (2.18), we easily find that

(t—a)|u'(t)] < c(z)exp [/ (s — a)a|p(5)|d5] for a<t<z<b
o
((b—t)|u/(t)| < e(x)exp [/(b—s)a|p(5)|d5] for a<x<t<b).
Since lim+ e(x)=0( hr;? ¢(x) = 0), the above inequality makes it possible

to conclude that (2.14) is fulfilled. O

Remark 2.2. In proving the above lemma (see the beginning of the proof),

it has been shown that if v € C{,.(]a, b]) is bounded and there exists a finite
limit v(a+) (v(b—)), then lim+ inf(t—a)|v'(¢)|=0 ( hr;? inf(b—t)|v'(¢)|=0).

Lemma 2.4. Lel aj €]a,b[,b1€]ay, b] and let uw and w be solutions of the
equation (2.1) satisfying the conditions

u(a;) =0, u'(a;) >0 (u(bl) =0, u'(h) < 0),

, (2.19)
w(t) >0 for ap <t<by, w(b)=0 (w'(a1)=0).
Let further v € C'([ay, b1]) be such that

(
v(t) >0, V(1) >0 for a; <t <y
(v(t) >0, V() <0 for ay <t <by),
O (1) < pO)[v@®)| W @)Y for ay <t < by.

Then
() >0 for ap <t <by (W(t) <0 for ay <t <b) (2.20)

and

w(t) _ V() w(t) _ V()
<t<b — <t<b). (221
a < Jrestsh (gt Pr estsn) @2
Proof. Suppose that (2.20) violated. Then by (2.19) there exists ¢ €]ay, b1[
such that «/(t) > 0 for a; <t < e (W/'(t) <0 for ¢ <t <bp), and v/(¢) = 0.
Assume p(t) = |%})2|CY sgnv'(t) for a; <t < by and o(t) = |%|“sgn u' (1)
for a; <t < ¢ (for ¢ <t < by). Clearly,

a1

P <ap(t)—alp)| ™= for a3 <t < b, (2.22)

o

o'(t) = ap(t) — alo(t)|"> for aj<t<c (for e<t<b), (2.23)
ola1+) =400, () =0 (o(by—) = —o0, o(c) = 0). (2.24)
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By (2.24), there exist ¢1 €]ay, e[ and ea €]ey, e (1 €]e, by] and ea €]e, 1))
such that

p(t) > o(t) >0 for ¢y <t<ey, pler)=o0(cr)
(p(t) < a(t) <0 for e <t<er, pler) =0(c1)). (2.25)

On account of this fact, from (2.22) and (2.23) we have
' '
o(t) = o(er) + a/ p(s)ds — a/ ()] "+ ds > p(c1) +
' ' ' ' it
+a/ p(s)ds — a/ lp(s)| > ds > p(t) for ¢ <t < eq
(a(t) =o(er) — a/ p(s)ds + a/ lo(s)] "+ ds < p(er) —
@ @
- a/ p(s)ds + a/ |p(5)|aTJr1 < p(t) for ez <t < cl),
i i

which contradicts (2.25). Hence there takes place (2.20). Quite in a similar
manner we can easily be convinced that (2.21) is valid. Thus the lemma is
proved. [

Lemma 2.5. Let u be a nontrivial solution of the equation (2.1) satisfying
the condition

ula+) =0 (u(b—) =0), (2.26)
and let v € 1oc(]a,c]) (v € lOC([C b)), where ¢ €la,b[, have a finite limit
v(a+) > 0 (v(b—) > 0) and satisfy the conditions

V() >0 for a<t<c (V({t)<0 for c<t<b),
V(1) < pO)v@®)| W )T for a<t< e (for c<t<b).
Then
w(t)#0 for a<t<c (for e<t<bh). (2.27)

Proof. Let uy be a solution of the problem (2.1), (2.2). First let us show
that

ui(t) >0 for a<t<e. (2.28)

Assume the contrary. Then there exists ¢; €]a, ¢[ such that «{(¢) > 0 for
a<t<ep, ui(er) =0. By Lemma 2.4 we have

W) ()
() = o)

for a <t <e. (2.29)

Suppose

w(t) = v (Hur(t) — uj(t)v(t) for a <t < ey,
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_ WOmOr - papor=
A OO R oL
g(t) = p(Oh(®)(ur(Do(2)® for a <t <eq. (2.30)

B ] ey

Since the function f(x) —— is bounded, there exists My > 0 such
that |h(2)] < MW for @ < ¢t < ¢1. Bearing this in mind, from (2.30)
we have

u(t) @ atcy
t)| < My(t—a)® t(7)<Mt— “Ip(t)| f [ ,
(01 M- O] (2 ) <Ml = )] or e <2
where (0
uq(t o a—+c
V= s {0y ey
p - sup (=i () a<i< 9
Thus the function ¢ is integrable on the segment [a, 4£%].

It can be easily seen that w'() < g(t)w(t) for a <t < (a+c¢1)/2. Ac-
cording to the theorem on differential inequalities; the above inequality
yields

02 (5o [
(o [ |

The latter inequality, owing to (2.29), results in

ateq
2

g(S)dS] >

ateq
2

|g(5)|d5] for a <t < (a+c1)/2.

tlim_l_ inf w(t) > 0. (2.31)
On the other hand, by Remark 2.2 and condition (2.2) we have
. . EET . _ / U1(t) Y,
tEIgl_l— infw(t) = tEIgl_l— inf ((t ajv (t)—t — ul(t)v(t)) <0,

which contradicts (2.31). Thus we have proved that (2.28) is fulfilled.

Let us now show that (2.27) is satisfied. By Lemma 2.4, there exists
cp €la, ¢ such that u(?) # 0 for a <t < ¢p. Without loss of generality we
will assume that

u(t) >0 for a <t < c. (2.32)
Show that

uw'(t) >0 for a<t<co. (2.33)
Assume that (2.33) violated. Then there exists ca €]a, ¢g[ such that u/(es) =
ZI((;)) < 51183

done above we can see that @/(t) = g(+)w(t) for a <t < ca, where

0. By Lemma 2.4 we have for a < t < ¢y. From what has been

w(t) = v (Our(t) — uy(Qu(t) for a <t < es,
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q(t) = p(t)ﬁ(t)(u(t)ul(t))CY for a <t < co,

o O (O = [ (Ou()]
h(t) = w () uy (t) — uh (Hu(t)

which, as above, leads to the contradiction 0 > 0.
Thus we have proved that if for some ¢y €]a, ¢[ the inequality (2.32) is

fulfilled, then (2.33) also holds. On the basis of the above-said we readily
conclude that u(t) > 0 for a <t < ¢, and hence (2.27) takes place. O

for a <t < ey,

Remark 2.3. Let uy(uz) be a solution of the problem (2.1), (2.2) ((2.1),
(2.3)). Tt is clear that there exists ¢ €]a, b[ such that v} () > 0fora <t <¢
(uh(t) < 0) for ¢ <t < b). Using Lemma 2.5 for the case v(t) = uy(t) for
a <t <c(v(t) =ut) for ¢ <t < b), we find that if « is a nontrivial
solution of the equation (2.1) satisfying the condition (2.26), then there
exists ¢ €]a, b[ such that (2.27) holds.

Lemma 2.6. Let u be a nontrivial solution of the equation (2.1) satisfying
the conditions

u(a+) =0, tE»m+ inf(t — a) /((Z)) ‘ < 400,
’ ° 0 (2.34)
(u(b—) =0, tgrgl_ inf(b —¢) (l) ‘ < —I—OO)
Then
. u'(t) : u'(t)
tggl+(t o) u(t) L (tl—l»rl?—(b —?) u(t) _1)' (2.35)

Proof. By Remark 2.3, without loss of generality we can assume that for
some ¢y €]a, b[

W) >0 for a<t<ecy (W(t)<0 for o<t <b). (2.36)
Multiplying both parts of (2.1) by ¢ —a (by b —1) and integrating from 7

to t (from ¢ to 7), we obtain equality (2.16), which with account for (2.36)
and (2.7) yields

(t — a)u'(t)
u(t)

t —
+/(5—a)“|p(5)|[1+%]ds for a<1T<t<c

(b= D)l(7)]
an ST

+/T(b_5)“|p(5)|[1+w]ds for co<t<7'<b)

(2.37)
_|_
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and

(t—a)u'(t) | _(r—a)u(r)+u(r)
ey

) *

+ [ = a1 B )

]ds for a< <t <eg
u(s)

(2.38)
(b —t)u'(t) (b —7)[u'(7)|+u(r)
(‘ O 1)< () +

—1—/;(19— 5)“|p(5)|[1+%]ds for eco<t<T< b).

From (2.37) we have

<M+ [(omaylpton) ()

)dsfor a<T<t<eg
i u(s)

t
(O <aros =0 (C= 2 s tor ey <1< <)

where

74_/ (s —a)¥|p(s)|ds for a<T<eq
T a

uw'(r ’

CoL [ o= slpterias or e <7 <b).

o

By the Gronwall-Bellman lemma the last inequality results in

<M(r)exp [/at(s_a)a|p(5)|d5] for a<T<t<cy
(% < M(r)exp [/tb(b— $)°p(s)lds| for o <t<T< b).

Taking now into account (2.34), it is not difficult to conclude that there
exists My > 0 such that

(1 = ap(t)

(b —t)|u' ()]
() <M, for a<t<co( ()

< My for cq <t<b).

On the basis of the above-said, from (2.38) we find that

(=) || (r—ap()+ulr) R,
u(t) < u(t) +(1+M0)~/a( ) |p( )|d

for a< <t <ey
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(b —t)u'(t) (b — D)lu'(7)| + u(r) ' a
(‘T+1 < +(1+M0)/t (b—5)"Ip(s)|ds

for co<t<7'<b).

This, by virtue of Lemma 2.3, allows us to conclude that

(t— 't C
‘T—l‘ﬁ(l—l—Mo)/(s—a) [p(s)|ds for a<t<cg

b— ' (t b

(‘%H‘g(uMo)/(b_smp(s)us for c0<t<b).
U t

Hence (2.35) is fulfilled. O

a

Lemma 2.7. Let u be a non-trivial solution of the equation (2.1) satisfying

the condition (2.26). Then (2.35) is satisfied.

Proof. By Remark 2.3, without loss of generality we can assume that (2.36),
where ¢y €]a, b] is some point, is fulfilled. Multiplying both parts of (2.1)
by t —a (by b —1), integrating from a to ¢t (from ¢ to b) and taking Lemma
2.3 into account, we obtain

(t— a)u/(t):u(t)—l—/ (s — a)p(s)|u(s)|*|u'(s)|*~*ds for a <t < cg

) (2.39)

((b—t)|u’(t)|:u(t) —|—/t(b—5)p(5)|u(5)|“|u/(5)|1_ads for c0<t<b).

By Lemma 2.6,

S (1) o | ()]
tEIgl_l— inf(t — a) (l) >0 (tl_lgl_ inf(b — t)w > 0).

Hence there exist ¢ > 0 and ¢; €]a, ¢gl, (€1 €]eq, b]) such that
u(t)<e(t—a)u'(t) for a<i<er, (u(t)<e(b—t)|u'(t)| for e;<t<b). (2.40)
Owing to (2.36) and (2.40), it follows from (2.39) that

t

(t — a)u'(t) §u(x)—|—6a/(5 —a)¥|p(s)|((s — a)|u'(s)])ds for a <t<z <cy

a
b

((b—t)|u’(t)|§u(x)—|—e“/t(b—5)“|p(5)|((b—5)|u’(5)|)ds for c1<x§t<b),

from which by the Gronwall-Bellman lemma we find that

% <exp [Ea/ax(s — a)a|p(5)|ds] for a <z <cy
(M

u(z) <exp [Ea/xlzb — 5)a|p(5)|d5] for C1<x<b).
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Consequently (2.34) is fulfilled and Lemma 2.6 allows one to conclude that
the equality (2.35) holds. O

Lemma 2.8. Let u be a solution of the equation (2.1), satisfying the con-
ditions

u(a+) =0, tEIgl_l— inf [o/(t)] = 0 (u(b—) =0, lim inf|u/(¢ )|:0). (2.41)

t—b—

Then u is identically equal to zero.

Proof. Assume to the contrary that u is a non-trivial solution of the equa-
tion (2.1) satisfying the conditions (2.41). By Remark 2.3, without loss of
generality we will assume that (2.36), where ¢q €]a, b[, is fulfilled. From
(2.1) we find that

u/(t):u/(r)—l—/ p(s)|u(s)|*|w/ ()|~ sgnu(s)ds for a <1 <t < b,

t

u(t)=u(r)+(t - T)U'(T)+/(t—S)P(S)IU(S)IQ |/ (s)|'~ sgn u(s)ds

T

for a<7<t<b.

This, with regard for (2.7), allows one to conclude that

By Lemma 2.7, there exist £ > 0 and ¢; €]a, ¢g such that (2.40) is fulfilled.
Combining the last two inequalities, using the Gronwall-Bellman lemma and
condition (2.40), we obtain

lu(®)]

t—a

n from the above inequality we will

()] < (2+e)u (1) exp [/ |d5] fora<r<t<b, 7<ey.
41), t
=0 for a < t < b, which contradicts our

If we now take into account (2.
arrive at |u(t)| + (t — a)|u'(?)]
assumption. [

Lemma 2.9. The set of proper solutions of the equation (2.1) is non-
emply.

Proof. Let v € [a,b] and & €]v,b]. Denote by B([y, é]) the set of all non-
trivial solutions of (2.1) satisfying the condition

mes { {t €], 8[: w'(t) = O]\ {t €], 8[: p(t) = 0} } = 0.
We have to show that B([a,b]) # @.
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First we show that if ug € B([y, §]), where & < b, then there exist 6; €]86, b[
and a non-trivial solution @y of (2.1) such that

Up(t) = up(t) for vy <t <8, o€ B([y,b)]). (2.42)
Indeed, by Remark 2.1, either
ug(8) # 0, (2.43)
or
ug(8) =0, wup(8) #£0. (2.44)

Suppose that (2.43) is fulfilled. Denote by pg the solution of the Cauchy
problem

adtl
pl=ap(t) —alp|™=; p(é) =

sgn ug(8).
Assume pq is defined on [6,81]. Let

(0 uo(t) for v <t <$,
u(t) = 1
ug(8) exp [f; lpo(s)|= sgn po(s)ds] for 6§ <t <éy.

The function u, as is easily seen, satisfies (2.1) for ¢t €]y, é;[. By Lemma
2.2, there exists a solution @y of (2.1) such that wg () = u(?) for t € [y, é1].
Clearly, 1y satisfies (2.42).

Suppose now that (2.44) is fulfilled. Denote by vy a solution of the Cauchy
problem u” = p(t)|u|*|u'|'=%sgnu; u(8) = 0, u'(§) = uj(8). Obviously,
there exists 6, €]6, b[ such that v{(¢) # 0 for t € [§, 61]. Suppose

) ug(t) for v <t <é,
u =
vo(t) for &<t <é.

Further, as above, we can easily see that there exists a solution uy of the
equation (2.1) satisfying (2.42).

Let now u; be a solution of the problem (2.1), (2.2). Tt is not difficult
to see that there exists a; €]a, b[ such that u; € B([a, a1]). Denote by I the
set of those § € [ay,b] for which there exists a solution @ of the equation
(2.1), satisfying the conditions w(t) = uy(?) for a <t < a1, w € B([a, §]).
Let b1 = sup I. By Lemma 2.2, to prove the lemma it suffices to show that
by = b.

Assume to the contrary that by < . Then, as is shown above, if § € 1,
there exists &1 €6, b[ such that 6§, € I. Consequently, I # @, and I is a
connected set whose every point, except the point @i, is an interior point.
In view of this fact,

by ¢ 1. (2.45)
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Choose a sequence of points (tk),jfl C I and a sequence of functions
(vk);gi such that

typ <tpt1, k:l,?,..., ay < iy, khm tkal,
— 400
vp € B([a,t5]), k=1,2,..., (2.46)
v1(t) = ui(t) for a <t < ay,
vpp1(t) = vp(t) for a<t <ty, k=1,2,....

Assume

(2.47)

u(t) = {vl(t) for a <t <ty

Uk(t) for tp_1 <t <ity, k=2,3,....

It is seen that u € éfoc(]a,bl[) and u satisfies (2.1) for ¢ €]a,b;[. Hence

by Lemma 2.2 there exists a solution @ of (2.1) such that w(t) = wu(t) for
a <t <by. From (2.46) and (2.47) we have

{t €la,tr[: vi,(t) = 0} C{t€la,tg[: p(t)=0} U Ay, mes Ap=0, k=1,2....,
{t €la,bi[: W(t) = 0} C{t €la,bi[: p(t)=0} U A, Ax= kflek.
+ oo
Since mes A = > mes Ay = 0, this implies that @ € B([a, b1]) and, conse-
k:

1
quently, b; € I, which contradicts (2.45). O

Remark 2.4. In the above lemma we have, in fact, proved that the prob-
lem (2.1), (2.2) has at least one proper solution. Similarly we can see
that the problem (2.1), (2.3) has at least one proper solution, and for any
tg €la,b[ and ¢1, e2 € R, |e1| + |e2] # 0, the Cauchy problem

u" = p(t)|ul ' |'"sgnu,  u(to) = e, W'(to) = e
has at least one proper solution.

Lemma 2.10. Let there exist ¢ €]a,b] and a conlinuous funclion v €
Cl..(Ja, e[Ule, b)) having finite limits v(a+) > 0, v(b—) > 0, v/(c—) > 0,
v'(c+) < 0 and satisfying the conditions

V(1) < p(t)
v(t) >0 for a<t<b, v

Then p € Uy(]a, b]).

o) O for a<t<b,
t)>0 for a<t<e, V()<0 for e<t<b.

/

Proof. Assume the contrary. Let p ¢ U, (Ja,b[). Then there exist a; € [a, b],
by €Jay, b] and a solution wug of the equation (2.1) satisfying the conditions

uo(t) > 0 for a3 <t <by, uplar+) =0, wug(by—) =0. (2.48)
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By Lemma 2.8 and Remark 2.1, there exist 71 €]ay, bi[ and m € [, b1[ such
that

ug(t) >0 for a; <t <7, uj(m)
ug(t) <0 for 7 <t <by, uy(m)
Let u; and ug be some solutions of the problems (2.1), (2.2) and (2.1), (2.3),
respectively. Then by Lemmas 2.4 and 2.5 (with v(t) = ui(t), u(t) = uo(?)
and v(t) = ua(t), u(t) = ug(t), respectively), there exist ¢; €]a, 7] and
ty € [79, b such that

=0,
= 0.

uwi(t) >0 for a <t <ty, uj(ty)
uy(t) <0 for to <t < b, uh(ts) =

0,
0.
By Lemma 2.4 (with «(?) = u1(t) and u(t) = us(t), respectively), we have
t1 > ¢ and ¢ < ¢, which is impossible, since {5 > ¢;. O

Lemma 2.11. Let there exist ¢ €]a, b[ and a function o € éloc(]a, c[Ule, b))

having finite limits o(c—) > o(c+) and satisfying the conditions

a1

o' (t) < ap(t) — alo(t)| = for a<t<b, (2.49)
tlim_l_ inf(¢t — a)%(t) < 1, tlirgl sup(b—t)%c(t) > —1. (2.50)

Then p ¢ Ogy(]a, b]).

Proof. Assume to the contrary that p € Oy(]a, b[). Then there exist a; €
[a,b], b1 €]a1,b] and a proper solution wg of the equation (2.1) satisfying
the conditions (2.48). Suppose a3 = @ and b3 = b (the lemma for the rest
cases is proved analogously). Let us introduce the function p by p(t) =

u'(t) «

w | sen u' (1) for a <t < b. Clearly,

P (1) = ap(t) — alpt)| > for a<t<b. (2.51)
By Lemma 2.6,
tlim_l_(t —a)p(t) = 1, lirgl (b—1t)p(t) = —1. (2.52)
—a t—b—

From (2.50) and (2.52) we readily conclude that there exist ¢t; €]a,b[ and
¢ €]0,b— 1] such that o € C([t1,t1 + €]) and

o(t) > p(t) for ty <t <ti+e, o(t1) = p(t1). (2.53)

Suppose w(t) = o(t) — p(t) for t; <t <ty +e.
It is easy to see that there exists an integrable on [t1,%; + ¢] function
ot1 ot1
h :Jt1,t1 + ¢[— R such that |U(t)| > — |p(t)| = = (o(t) — p(t)) h(t) for
t1 <t <ty +e Owing to this fact, from (2.49) and (2.51) we obtain
w'(t) < —ah(t)w(t) for t; < ¢ <ty + £, which allows us to conclude that

w(t) < 0fort; <t<t;+¢,since w(t;) = 0. But this contradicts (2.53). O
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3. PROOF oF THE Basic RESULTS

Proof of Theorem 1.1. Let ug be a proper solution of the equation (1.1) (see
Lemma 2.9). Let us show that ug has at least one zero in the interval ]a, b].
Assume to the contrary that

up(t) >0 for a<t<b. (3.1)
Suppose
! a
p(t) = uo(t) sgnug(t) for a <t <b. (3.2)
Uo(t)
Clearly,
atl
p(t) = ap(t) — a|p(t)| = for a <t <b. (3.3)

We can easily see that
{t €la, ] : (t —a)*pt) =1} U
O{t € [ : (6= )%p(t) = —1}U {t € [\, i) s p(t) = 0} #la . (3.4)

Multiplying both parts of (3.3) by (¢ — a)**!, integrating from @ to A and
taking into account Lemmas 2.3 and 2.7, we obtain

«

A=a)p(A) = . /a (s — a)*Ttp(s)ds +

A at1
o

—I-ﬁ ) [(a + D)(s—a)p(s) —a(s — a)“+1|p(5)| ]ds. (3.5)

Multiplying now both parts of (3.3) by (b — ¢)**!, integrating from p to b
and taking into account Lemmas 2.3 and 2.7, we obtain

«

(0= 10 00 = 2= [ (0= )" p(apis+

+ﬁ/ﬂ (4 1) = 5)0(3) + (b — )" |o(s)] * s (3.6)

Finally, integrating (3.3) from A to u, we obtain

M a+1

I
—o [ pte)s = o) = pl) = [ [oto)] . (3.7)
We readily see that

atl
a+ )z —ajz| = <1 for ze R\{1},
(a4 Do —ale] M1} 39)

atl
(a+1)x—|—a|x| > > —1 for x € R\{-1}.
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Taking into account (3.4) and (3.8), from (3.5)—(3.7) we obtain three in-
equalities

(=) < 14 72 [ o= ) p(e)ds, (3.9)
(b= p)pl) 2 1= = (b= p(e)ds, (3.10)
—a [ pledds < p0) = o) (3.11)

of which at least one is fulfilled in the strong sense. Owing to (3.9) and
(3.10), the inequality (3.11) enables us to conclude that the condition (1.4)
violated. Consequently, every proper solution of the equation (1.1) has at
least one zero in the interval ]a,b[. In particular, the proper solution of
the problem (2.1), (2.2) (see Remark 2.4) has also at least one zero in the
interval Ja, b[, and hence p € Oy(]a, b]). O

Proof of Corollary 1.1. By the condition (1.5), one can choose A €]a, azb]
and p € [2F2, b such that

—a(a+1) [ﬁ /GAQ(S’ aT—l—b,a)dS—l-

1 b a+b 1 1
—_— —_— ds| > . 12
+am e [, 2 5e) |2t )
Taking into account Proposition 2.1, we can easily verify that
N at
b 1 cn
/a Q(s,%,a)ds:a_i_l[(/\—a)“"'l/ ds—l—/ s —a)*Tip( )ds],
b
a4+ b _ 1 a+1 oz+1
/NQ(S, 5 ,a)ds_a_i_l[(b—p) /a ds—i—/u (s)ds]|.

In view of that fact we find from (3.12) that the inequality (1.4) is fulfilled.
Hence, by Theorem 1.1, p € Oy(Ja, b]). O

Proof of Corollary 1.2. By (1.7), there exists ¢ €]a, b[\{to} such that

—Q(c,to,a)z1+max{(t0_a)a,(b_t0)a}. (3.13)

b—to to—a
Suppose
c if c < 1o, to 1f c < 1o,
A= . p= .
to 1f ¢ > tg, ¢ if ¢>tg.

From (3.13) we easily conclude that —« f>\ s)ds > (A—la)f’ + W This
and the inequality (1.6) show that (1.4) is fulﬁlled, and hence by Theorem
1.1, p € Og(a, b]). O
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Proof of Theorem 1.1'. Let uy be a proper solution of the problem (2.1),
(2.2) (see Remark 2.4). Let us show that u; has at least one zero in the
interval Ja, b[. Assume the contrary. Then by (1.6) either

wi(t) >0 for a<t<b, (3.14)
or there exist ¢; €]a, b[ and ¢s € [¢1, b] such that

wi(t) >0 for a <t <ey, uj(t)<0 for ea <t<b,

3.15
ui(t) =0 for ¢; <t < es. ( )

Suppose p(t) = |Zigig|“sgn uwj(t) for @ <t < b. Tt is clear that (3.3) is
fulfilled.
Assume that (3.15) is fulfilled. Multiplying both parts of (3.3) by (¢ —

a)**! and integrating from a to ¢, we obtain

«

(1= a)plt) = — / (s — @) |p(s)|ds +

t—a

a1
o

+ /af [(a +1)(s — a)®p(s)—a(s — a)* | p(s)] ]ds for a<t <b,

t—a

which, according to (3.8), results in p(t) < a"l(t) for a <t < b. Assume now

that for some natural k

1
ag ()
From (3.3) with regard for (3.16) we have

(r~=(1) = Ip(t)] (p(t))

Integrating the above inequality from a to ¢, we arrive at

p(t) < for a<t<b. (3.16)

1

T 1> 1+l @)pt)] for a<t<e.

1
p(t)
Owing to (3.15), we find

'
Zt—a—l—/ agt(s)|p(s)|ds for a <t < ;.

1
pt) < ——— for a<t<b.

N a?+1(t)

Thus it is proved by induction that for any natural & the inequality (3.16)
is fulfilled. Analogously, we can see that for any natural %

1
p(t) > ———= for a<t<b. (3.17)
by (1)

Suppose now that (3.14) is fulfilled. Then, as above, we see that (3.16)
holds and the inequality (3.17) is trivial in this case.
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Integrating now (3.3) from A to p and taking into account (3.16) and
(3.17) (for k = n), we obtain

K 1 1
o o < 2+

which contradicts (1.8). O

Proof of Theorem 1.2. Let ug be a proper solution of the equation (1.1).
Let us show that uo has at least one zero in the interval Ja, b[. Assume to
the contrary that (3.1) is fulfilled. Introduce the function p by (3.2). Tt is
clear that (3.3) holds. We can easily verify that

(a+1)fa+r1(t)§ t%dsg(t — )T [ i |f/(5)(|:)+1 5] - for a<i<e,
(oz—l—l)ga;ﬂ(t)g/tb;i(ls()l)d <(b—t)=Hr [/ g’ i)(f) 5] - for e<t<b.

By Lemmas 2.3 and 2.7 we have

Jim f()p(0) =0, Jim g(2)p(t) = 0. (3.18)

Multiplying both parts of (3.3) by f and integrating from a + ¢ to ¢, where
¢ €]0, ¢ — a[, we obtain

c

—a [ (&)p(s)ds + fe)ple) - Jla+)pla+e) =

a+e
-/ + (7)o = af(s)] ()] F s <
< [ s [E1 - ol * s (3.19)

Analogously, multiplying both parts of (3.3) by ¢ and integrating from ¢ to
b —n, where n €]0,b — ¢[, we arrive at

o |  g(sp(s)ds + g(b— (b — ) — g()ple) <

< [T o[ ) afte)] s (3.20)

It can be easily verified that

at1 A at+l
Az - ale|E < ( - 1) for x€R.
«
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Taking this and the equalities (3.18) into account, from (3.19) and (3.20)
we conclude that

c g(c) Clf (s

—ag(c)/a f(s)p(s)ds + g(c) f(e)p(c) < (o + 1)a+1/a 7e(s) as,
b f(e) O

—ozf(c)/c g(s)p(s)ds — f(c)g(c)p(c) < (a + 1) +] /c g%(s) ds.

Adding the last two inequalities, we see that (1.9) violated. O

Proof of Corollary 1.3. The condition (1.10) follows from the condition (1.9)
in the case where f(t) = [(t —a)(b—)]*T! and g(¢) = [(t — a)(b—t)]*+! for
a <t < b, the condition (1.11) is obtained in the case where f(t) = (t—a)?*,
and g(t) = (b—1t)*, for a < t < b, and the condition (1.12) in the case where
ft) = sin@ and g(t) = sin% fora<t<b O

Proof of Theorem 1.3. Suppose that [p]_ Z 0, since otherwise p € U, (Ja, b]).
Choose £ > 0 such that sup{(A(t)+&)* - |B)[!=% :a <t <b} <b—a. Let
vo(t) = e+ A(t) for a <t <b. (3.21)

Clearly, vg(t) > 0 for a <t < b, vo(a+) = ¢, vo(b—) = ¢, and there exists
¢ €]a, b such that v(t)sgn(eg —t) >0 fora <t < bandt # ¢y and

oh(t) = _ﬁB(t) for a<t<b,
vl (8) = =Ip(D)] _[(t—a)(b=1)] “*<p(t)|wo (6)|*[0h (1) | ™" for a<it<h. (3.22)

Let 4y and ug be some proper solutions of the problems (2.1), (2.2) and
(2.1), (2.3), respectively. By Lemma 2.5 (in case v(t) = vo(t) for a < t < b),
there exist 1 € [co, b[ and {5 €]a, ¢o] such that

ui(t) >0 for a<t<ty, uj(ty)=0,

3.23
uh(t) < 0 for to <t <b, uh(ts)=0. ( )

Suppose that t; = t3. Then by (3.23), the function

u(t) = u(t) for a <t < e,
o uz(t)ul(c”) for ecog<t<b

uz(co)

will be a proper solution of the equation (1.1), and hence

p € Ou(la, b]). (3.24)

Suppose

/ t o
o(t) = zzgt;‘ sgnvy(t) for a <t <b.

By (3.21), (3.22) and Proposition 2.1 we can easily see that o satisfies
the conditions of Lemma 2.11, and hence p € Oy(]a, b]), which contradicts
(3.24).
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Consequently, t; > 2. Then by (3.23), there exists ¢ €]t1,t2[ such that
u)(e) > 0> ub(c). Tt can be easily verified that the function

o(t) = u(t) for a<t<e,
o uz(t)Z;—Egg for e<t<b

satisfies the conditions of Lemma 2.10, and hence p € Uy(Ja, b]). O
Proof of Theorem 1.4. Let k = ¢(Q«(to, @),

_Qte )k g <t<t
o(t) = {Q t,t(ut,;alc;c > (3.25)
=)= for to <t <b.
y (1.13) we have
k—ka¥ < Q(t,to,a) <k for a<t<b, (3.26)
from which we conclude that o(¢)sgn(to —¢) > 0 for a < ¢ < b, t # ¢y and
atl
lo(t)| = < kh(t) for a<t<b, (3.27)
where
L f <t<tg,
h(t) = {“—al) oo asts (3.28)
W for to <t< b.
Suppose v(t) = exp [sgn to—t) f; | |%d5] fora <t < b. By (3.25)-(3.27)
we can see that v € C’l’oc(]a,to[ Jto, b]), v'(t)sgn(to —t) > 0 for a < t < b,
t # 1o, v'(to+) > 0> v'(tg—), v(a+) = 0, v(b—) = 0 and

" ay oy l-a == ol
V(1) = p() o O] [ O + o] T (Jotn] = = knin)) <
< p(0)e(0)]* '@
Hence by Lemma 2.10 we have p € Uy(Ja, b[). O
Proof of Theorem 1.5. Let

L = ] 9(Qulto,0)) for Qu(to, ) #0,
= k1 for Q.(to, o) =0,

for a <t <b.

where ky E]( & )“"’1 1[ is chosen in such a way that Q*(tp, o) < k1 —|—k1"ﬁ.
It is easy to see that k €]0,1[.
Introduce the function ¢ by the equality (3.25). Clearly,

k k
to—a DI

lim (t —a)%e(t) =k < 1, tlirgl b—1)%(t)=—k > —1.

t—a+

o éloc(]aa tO[U]th bD’ U(to_) =
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According to (1.14) and (1.15) we readily conclude that k — k=4 <
aQ(t to,a) < k+ k=+1 for a < t < b. Thus (3.27), where h is the function
defined by (3.28), is fulfilled. In view of this fact
o (t) = ap(t) — akh(t) < ap(t) — alo(t)|+ for a<t<b.
By Lemma 2.11 we now have p € Oy(]a, b[). O
The validity of Corollaries 1.5 and 1.6 follows from the fact that ¢©(Q. (2o,

) > (357)"
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