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Introdution

Boundary value problems (BVPs) of the theory of thermoelastiity have a

long history. They enounter in many physial, mehanial, and engineering

appliations where the thermal stresses appear. Therefore, the mathemat-

ial model of thermoelastiity have reeived onsiderable attention in the

sienti� literature (for exhaustive historial and bibliographial material

see [45℄, [63℄).

Without trying to disuss the history in detail we note that three-dimen-

sional regular problems of statis, pseudo-osillations, steady state osilla-

tions, and general dynamis of the thermoelastiity theory of homogeneous

isotropi elasti bodies are ompletely investigated by many authors (see,

for example, [45℄, [8℄, [24℄, [63℄, [66℄, [29℄{[31℄ and referenes therein). The

main mathematial tools applied for the investigation of various aspets

of the above problems are variational and funtional methods ([14℄, [63℄),

the potential methods and the diret and indiret boundary integral equa-

tions (BIE) methods ([45℄, [29℄{[31℄, [28℄), di�erent versions of the Bubnov-

Galerkin method and the method of generalized Fourier series (method of

regular soures) ([45℄).

To the best of the authors' knowledge the problems of thermoelasti

pseudo-osillations and steady state osillations for anisotropi bodies have

not been treated systematially in the sienti� literature (f. [33℄).

In the present memoir we undertake to examine a wide lass of the basi

regular, mixed, and rak type boundary value and interfae problems for

the systems of di�erential equations of pseudo-osillations and steady state

osillations of the thermoelastiity theory of homogeneous anisotropi bod-

ies. We develop the potential method to prove the existene and uniqueness

theorems in various funtional spaes and to establish the almost best reg-

ularity properties of solutions. We note that many problems onsidered in

this memoir have not been treated even in the isotropi thermoelastiity.

It should be mentioned that the methods, developed for the isotropi

ase in the above ited referenes, unfortunately, are not always applia-

ble in the ase of general anisotropy. It onerns, espeially, the steady

state osillation problems where quite new ideas are required. In parti-

ular, the exterior BVPs of steady state thermoelasti osillations in the

isotropi ase have been studied on the basis of the lassial Sommerfeld-

Kupradze thermo-radiation onditions and the uniqueness theorems were

proved with the help of the well-known Rellih's lemma, sine omponents

of the displaement vetor and the temperature in the isotropi ase an be

represented as a sum of metaharmoni funtions (for details see [45℄).

In the anisotropi ase we need a nontrivial generalization of the thermo-

radiation onditions at in�nity. We notie that the basi diÆulties in deal-

ing with the steady state osillation problems are onneted with a very

ompliated geometrial form of the orresponding harateristi surfaes



10

whih play a signi�ant role in the study of the far �eld behaviour of solu-

tions (f. [80℄, [55℄).

The monograph onsists of six hapters and is organized as follows.

In the �rst hapter there are onstruted the matries of fundamental

solutions to the systems of pseudo-osillation and steady state osillation

equations of thermoelastiity theory by Fourier transform and limiting ab-

sorption priniple, and their asymptoti properties at in�nity and in a viin-

ity of the origin are studied.

On the basis of the results obtained the generalized Sommerfeld-Kupradze

type thermo-radiation onditions are formulated and the Somigliana type

integral representation formulae for bounded and unbounded domains (with

ompat boundaries) are derived.

We emphasize that the above mentioned fundamental matries are not

represented expliitly in terms of elementary funtions. This essentially

ompliates the investigation of orresponding integral operators.

The seond hapter deals with the detail formulation of boundary value

and interfae problems for homogeneous and pieewise homogeneous (om-

posed) anisotropi bodies. Besides the usual lassial setting in C

k;�

-on-

tinuous H�older funtional spaes here is given a weak formulation of the

problems in the Sobolev W

1

p

(W

1

p;lo

) spaes with 1 < p < 1. The weak

setting relies upon the de�nition of generalized boundary trae funtionals

in the Besov B

s

p;q

spaes whih are introdued and broadly disussed in

Setion 4. Note that rak type and mixed problems, in general, do not

admit C

�

-ontinuous solutions (with � > 1=2) in losed domains even for

C

1

-regular boundary data. Therefore, these problems are formulated only

in the natural weak setting.

In the third hapter there are proved uniqueness theorems of solutions to

the regular and mixed homogeneous boundary value and interfae problems

in the appropriate funtional spaes. Here the ruial moment is seletion

of the funtional lasses where the homogeneous steady state osillation

problems in unbounded domain admit only the trivial solution. This is done

with the help of the above mentioned generalized Sommerfeld-Kupradze

type thermo-radiation onditions.

Chapter IV is entirely devoted to the study of single and double layer po-

tential type operators and boundary integral (pseudodi�erential) operators

generated by them. These results are the main tools used in the subsequent

hapters.

The existene theorems of solutions to the regular nonhomogeneous bo-

undary value and interfae problems are proved in the �fth hapter. By the

potential method these problems are redued to the equivalent systems of

pseudodi�erential equations (	DE) on the boundary of the elasti body (or

on the interfae of the omposed body) under onsideration. It is established

that these BIEs are ellipti systems (in general, in the sense of Douglis-

Nirenberg) with trivial null-spaes and zero indies. The general theory of

pseudodi�erential equations on losed smooth manifold and orresponding
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embedding theorems then immediately lead to the existene results for the

above indiated nonhomogeneous problems in C

k;�

funtional spaes with

integer k � 1 and 0 < � < 1 in the ase of lassial setting or inW

1

p

(W

1

p;lo

)

spaes with 1 < p <1 in the ase of weak setting (provided the boundary

data belong to appropriate natural spaes).

Finally, in the last sixth hapter the existene theorems of solutions to

the nonhomogeneous mixed and rak type boundary value problems and

to the mixed interfae problems are proved again by the potential method.

These problems are redued to the equivalent pseudodi�erential equations

on some proper subset of the boundary (or of the interfae). The investiga-

tion of these equations is arried out with the help of the theory of 	DEs on

manifold with boundary. The BIEs are again ellipti systems of 	DEs (in

general, in the sense of Douglis-Nirenberg) with positive de�nite prinipal

homogeneous symbol matriies, trivial null-spaes and indies equal to zero.

Making use of these results the existene of solutions to the problems indi-

ated above are proved in the SobolevW

1

p

(W

1

p;lo

) spaes with 4=3 < p < 4.

Applying the orresponding embedding theorems it is shown that the solu-

tions possess C

�

-smoothness (with arbitrary � < 1=2) at the rak edges

(in rak problems) and at the ollision urves of hanging boundary on-

ditions (in mixed problems) provided again that the boundary data belong

to appropriate natural spaes.

The authors like to appreiate very muh the �nanial support of the

Deutshe Forshungsgemeinshaft under grant numbers 436 GEO 17/2/95,

436 GEO 17/4/96, 436 GEO 17/2/97.
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CHAPTER I

BASIC EQUATIONS. FUNDAMENTAL MATRICES.

THERMO-RADIATION CONDITIONS

In this hapter �rst we onstrut exponentially dereasing fundamental

solution to the system of pseudo-osillation equations of the thermoelastiity

theory of anisotropi bodies and then by the limiting absorption priniple

we obtain two fundamental matries for the system of steady state osilla-

tion equations. Further, we derive the asymptoti formulae for the entries

of these matries and formulate the generalized Sommerfeld-Kupradze type

radiation onditions in anisotropi thermoelastiity.

1. Basi Differential Equations of Thermoelastiity

In this setion we ollet an auxiliary material onerning the governing

equations and the basi mehanial and physial onepts of the thermoe-

lastiity theory (for details we refer to [63℄, [45℄).

1.1. The system of equations of oupled linear thermoelastodynamis of

homogeneous anisotropi elasti medium reads (see [63℄, Ch. V)



kjpq

D

j

D

q

u

p

(x; t) + X

k

(x; t) = %D

2

t

u

k

(x; t) + �

kj

D

j

u

4

(x; t);

�

pq

D

p

D

q

u

4

(x; t) � 

0

D

t

u

4

(x; t) � T

0

�

pq

D

t

D

p

u

q

(x; t) = �Q(x; t);

(1.1)

where 

kjpq

= 

pqkj

= 

jkpq

are elasti onstants, �

pq

= �

qp

are heat on-

dutivity oeÆients, 

0

> 0 is the thermal apaity, T

0

> 0 is the tem-

perature of the medium in the natural state, �

pq

= �

qp

are expressed in

terms of the thermal and elasti onstants, % =onst> 0 is the density

of the medium; u = (u

1

; u

2

; u

3

)

>

is the displaement vetor, u

4

is the

temperature, X = (X

1

; X

2

; X

3

)

>

is the bulk fore, Q is the heat soure;

x = (x

1

; x

2

; x

3

) denotes the spatial variable, while t is the time variable;

here and in what follows the summation over repeated indies is meant from

1 to 3, unless otherwise stated; the supersript > denotes transposition and

D

p

= D

x

p

:= �=�x

p

; D

t

:= �=�t.

In the sequel, we usually onsider the homogeneous version of equations

(1.1), i.e., we assume X = 0; Q = 0: In addition, without any restrition of

generality % = 1 is assumed as well.

In (1.1) the term �T

0

�

pq

D

t

D

p

u

q

(x; t) desribes the oupling between the

temperature and strain �elds. It vanishes only for a stationary heat ow.

In that ase or if this term is negleted, we have the so-alled deoupled

thermoelastiity theory.

In the thermoelastiity theory the stress tensor f�

kj

g; the strain tensor

f"

kj

g and the temperature �eld u

4

are related by Duhamel{Neumann law

�

kj

= 

kjpq

"

pq

� �

kj

u

4

; "

kj

= 2

�1

(D

k

u

j

+ D

j

u

k

), k; j = 1; 2; 3; the k-th

omponent of the vetor of thermostresses, ating on a surfae element with

the unit normal vetor n = (n

1

; n

2

; n

3

); is alulated by the formula

�

kj

n

j

= 

kjpq

"

pq

n

j

��

kj

n

j

u

4

= 

kjpq

n

j

D

q

u

p

��

kj

n

j

u

4

; k = 1; 2; 3: (1.2)
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The formal Laplae transform of the equations (1.1) (with respet to t)

leads to the so-alled pseudo-osillation equations of the thermoelastiity

theory



kjpq

D

j

D

q

u

p

(x) = �

2

u

k

(x) + �

kj

D

j

u

4

(x);

�

pq

D

p

D

q

u

4

(x)� �

0

u

4

(x)� �T

0

�

pq

D

p

u

q

(x) = 0;

(1.3)

here � = � � i! is a omplex parameter with ! 2 R and � 2 R n f0g.

If all data involved in (1.1) are harmoni time dependent, i.e., u

k

(x; t) =

1

u

k

(x) os!t +

2

u

k

(x) sin!t, k = 1; 2; 3; 4, ! 2 R, then we get the so-alled

steady state osillation equations of the theory of thermoelastiity



kjpq

D

j

D

q

u

p

(x) = �!

2

u

k

(x) + �

kj

D

j

u

4

(x);

�

pq

D

p

D

q

u

4

(x) + i!

0

u

4

(x) + i!T

0

�

pq

D

p

u

q

(x) = 0;

(1.4)

where the following notation u

k

(x) =

1

u

k

(x) + i

2

u

k

(x); k = 1; 2; 3; 4; is em-

ployed.

It is evident that system (1.4) formally an be obtained from (1.3) pro-

vided � = 0, but this similarity is a very formal one and it will beome

apparent later on.

Finally, let us note that, if the displaement vetor and the temperature

do not depend on the time variable t, then from (1.1) we obtain equations

of the so-alled deoupled thermoelastostatis



kjpq

D

j

D

q

u

p

(x) = �

kj

D

j

u

4

(x); k = 1; 2; 3; (1.5)

�

pq

D

p

D

q

u

4

(x) = 0: (1.6)

In this monograph we shall not systematially treat the equations of de-

oupled thermoelastostatis (1.5)-(1.6), sine in this ase all the boundary

value and interfae problems, we intend to onsider, are also ompletely de-

oupled into two independent problems for the temperature �eld and the di-

plaement �eld. The orresponding problems of elastostatis of anisotropi

bodies for the system (1.5) have been studied in [8℄, [56℄, while the problems

for the stationary distribution of the temperature �eld whih, in fat, are

BVPs for the seond order salar ellipti di�erential equation (1.6) an be

found, for example, in [52℄.

1.2. In order to rewrite the above equations in the matrix form, let us

set

U = (u

1

; u

2

; u

3

; u

4

)

>

= (u; u

4

)

>

; u = (u

1

; u

2

; u

3

)

>

;

C(D) = [C

kp

(D)℄

3�3

; C

kp

(D) = 

kjpq

D

j

D

q

; (1.7)

�(D) = �

pq

D

p

D

q

; D = r = (D

1

; D

2

; D

3

): (1.8)

For the sake of simpliity we shall use also the notation either [A℄

m�n

or

[A

kp

℄

m�n

for the m� n matrix A:
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Now we an represent equations (1.3) and (1.4) in the following form,

respetively,

A(D; �)U(x) = 0; (1.9)

A(D;�i!)U(x) = 0; (1.10)

where

A(D;{) =

�

[C(D)� {

2

I

3

℄

3�3

[��

kj

D

j

℄

3�1

[�{T

0

�

kj

D

j

℄

1�3

�(D)� {

0

�

4�4

; (1.11)

I

m

= [Æ

kj

℄

m�m

stands for the identity m � m matrix, Æ

kj

is Kroneker's

symbol.

Clearly, { = � = � � i ! orresponds to the pseudo{osillations, while

{ = �i! orresponds to the steady state osillations, and { = 0 to the

deoupled thermoelastostatis.

Further we introdue the lassial stress operator

T (D;n) = [T

kp

(D;n)℄

3�3

= [

kjpq

n

j

D

q

℄

3�3

; (1.12)

and the thermoelasti stress operator

P (D;n) = [ [T (D;n)℄

3�3

; [��

kj

n

j

℄

3�1

℄

3�4

: (1.13)

Due to (1.2) we have

[P (D;n)U ℄

k

= �

kj

n

j

= [T (D;n)u℄

k

� �

kj

n

j

u

4

; k = 1; 2; 3:

1.3. From the physial onsiderations it follow that (see [22℄, [63℄):

a) the matrix [�

pq

℄

3�3

is positive de�nite, i.e.,

�(�) = �

pq

�

p

�

q

� Æ

0

j�j

2

; � 2 R

3

; Æ

0

= onst > 0; (1.14)

b) the quadrati form 

kjpq

e

kj

e

pq

is positive de�nite in the real symmetri

variables e

kj

= e

jk

;



kjpq

e

kj

e

pq

� Æ

0

e

kj

e

kj

; Æ

0

= onst > 0; (1.15)

whih implies positive de�niteness of the matrix C(�); � 2 R

3

nf0g; de�ned

by (1.7), i.e.,

C

kj

(�)�

j

�

k

� Æ

1

j�j

2

j�j

2

; �; � 2 R

3

; Æ

1

= onst > 0: (1.16)

Inequalities (1.14) and (1.16) together with the symmetry properties of the

matries [�

pq

℄ and C(�) yield

C(�)� � � = C

kj

(�)�

j

�

k

� Æ

1

j�j

2

j�j

2

; � 2 R

3

; (1.17)

�

pq

�

p

�

q

� Æ

0

j�j

2

; (1.18)

for an arbitrary omplex vetor � 2 C

3

: Here a � b =

P

m

k=1

a

k

b

k

denotes

the usual salar produt of the two omplex vetors a = (a

1

; � � � ; a

m

) and

b = (b

1

; � � � ; b

m

) in C

m

, while upper bar denotes omplex onjugate. We



15

shall also employ the following notation (\real" salar produt of omplex

vetors)

ha ; bi =

m

X

k=1

a

k

b

k

; a; b 2 C

m

: (1.19)

1.4. We emphasize that the di�erential operator A(D;{) de�ned by

(1.11) is not formally self-adjoint. Denote by A

�

(D;{) the operator formally

adjoint to A(D;{)

A

�

(D;{) = A

>

(�D;{) = A

>

(�D;{) =

=

�

[C(D)� {

2

I

3

℄

3�3

[{T

0

�

kj

D

j

℄

3�1

[�

kj

D

j

℄

1�3

�(D)� {

0

�

4�4

: (1.20)

Let us note here that throughout this memoir we shall use the following

notations (when no onfusion an be aused by this):

a) if all elements of a vetor v = (v

1

; :::; v

m

) (matrix a = [a

kj

℄

m�n

)

belong to one and the same spae X , we shall write v 2 X (a 2 X) instead

of v 2 [X ℄

m

(a 2 [X ℄

m�n

);

b) if K : X

1

� � � ��X

m

! Y

1

� � � ��Y

n

and X

1

= � � � = X

m

= X; Y

1

=

� � � = Y

n

= Y; we shall write K : X ! Y rather than K : [X ℄

m

! [Y ℄

n

:

Let 


+

� R

3

be a bounded domain with a C

2

�smooth onneted bound-

ary S = �


+

; 


+

= 


+

[ S and 


�

= R

3

n


+

: We assume that 


+

(


�

)

is �lled by a homogeneous anisotropi medium with the elasti and thermal

harateristis desribed above.

Now we present the so-alled Green formulae for the operator A(D;{)

whih will be used many times in the sequel.

Let U = (u

1

; u

2

; u

3

; u

4

)

>

; V = (v

1

; v

2

; v

3

; v

4

)

>

2 C

2

(


+

)\C

1

(


+

) (i.e.,

U and V are regular vetors in 


+

) and A(D;{)U; A

�

(D;{)V 2 L

1

(


+

).

Then the following equations hold for arbitrary { 2 C (f. [57℄, [55℄, [16℄):

R




+

A(D;{)U � V dx =

R

S

[B(D;n)U ℄

+

� [V ℄

+

dS �

R




+

E(U; V ) dx; (1.21)

R




+

fA(D;{)U � V � U � A

�

(D;{)V g dx =

R

S

f[B(D;n)U ℄

+

� [V ℄

+

�

�[U ℄

+

� [Q(D;n;{)V ℄

+

o

dS; (1.22)

R




+

n

[A(D;{)U ℄

k

u

k

+

1

{T

0

[A(D;{)U ℄

4

u

4

o

dx =

=�

R




+

n



kjpq

D

p

u

q

D

k

u

j

+{

2

juj

2

+

1

{T

0

�

kj

D

k

u

4

D

j

u

4

+



0

T

0

ju

4

j

2

o

dx+

+

R

S

n

[B(D;n)U ℄

+

k

[u

k

℄

+

+

1

{T

0

[u

4

℄

+

[�

n

u

4

℄

+

o

dS; (1.23)

where

�

n

= �(D;n) := �

pq

n

p

D

q

; (1.24)

B(D;n) =

�

[T (D;n)℄

3�3

[��

kj

n

j

℄

3�1

[0℄

1�3

�(D;n)

�

4�4

; (1.25)
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Q(D;n;{) =

�

[T (D;n)℄

3�3

[{T

0

�

kj

n

j

℄

3�1

[0℄

1�3

�(D;n)

�

4�4

; (1.26)

E(U; V ) = 

kjpq

D

p

u

q

D

k

v

j

+ {

2

u

k

v

k

� �

kj

u

4

D

j

v

k

+

+ �

pq

D

q

u

4

D

p

v

4

+ 

0

{u

4

v

4

+ {T

0

v

4

�

pq

D

p

u

q

: (1.27)

Here and in what follows n(x) denotes the exterior unit normal vetor of

S at the point x 2 S: The symbols [ � ℄

�

denote limits on S from 


�

.

Note that, if we onsider the �rst three omponents of the U as the

displaement vetor and the fourth one as the temperature, then the ve-

tor B(D;n)U has the following thermo-mehanial sense: the �rst three

omponents of the B(D;n)U represent the orresponding vetor of thermal

stresses (see (1.13)), while the fourth omponent desribes the heat ux

through the surfae S.

The similar formulae hold valid also for the domain 


�

, when { = 0 or

Re{ > 0, with the following hanges (related to the hoie of diretion of

the normal vetor): the supersript \+" must be replaed everywhere by

the supersript \�" and in front of the surfae integrals the sign \�" is to

be put.

In this ase the vetors U and V have to satisfy the onditions

U; V 2 C

2

(


�

) \C

1

(


�

); A(D;{)U; A

�

(D;{)V 2 L

1

(


�

); (1.28)

A(D;{)U and A

�

(D;{)V have ompat supports and, in addition, U and

V have the following asymptoti behaviour at in�nity

u

k

(x); v

k

(x) =

�

o(1) for { = 0;

O(jxj

N

) for Re{ = � > 0; k = 1; 2; 3; 4;

(1.29)

with an arbitrary �xed positive number N . In fat, it an be proved that, if

U and V are solutions of the orresponding homogeneous equations , then

the onditions (1.29) imply

D

�

u

k

(x); D

�

v

k

(x)=

�

O(jxj

�1�j�j

) for { = 0;

O(jxj

��

) for Re{=�>0; k=1; 2; 3; 4;

(1.30)

where � is an arbitrary positive number, � = (�

1

; �

2

; �

3

) is an arbitrary

multi-index and j�j = �

1

+ �

2

+ �

3

(see, for example, [7℄, [44℄, [56℄.

The prinipal remark here is that for solutions U and V of the steady state

osillation equation (1.10) (i.e., when { = �i!) the Green formulae, similar

to (1.21)-(1.23), are not valid any more for the unbounded domain 


�

.

1.5. In this subsetion, before starting the onstrution of the funda-

mental matries, we shall analyse the so-alled harateristi matries or-

responding to the above di�erential operators of the thermoelastiity theory.

They will play a fundamental role in the sequel.

Let us introdue the harateristi polynomial of the operator A(D;{)

M(�;{) = detA(�i�;{): (1.31)

Denote by N(�i�;{) the matrix adjoint to A(�i�;{); i.e.,

A(�i�;{)N(�i�;{) = N(�i�;{)A(�i�;{) =M(�;{)I

4

: (1.32)
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Clearly, we have

[A(�i�;{)℄

�1

= [M(�;{)℄

�1

N(�i�;{); (1.33)

where [A(�i�;{)℄

�1

is the matrix inverse to A(�i�;{). Equations (1.31),

(1.11), and (1.7) yield

M(�;{) = det

�

[�C(�)� {

2

I

3

℄

3�3

[i�

kj

�

j

℄

3�1

[i{T

0

�

kj

�

j

℄

1�3

�{

0

�

4�4

+

+det

�

[�C(�)� {

2

I

3

℄

3�3

[i�

kj

�

j

℄

3�1

[0℄

1�3

��(�)

�

4�4

= �(�) det[C(�) + {

2

I

3

℄�

�{T

0

det

�

[�C(�)� {

2

I

3

℄

3�3

[�

kj

�

j

℄

3�1

[�

kj

�

j

℄

1�3



0

T

�1

0

�

4�4

=

= �(�) det[C(�) + {

2

I

3

℄�

�{T

0

det

�

[�C(�)�{

2

I

3

℄

3�3

�[

�1

0

T

0

�

kj

�

j

�

pq

�

q

℄

3�3

[�

kj

�

j

℄

3�1

[0℄

1�3



0

T

�1

0

�

4�4

=

= �(�) det[C(�) + {

2

I

3

℄ + {

0

det[

e

C(�) + {

2

I

3

℄; (1.34)

where C(�) and �(�) are de�ned by (1.7) and (1.8), respetively, and

e

C(�) = [

e

C

kp

(�)℄

3�3

= C(�) + [

�1

0

T

0

�

kj

�

pq

�

j

�

q

℄

3�3

; (1.35)

e

C

kp

(�) = (

kjpq

+ 

�1

0

T

0

�

kj

�

pq

)�

j

�

q

; k; p = 1; 2; 3:

Next, we set

	(�;{) = det[C(�) + {

2

I

3

℄; (1.36)

e

	(�;{) = det[

e

C(�) + {

2

I

3

℄: (1.37)

The relations (1.35) and (1.17) imply that the matrix

e

C(�) for any � 2

R

3

n f0g is positive de�nite and, therefore,

e

C(�)� � � = C(�)� � � + 

�1

0

T

0

j�

kj

�

j

�

k

j

2

� Æ

1

j�j

2

j�j

2

(1.38)

for an arbitrary � 2 C

3

and the same Æ

1

as in (1.17).

Thus, we have

M(�;{) = �(�)	(�;{) + {

0

e

	(�;{): (1.39)

It is evident that, if j{j < {

0

with some positive {

0

, then there exists a

positive number %

0

suh that

j	(�;{)j � 1; j

e

	(�;{)j � 1; jM(�;{)j � 1; (1.40)

for j�j � %

0

; here %

0

depends on {

0

and the thermoelasti onstants.

Lemma 1.1. Let � = ��i!; Re � = � > 0 and � 2 R

3

: ThenM(�; �) 6= 0

for any ! 2 R. Moreover, [A(�i�; �)℄

�1

2 L

2

(R

3

).
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Proof. Let us suppose that the assertion of the lemma is false, i.e.,M(�; �) =

0. Then the homogeneous system of linear algebrai equations

A(�i�; �) a = 0 (1.41)

has some nontrivial solution a = (a

1

; � � � ; a

4

)

>

2 C

4

n f0g.

Multiplying the k�th equation of (1.41) by a

k

and summing the �rst

three equations we get

�

kjpq

�

j

�

q

a

p

a

k

� �

2

Æ

kp

a

p

a

k

+ i�

kj

�

j

a

4

a

k

= 0;

i�T

0

�

kj

�

j

a

k

a

4

� �

pq

�

p

�

q

ja

4

j

2

� �

0

ja

4

j

2

= 0:

Deviding the latter equation by �T

0

; taking the omplex onjugate and

adding to the �rst one, we obtain



kjpq

�

j

�

q

a

p

a

k

+ �

2

a

k

a

k

+ � [j� j

2

T

0

℄

�1

�

pq

�

p

�

q

ja

4

j

2

+ 

0

T

�1

0

ja

4

j

2

= 0:

Due to (1.17) we dedue by separating the real and imaginary parts

�

C(�)ea � ea+ (�

2

� !

2

)jeaj

2

+ �[j� j

2

T

0

℄

�1

�(�)ja

4

j

2

+ 

0

T

�1

0

ja

4

j

2

= 0;

!f2�jeaj

2

+ [j� j

2

T

0

℄

�1

�(�)ja

4

j

2

g = 0;

where ea = (a

1

; a

2

; a

3

)

>

.

From this system and the inequality (1.14) it follows that a

1

= � � � =

a

4

= 0; for any � 2 R

3

, ! 2 R, and � > 0: This ontradition proves the

�rst part of the lemma.

The seond part of the lemma is a onsequene of the inequality

[A(�i�; �)℄

�1

kj

�

(�)

1 + j�j

2

for � 2 R

3

;

where the positive onstant (�) does not depend on � (it depends on � and

on the thermoelasti onstants of the medium in question). �

1.6. Now we shall analyse the harateristi polynomial M(�;�i!) of

the operator A(D;�i!). It an be easily shown that (see (1.36), (1.37),

(1.39))

M(�;�i!) = �(�)�(�; !)� i!

0

e

�(�; !); (1.42)

where

�(�; !) = det[C(�)� !

2

I

3

℄ = 	(�;�i!); (1.43)

e

�(�; !) = det[

e

C(�)� !

2

I

3

℄ =

e

	(�;�i!): (1.44)

Charateristi surfaes of the operator A(D;�i!) are de�ned by the

equation

M(�;�i!) = 0; � 2 R

3

; (1.45)

whih, in turn, due to (1.42), is equivalent to the following system

�

�(�; !) = 0;

e

�(�; !) = 0; � 2 R

3

:

(1.46)
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Passing on the spherial o-ordinates

�

1

= % os' sin �; �

2

= % sin' sin �; �

3

= % os �;

0 � % < +1; 0 � ' < 2�; 0 � � � �;

and, taking into aount formulae (1.43), (1.44), (1.17) and (1.38), we on-

lude that eah equation of the system (1.46) has three positive roots with

respet to %

2

. These roots are proportional to !

2

, and polynomials �(�; !)

and

e

�(�; !) an be represented in the form:

�(�; !) = �(�; 0) [%

2

� !

2

%

2

1

(�; ')℄[%

2

� !

2

%

2

2

(�; ')℄[%

2

� !

2

%

2

3

(�; ')℄;

e

�(�; !) =

e

�(�; 0) [%

2

� !

2

e%

2

1

(�; ')℄[%

2

� !

2

e%

2

2

(�; ')℄[%

2

� !

2

e%

2

3

(�; ')℄;

(1.47)

where � = �=%; % = j�j; �(�; 0) = detC(�) > 0;

e

�(�; 0) = det

e

C(�) > 0;

here f%

2

k

(�; ')g

3

k=1

and fe%

2

k

(�; ')g

3

k=1

do not depend on ! and are solutions

of the following equations (with respet to %

2

):

�(�; 1) = �(�; 0)%

6

+�

(2)

(�)%

4

+�

(1)

(�)%

2

� 1 = 0; (1.48)

e

�(�; 1) =

e

�(�; 0)%

6

+

e

�

(2)

(�)%

4

+

e

�

(1)

(�)%

2

� 1 = 0; (1.49)

where �

(j)

(�) and

e

�

(j)

(�) are even, homogeneous funtions of order 2j in �

(see (1.43), (1.44)).

In what follows we onsider the so-alled regular ase, i.e., we assume the

following onditions to be ful�lled (f. [55℄, [80℄):

I

0

: r

�

�(�; !) 6= 0 at real zeros of the polynomial �(�; !);

II

0

: Gaussian urvature of the manifold, de�ned by the real zeros of the

polynomial �(�; !); does not vanish anywhere.

From the above onditions I

0

{II

0

it follows that the real zeros of the

polynomial �(�; !) form nonsel�nterseting, losed, onvex two-dimensional

surfaes S

0

j

; j = 1; 2; 3; enveloping the origin of o-ordinates. For an arbi-

trary vetor x 2 R

3

n f0g there exist exatly two points on eah S

0

j

, namely

�

j

= (�

j

1

; �

j

2

; �

j

3

) and �

j

�

= ��

j

, at whih the exterior unit normal is parallel

to the vetor x. We provide that at �

j

the normal vetor n(�

j

) and x have

the same diretion, while at �

j

�

they are opposite direted. Note that, if

�

j

2 S

0

j

and �

k

2 S

0

k

orrespond to the same vetor x, then (due to the

onvexity property of the above surfaes) (�

j

� x) 6= (�

k

� x) for k 6= j:

In the sequel, the �

j

2 S

0

j

will be referred to as the point whih orre-

sponds to the vetor x (i.e., to the diretion x=jxj).

Clearly, % = j!j %

k

(�; ') > 0; k = 1; 2; 3; represent the equations of the

surfaes S

0

k

in the spherial o-ordinates.

The set of points in R

3

de�ned by the system of equations (1.46) may

have a very ompliated geometri form. Among these forms we single out

and study the following regular ase: The system (1.46) is either inonsis-

tent in R

3

(i.e., it de�nes the empty set) or it de�nes a two-dimensional

manifold, i.e., equations (1.48) and (1.49) have m (1 � m � 3) ommon
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roots and, if 1 � m < 3; the remaining two groups of the roots form disjoint

sets for arbitrary values of � and '. We denote these ommon roots by

�

1

(�; '); � � � ; �

m

(�; ') (1 � m � 3) and without loss of generality assume

that

0<%

1

(�; ')<%

2

(�; ')<%

3

(�; '); 0<�

1

(�; ')< � � �<�

m

(�; '): (1.50)

Thus, in this ase the harateristi equation (1.45) (i.e., the system

(1.46)) de�nes analyti (harateristi) surfaes S



1

; � � � ; S



m

; whose equa-

tions in the spherial o-ordinates read as % = j!j �

k

(�; ') > 0, k =

1; � � � ;m:

The BVPs orresponding to the ase m = 0 turned out to be very similar

to those of the pseudo-osillation ones (see Remark 2.7) and therefore in

what follows we shall mainly onsider the ase 1 � m � 3:

1.7. From the above arguments it follows that

	(�;{)=�(�; 0)[%

2

+{

2

%

2

1

(�; ')℄[%

2

+{

2

%

2

2

(�; ')℄[%

2

+{

2

%

2

3

(�; ')℄; (1.51)

e

	(�;{)=

e

�(�; 0)[%

2

+{

2

e%

2

1

(�; ')℄[%

2

+{

2

e%

2

2

(�; ')℄[%

2

+{

2

e%

2

3

(�; ')℄; (1.52)

for any � 2 R

3

and { 2 C .

Consequently, aording to (1.39) we have

M(�;{)=�(�; 0)�(�) [%

2

+ {

2

%

2

1

(�; ')℄[%

2

+ {

2

%

2

2

(�; ')℄[%

2

+ {

2

%

2

3

(�; ')℄+

+{

0

e

�(�; 0) [%

2

+ {

2

e%

2

1

(�; ')℄[%

2

+ {

2

e%

2

2

(�; ')℄[%

2

+ {

2

e%

2

3

(�; ')℄ =

= �

m

(%; �; ';{)	

m

(%; �; ';{); (1.53)

where

�

m

(%; �; ';{) = �

m

(�;{) = �

m

(��;{) = �

m

(�;�{) =

= (�1)

m

[%

2

+ {

2

�

2

1

(�; ')℄ � � � [%

2

+ {

2

�

2

m

(�; ')℄; (1.54)

	

m

(%; �; ';{) = 	

m

(�;{) = 	

m

(��;{) =

= (�1)

m

f�(�; 0)�(�) [%

2

+ {

2

�

2

1

(�; ')℄ � � � [%

2

+ {

2

�

2

3�m

(�; ')℄+

+{

0

e

�(�; 0) [%

2

+ {

2

e

�

2

1

(�; ')℄ � � � [%

2

+ {

2

e

�

2

3�m

(�; ')℄; (1.55)

here �

2

j

(�; ') and

e

�

2

j

(�; ') denote the di�erent (non-ommon) roots of the

equations (1.48) and (1.49), respetively. Note that formulae (1.51)-(1) are

valid for arbitrary � 2 R

3

and { 2 C .

The multiplier (�1)

m

in (1) ensures the inequality

�

m

(0;�i!) > 0 (1.56)

whih will be employed later on.

Remark 1.2. Note that the polynomial �

m

(%; �; ';�i!) in % vanishes

on S



j

; j = 1; � � � ;m (i.e., when % = j!j�

j

(�; %)) while 	

m

(%; �; ';�i!)

is di�erent from zero for any real % and !. Therefore, for any �xed !

and %

0

there exists a positive number "

0

suh that j	

m

(%; �; ';{)j > 0 for

jIm %j � "

0

, jRe{j � "

0

and j%j � 2%

0

, where % = %

0

+ i%

00

, { = � � i!.
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Now from equations (1) and (1) it follows that, if jRe{j = j�j < "

0

and j� �

j

(�; ')j < "

0

; then the omplex numbers � (! + i�)�

j

(�; ') =

� i{�

j

(�; '); j = 1; � � � ;m; are the only zeros of the polynomial (1) with

respet to % in the strip jIm %j = j%

00

j < "

0

: As a onsequene we have that

M(�;{) 6= 0 for � 2 R

3

and 0 < j�j = jRe{j < "

0

: �

2. Fundamental Matries

In this setion with the help of the fundamental matrix of the pseudo-

osillation equations we will onstrut maximally dereasing fundamental

matries of the steady state osillation operator by limiting absorption prin-

iple (f. [55℄).

Denote by �(x; �) a fundamental matrix of the operator A(D; �):

A(D; �)�(x; �) = I

4

Æ(x); � = � � i!, � 6= 0, where Æ(x) is Dira's distribu-

tion.

Let 0 < jRe� j = j�j < "

0

with "

0

> 0 from Remark 1.2 or � > 0. Then

due to the representation (1), Remark 1.2, equation (1.33) and Lemma 1.1

we have

M(�; �) 6= 0; � 2 R

3

; [A(�i�; �)℄

�1

2 L

2

(R

3

): (2.1)

Therefore, we an represent �(x; �) by the Fourier integral [57℄

�(x; �)=F

�1

�!x

�

[A(�i�; �)℄

�1

�

=(2�)

�3

lim

R!1

R

j�j<R

[A(�i�; �)℄

�1

e

�ix�

d�: (2.2)

By F

x!�

and F

�1

�!x

we denote the generalized Fourier and inverse Fourier

transforms whih for summable funtions are de�ned as follows (see, e.g.,

[20℄)

F

x!�

[f ℄ =

R

R

n

f(x) e

ix�

dx; F

�1

�!x

[g℄ = (2�)

�n

R

R

n

g(�) e

�ix�

d�:

From the onditions � 6= 0 and (2.1), and properties of the Fourier

transform it easily follows that the entries of the matrix �(x; �) together

with all derivatives derease more rapidly than any negative power of jxj as

jxj ! +1: The behaviour of this matrix in a neighbourhood of the origin

will be established below (see Lemma 2.1) (f. [23℄).

Let h be a ut o� funtion with properties

h(�) = h(��); h 2 C

1

(R

3

); h(�) = 1 for j�j < %

0

;

h(�) = 0 for j�j > 2%

0

(2.3)

with %

0

from (1.40).

Now we deompose (2.2) into the two parts

�(x; �) = �

(1)

(x; �) + �

(2)

(x; �);

where

�

(1)

(x; �) = F

�1

�!x

�

[1� h(�)℄ [A(�i�; �)℄

�1

�

; (2.4)

�

(2)

(x; �) = F

�1

�!x

�

h(�) [A(�i�; �)℄

�1

�

=
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= (2�)

�3

R

j�j<2%

0

h(�) [A(�i�; �)℄

�1

e

�ix�

d�: (2.5)

The main result of this setion will follow from two the lemmata whih

we now present.

Let �

(0)

(x) be the homogeneous (of order �1) fundamental matrix of the

operator C(D) (see [55℄, [56℄)

�

(0)

(x) = F

�1

�!x

�

[C(�i�)℄

�1

�

= (�8�

2

jxj)

�1

2�

R

0

[C(a�)℄

�1

d'; (2.6)

where x 2 R

3

n f0g, a = [a

kj

℄

3�3

is an orthogonal matrix with property

a

>

x

>

= (0; 0; jxj)

>

; � = (os'; sin'; 0)

>

. Further, let 

(0)

(x) be the ho-

mogeneous (of order �1) fundamental funtion of the operator �(D) (see

[52℄)



(0)

(x) = F

�1

�!x

�

[�(�i�)℄

�1

�

= �[4� jLj

1=2

(L

�1

x � x)

1=2

℄

�1

(2.7)

with L = [�

pq

℄

3�3

; jLj = detL.

Lemma 2.1. The entries of the matrix �

(1)

(x; �) belong to C

1

(R

3

nf0g)

and for an arbitrary � 2 [�"

0

; "

0

℄ together with all derivatives derease more

rapidly than any negative power of jxj as jxj ! +1.

The limit

lim

�!0

D

�

x

�

(1)

(x; � � i!) = D

�

x

�

(1)

(x;�i!)

exists uniformly for jxj > Æ with an arbitrary Æ > 0 and in a neigbourhood

of the origin (say jxj < 1=2) the following inequalities

jD

�

x

�

(1)

kj

(x; � � i!)�D

�

x

�

(1)

kj

(x;�i!)j � j�j  '

(kj)

j�j

(x);

jD

�

x

�

(1)

kj

(x; � � i!)�D

�

x

�

kj

(x)j �  '

(kj)

j�j

(x)

hold, where  = onst > 0 does not depend on �;

�(x) =

�

[�

(0)

(x)℄

3�3

[0℄

3�1

[0℄

1�3



(0)

(x)

�

4�4

; (2.8)

'

(kj)

0

(x) = 1; '

(kj)

1

(x) = �lnjxj; '

(kj)

l

(x) = jxj

1�l

; l � 2;

for 1 � k; j � 3 and k = j = 4;

'

(k4)

0

(x) = '

(4k)

0

(x) = �lnjxj; '

(k4)

m

(x) = '

(4k)

m

(x) = jxj

�m

; m � 1;

for k = 1; 2; 3; � is an arbitrary multi-index.

Proof. Note that the relations D

�

[A(�i�; �)℄

�1

kj

= O([1 + j�j℄

�2�j�j

) and

[A(�i�; �)℄

�1

=

�

[(C(�i�))

�1

℄

3�3

[0℄

3�1

[0℄

1�3

[�(�i�)℄

�1

�

+

+

�

[O(j�j

�4

)℄

3�3

[O(j�j

�3

)℄

3�1

[O(j�j

�3

)℄

1�3

O(j�j

�4

)

�

;

hold for suÆiently large j�j.
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Now the proof follows from Lemma 1.1, equations (2.6), (2.7), and prop-

erties of the Fourier transform of homogeneous funtions (see, for example,

[20℄, [54℄, Lemma 2.17, [55℄, Lemma 3.1). �

Now we analyse properties of the matrix �

(2)

(x; �).

Going to the spherial o-ordinates in the integral (2) we get

�

(2)

(x; �) = (2�)

�3

R

�

1

d�

1

n

%

0

R

0

+

2%

0

R

%

0

o

h(�)[A(�i�; �)℄

�1

e

�ix�

%

2

d%; (2.9)

where �

1

is the unit sphere in R

3

entered at the origin.

Taking into aount Remark 1.2, the analytiity of the integrand with

respet to %, and introduing the omplex % = %

0

+ i%

00

plane we an rewrite

(2.9) by Cauhy theorem as follows

�

(2)

(x; �) = (2�)

�3

R

�

1

d�

1

n

R

l

�

[A(�i�; �)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�; �)℄

�1

e

�ix�

%

2

d%

o

; (2.10)

where l

�

= [0; j!j�

1

�Æ℄[ l

�

1;Æ

[ [j!j�

1

+Æ; j!j�

2

�Æ℄[ l

�

2;Æ

[� � �[ l

�

m;Æ

[ [j!j�

m

+

Æ; %

0

℄; Æ > 0 is a suÆiently small number, l

+

j;Æ

[l

�

j;Æ

℄ is the semiirle in the

upper [lower℄ half-plane entered at j!j�

j

and radius Æ oriented lokwise

[ounter-lokwise℄; in (2.10) the ontour l

+

[l

�

℄ orresponds to the ase

�! < 0 [�! > 0℄.

Now passing to the limit in (2.10) as � ! 0� we get

lim

�!0

�

(2)

(x; � � i!) =

= (2�)

�3

R

�

1

d�

1

n

R

l

�

[A(�i�;�i!)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�;�i!)℄

�1

e

�ix�

%

2

d%

o

=: �

(2)

+

(x;�i!); �! > 0; (2.11)

lim

�!0

�

(2)

(x; � � i!) =

= (2�)

�3

R

�

1

d�

1

n

R

l

+

[A(�i�;�i!)℄

�1

e

�ix�

%

2

d%+

+

2%

0

R

%

0

h(�) [A(�i�;�i!)℄

�1

e

�ix�

%

2

d%

o

=: �

(2)

�

(x;�i!); �! < 0: (2.12)

These limits exist uniformly for jxj < R

0

with an arbitrary R

0

:

Suh type of integrals have been studied in [55℄. Applying the arguments

quite similar to that of [55℄ we arrive at the formulae

�

(2)

�

(x;�i!) = (2�)

�3

h

lim

Æ!0

R

j�

m

j>Æ

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d��
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�i�

m

X

j=1

R

�

1

n

N(�i�;�i!)e

�ix�

%

2

[�=�%�

m

(%; �; ';�i!)℄	

m

(%; �; ';�i!)

o

%=j!j�

j

d�

1

i

; (2.13)

where �

m

and 	

m

are de�ned by (1) and (1), respetively.

We need to go over to the integrals over S



j

in the last summand of (2).

To this end let us note that the exterior unit normal of S



j

is de�ned by the

equation

n(�) = (�1)

j

r

�

�

m

(�;�i!)

jr

�

�

m

(�;�i!)j

; � 2 S



j

; j = 1; : : : ;m;

sine due to (1), (1.50) and(1.56)

(�1)

j

[�=�%�

m

(�;�i!)℄

%=j!j�

j

> 0; j = 1; : : : ;m: (2.14)

Further,

d�

1

=

�

�=j�j � n(�)

%

2

�

%=j!j�

j

dS



j

= (�1)

j

�

�=�%�

m

(�;�i!)

%

2

jr�

m

(�;�i!)j

�

%=j!j�

j

dS



j

:

Therefore, (2) implies

�

(2)

�

(x;�i!) = (2�)

�3

h

V.P.

R

R

3

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d��

�i�

m

X

j=1

(�1)

j

R

S



j

N(�i�;�i!)e

�ix�

jr�

m

(�;�i!)j	

m

(�;�i!)

dS



j

i

; (2.15)

where

V.P.

R

R

3

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d� =

= lim

Æ!0

R

j�

m

(�;�i!)j>Æ

h(�) [A(�i�;�i!)℄

�1

e

�ix�

d�:

Existene and asymptoti behaviour of integrals similar to the above ones

are investigated in [21℄, [81℄, [82℄. Namely, in [81℄ there are analysed the

following funtions (n-dimensional version of the ase in question)

I

j

(x) =

R

S



j

f(�)e

ix�

jr�

m

(�)j

dS



j

; j = 1; : : : ;m; (2.16)

J(x) = V.P.

R

R

n

f(�)e

ix�

�

m

(�)

d�; n � 2; (2.17)

where

i) diam(supp f) <1; f;�

m

2 C

1

(R

n

);

ii) the equation �

m

(�) = 0; � 2 R

n

; de�nes (n � 1)-dimensional losed

nonsel�nterseting surfaes S



j

; j = 1; : : : ;m; with the Gaussian urvature

di�erent from zero everywhere; moreover, r�

m

(�) 6= 0 for � 2 S



j

;

iii) for an arbitrary unit vetor � the system

�

�

m

(�) = 0;

r�

m

(�)jr�

m

(�)j

�1

= ��;

(2.18)
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has only a �nite number of solutions with respet to �.

Clearly, in the ase under onsideration the above onditions for the

funtions oured in (2) are ful�lled due to (2.3) and I

0

-II

0

. Moreover,

�

m

(�;�i!) = �

m

(�; i!) = �

m

(��; i!); and the orresponding system of

type (2.18) de�nes 2m points ��

j

2 S



j

j = 1; : : : ;m (the so{alled station-

ary points); we emphasize also that the unit exterior normal vetor n(�

j

)

has the same diretion as �; while n(��

j

) is opposite direted.

We assume the funtion �

m

(�) in (2.16) and (2.17) to possess the anal-

ogous symmetry property with respet to �.

Now let jxj be suÆiently large, � = x=jxj, and let ��

j

2 S



j

; j =

1; : : : ;m; be the stationary points orresponding to �, i.e., n(�

j

) = �;

n(��

j

) = �n(�

j

) = ��:

Aording to the results in referenes [21℄, [81℄, we have then the following

asymptoti formulae for the funtions I

j

and J :

I

j

(x) = [a

j

e

ix�

j

+ ea

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

);

J(x) =

m

X

j=1

[b

j

e

ix�

j

+

e

b

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

);

(2.19)

where

a

j

= a

j

(�

j

) = (2�)

(n�1)=2

1

[�(�

j

)℄

1=2

f(�

j

)

jr�

m

(�

j

)j

e

�i(n�1)�=4

;

ea

j

= ea

j

(��

j

) = (2�)

(n�1)=2

1

[�(��

j

)℄

1=2

f(��

j

)

jr�

m

(��

j

)j

e

i(n�1)�=4

;

b

j

= i�a

j

sgn(� � r�

m

(�

j

)) = i�(�1)

j

a

j

;

e

b

j

= i�ea

j

sgn(� � r�

m

(��

j

)) = �i�(�1)

j

ea

j

;

(2.20)

�(�) is the Gaussian urvature at the point � 2 S



j

:

The asymptoti formulae (2.19) an be di�erentiated any times with

respet to x:

It is easy to see that the symmetry properties of S



j

imply

�(�) = �(��); r�

m

(��) = �r�

m

(�) (2.21)

for any � 2 S



j

; j = 1; : : : ;m:

By virtue of (2.16), (2.17), and (2.19) we derive

J(x) + �

m

X

j=1

i�(�1)

j

I

j

(x) =

m

X

j=1

i�(�1)

j

[(1 + �)a

j

e

ix�

j

�

�(1� �)ea

j

e

�ix�

j

℄ jxj

�(n�1)=2

+O(jxj

�(n+1)=2

) (2.22)

with a

j

and ea

j

de�ned by (2.20) and an arbitrary �:
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Lemma 2.2. Entries of matries (2) belong to C

1

(R

3

) and for suÆiently

large jxj the asymptoti formulae

�

(2)

�

(x;�i!) =

m

X

j=1



(j)

�

(�

j

;�i!) e

�ix�

j

jxj

�1

+ O(jxj

�2

) (2.23)

hold, where the point �

j

2 S



j

orresponds to x (i.e., n(�

j

) = x=jxj) and



(j)

+

=

(j)

1

(�

j

;�i!) :=(�1)

j

1

2�[�(�

j

)℄

1=2

N(i�

j

;�i!)

jr�

m

(�

j

;�i!)j	

m

(�

j

;�i!)

;



(j)

�

=

(j)

2

(�

j

;�i!) :=(�1)

j

1

2�[�(�

j

)℄

1=2

N(�i�

j

;�i!)

jr�

m

(�

j

;�i!)j	

m

(�

j

;�i!)

;

(2.24)

moreover, (2:23) an be di�erentiated any times with respet to x.

Proof. The �rst part of the lemma is evident due to (2.3) and I

0

{II

0

. To

prove the asymptoti formulae (2.23), we �rst perform the hange of variable

� by �� in (2) and afterwards rewrite it as follows

�

(2)

�

(x;�i!) = (2�)

�3

[J(x)�

m

X

j=1

i�(�1)

j

I

j

(x)℄; (2.25)

where I

j

(x) and J(x) are given by (2.16) and (2.17), respetively, with

n = 3; moreover,

f(�) =

h(�)N(i�;�i!)

	

m

(�;�i!)

; (2.26)

h(�), �

m

(�;�i!), and 	

m

(�;�i!) are de�ned by (2.3), (1), and (1), respe-

tively; here we have used the fat that h; �

m

, and 	

m

are even funtions

in �.

Now (2.23) follows from (2.25), (2), (2.21), (2.26), and (2.20). �

Thus, we have proved that there exist one sided limits of the matrix (2.2)

as Re� = � ! 0� :

Let us set

�!>0 : lim

�!0

�(x; � � i!)=�

(1)

(x;�i!)+�

(2)

+

(x;�i!)=: �(x; !; 1); (2.27)

�!<0 : lim

�!0

�(x; � � i!)=�

(1)

(x;�i!)+�

(2)

�

(x;�i!)=: �(x; !; 2); (2.28)

where �

(1)

; �

(2)

+

and �

(2)

�

are given by (2.4), (2.11) and (2.12), respetively.

Combining the two latter formulae we have

�(x; !; r) = F

�1

�!x

[(1� h(�))fA(�i�;�i!)g

�1

℄+

+(2�)

�3

V.P.

R

R

3

h(�)fA(�i�;�i!)g

�1

e

�ix�

d�+

+(�1)

r+1

i�

(2�)

3

m

X

j=1

(�1)

j

R

S



j

N(�i�;�i!)e

�ix�

jr�

m

(�;�i!)j	

m

(�;�i!)

dS



j

; r=1; 2: (2.29)

Now we formulate the main result of this setion.
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Theorem 2.3. The matrix{funtions �(x; !; r); r = 1; 2; de�ned by

(2), are fundamental matries of the operator A(D;�i!) and satisfy the

following onditions:

i) �(�; !; r) 2 C

1

(R

3

n f0g) and in a neighbourhood of the origin (jxj<1=2)

jD

�

x

�

kj

(x; !; r) �D

�

x

�

kj

(x)j �  '

(kj)

j�j

(x);  = onst > 0; k; j = 1; : : : ; 4;

where �

kj

(x); '

(kj)

j�j

;  = onst > 0 and � are the same as in Lemma 2:1;

ii) for suÆiently large jxj

�(x� y; !; r) =

m

X

j=1



(j)

r

(�

j

;�i!) e

(�1)

r+1

i(x�y)�

j

jxj

�1

+O(jxj

�2

); (2.30)

where 

(j)

r

are de�ned by (2:24), �

j

2 S



j

orresponds to the vetor x and the

range of the variable y is a bounded subset of R

3

; the equation (2:30) an be

di�erentiated any times with respet to x and y.

Proof. It follows immediately from Lemmata 2.1 and 2.2. �

Remark 2.4. Note that, if in (2.30) the vetor (x � y) is replaed by

�(x� y), then the point �

j

is to be hanged by ��

j

, simultaneously, sine

to the vetor �x there orresponds the point ��

j

2 S



j

(�x=jxj = n(��

j

)).

As a result the exponential fator in (2.30) will not be hanged. �

Remark 2.5. The fundamental matrix of the adjoint operator A

�

(D; �),

learly, has the form

�

�

(x; �) = F

�1

�!x

[fA

�

(�i�; �)g

�1

℄ = F

�1

�!x

[fA

>

(i�; � )g

�1

℄ =

= F

�1

�!x

[fA

>

(�i�; �)g

�1

℄ = (2�)

�3

R

R

3

[A

>

(�i�; �)℄

�1

e

ix�

d� =

= �

>

(�x; �); � = � � i!; � 6= 0; (2.31)

where �(x; �) is given by (2.2).

Therefore, there exist limits similar to (2.27) and (2.28)

�

�

(x; !; r) = lim

�!0

�

�

(x; �)= lim

�!0

�

>

(�x; �)=�

>

(�x; !; r); r=1; 2; (2.32)

where (�1)

r+1

�! > 0 is assumed.

The entries of matrix (2.5) and their derivatives derease more rapidly

then any negative power of jxj as jxj ! +1 if 0 < j�j < "

0

(see Remark 1:2).

The asymptoti formulae for �

�

(x; !; r) follow from (2.32) and Theorem 2:3

�

�

(x; !; r) =

m

X

j=1

e

(j)

r

e

(�1)

r

ix�

j

jxj

�1

+O(jxj

�2

);

where jxj is suÆiently large, e

(j)

r

= [

(j)

r

(��

j

;�i!)℄

>

with 

(j)

r

de�ned by

(2.24), and �

j

2 S



j

orresponds to x.

From Lemmata 2:1, 2:2, and Theorem 2:3 together with the equations

(2.5), (2.32), and �(x) = �(x) = �

>

(x) = �(�x), �(tx) = t

�1

�(x), t > 0;

we infer that the matries �(x; �); �(x; !; r); �

�

(x; �), and �

�

(x; !; r) have
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the matrix �(x) as the dominant singular part in a neighbourhood of the

origin. �

Remark 2.6. Equation (2.30) implies the following representation

�(x� y; !; r) =

m

X

j=1

(j)

�

(x� y; !; r);

where for suÆiently large jxj

(j)

�

(x � y; !; r) = 

(j)

r

e

(�1)

r+1

i(x�y)�

j

jxj

�1

+O(jxj

�2

);

D

x

p

(j)

�

(x� y; !; r) + i(�1)

r

�

j

p

(j)

�

(x� y; !; r) = O(jxj

�2

);

j = 1; : : : ;m; p = 1; 2; 3; r = 1; 2;

�

j

2 S



j

orresponds to x and the range of y is again a bounded subset of

R

3

; here the matries 

(j)

r

are given by (2.24). �

Remark 2.7. If the system of equations (1.46) is inonsistent in R

3

for

some ! > 0, then M(�;�i!) = detA(�i�;�i!) 6= 0 for arbitrary � 2 R

3

and ! 2 R; and

�(x;�i!) = F

�1

�!x

�

[A(�i�;�i!)℄

�1

�

2 C

1

(R

3

n f0g) (2.33)

is a fundamental matrix of the operator A(D;�i!) whose entries together

with all derivatives derease more rapidly than any negative power of jxj

as jxj ! +1: The main singular part of (2.33) in a neighbourhood of the

origin is again the matrix �(x). Therefore this ase is very similar to the

pseudo-osillation one [57℄. �

3. Thermo-Radiation Conditions. Somigliana Type Integral

Representations

In this setion we formulate the generalized Sommerfeld-Kupradze type

radiation onditions in the thermoelastiity theory of anisotropi bodies and

derive Somigliana type integral representation formulae.

3.1. Let us introdue the lasses SK

m

r

(


�

) of vetor-funtions de�ned on

an unbounded domain of type 


�

(whih is the omplement to a ompat

region 


+

in R

3

).

A vetor-funtion U = (u

1

; u

2

; u

3

; u

4

)

>

belongs to the lass SK

m

r

(


�

);

r = 1; 2; if it is C

1

-smooth in 


�

, and for suÆiently large jxj the following

relations hold (no summation over the repeated index j in the last equation)

U(x) =

m

X

j=1

(j)

U (x);

(j)

U (x) = (

(j)

u

1

; � � � ;

(j)

u

4

)

>

= O(jxj

�1

);

D

p

(j)

U (x) + i(�1)

r

�

j

p

(j)

U (x) = O(jxj

�2

); p = 1; 2; 3; j = 1; : : : ;m; (3.1)

where �

j

2 S



j

orresponds to the vetor x.
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Clearly, this de�nition is essentially related to the operator A(D;�i!)

and its harateristi equation (1.45). The onditions (3.1) will be referred

to as generalized Sommerfeld-Kupradze type radiation onditions in the ther-

moelastiity theory of anisotropi bodies (f. [45℄).

A four-dimensional vetor U = (u

1

; � � � ; u

4

)

>

; satisfying onditions (3.1),

will also be referred to as (m; r)�thermo-radiating vetor. We say that a

4� 4 matrix belongs to the lass SK

m

r

(


�

) if eah olumn of the matrix is

a (m; r)�thermo-radiating vetor.

Remark 2.6 implies that �(�; !; r) 2 SK

m

r

(R

3

n f0g):

In the isotropi ase m = 1 and S



1

is de�ned by the equation %

2

= k

2

1

with k

2

1

= !

2

�

�1

(� is the Lam�e onstant and ! is the osillation parame-

ter). Therefore the point �

1

2 S



1

, whih orresponds to the given diretion

(vetor) x, is given by �

1

= k

1

�, � = x=jxj, and onditions (3.1) are equiv-

alent to the well-known thermoelasti radiation onditions (see, e.g., [45℄,

Ch. III).

3.2. Let U = (u

1

; � � � ; u

4

)

>

be a regular vetor-funtion in 


�

; i.e.,

U 2 C

2

(


�

) \ C

1

(


�

):

In addition, let A(D; �)U 2 L

1

(


�

) and onditions (1.30) be satis�ed (in

the ase of the domain 


�

). If we assume that either 0 < jRe� j = j�j < "

0

or � > 0, and use the identity (1.22), by standard arguments we obtain the

following integral representation formulae (see, for example, [56℄, [16℄)

R




�

�(x�y; �)A(D

y

; �)U(y)dy �

R

S

�

[Q(D

y

; n(y); �)�

>

(x�y; �)℄

>

[U(y)℄

�

�

��(x� y; �)[B(D

y

; n(y))U(y)℄

�

	

dS

y

=

�

U(x); x 2 


�

;

0; x 2 


�

;

(3.2)

where boundary operators B and Q are given by (1.25) and (1.26), respe-

tively, and the fundamental matrix �(x; �) is de�ned by (2.2); n(y) is the

outward unit normal vetor of S at the point y 2 S and S is a C

2

-smooth

surfae.

From the representation formula (3) it follows that any solution of equa-

tion (1.9) for � > 0, satisfying the ondition (1.29), atually, is a C

1

-regular

in 


�

vetor-funtion whih derease, together with all derivatives, more

rapidly than any negative power of jxj as jxj ! +1.

Due to Theorem 2.3 and equalities (2.27), (2.28) analogous representation

formulae an be written by means of the fundamental matries �(x; !; r) in

the ase of the domain 


+

: One needs only to replae A(D; �) and �(x; �)

in (3) by A(D;�i!) and �(x; !; r), respetively. Conerning the domain




�

we will prove the following proposition.

Theorem 3.1. Let �


�

= S be a C

2

-smooth surfae and U be a reg-

ular (m; r)�thermo-radiating vetor in 


�

, i.e., U 2 C

2

(


�

) \ C

1

(


�

) \

SK

m

r

(


�

): Let, in addition, A(D;�i!)U have a ompat support and belong

to the spae L

1

(


�

). Then

U(x) =

R




�

�(x� y; !; r)A(D

y

;�i!)U(y) dy+
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+

R

S

�

�(x� y; !; r)[B(D

y

; n(y))U(y)℄

�

�

�[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

[U(y)℄

�

	

dS

y

; x 2 


�

; (3.3)

here B, Q and n are the same as in (3).

Proof. Let R be a suÆiently large positive number and 


+

� B

R

:= fx 2

R

3

: jxj < Rg. We assume also that suppA(D;�i!)U � B

R

. Denote




�

R

= 


�

\ B

R

and �B

R

= �

R

. Then the vetor-funtion U is regular in




�

R

: Therefore, we an write the following integral representation (f. (3))

U(x) =

R




�

R

�(x� y; !; r)A(D

y

;�i!)U(y) dy+

+

n

R

�

R

�

R

S

o

f[Q(D

y

; n(y);�i!)�

>

(x � y; !; r)℄

>

[U(y)℄�

��(x� y; !; r)[B(D

y

; n(y))U(y)℄g dS

y

; x 2 


�

R

; (3.4)

where n(y) is the exterior normal on the both surfaes S and �

R

; learly,

n(y) = y=R for y 2 �

R

: Note that in the �rst integral the domain 


�

R

an

be replaed by 


�

; sine A(D

y

;�i!)U has a ompat support.

Our goal is to show that the integral over �

R

tends to zero as R! +1.

To this end, denote the right-hand side expression in (3.1) by T [U ℄. Then

by integrating of (3) from � to 2� with respet to R and deviding the result

by �; we get U(x) = T [U ℄(x) +X(�); where

X(�) =

1

�

2�

R

�

dR

R

�

R

f[Q(D

y

; �;�i!)�

>

(x � y; !; r)℄

>

[U(y)℄�

� �(x� y; !; r)[B(D

y

; �)U(y)℄g d�

R

; � = n(y) = y=R:

Next we prove that X(�)! 0 as � ! +1:

It an be done by applying the arguments similar to that of [80℄. In fat,

for de�niteness, let r = 1. Then due to the thermo-radiation onditions

(3.1)

B(D

y

; �)U(y) =

m

X

j=1

B(i�

j

; �)

(j)

U (y) +O(R

�2

);

where �

j

2 S



j

orresponds to the vetor �:

Aording to Remarks 2.4, 2.6, and Theorem 2.3 analogous formulae

hold also for [Q(D

y

; �;�i!)�

>

(x � y; !; 1)℄

>

and �(x � y; !; 1) (note that

x is some �xed point in 


�

R

). The terms orresponding to O(R

�3

) in the

expression of X(�) deay as O(�

�1

), while all other summands have the

following struture

v

st

(�) =

1

�

2�

R

�

dR

R

�

1

 (�) g

s

(R�)h

t

(R�)R

2

d�

1

;
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where  2 C

1

(�

1

); � 2 �

1

; g

s

and h

t

(s; t = 1; � � � ;m) are smooth fun-

tions satisfying the following inequalities

jg

s

(R�)j <R

�1

; j�=�Rg

s

(R�)� i�

s

(�)g

s

(R�)j < R

�2

;

jh

t

(R�)j <R

�1

; j�=�Rh

t

(R�)� i�

t

(�)h

t

(R�)j < R

�2

;

�

j

(�) = (� � �

j

) > 0;  = onst > 0;

due to (3.1).

The last inequality is a onsequene of (2.14), sine

(� � �

j

) = (n(�

j

) � �

j

) = (�1)

j

�

r�

m

(�

j

;�i!)

jr�

m

(�

j

;�i!)j

� �

j

�

=

= (�1)

j

j�

j

j

jr�

m

(�

j

;�i!)j

�

�

�j�j

�

m

(�

j

;�i!)

�

�=�

j

> 0:

Now we proeed as follows

v

st

(�) =

1

i�

2�

R

�

dR

R

�

1

 (�)

�

s

(�) + �

t

(�)

[i�

s

(�) g

s

(R�)h

t

(R�)+

+g

s

(R�) i�

t

(�)h

t

(R�)℄R

2

d�

1

=

=

1

i�

R

�

1

d�

1

2�

R

�

�

 (�)

�

s

(�) + �

t

(�)

�

�R

[g

s

(R�)h

t

(R�)℄ +O(R

�3

)

�

R

2

dR =

=

1

i�

R

�

1

 (�)

�

s

(�) + �

t

(�)

f(2�)

2

g

s

(2��)h

t

(2��)� �

2

g

s

(��)h

t

(��)�

�

2�

R

�

g

s

(R�)h

t

(R�) 2RdRg d�

1

+O(�

�1

) = O(�

�1

):

Thus, X(�)! 0 as � ! +1 whih ompletes the proof. �

Remark 3.2. From the above proof it follows that, if U satis�es the

assumptions of Theorem 3:1 and R is a suÆiently large positive number

suh that supp A(D;�i!)U � B

R

; then

R

�

R

f[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

[U(y)℄�

��(x� y; !; r)[B(D

y

; n(y))U(y)℄g d�

R

= 0

for an arbitrary x 2 B

R

\ 


�

: �

Corollary 3.3. Let U be the same as in Theorem 3:1. Then the deriva-

tives D

�

U are again (m; r)�thermo-radiating vetors for an arbitrary multi-

index � and the asymptoti representation of D

�

U at in�nity an be obtained

by the diret di�erentiation from the orresponding asymptoti formula of

U .

Corollary 3.4. Let A(D;�i!)U(x) = 0 in R

3

and U 2 SK

m

r

(R

3

): Then

U = 0 in R

3

:
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Corollary 3.5. Let F = (F

1

; : : : ; F

4

)

>

2 C

1

(R

3

) and diam supp F <

+1: Then the equation A(D;�i!)U(x) = F (x), x 2 R

3

is uniquely solvable

in the lass C

2

(R

3

) \ SK

m

r

(R

3

) and the solution is representable by the

following onvolution type integral

U(x) =

R

R

3

�(x� y; !; r)F (y) dy; x 2 R

3

:
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CHAPTER II

FORMULATION OF BOUNDARY VALUE

AND INTERFACE PROBLEMS

Here we present the lassial and weak formulations of the boundary

value and interfae problems of the thermoelastiity theory whih will be

investigated in the subsequent hapters.

4. Funtional Spaes

In this setion we introdue some funtional spaes whih will be needed

in the formulation of boundary value and interfae problems. We reall here

some properties of these spaes and for details refer to, for example, [78℄,

[79℄, [49℄, [47℄, [1℄.

Let 


+

, 


�

, and S be the same as in Subsetion 1.5.

By C

k

(


�

); C

k

(


�

); C

k

(S); and C

k;�

(


�

); C

k;�

(


�

), C

k;�

(S), with

integer k � 0 and 0 < � � 1, we denote the usual k-smooth and H�older

(k; �)-smooth funtion spaes. Note that here we assume S to be a C

k;�

-

smooth manifold. Further, C

1

omp

(


�

) stands for the lass of C

1

-regular

funtions with ompat supports in 


�

, C(


�

) and C(S) denote the spaes

of ontinuous funtions in 


�

and S, respetively, and C

�

:= C

0;�

for

0 < � < 1.

By W

1

p

(


�

); W

1

p;lo

(


�

); and W

1

p;omp

(


�

) we denote the usual Sobolev

spaes, i.e., spaes of measurable, in general, omplex-valued funtions that

together with their �rst order generalized derivatives are p-integrable, lo-

ally p-integrable, and ompatly supported p-integrable funtions, respe-

tively, in orresponding domains. Further, L

p

(


�

), L

p;lo

(


�

); L

p;omp

(


�

),

and L

p

(S) denote the usual (Lebesgue) measurable funtion spaes.

Let s 2 R, 1 < p < 1, 1 � q � 1, and S 2 C

1

. Then B

s

p;q

(


�

);

B

s

p;q;lo

(


�

); B

s

p;q

(S), and H

s

p

(


�

); H

s

p;lo

(


�

); H

s

p

(S), stand for the Besov

and the Bessel-potential spaes, respetively.

Next, let S

1

be a submanifold of S with a C

1

-smooth boundary �S

1

.

We introdue the following spaes on S

1

:

B

s

p;q

(S

1

) = ff j

S

1

: f 2 B

s

p;q

(S)g; H

s

p

(S

1

) = ff j

S

1

: f 2 H

s

p

(S)g;

e

B

s

p;q

(S

1

) = ff 2 B

s

p;q

(S) : supp f � S

1

g;

e

H

s

p

(S

1

) = ff 2 H

s

p

(S) : supp f � S

1

g;

where f j

S

1

denotes the restrition of f to S

1

, and s, p, and q are as above.

The appearane of the Besov and Bessel-potential spaes with p 6= 2 and

q 6= 2 is not only of mathematial interest. The ase is that for partiular

mixed and rak type boundary value and interfae problems with spei�

geometry studied in mathematial physis and mehanis it is well known

that, in general, solutions or their derivatives have singularities at the ol-

lision urves of hanging boundary onditions or edge points of raks and
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they do not belong to the lass of C

1

-regular funtions in losed domains

(see,e.g.,[74℄, [84℄).

Beause of this fat and in order to allow a wide lass of boundary data,

on one side, and to establish optimal regularity properties of the solutions,

on the other hand, we state the basi and mixed interfae (transmission)

problems in Sobolev spaes with p > 1. If we invoke that u 2 W

1

p

(


+

)

[W

1

p;lo

(


�

)℄ implies uj

�


�
2 B

1�1=p

p;p

(�


�

), then the need of Besov spaes

in formulation of our BVPs and interfae problems beomes transparent.

Clearly, here uj

S

is de�ned in the trae sense.

We reall that H

s

2

= W

s

2

= B

s

2;2

, W

t

p

= B

t

p;p

, and H

k

p

= W

k

p

, for any

s 2 R; for any positive and non-integer t, and for any non-negative integer

k.

It is evident that �rst order derivatives of funtions from W

1

p

(


+

) and

W

1

p;lo

(


�

) belong to L

p

(


+

) and L

p;lo

(


�

), respetively, and, in general,

they have no traes on S. However, for vetor-funtions U 2 W

1

p

(


+

)

[W

1

p;lo

(


�

)℄, satisfying, in addition, A(D;{)U 2 L

p

(


+

) [L

p;lo

(


�

)℄ the

funtionals [P (D;n)U ℄

�

S

2 [B

�1=p

p;p

(S)℄

3

and [�(D;n)U

4

℄

�

S

2 B

�1=p

p;p

(S), i.e.,

the funtional [B(D;n)U ℄

�

S

2 [B

�1=p

p;p

(S)℄

4

(see (1.25)), an be de�ned or-

retly by means of the Green formulae (1.21).

To this end, let us set

h [B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

:=

R




+

E(U; V ) dx+

R




+

A(D;{)U � V dx (4.1)

h

h[B(D;n)U ℄

�

S

; [V ℄

�

S

i

S

:= �

R




�

E(U; V )dx�

R




�

A(D;{)U � V dx

i

; (4.2)

where E(U; V ) is given by (1.27), and V 2 W

1

p

0

(


+

) [V 2 W

1

p

0

;omp

(


�

) ℄,

1=p+ 1=p

0

= 1. Clearly, by the trae theorem [V ℄

�

S

2 B

1�1=p

0

p

0

;p

0

(S).

It is easy to see that the right-hand side expression in (4.1) [(4.2)℄ gives

the same value for arbitrary vetor-funtions V 2 W

1

p

0

(


+

) [V 2

W

1

p

0

;omp

(


�

)℄ having the same traes on S (provided U is �xed). This

in turn shows, that the funtionals de�ned by the above equations are, a-

tually, supported on S. We also note that, if U 2 C

1

(


+

) [U 2 C

1

(


�

) ℄

and A(D;{)U 2 L

1

(


+

) [L

1;lo

(


�

) ℄, then the above introdued funtion-

als orrespond to the usual boundary values [B(D;n)U ℄

+

and [B(D;n)U ℄

�

,

respetively. Therefore, we an onsider h � ; � i

S

in (4.1) and (4.2) as

dualities between the spaes B

�1=p

p;p

(S) and B

1=p

p

0

;p

0

(S). Note that

h f ; g i

S

=

R

S

h f ; g i dS =

R

S

4

P

j=1

f

j

g

j

dS

for the smooth vetor funtions f = (f

1

; � � � ; f

4

)

>

and g = (g

1

; � � � ; g

4

)

>

,

i.e., the above duality extends the usual \real" L

2

-salar produt.

Throuhgout this monograph all boundary and interfae onditions for

the displaement vetor and temperature always are understood in the trae



35

sense, while for the stress vetor and heat ux they are to be onidered in

the above duality sense, i.e., in the sense of ontinuous linear funtionals.

Remark 4.1. Let us note the following two simple things. Firstly, the

ondition [B(D;n)U ℄

+

= F on S, where U 2 [W

1

p

(


+

)℄

4

, A(D;{)U 2

[L

p

(


+

)℄

4

, and F 2 [B

�1=p

p;p

(S)℄

4

, means in the above funtional sense that

R




+

E(U; V ) dx +

R




+

A(D;{)U � V dx = hF ; [V ℄

+

S

i

S

(4.3)

for arbitrary V 2 [W

1

p

0

(


+

)℄

4

.

Seondly, let U 2 [W

1

p

(


+

)℄

4

, A(D;{)U 2 [L

p

(


+

)℄

4

, F 2 [B

�1=p

p;p

(S

1

)℄

4

,

where S

1

is a submanifold of the surfae S as desribed above. Then the

ondition [B(D;n)U ℄

+

= F on S

1

, is understood as follows

R




+

E(U; V ) dx+

R




+

A(D;{)U � V dx = hF ; [V ℄

+

S

i

S

=: hF ; [V ℄

+

S

1

i

S

1

(4.4)

for arbitrary V 2 [W

1

p

0

(


+

)℄

4

whose trae [V ℄

+

S

is supported on S

1

, i.e.,

[V ℄

+

SnS

1

= 0. Evidently, [V ℄

+

S

1

2 [

e

B

1=p

p

0

;p

0

(S

1

)℄

4

. Here h � ; � i

S

1

is the duality

between the spaes [B

�1=p

p;p

(S

1

)℄

4

and [

e

B

1=p

p

0

;p

0

(S

1

)℄

4

. Boundary onditions for

the exterior domain 


�

are understood quite analogously. We have only to

hange the sign \+" by the sign \�" in front of the volume integrals in the

left-hand sides of (4.3) and (4.4), and the supersript \+" is to be replaed

by the supersript \�" in the right-hand sides. Moreover, a test funtion V

is to be taken from the same type of Sobolev spaes as above but now with

a ompat support in 


�

. �

5. Formulation of the Basi and Mixed BVPs

In this setion and in what follows boundary value and interfae prob-

lems for the pseudo-osillation and steady state osillation equations will be

marked by the subsripts � and !, respetively (unless otherwise stated).

We note that in the pseudo-osillation problems � = �� i! with � > 0 and

! 2 R.

We start by the formulation of the so-alled basi and mixed boundary

value problems for the bounded domain 


+

and its unbounded omplement




�

. As above, we assume that S = �


�

is a C

2

-smooth manifold. More-

over, U = (u; u

4

)

>

is again a four-dimensional vetor-funtion whose �rst

three omponents orrespond to the displaement vetor, while the fourth

omponent desribes the temperature �eld.

We onsider the following BVPs.

Find a solution U to the system of di�erential equations (1.9) [(1.10)℄ in




�

satisfying one of the boundary onditions on S:

Problem (P

1

)

�

�

[(P

1

)

�

!

℄:

[u℄

�

=

e

f;

e

f = (f

1

; f

2

; f

3

)

>

; (5.1)

[u

4

℄

�

= f

4

; (5.2)

i.e., the diplaement vetor and the temperature are presribed on S.
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Problem (P

2

)

�

�

[(P

2

)

�

!

℄:

[u℄

�

=

e

f; (5.3)

[�(D;n)u

4

℄

�

= F

4

; (5.4)

i.e., the diplaement vetor and the heat ux through the surfae S are

given on S. Here �(D;n) = �

n

is given by (1.24). The ase [�

n

u

4

℄

�

= 0

desribes a thermal insulation over the surfae bounding the body.

Problem (P

3

)

�

�

[(P

3

)

�

!

℄:

[P (D;n)U ℄

�

=

e

F ;

e

F = (F

1

; F

2

; F

3

)

>

; (5.5)

[u

4

℄

�

= f

4

; (5.6)

i.e., the vetor of thermal stresses and the temperature are given on S. Here

P (D;n) is de�ned by (1.13).

Problem (P

4

)

�

�

[(P

4

)

�

!

℄:

[P (D;n)U ℄

�

=

e

F ; (5.7)

[�(D;n)u

4

℄

�

= F

4

; (5.8)

i.e., the vetor of thermal stresses and the heat ux are presribed on S.

Problem (P

mix

)

�

�

[(P

mix

)

�

!

℄:

[u℄

�

=

e

f

(1)

and [u

4

℄

�

= f

(1)

4

on S

1

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

; (5.9)

[P (D;n)U ℄

�

=

e

F

(2)

and [�(D;n)u

4

℄

�

= F

(2)

4

on S

2

;

e

F

(2)

= (F

(2)

1

; F

(2)

2

; F

(2)

3

)

>

;

(5.10)

where S

1

[ S

2

= S; S

1

\ S

2

= ?; S

j

6= ?, j = 1; 2; we assume here that the

ommon boundary of �S

1

= �S

2

is also a smooth urve.

The funtions f

k

; F

k

; f

(1)

k

and F

(2)

k

are given funtions and in the sequel

they will be referred as boundary data of the BVPs.

Let us introdue the matrix boundary operators

B

(1)

(D;n) :=I

4

=[Æ

kj

℄

4�4

; B

(2)

(D;n) :=

�

I

3

[0℄

3�1

[0℄

1�3

�(D;n)

�

4�4

;

B

(3)

(D;n) :=

�

[T (D;n)℄

3�3

[��

kj

n

j

℄

3�1

[0℄

1�3

1

�

4�4

; B

(4)

(D;n) :=B(D;n);

(5.11)

where T (D;n) and B(D;n) are given by formulae (1.12) and (1.25), re-

spetively. The boundary onditions orresponding to the above problems

(P

k

)

�

�

[(P

k

)

�

!

℄ an be then written as follows

[B

(k)

(D;n)U ℄

�

= g; k = 1; 2; 3; 4; (5.12)

where the four-dimensional vetor g is onstruted by the boundary data of

the orresponding problem.

By a solution of the interior BVPs (P

k

)

+

�

and (P

k

)

+

!

we understand a

vetor U from the spae either C

1

(


+

) \ C

2

(


+

) or W

1

p

(


+

) with p > 1.
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The mixed BVPs (P

mix

)

+

�

and (P

mix

)

+

!

will be onsidered only in the

spae W

1

p

(


+

) sine, in general, they have no solutions in the spae of

smooth funtions C

1

(


+

).

Clearly, in the ase of the Sobolev spaes W

1

p

(


+

) the di�erential equa-

tions (1.9) and (1.10) are to be onsidered in the distributional (weak) sense,

while the boundary onditions are to be understood in the funtional-trae

sense desribed in the previous setion.

Moreover, in the exterior BVPs for the domain 


�

we provide that a so-

lution to the pseudo-osillation equations (1.9) has to satisfy the onditions

(1.29) at in�nity (i.e., (1.30)), while a solution to the steady state osil-

lation equations (1.10) has to meet the generalized Sommerfeld-Kupradze

type (m; r)�thermo-radiation onditions (3.1). It is also evident that in

the exterior problems for the homogeneous pseudo-osillation equations we

may assume U 2 W

1

p

(


�

) (due to the required asymptoti behaviour at

in�nity), while in the exterior problems for the homogeneous steady state

osillation equations we have to look for solution in the spae W

1

p;lo

(


�

).

We remark that every solution to the homogeneous ellipti equations

with onstant oeÆients (1.9) and (1.10) is C

1

-regular in 


+

and 


�

.

Therefore, we have to ontrol the smoothness of the solutions only near the

boundary S.

Conerning the boundary data in the above formulated problems we note

that the preised funtional spaes for them will be given below when we

start the systemati study of the existene of solutions to the nonhomoge-

neous BVPs (see Chapter V).

However, we mention here only some neessary (ompatibility) ondi-

tions. Namely, when we look for a solution U 2 C

1

(


�

), then the bound-

ary funtions f

k

and F

k

(k = 1; � � � ; 4) have to belong to some subspaes

of C

1

(S) and C

0

(S), respetively, while the following natural onditions

f

k

2 B

1�1=p

p;p

(S) and F

k

2 B

�1=p

p;p

(S) must be satis�ed when we seek a so-

lution U in the spae W

1

p

(


�

) [W

1

p;lo

(


�

)℄. Analogously, in the mixed

BVPs we have to require the natural restritions f

(1)

k

2 B

1�1=p

p;p

(S

1

) and

F

(2)

k

2 B

�1=p

p;p

(S

2

).

We note here that in the elastiity theory of isotropi bodies the basi

BVPs in the lassial setting by potential methods have been exaustively

investigated in [45℄, while the mixed BVPs have been studied in [50℄, [13℄,

[75℄, [76℄ (L

2

-setting) (see also referenes therein). The same problems of

the elastiity theory of anisotropi bodies are onsidered in [56℄, [8℄, [59℄

(lassial and L

p

-setting).

6. Formulation of Crak Type Problems

This type of problems appear when the elasti body under onsideration

has interior raks of the form of two-dimensional open manifolds. We

onsider the ase when these rak surfaes are disjoint and do not hit the

boundary of the body.
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We deal with the following model problems.

Let S

1

be an open, two-dimensional, C

1

-regular, two-sided, onneted

manifold with C

1

-regular boundary �S

1

. Moreover, we assume S

1

to be a

subset of some losed C

1

-regular surfae S surrounding a bounded domain,

say 


+

. Further, let R

3

S

1

= R

3

n S

1

, S

1

= S

1

[ �S

1

, and as usual, 


�

=

R

3

n 


+

. We hoose that diretion of the unit normal vetor on S

1

whih

orresponds to the outward normal vetor on S (with respet to 


+

). Due

to this hoie, the symbols [ � ℄

�

denote again limits on S

1

from 


�

either

in the usual lassial-trae sense or in the funtional-trae sense desribed

in Setion 5.

Let the whole unbounded domain R

3

S

1

be �lled up by an anisotropi

elasti material with thermoelasti harateristis introdued in Setion 1.

The rak type problems in the thermoelastiity theory are formulated

as follows (f. [16℄, [38℄).

Find a solution U = (u; u

4

)

>

2 W

1

p;lo

(R

3

S

1

), p > 1, to the system of

steady state osillation equation (1.10) in R

3

S

1

satisfying the generalized

Sommerfeld-Kupradze type (m; r)�thermo-radiation onditions at in�nity

(3.1) and one of the following boundary onditions on S

1

:

Problem (CR:D)

!

:

(

[u℄

+

=

e

f

(+)

;

[u

4

℄

+

= f

(+)

4

;

and

(

[u℄

�

=

e

f

(�)

;

[u

4

℄

�

= f

(�)

4

;

(6.1)

where

e

f

�

= (f

�

1

; f

�

2

; f

�

3

)

>

, f

�

= (f

�

1

; � � � ; f

�

4

)

>

;

Problem (CR:N )

!

:

(

[P (D;n)U ℄

+

=

e

F

(+)

;

[�(D;n)u

4

℄

+

= F

(+)

4

;

and

(

[P (D;n)U ℄

�

=

e

F

(�)

;

[�(D;n)u

4

℄

�

= F

(�)

4

;

(6.2)

where

e

F

�

= (F

�

1

; F

�

2

; F

�

3

)

>

, F

�

= (F

�

1

; � � � ; F

�

4

)

>

.

The boundary data f

�

k

and F

�

1

belong again to the natural spaes

f

�

k

2 B

1�1=p

p;p

(S

1

); F

�

k

2 B

�1=p

p;p

(S

1

); k = 1; � � � ; 4: (6.3)

Moreover, we assume

f

+

k

� f

�

k

2

e

B

1�1=p

p;p

(S

1

); F

+

k

� F

�

k

2

e

B

�1=p

p;p

(S

1

); k = 1; � � � ; 4; (6.4)

whih is stipulated by the fat that an arbitrary solution U to the equation

(1.10) is C

1

-regular in R

3

S

1

and, obviously,

[U ℄

+

� [U ℄

�

= 0 and [B(D;n)U ℄

+

� [B(D;n)U ℄

�

= 0; on S n S

1

: (6.5)

The formulation of rak type BVPs for the pseudo-osillation equations

are similar to the above ones.

In this ase we look for a solution U = (u; u

4

)

>

2W

1

p

(R

3

S

1

), p > 1, to the

system of equations (1.9) in R

3

S

1

satisfying the deay onditions (1.30) at

in�nity, and either the boundary onditions (6.1) (in Problem (CR:D)

�

) or
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the boundary onditions (6.2) (in Problem (CR:N )

�

) on S

1

. The boundary

data f

�

k

and F

�

1

are supposed again to meet embeddings (6.3) and (6.4).

If one onsiders the rak type problems for the domains 


�

with the

interior ut S

1

, then to the above boundary onditions (6.1) and (6.2) on

S

1

, learly, one has to add one of the basi boundary onditions on S or-

responding to the BVPs (P

k

)

�

�

[(P

k

)

�

!

℄. As it beomes transparent later

on, these type of BVPs an be investigated by slight and evident modi�a-

tions of our analysis developed in the next hapters. Therefore, we on�ne

ourselves to deal with only the above formulated model problems.

We remark that analogous problems of elastostatis of isotropi and

anisotropi bodies have been investigated in [13℄, [17℄, [18℄ (see also ref-

erenes therein). The above formulated rak problems for the pseudo-

osillation equations of the thermoelastiity theory in the general anisotropi

ase have been treated in [16℄.

7. Basi and Mixed Interfae Problems

In this setion we formulate the basi and mixed interfae problems of

the thermoelastiity theory for pieewise homogeneous anisotropi bodies.

In the sienti� literature the mixed interfae problems are alled also as

interfae rak problems.

The most general ase of the struture of a pieewise homogeneous elas-

ti body under onsideration an be mathematialy desribed as follows. In

three-dimensional Eulidean spae R

3

we have some losed, smooth, on-

neted, nonsel�nterseting surfaes

e

S

1

;

e

S

2

; : : : ;

e

S

n

(

e

S

j

\

e

S

k

= ?; j 6= k):

By these surfaes the whole spae R

3

is devided into several onneted do-

mains 


1

; : : : ;


l

. Eah domain is supposed to be �lled up by an anisotropi

material with orresponding, in general, di�erent thermoelasti oeÆients.

Common boundaries of the two distint materials are alled interfaes

or ontat surfaes of the pieewise homogeneous elasti body. If some do-

mains represent empty inlusions, then orresponding to them surrounding

surfaes are alled boundary surfaes of the omposed elasti body in ques-

tion. Suh type of pieewise homogeneous strutures enounter in many

physial, mehanial and engineering appliations. Therefore, besides the

theoretial importane of the transmission problems we intend to study, this

interest is also motivated by their fundamental appliations to many areas

of siene and tehnology.

7.1. For illustration of the method suggested we onsider the following

model problems. We assume that the pieewise homogeneous omposed

anisotropi body onsists of two elasti omponents oupying bounded

domain 


1

= 


+

and its unbounded omplement 


2

= 


�

= R

3

n


+

;

�


�

= S; 


�

= 


�

[ S; � = 1; 2: Thus, the whole spae R

3

an be onsid-

ered as a pieewise homogeneous anisotropi body with the single ontat

(interfae) surfae S.
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Let a smooth, onneted, nonsel�nterseting urve l � S devide the

ontat surfae S into two open parts S

1

and S

2

: S = S

1

[ S

2

[ l, S =

S

1

\ S

2

= ?, S

j

= S

j

[ l; j = 1; 2.

We treat the two groups of interfae onditions:

I. Basi interfae problems. On the whole ontat surfae S there are

given

a) jumps of the displaement vetor, the temperature, the vetor of ther-

mal stresses, and the heat ux (Problem (C)) or

b) jumps of the temperature, the heat ux, and the normal omponents

of the displaement and the stress vetors; in addition to these onditions,

the limits of either the tangent omponents of the stress vetors (Problem

(G)) or the tangent omponents of the displaement vetors (Problem (H))

are given from both sides of the interfae (f. [45℄, [29℄, [32℄, [34℄).

II. Mixed interfae problems. On the submanifold S

1

the onditions

of Problem (C) are presribed, while on S

2

there are given:

a) the onditions of Problem (G) (Problem (C � G)) or

b) the onditions of Problem (H) (Problem (C �H)) or

) the displaement vetor and the temperature (on the both sides of S

2

)

(Problem (C � DD)) or

d) the thermal stresses and the heat ux (on the both sides of S

2

) (Prob-

lem (C �NN )) or

e) the displaement [stress℄ vetor (on the both sides of S

2

) and the

jumps of the temperature and the heat ux (Problem (C �DC) [Problem

(C �NC)℄) (f. [58℄, [33℄, [35℄, [41℄, [40℄).

The analogous basi interfae problems in the lassial elastiity and

thermoelastiity of isotropi bodies have been studied by the potential and

variational methods in [45℄, [32℄, [67℄, [84℄ (see also [75℄, [61℄, [62℄). In

anisotropi elastiity the basi interfae problems have been onsidered in

[34℄, [41℄, [22℄, while the mixed interfae problems have been investigated in

[35℄, [58℄, [67℄, [41℄, [9℄.

7.2. Before we start the mathematial formulation of the above interfae

problems let us introdue some notations.

We assume that the domain 


�

(� = 1; 2) is �lled up by elasti material

whose thermoelasti onstants are 

(�)

kjpq

, �

(�)

pq

, �

(�)

pq

, 

(�)

0

, with the same

properties as in Setion 1. The displaement vetor and the temperature in




�

are denoted by u

(�)

and u

(�)

4

, respetively. All operators and thermo-

mehanial harateristis orresponding to the elasti material oupying

the domain 


�

we mark with the supersript �. For example, the basi

equations of pseudo-osillations and steady state osillations now read as

(see (1.7){refn1.12)

A

(�)

(D; �)U

(�)

(x) = 0 in 


�

; (7.1)

A

(�)

(D;�i!)U

(�)

(x) = 0 in 


�

: (7.2)
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The symbols T

(�)

(D;n), P

(�)

(D;n), and �

(�)

(D;n) stand now for the or-

responding lassial stress operator, thermo-stress operator, and heat ux

operator, respetively (see (1.11), (1.13), (1.24)).

First we formulate the basi interfae problems for the steady state os-

illation equations of thermoelastiity.

Find vetor funtions U

(�)

(� = 1; 2) that solve the equations (7.2) in




�

and that satisfy the following interfae (transmission) onditions on S:

Problem (C)

!

:

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (7.3)

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F ;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;

)

(7.4)

where f = (

e

f; f

4

)

>

,

e

f = (f

1

; f

2

; f

3

)

>

, F = (

e

F ; F

4

)

>

,

e

F = (F

1

; F

2

; F

3

)

>

.

Problem (G)

!

:

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

F

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

F

(+)

m

; (7.5)

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(�)

m

; (7.6)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; [P

(1)

(D;n)U

(1)

� n℄

+

�

�[P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (7.7)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

: (7.8)

Problem (H)

!

: onditions (7.7), (7.8), and

[u

(1)

� l℄

+

=

e

f

(+)

l

; [u

(1)

�m℄

+

=

e

f

(+)

m

; (7.9)

[u

(2)

� l℄

�

=

e

f

(�)

l

; [u

(2)

�m℄

�

=

e

f

(�)

m

: (7.10)

Here and in what follows we denote by n(x) again the outward (to 


+

) unit

normal vetor at the point x 2 S, and by l(x) and m(x) orthogonal unit

vetors in the tangent plane. The orthogonal loal o-ordinate system n, l,

and m at x 2 S is orientated as follows: l�m = n; where � � � denotes the

vetor produt of two vetors.

The onditions (7.5){(7.6) and (7.9){(7.10), in fat, represent limits on S

of the tangent omponents of the thermo-stress vetor and the displaement

vetor, respetively, while the seond equation in (7.4) represents the jump

of the heat ux on S.

The onditions (7.3) and (7.4) an be written then as follows:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (7.11)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (7.12)

where B

(�)

(D;n) is de�ned by (1.25).

Next, we reall that S

1

and S

2

are the two disjoint submanifolds of S

suh that S

1

[ S

2

= S, and formulate the mixed interfae problems.
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Find vetor funtions U

(�)

(� = 1; 2) that solve the equations (7.2) in




�

and that satisfy one of the following mixed interfae onditions on S:

Problem (C � DD)

!

:

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

�

on S

1

; (7.13)

[U

(1)

℄

+

= '

(+)

; [U

(2)

℄

�

= '

(�)

on S

2

; (7.14)

where

f

(1)

= (

e

f

(1)

; f

(1)

4

)

>

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

; F

(1)

= (

e

F

(1)

; F

(1)

4

)

>

;

e

F

(1)

=(F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

; '

(�)

=(e'

(�)

; '

(�)

4

)

>

; e'

(�)

=('

(�)

1

; '

(�)

2

'

(�)

3

)

>

:

Problem (C �NN )

!

: onditions (7.13) on S

1

and

[B

(1)

(D;n)U

(1)

℄

+

= �

(+)

; [B

(2)

(D;n)U

(2)

℄

�

= �

(�)

on S

2

; (7.15)

�

(�)

= (

e

�

(�)

;�

(�)

4

)

>

;

e

�

(�)

= (�

(�)

1

;�

(�)

2

;�

(�)

3

)

>

:

Problem (C � DC)

!

: ondition (7.8) on S and

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

; [P

(1)

(D;n)U

(1)

℄

+

�

�[P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

; (7.16)

[u

(1)

℄

+

= e'

(+)

; [u

(2)

℄

�

= e'

(�)

on S

2

: (7.17)

Problem (C �NC)

!

: onditions (7.8) on S, (7.16) on S

1

, and

[P

(1)

(D;n)U

(1)

℄

+

=

e

�

(+)

; [P

(2)

(D;n)U

(2)

℄

�

=

e

�

(�)

on S

2

: (7.18)

Problem (C � G)

!

: onditions (7.8) on S, (7.16) on S

1

, and

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

)

on S

2

; (7.19)

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

�

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

�

(+)

m

on S

2

;

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(�)

m

on S

2

:

Problem (C � H)

!

: onditions (7.8) on S, (7.16) on S

1

, (7.19) on S

2

,

and

[u

(1)

� l℄

+

= e'

(+)

l

; [u

(1)

�m℄

+

= e'

(+)

m

on S

2

;

[u

(2)

� l℄

�

= e'

(�)

l

; [u

(2)

�m℄

�

= e'

(�)

m

on S

2

:

In the all above steady state osillation problems we require that the

vetor funtion U

(2)

satis�es the (m; r)�thermo-radiation onditions at in-

�nity.

Moreover, by a solution to the above interfae problems we understand

a pair of vetor-funtions (U

(1)

; U

(2)

) satisfying the onditions of the orre-

sponding problem.
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We note that the basi interfae problems formulated above will be

studied in both the regular (C

1

(


1

);C

1

(


2

)) and the Sobolev (W

1

p

(


1

);

W

1

p;lo

(


2

)) spaes.

Therefore, the given data of the interfae problems belong to the or-

responding natural funtional spaes, and the transmission onditions are

to be understood in the lassial sense and in the funtional-trae sense,

respetively.

Partiularly, in the regular ase, all data orresponding to the displae-

ment vetor and the temperature are embedded in C

1

(S) spae, while the

data orresponding to the thermo-stress vetor and the heat ux are em-

bedded in C

0

(S) spae. In the ase of weak setting (in Sobolev spaes),

these data are in B

1�1=p

p;p

(S) and B

�1=p

p;p

(S) spaes, respetively.

The above mixed type interfae problems will be treated only in the weak

setting, i.e., in this ase we look for the unknown vetor funtions U

(1)

and

U

(2)

in the Sobolev spaes

U

(1)

2 W

1

p

(


1

) and U

(2)

2W

1

p;lo

(


2

) \ SK

m

r

(


2

); 1<p<1: (7.20)

This implies that the data of the mixed interfae problems have to meet

the following natural restritions aused by (7.20):

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

f

(1)

k

2B

1�1=p

p;p

(S

1

); F

(1)

k

2B

�1=p

p;p

(S

1

); '

(�)

k

;

e

f

(2)

n

; e'

(�)

l

; e'

(�)

m

2 B

1�1=p

p;p

(S

2

);

�

(�)

k

;

e

F

(2)

n

;

e

�

(�)

l

;

e

�

(�)

m

2 B

�1=p

p;p

(S

2

); k = 1; 4: (7.21)

Moreover, the inlusions (7.20) lead also to the following neessary (om-

patibility) onditions:

a) in the problem (C � DD)

!

:

f =

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

;

f 2 [B

1�1=p

p;p

(S)℄

4

; (7.22)

b) in the problem (C �NN )

!

:

F =

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

;

F 2 [B

�1=p

p;p

(S)℄

4

; (7.23)

) in the problem (C � DC)

!

:

e

f =

�

e

f

(1)

on S

1

;

e'

(+)

� e'

(�)

on S

2

;

e

f 2 [B

1�1=p

p;p

(S)℄

3

; (7.24)

d) in the problem (C �NC)

!

:

e

F =

(

e

F

(1)

on S

1

;

e

�

(+)

�

e

�

(�)

on S

2

;

e

F 2 [B

�1=p

p;p

(S)℄

3

; (7.25)
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e) in the problem (C � G)

!

:

e

f

n

=

(

e

f

(1)

� n on S

1

;

e

f

(2)

n

on S

2

;

e

f

n

2 B

1�1=p

p;p

(S); (7.26)

e

F =

(

e

F

(1)

on S

1

;

[

e

�

(+)

l

�

e

�

(�)

l

℄l+[

e

�

(+)

m

�

e

�

(�)

m

℄m+

e

F

(2)

n

n on S

2

;

e

F 2 [B

�1=p

p;p

(S)℄

3

;(7.27)

f) in the problem (C �H)

!

:

e

f=

(

e

f

(1)

on S

1

;

[e'

(+)

l

� e'

(�)

l

℄l+[e'

(+)

m

� e'

(�)

m

℄m+

e

f

(2)

n

n on S

2

;

e

f 2 [B

1�1=p

p;p

(S)℄

3

; (7.28)

e

F

n

=

(

e

F

(1)

� n on S

1

;

e

F

(2)

n

on S

2

;

e

F

n

2 B

�1=p

p;p

(S): (7.29)

In the sequel all these onditions are supposed to be ful�lled. Note that

the onditions (7.22), (7.24), (7.26), (7.28), and (7.23), (7.25), (7.27), (7.29),

hold for arbitrary funtions satisfying (7) with 1 < p < 2 and 2 < p < 1,

respetively. This follows from the multipliation properties of Besov spaes

(see [79℄, Ch. 3, Setion 3.3.2).

Finally, we note that for the domains of general struture, desribed in the

beginning of the setion, the basi and mixed transmission problems math-

ematially ould be formulated quite similarly: on the ontat surfaes the

onditions one of the interfae problems stated above are assigned, while on

the boundary of the omposed body the onditions of the basi (or mixed)

boundary value problemes are given. We observe that the all prinipal dif-

�ulties arising in the study of problems for the omposed bodies of general

struture are presented in the above model problems as well.

7.3 The basi and mixed interfae problems for the pseudo-osillation

ase are formulated in the same way. The only di�erene is that a solution

U

(2)

to the equation (7.1) in 


2

has to satisfy the natural deay ondition

(1.30) at in�nity. Therefore, in the weak setting, we look for solutions in

the spaes

U

(1)

2W

1

p

(


1

) and U

(2)

2W

1

p

(


2

); 1 < p <1: (7.30)

These problems, due to the above agreement, we denote by symbols (C)

�

,

(G)

�

, (H)

�

, (C�DD)

�

, (C�NN )

�

, (C�DC)

�

, (C�NC)

�

, (C�G)

�

, (C�H)

�

,

respetively.

The interfae onditions on S in the regular and weak setting of these

problems read again as in the steady state osillation ase.
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CHAPTER III

UNIQUENESS THEOREMS

In this hapter we study the homogeneous versions of the above problems

and prove the orresponding uniqueness theorems. The problems in the

lassial formulation will be analysed ompletely, while the problems in the

weak setting will be treated only partially. Namely, we onsider here the

ase p = 2. The general ase (p > 1) will be onsidered later together with

the existene questions.

8. Uniqueness Theorems for Pseudo-Osillation Problems

8.1. Let us begin with the onsideration of the basi BVPs of pseudo-

osillations.

Theorem 8.1. The homogeneous versions of the problems (P

k

)

+

�

; k =

1; 2; 3; 4; have only the trivial solutions in the lass of regular vetor fun-

tions C

1

(


+

).

Proof. Let U = (u; u

4

)

>

2 C

1

(


+

) \ C

1

(


+

) be a solution to one of the

homogeneous BVPs indiated in the theorem. Making use of the identity

(1.23) with { = � = � � i!, where � > 0 and ! 2 R, we get

R




+

n

kjpq

D

p

u

q

D

k

u

j

+ �

2

juj

2

+

1

�T

0

�

pq

D

q

u

4

D

p

u

4

+



0

T

0

ju

4

j

2

o

dx = 0;(8.1)

sine the two other integrals in (1.23) vanish due to the homogeneity of the

di�erential equation (1.9) and the boundary onditions (see (5.1)-(5.8)).

Separating the real and imaginary parts leads to the system of equations

R




+

n



kjpq

D

p

u

q

D

k

u

j

+ (�

2

� !

2

)juj

2

+

+

�

j� j

2

T

0

�

pq

D

q

u

4

D

p

u

4

+



0

T

0

ju

4

j

2

o

dx = 0; (8.2)

!

R




+

n

2�juj

2

+

1

j� j

2

T

0

�

pq

D

q

u

4

D

p

u

4

o

dx = 0: (8.3)

Hene, by (1.14) and (1.15), we infer that u = 0 and u

4

= 0 in 


+

. �

Theorem 8.2. Let U = (u; u

4

)

>

2 W

1

2

(


+

) be a solution to one of the

homogeneous BVPs (P

k

)

+

�

; k = 1; 2; 3; 4: Then U = 0 in 


+

.

Proof. We prove the theorem for the problem (P

4

)

+

�

: The other problems

an be treated analogously.

In the ase under onsideration the homogeneous boundary onditions

(5.7) and (5.8) (with F = 0) are understood in the funtional-trae sense

desribed in Setion 4. Invoking the de�nition (4.1) with { = � , and noting

that A(D; �)U(x) = 0 in 


+

, we onlude

h [B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

=

R




+

E(U; V ) dx; (8.4)
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where V = (v; v

4

)

>

, with v = (v

1

; v

2

; v

3

)

>

, is an arbitrary vetor funtion of

the spae [W

1

2

(


+

)℄

4

, and E(U; V ) is given by (1.27). Clearly, (8.4) implies

h [P (D;n)U ℄

+

S

; [v℄

+

S

i

S

=

=

R




+

�



kjpq

D

p

u

q

D

k

v

j

+ �

2

u

p

v

p

� �

pq

u

4

D

p

v

q

	

dx; (8.5)

h [�(D;n)u

4

℄

+

S

; [v

4

℄

+

S

i

S

=

=

R




+

�

�

pq

D

q

u

4

D

p

v

4

+ 

0

�u

4

v

4

+ �T

0

v

4

�

pq

D

p

u

q

	

dx; (8.6)

where v=(v

1

; v

2

; v

3

)

>

and v

4

are arbitrary elements of the spaes [W

1

2

(


+

)℄

3

and W

1

2

(


+

), respetively.

Multiplying (8) by (�T

0

)

�1

, taking its omplex onjugate, and adding

the result termwise to the (8) lead then us to the equation

h [P (D;n)U ℄

+

S

; [v℄

+

S

i

S

+

1

�T

0

h [�(D;n)u

4

℄

+

S

; [v

4

℄

+

S

i

S

=

=

R




+

n



kjpq

D

p

u

q

D

k

v

j

+ �

2

u

p

v

p

� �

pq

[u

4

D

p

v

q

� v

4

D

p

u

q

℄ +

+

1

�T

0

�

pq

D

q

u

4

D

p

v

4

+



0

T

0

u

4

v

4

o

dx: (8.7)

It is evident that, if U is a solution to the homogeneous BVP (P

4

)

+

�

; then

the left-hand side expression in (8.7) vanishes. Whene

R




+

�



kjpq

D

p

u

q

D

k

v

j

+ �

2

u

p

v

p

� �

pq

[u

4

D

p

v

q

� v

4

D

p

u

q

℄+

+

1

�T

0

�

pq

D

q

u

4

D

p

v

4

+



0

T

0

u

4

v

4

o

dx = 0 (8.8)

for arbitrary v

j

2 W

1

2

(


+

); j = 1; 4: Sine we are allowed to put here

v

j

= u

j

and apply the arguments of the proof of Theorem 8.1, we get

u

j

= 0 (j = 1; 4) in 


+

.

Now we make some remarks onerning the other homogeneous boundary

value problems. First of all we note that the starting point to prove the

uniqueness of solutions in Sobolev spaes always is the formula (8.4). For

example, let us onsider the homogeneous problem (P

1

)

+

�

; and let some

vetor-funtion U 2 W

1

2

(


+

) be its solution. Due to the homogeneity of

the problem, obviousely, [U ℄

+

= 0 on S in the usual trae sense. Next, let

us alulate the orresponding thermo-stress vetor and the heat ux on S,

i.e., the vetor [B(D;n)U ℄

+

S

whih is understood in the funtional sense. To

this end we have to apply the de�nition (4.1) whih in the ase in question

reads as (8.4). Surely, we may substitute the solution U 2 W

1

2

(


+

) in the

plae of the vetor-funtion V 2W

1

2

(


+

) in the equations (8.4){(8.8). Sine

the trae [U ℄

+

S

vanishes on S, we again arrive at the equations (8) and (8.3).

Whene U = 0 in 


+

follows. �

Theorem 8.3. The homogeneous mixed BVP (P

mix

)

+

�

in the lass

W

1

2

(


+

) has only the trivial solution.

Proof. Denote by U = (u; u

4

)

>

2 W

1

2

(


+

) an arbitrary solution of the

homogeneous mixed problem (P

mix

)

+

�

. Clearly, [U ℄

+

S

1

= 0 in the usual trae

sense and, therefore, [U ℄

+

S

2

2

e

B

1=2

2;2

(S

2

); sine U 2 B

1=2

2;2

(S): Further, let us
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note that the homogeneous boundary onditions for the vetor U on S

2

,

due to Remark 4.1, imply

R




+

E(U; V ) dx = h [B(D;n)U ℄

+

S

2

; [V ℄

+

S

2

i

S

2

= 0 (8.9)

for arbitrary V 2 W

1

2

(


+

) with the property [V ℄

+

S

2

2

e

B

1=2

2;2

(S

2

): Clearly,

the equation (8.9) is equivalent to (8.8), where we may again substitute the

vetor-funtion U in the plae of V , sine the U satis�es the restritions

required above for V in (8.9). Therefore, with the help of the arguments in

the proof of Theorems 8.1 and 8.2 we easily onlude that u

j

= 0 (j = 1; 4)

in 


+

. �

The uniqueness theorems for the exterior basi BVPs for the pseudo-

osillation equations an be proved quite analogously.

Theorem 8.4. The homogeneous BVPs (P

k

)

�

�

; k = 1; 2; 3; 4; and

(P

mix

)

�

�

have only the trivial solutions in the spae W

1

2

(


�

):

Proof. We will prove the theorem only for the problem (P

mix

)

�

�

; sine for

the other problems it is verbatim.

Let U = (u; u

4

)

>

2 W

1

2

(


�

) \ C

1

(


�

) be an arbitrary solution to

the mixed homogeneous BVP for the pseudo-osillation equations. Then,

in addition, the U satis�es the deay ondition (1.30) at in�nity. Due to

Remark 4.1 and the homogeneity of the boundary onditions for stresses on

S

2

the following equation

h [B(D;n)U ℄

�

S

2

; [V ℄

�

S

2

i

S

= �

R




�

E(U; V ) dx = 0 (8.10)

holds for arbitrary V 2 W

1

2;omp

(


�

) with [V ℄

�

S

2

2

e

B

1=2

2;2

(S

2

); i.e., [V ℄

�

S

1

= 0.

As in the proof of Theorem 8.2 we an easily show that (8.10) yields

R




�

n



kjpq

D

p

u

q

D

k

v

j

+ �

2

u

p

v

p

� �

pq

[u

4

D

p

v

q

� v

4

D

p

u

q

℄ +

+

1

�T

0

�

pq

D

q

u

4

D

p

v

4

+



0

T

0

u

4

v

4

o

dx = 0: (8.11)

Note that C

1

-regular vetor funtions having ompat supports in 


�

and zero traes on S

1

are densely embedded in the spae X = fV 2

W

1

2

(


�

) : [V ℄

�

S

1

= 0g. Thus, for V 2 X we an hoose a sequene

fV

(n)

2 C

1

omp

(


�

) : [V

(n)

℄

�

S

1

= 0g whih onverges to the vetor funtion

V in the W

1

2

(


�

)-norm. Therefore, simple limiting arguments yield that

(8.11) is valid for V 2 X . Now, we may substitute u

k

in the plae of v

k

in

(8.11). As a result we �nally obtain

R




�

�



kjpq

D

p

u

q

D

k

u

j

+�

2

juj

2

+

1

�T

0

�

pq

D

q

u

4

D

p

u

4

+



0

T

0

ju

4

j

2

	

dx=0; (8.12)

whih ompletes the proof (see the proof of Theorem 8.1). �

8.2. Now we onsider the rak type problems.

Theorem 8.5. The homogeneous problems (CR:D)

�

and (CR:N )

�

have

only the trivial solutions in the spae W

1

2

(R

3

S

1

):
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Proof. Let U 2 W

1

2

(R

3

S

1

) be some solution to the homogeneous problem

(CR:D)

�

. Clearly, [U ℄

+

S

1

= 0 and [U ℄

�

S

1

= 0 in the usual trae sense. Reall

that S

1

� S; where S = �


+

for some bounded domain 


+

. Next, let

us alulate the funtional traes [B(D;n)U ℄

�

S

. Note that [B(D;n)U ℄

�

SnS

1

exist in the usual trae sense and [B(D;n)U ℄

+

SnS

1

= [B(D;n)U ℄

�

SnS

1

sine

U 2 C

1

(R

3

S

1

). We apply again the de�nitions (4.1) and (4.2) to write the

equations

h [B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

=

R




+

E(U; V ) dx; (8.13)

h [B(D;n)U ℄

�

S

; [V

0

℄

�

S

i

S

= �

R




�

E(U; V

0

) dx; (8.14)

where V = (v; v

4

)

>

2 W

1

2

(


+

), V

0

= (v

0

; v

0

4

)

>

2 W

1

2;omp

(


�

), v =

(v

1

; v

2

; v

3

)

>

, v

0

= (v

0

1

; v

0

2

; v

0

3

)

>

. Making again use of the limiting arguments

from the proof of Theorem 8.4, we easily onlude by virtue of (8.13) and

(8.14)

R




+

E(U; V )dx+

R




�

E(U; V

0

)dx =

= h[B(D;n)U ℄

+

S

; [V ℄

+

S

i

S

� h[B(D;n)U ℄

�

S

; [V

0

℄

�

S

i

S

(8.15)

for arbitrary V 2 [W

1

2

(


+

)℄

4

and arbitrary V

0

2 [W

1

2;omp

(


�

)℄

4

.

By the same manipulations as in the proof of Theorem 8.2, we derive

from (8.15)

R




+

�



kjpq

D

p

u

q

D

k

v

j

+ �

2

u

p

v

p

� �

pq

[u

4

D

p

v

q

� v

4

D

p

u

q

℄ +

+

1

�T

0

�

pq

D

q

u

4

D

p

v

4

+



0

T

0

u

4

v

4

	

dx+

+

R




�

�



kjpq

D

p

u

q

D

k

v

0

j

+ �

2

u

p

v

0

p

� �

pq

[u

4

D

p

v

0

q

� v

0

4

D

p

u

q

℄ +

+

1

�T

0

�

pq

D

q

u

4

D

p

v

0

4

+



0

T

0

u

4

v

0

4

	

dx =

= h [P (D;n)U ℄

+

S

; [v℄

+

S

i

S

+

1

�T

0

h [�(D;n)u

4

℄

+

S

; [v

4

℄

+

S

i

S

�

�h [P (D;n)U ℄

�

S

; [v

0

℄

�

S

i

S

�

1

�T

0

h [�(D;n)u

4

℄

�

S

; [v

0

4

℄

�

S

i

S

: (8.16)

We may substitute in this equation V = U j




+
and V

0

= U j




�
, where U j




�

denotes the restrition of U onto 


�

. Taking into aount the equalities

[U ℄

�

S

1

= 0, [B(D;n)U ℄

+

SnS

1

= [B(D;n)U ℄

�

SnS

1

, and [U ℄

+

SnS

1

= [U ℄

�

SnS

1

, we

easily see that (see also Remark 4.1)

h [P (D;n)U ℄

+

S

; [u℄

+

S

i

S

+

1

�T

0

h [�(D;n)u

4

℄

+

S

; [u

4

℄

+

S

i

S

�

�h [P (D;n)U ℄

�

S

; [u℄

�

S

i

S

�

1

�T

0

h [�(D;n)u

4

℄

�

S

; [u

4

℄

�

S

i

S

=

= h [P (D;n)U ℄

+

SnS

1

; [u℄

+

SnS

1

i

SnS

1

+

1

�T

0

h [�(D;n)u

4

℄

+

SnS

1

; [u

4

℄

+

SnS

1

i

SnS

1

�

�h [P (D;n)U ℄

�

SnS

1

; [u℄

�

SnS

1

i

SnS

1

�

1

�T

0

h[�(D;n)u

4

℄

�

SnS

1

; [u

4

℄

�

SnS

1

i

SnS

1

=0:

Therefore, (8.16) implies

R

R

3

S

1

n



kjpq

D

p

u

q

D

k

u

j

+ �

2

juj

2

+

1

�T

0

�

pq

D

q

u

4

D

p

u

4

+



0

T

0

ju

4

j

2

o

dx = 0:
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Whene U = 0 in R

3

S

1

follows. �

8.3. To prove the uniqueness theorems for the basi and mixed homo-

geneous interfae problems, one has to apply the arguments quite similar

to the above ones to derive the following basi equation for solutions of the

indiated homogeneous problems

2

P

�=1

R




�

�



(�)

kjpq

D

p

u

(�)

q

D

k

u

(�)

j

+ �

2

ju

(�)

j

2

+

1

�T

0

�

(�)

pq

D

q

u

(�)

4

D

p

u

(�)

4

+

:+



(�)

0

T

0

ju

(�)

j

2

	

dx = 0: (8.17)

For regular solutions this formula an be obtained from the following Green

identities for 


�

(� = 1; 2)

R




�

n

[A

(�)

(D; �)U

(�)

℄

k

u

(�)

k

+

1

�T

0

[A

(�)

(D; �)U

(�)

℄

4

u

(�)

4

o

dx =

= (�1)

�+1

R

S

n

[B

(�)

(D;n)U

(�)

℄

(�)

k

[u

(�)

k

℄

(�)

+

+

1

�T

0

[u

(�)

4

℄

(�)

[�

(�)

(D;n)u

(�)

4

℄

(�)

o

dS �

R




�

n



(�)

kjpq

D

p

u

(�)

q

D

k

u

(�)

j

+

�

2

ju

(�)

j

2

+ +

1

�T

0

�

(�)

kj

D

k

u

(�)

4

D

j

u

(�)

4

+



(�)

0

T

0

ju

(�)

4

j

2

�

dx; (8.18)

where [�℄

(1)

:= [�℄

+

S

and [�℄

(2)

:= [�℄

�

S

.

For solutions of the homogeneous problems in the Sobolev spaesW

1

2

(


�

)

formula (8.17) follows from the de�nitions of funtional traes given in Se-

tion 4.

Now we formulate the uniqueness results for the interfae problems of

thermoelasti pseudo-osillations.

Theorem 8.6. The homogeneous basi and mixed interfae problems

(C)

�

, (G)

�

, (H)

�

, (C �DD)

�

, (C �NN )

�

, (C �DC)

�

, (C �NC)

�

, (C �G)

�

,

(C�H)

�

, have only the trivial solutions in the orresponding Sobolev spaes,

i.e., if (U

1

; U

2

) 2 (W

1

2

(


1

);W

1

2

(


2

)) solves one of the above homogeneous

problems, then U

(�)

= 0 in 


�

, � = 1; 2:

Proof. By the reasonings similar to the already applied ones in the previous

subsetion, we an easily onlude that for the pair of vetor funtions

(U

1

; U

2

) 2 (W

1

2

(


1

);W

1

2

(


2

)), whih is solution to one of the homogeneous

problems indiated in the theorem, the formula (8.17) holds. Whene the

proof follows. �

We remark that the regular ase (i.e., when (U

(1)

; U

(2)

) 2 (C

1

(


1

);

C

1

(


2

))) is overed by this theorem.

9. Uniqueness Theorems for the Steady State Osillation

Problems

9.1. First we shall establish some auxiliary results onerning the o-

eÆients of asymptoti formulae (2.30) and asertain the struture of the

matrix funtions (2.24).
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We reall that

N(�i�;�i!) = [N

kj

(�i�;�i!)℄

4�4

(9.1)

is the adjoint matrix to

A(�i�;�i!) =

�

[!

2

I

3

� C(�)℄

3�3

[i�

kj

�

j

℄

3�1

[!T

0

�

kj

�

j

℄

1�3

��(�) + i!

0

�

4�4

; (9.2)

where C(�) and �(�) are de�ned by (1.7) and (1.8), respetively, while

N

kj

(�i�;�i!) denotes the ofator of the element A

jk

(�i�;�i!) of the

matrix (9.2) (f. (1.32), (1.33)).

Let us set

C(�; !) = !

2

I

3

� C(�);

~

C(�; !) = !

2

I

3

�

~

C(�); (9.3)

where

~

C(�) is given by (1.35). Denote by C

�

(�; !) and

~

C

�

(�; !) the orre-

sponding adjoint matries.

Due to (1.43) and (1.44) we have

C(�; !)C

�

(�; !) = ��(�; !) I

3

;

~

C(�; !)

~

C

�

(�; !) = �

~

�(�; !) I

3

: (9.4)

From the ondition I

0

(see Subsetion 1.6) it follows that rankC(�; !) = 2

and, onsequently, rankC

�

(�; !) = 1 for an arbitrary � 2 S

0

l

. Moreover (for

the same � 2 S

0

l

) there exists an orthogonal real matrix G(�; !) suh that

G

>

(�; !)C

�

(�; !)G(�; !) = �

1

I

0

; I

0

=

2

4

1 0 0

0 0 0

0 0 0

3

5

; (9.5)

where �

1

= �

1

(�; !) 6= 0 is a real eigenvalue of the matrix C

�

(�; !) (two

other eigenvalues are equal to zero; for details see [55℄).

Further, let d(�; !) = �!

0

[�(�)℄

�1

and

d(�; !)G

>

(�; !)

~

C

�

(�; !)G(�; !) = [b

kj

(�; !)℄

3�3

: (9.6)

Lemma 9.1. Let � 2 S



j

; j = 1; : : : ;m; where S



j

are the harateristi

surfaes de�ned in Subsetion 1:6: Then the matrix N has the following

struture

N(�i�;�i!) =

�

[N (�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

;

where N (�; !) = ��(�)[1 + ib

11

(�; !)�

�1

1

(�; !)℄C

�

(�; !):

Proof. Let � 2 S



j

be an arbitrary point (1 � j � m). Clearly, � belongs to

some surfae S

0

l

, 1 � l � 3, as well (see Subsetion 1.6). Therefore,

N

44

(�i�;�i!) = ��(�; !) = 0; (9.7)

due to (1.46).

By diret alulations we get

N

4k

(�i�;�i!) = �i!T

0

N

k4

(�i�;�i!); k = 1; 2; 3; (9.8)

N

pq

(�i�;�i!) = ��(�)C

�

pq

(�; !) + i!

0

~

C

�

pq

(�; !) =

= N

pq

(i�;�i!); 1 � p; q � 3: (9.9)



51

The ondition I

0

of Subsetion 1.6 implies (see (1.42)) rM(�;�i!) =

�(�)r�(�; !)� i!

0

r

~

�(�; !) 6= 0; sine �(�) 6= 0 on S



j

:

This relation together with the equations (1.31), (1.32), (1), and

detA(�i�

0

;�i!) = detA(i�

0

;�i!) =M(��

0

;�i!) =M(�

0

;�i!); �

0

2 R

3

;

yields

rankA(i�;�i!) = 3; rankN(i�;�i!) = 1; (9.10)

i.e., any two olumns (rows) of the matrix (9.1) are linearly dependent.

Taking into aount the equations (9.8) and (9.7) it an be easily proved

that N

k4

(�i�;�i!) = 0, N

4k

(�i�;�i!) = 0, k = 1; 2; 3.

Thus, we have obtained the following representation

N(�i�;�i!) =

�

[N

(0)

(�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

with

N

(0)

(�; !) = [N

pq

(i�;�i!)℄

3�3

; (9.11)

where N

pq

(i�;�i!) = N

qp

(i�;�i!) are given by (9.9).

Now from (9.9) and (9.11) together with (9.5) and (9.6) it follows

N

(0)

(�; !) = ��(�)C

�

(�; !) + i!

0

~

C

�

(�; !) ;

G

>

(�; !)N

(0)

(�; !)G(�; !) = ��(�)�

1

(�; !)I

0

+

+i!

0

G

>

(�; !)

~

C

�

(�; !)G(�; !)=��(�)

2

4

�

1

(�; !)+ib

11

ib

12

ib

13

ib

12

ib

22

ib

23

ib

13

ib

23

ib

33

3

5

; (9.12)

where b

pq

are real funtions de�ned by (9.6).

By virtue of (9.10) we have rankN

(0)

(�;�i!) = 1; and, onsequently,

rank [G

>

(�; !)N

(0)

(�; !)G(�; !)℄ = 1;

sineG is an orthogonal matrix. This, in turn, implies that the matrix (9.12)

has only one linearly independent olumn (row). Inasmuh as �

1

6= 0, there

exist omplex numbers � = �

1

+ i�

2

and � = �

1

+ i�

2

suh that

0

�

ib

12

ib

22

ib

23

1

A

= �

0

�

�

1

+ ib

11

ib

12

ib

13

1

A

;

0

�

ib

13

ib

23

ib

33

1

A

= �

0

�

�

1

+ ib

11

ib

12

ib

13

1

A

: (9.13)

Equating the orresponding elements and separating the real and imag-

inary parts lead to the equations (�

2

1

+ �

2

2

)�

1

= 0, (�

2

1

+ �

2

2

)�

1

= 0, i.e.,

� = � = 0: But then from (9.13), (9.12), and (9.5) we derive

N

(0)

(�; !) = ��(�)f�

1

(�; !)G(�; !)I

0

G

>

(�; !) +

+ib

11

(�; !)G(�; !)I

0

G

>

(�; !)g = ��(�)[�

1

(�; !) +

+ib

11

(�; !)℄G(�; !)I

0

G

>

(�; !) = ��(�)[1 + i�

�1

1

(�; !)b

11

(�; !)℄C

�

(�; !);

whih ompletes the proof. �
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Remark 9.2. Due to equation (2.24) and Lemma 4:1 we get (for arbitrary

� 2 S



j

; j = 1; : : : ;m; and r = 1; 2)



(j)

r

(�;�i!) = d

j

(�;�i!)

�

[C

�

(�; !)℄

3�3

[0℄

3�1

[0℄

1�3

0

�

4�4

(9.14)

with

d

j

(�;�i!) = (�1)

j+1

�(�)[1 + i�

�1

1

(�; !)b

11

(�; !)℄

[2�(�(�))

1=2

jr�

m

(�;�i!)j	

m

(�;�i!)℄

:

Lemma 9.3. Let U = (u; u

4

)

>

be a regular vetor in 


�

of the lass

SK

m

r

(


�

), and let A(D;�i!)U have a ompat support.

Then for suÆiently large jxj

u(x) =

m

P

j=1

jxj

�1

d

j

(�

j

;�i!)e

(�1)

r+1

ix�

j

C

�

(�

j

; !)

e

b(�

j

) +O(jxj

�2

); (9.15)

u

4

(x) = O(jxj

�2

); (9.16)

with the same d

j

as in Remark 9:2; here C

�

(�; !) is the adjoint matrix to

C(�; !);

e

b = (b

1

; b

2

; b

3

)

>

is uniquely determined by the vetor U (see below

(9:18)); and the point �

j

2 S



j

orresponds to the vetor x=jxj:

Proof. Denote by 
 the support of A(D;�i!)U . Then by Theorems 2.3,

3.1 and Remark 2.6 we have (for suÆiently large jxj)

U(x) =

m

P

j=1

n

R




jxj

�1

e

(�1)

r+1

i(x�y)�

j



(j)

r

(�

j

;�i!)[A(D

y

;�i!)U(y)℄ dy +

+

R

S

jxj

�1

e

(�1)

r+1

i(x�y)�

j



(j)

r

(�

j

;�i!)[B(D

y

; n(y))U(y)℄

�

dS

y

�

�

R

S

jxj

�1

e

(�1)

r+1

i(x�y)�

j

fQ((�1)

r

i�

j

; n(y);�i!)�

�[

(j)

r

(�

j

;�i!)℄

>

g

>

[U(y)℄

�

dS

y

o

+

+O(jxj

�2

) =

m

P

j=1

jxj

�1

e

(�1)

r+1

ix�

j



(j)

r

(�

j

;�i!) b(�

j

) +O(jxj

�2

); (9.17)

where

b(�

j

) = (

e

b(�

j

); b

4

(�

j

))

>

=

R




e

(�1)

r

iy�

j

[A(D

y

;�i!)U(y)℄ dy +

+

R

S

e

(�1)

r

iy�

j

[B(D

y

; n(y))U(y)℄

�

dS

y

�

�

R

S

e

(�1)

r

iy�

j

Q

>

((�1)

r

i�

j

; n(y);�i!)[U(y)℄

�

dS

y

; (9.18)

here �

j

orresponds to the vetor x=jxj:

Now (9.15) and (9.16) follow immediately from (9.17) and (9.14). Note

that the vetor b(�

j

) is represented expliitly by (9.18). �
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Remark 9.4. From (9.15) with the help of equation (9.5) we get the

following equivalent asymptoti formula for u

u(x) =

m

P

j=1

jxj

�1

e

(�1)

r+1

ix�

j

�

1

(�

j

; !)G(�

j

; !)I

0

G

>

(�

j

!; !)a

(j)

(�

j

; !) +

+O(jxj

�2

); (9.19)

where

a

(j)

(�

j

; !) = d

j

(�

j

;�i!)

e

b(�

j

); (9.20)

d

j

and

e

b are the same as in Lemma 9:3: Note that due to (9.5)

I

0

G

>

a

(j)

= ([G

>

a

(j)

℄

1

; 0; 0)

>

: (9.21)

9.2. In this subsetion we assume S = �


�

to be a onneted C

1

-regular

surfae and prove the following uniqueness theorem.

Theorem 9.5. Let U be a regular solution to the homogeneous exterior

problem (P

k

)

�

!

(k = 1; : : : ; 4) and U 2 SK

m

r

(


�

) with r = 1 for ! > 0 and

r = 2 for ! < 0.

Then U = 0 in 


�

:

Proof. Let R; B

R

; �

R

and 


�

R

be the same as in the proof of Theorem 3.1.

Sine U satis�es the homogeneous onditions of the problem (P

k

)

�

!

, from

(1.23) (with 


+

= 


�

R

and � = �i!) it follows that

R




�

R

�



kjpq

D

p

u

q

D

k

u

j

� !

2

juj

2

� i(!T

0

)

�1

�

kj

D

k

u

4

D

j

u

4

+

+

0

(T

0

)

�1

ju

4

j

2

	

dx =

R

�

R

n

[B(D;n)U ℄

k

[u

k

℄�

i

!T

0

[u

4

℄ [�

n

u

4

℄

o

d�

R

;

where B(D;n) and �

n

are de�ned by (1.25) and (1.24), respetively.

Owing the fat that 

kjpq

D

p

u

q

D

k

u

j

and �

kj

D

k

u

4

D

j

u

4

are non-negative

real quantities, from the last equation by separating the imaginary part we

get

Im

n

R

�

R

n

[B(D

x

; �)U(x)℄

k

[u

k

(x)℄ �

i

!T

0

[u

4

(x)℄ [�

�

u

4

(x)℄

o

d�

R

o

+

+

1

!T

0

R




�

R

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx = 0; (9.22)

where � = x=jxj is the unit outward normal at the point x 2 �

R

:

Due to Lemma 9.3 it is easily seen that

R




�

R

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx =

R




�

�

kj

D

k

u

4

(x)D

j

u

4

(x) dx +O(R

�1

);

R

�

R

ju

4

(x) �

�

u

4

(x)j d�

R

= O(R

�2

);

R

�

R

ju

4

(x)u

k

(x)j d�

R

= O(R

�1

);

as R! +1 (k = 1; 2; 3): Clearly, �

�

= �

n

on �

R

:

Taking into aount (1.25) and applying the above relations to (9.22) we

obtain

Im

n

R

�

R

[T (D

x

; �)u℄

k

[u

k

℄ d�

R

o

+

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx=O(R

�1

); (9.23)

where T (D; �) is the stress operator of elastostatis de�ned by (1.12).
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In the same way as in the proof of Theorem 3.1 (by integrating with

respet to R from � to 2� and deviding the result by �) from (9.23) we

derive

Im

n

1

�

2�

R

�

R

�

R

[T (D

x

; �)u℄

k

[u

k

℄d�

R

dR

o

+

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx=O(�

�1

);(9.24)

where � is large enough.

Further, by Lemma 9.3 the �rst summand in the left-hand side of (9.24)

an be transformed as follows

F (�) := Im

(

1

�

2�

R

�

R

�

R

[T (D

;

�)u℄

k

[u

k

℄ d�

R

dR

)

=

= Im

(

1

�

2�

R

�

R

�

R

m

P

j=1

[i(�1)

r+1

R

�1

d

j

(�

j

;�i!)�

�e

(�1)

r+1

ix�

j

T (�

j

; �)C

�

(�

j

; !)

e

b(�

j

)℄

k

�

�

m

P

l=1

[R

�1

d

l

(�

l

;�i!)e

(�1)

r

ix�

l

C

�

(�

l

; !)

e

b(�

l

)℄

k

d�

R

dR+O(�

�1

)

�

=

= Re

(

(�1)

r+1

�

R

�

1

m

P

j;l=1

d

j

(�

j

;�i!)d

l

(�

l

;�i!)[T (�

j

; �)C

�

(�

j

; !)

e

b(�

j

)℄

k

�

�[C

�

(�

l

; !)

e

b(�

l

)℄

k

�

2�

R

�

e

(�1)

r+1

iR[�

j

(�)��

l

(�)℄

dR

�

d�

1

�

+O(�

�1

); (9.25)

where �

j

(�) = (� � �

j

) and �

j

orresponds to the vetor x=jxj.

It an be easily proved that �

j

(�) 6= �

l

(�) if j 6= l (see Subsetion 1.6).

Therefore, if j 6= l, learly,

2�

R

�

e

�iR[�

j

(�)��

l

(�)℄

dR = O(1);

and (9.25) implies

F (�) = Re

n

(�1)

r+1

m

P

j=1

R

�

1

T (�

j

; �)C

�

(�

j

; !)a

(j)

� C

�

(�

j

; !)a

(j)

d�

1

o

+

+O(�

�1

) (9.26)

with a

(j)

de�ned by (9.20).

In view of the symmetry property of C

�

(�; �) and equality T

>

(�; �) =

T (�; �) we have from (9.26)

F (�) =

(�1)

r+1

2

m

P

j=1

R

�

1

C

�

(�

j

; !)[T (�

j

; �) +

+T (�; �

j

)℄C

�

(�

j

; !)a

(j)

� a

(j)

d�

1

+O(�

�1

): (9.27)
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Now passing to the limit in (9.24) as � ! +1 and bearing in mind (9.25)

and (9.27) we arrive at the equation

1

!T

0

R




�

�

kj

D

k

u

4

D

j

u

4

dx+

(�1)

r+1

2

m

P

j=1

R

�

1

E

j

(�

j

; !) d�

1

= 0 (9.28)

with

E

j

(�

j

; !) = C

�

(�

j

; !)[T (�

j

; �) + T (�; �

j

)℄C

�

(�

j

; !)a

(j)

� a

(j)

; (9.29)

where �

j

2 S



j

orresponds again to �, i.e., n(�

j

) = �:

In what follows we laim that the integral in the seond term of (9.28) is

a non-negative funtion for all �

j

2 S



j

.

To see this, let us note that

T (�; �) + T (�; �) =

�

�n(�)

C(�) = �

�

�n(�)

C(�; !);

where � = n(�); �=�n(�) = n

k

(�)D

k

is a diretional derivative, C(�) and

C(�; !) are de�ned by (1.7) and (9.3), respetively.

We reall that in Subsetion 1.6 we introdued the two sets of surfaes

fS



j

g

m

j=1

and fS

0

p

g

3

p=1

de�ned by equations (1.46) and by the �rst equation

of the same system, respetively. Therefore, eah S



j

oinides with some

S

0

p

for some p = p(j). Let us �x this orrespondene, i.e., S



j

= S

0

p(j)

:

Further, we proeed as follows. Note that

�

h

C

�

(�; !)

�

�

�n(�

j

)

C(�; !)

�

C

�

(�; !)

i

=

= �

�

�n(�

j

)

[C

�

(�; !)C(�; !)C

�

(�; !)℄ =

h

�

�n(�

j

)

�(�; !)

i

C

�

(�; !) (9.30)

for all � = �

j

2 S



j

(see (9.4)).

With the help of (9.5), (9.30), and (9.29) we dedue

E

j

(�

j

; !) =

nh

�

�n(�)

�(�; !)

i

C

�

(�; !)a

(j)

� a

(j)

o

�=�

j

=

=
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�

�n(�)

�(�; !)

i

�

1

(�; !)I

0

G

>

(�; !)a

(j)

�G

>

(�; !)a

(j)

o

�=�

j

=

=

nh

�

�n(�)

�(�; !)

i

�

1

(�; !)

�

�

�

G

>

(�; !)a

(j)

�

1

�

�

2

o

�=�

j

: (9.31)

Now we show that the funtion

 (�) =

h

�

�n(�)

�(�; !)

i

�

1

(�; !); � 2 S



j

; (9.32)

is stritly positive.

Sine �

1

(�; !) is the only nonzero eigenvalue of the matrix C

�

(�; !) for

� 2S



j

= S

0

p

, we have

f�

1

(�; !)g

�2S



j

=fSpC

�

(�; !)g

�2S



j

=fC

�

11

(�; !)+C

�
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(�; !)+C

�
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(�; !)g

�2S



j

=

=

1
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8

<

:

�
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�

�

�

�

�

�

!

2
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13

(�)
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2

� C
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(�) �C
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(�)
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(�) �C
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2

� C
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�

�

�

�

�

�

9

=

;
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j

=
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=�

1
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�
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0

p
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�
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2
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2

p
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2

p
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2

3
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2

3
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2

p
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2

1
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2

p
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2

2
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= (�1)
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�

�

�

�

n

%
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2

�
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�(�; !)

o

%=j!j%

p

�

�

�

�

= (�1)
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�

�

�

f�

1

(�; !)g

�2S

0

p

�

�

�

; (9.33)

where � = �=j�j; �(�; 0) > 0; here we employed the representation (1.47).

It is easy to hek that the exterior unit normal vetor of S

0

p

is alulated

by the following formula

n(�) = (�1)

p+1

r�(�;!)

jr�(�;!)j

; � 2 S

0

p

:

Therefore,

n

�

�n(�)

�(�; !)

o

�2S



j

=

n

(�1)

p+1

r�(�;!)

jr�(�;!)j

� r�(�; !)

o

�2S

0

p

=

=

�

(�1)

p+1

jr�(�; !)j

	

�2S

0

p

; (9.34)

whih together with (9) yields

 (�) = jr�(�; !)j j�

1

(�; !)j > 0 for � 2 S

0

p

= S



j

: (9.35)

Hene by virtue of (9.31)-(9.35) we get

E

j

(�

j

; !) =

�

jr�(�; !)j j�

1

(�; !)j

�

�

�

h

G

>

(�; !)a

(j)

i

1

�

�

�

2

�

�=�

j

� 0: (9.36)

Now from (9.28) it follows that �

kj

D

k

u

4

(x)D

j

u

4

(x) = 0, x 2 


�

,

E

j

(�

j

; !) = 0, � 2 S



j

, if (�1)

r+1

! > 0:

Applying (1.18), (9.35), (9.36), and (9.19){(9.21) we onlude that u

4

(x) =

0 in 


�

and [G

>

(�

j

; !)a

(j)

(�

j

; !)℄

1

= 0; i.e.,

D

�

u(x) = O(jxj

�2

) as jxj ! +1 (9.37)

for an arbitrary multi-index �.

Thus, we have obtained that u is a solution to the steady state osillation

equations of elastiity theory C(D)u(x) + !

2

u(x) = 0, x 2 


�

, satisfying

the homogeneous boundary ondition either [u℄

�

= 0 or [Tu℄

�

= 0 on S

(see (5.1)-(5.8)) and the deay ondition (9.37) at in�nity.

Due to Lemma 3.4 in [41℄ (see also [55℄, Setion 4) we then have u(x) = 0

in 


�

, whih ompletes the proof. �

9.3 In this subsetion we onsider the same basi BVPs (P

k

)

�

!

(k =

1; 4) together with the mixed BVP (P

mix

)

�

!

in the weak setting in the

Sobolev spae W

1

2;lo

(


�

): Here the prinipal di�erene in omparison with

the pseudo-osillation ase is that the steady state osillation equations do

not admit nontrivial square integrable in 


�

solutions, as it an be seen from

the previous subsetion (see the orresponding results for the Helmholtz

equation and for the elasti osillation equations, for example, in [10℄, [11℄,

[80℄, [83℄, [45℄).
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As it is evident from the proof of Theorem 8.5, one of the entral moments

to establish the uniqueness of solutions to the homogeneous steady state

osillation problems is the derivation of formula (9.22) whih follows from

the orresponding Green identities for regular funtions. In the sequel we

shall show that the same type formula an be derived for weak solutions as

well.

Theorem 9.6. The homogeneous exterior BVPs (P

k

)

�

!

(k = 1; : : : ; 4) and

(P

mix

)

�

!

have only the trivial solutions in the lass W

1

2;lo

(


�

) \ SK

m

r

(


�

)

with r = 1 for ! > 0 and r = 2 for ! < 0.

Proof. For de�niteness, let U 2W

1

2;lo

(


�

)\ SK

m

r

(


�

) be a solution of the

homogeneous problem (P

4

)

�

!

.

Due to the de�nition (4.2) the homogeneous boundary ondition

[B(D;n)U ℄

�

= 0, whih is understood in the funtional sense, is equiva-

lent to the equation

h [B(D;n)U ℄

�

S

; [V ℄

�

S

i

S

= �

R




�

E(U; V ) dx = 0; (9.38)

where V 2 W

1

2;omp

(


�

) is an arbitrary vetor funtion and E(U; V ) is

de�ned by (1.27) with { = �i!.

In the same way as in the proof of Theorem 8.2 we easily derive from

(9.38)

h [P (D;n)U ℄

�

S

; [v℄

�

S

i

S

�

i

!T

0

h [�(D;n)u

4

℄

�

S

; [v

4

℄

�

S

i

S

=

= �

R




�

�



kjpq

D

p

u

q

D

k

v

j

� !

2

u

k

v

k

� �

pq

[u

4

D

p

v

q

� v

4

D

p

u

q

℄�

�

i

!T

0

�

pq

D

q

u

4

D

p

v

4

+



0

T

0

u

4

v

4

	

dx = 0: (9.39)

Further, let h

R

(x) be a real ut o� funtion with the following properties:

h

R

2 C

1

(R

3

); h

R

(x) = 1 for jxj � R; h

R

(x) = 0 for jxj � 2R; (9.40)

where R > 0 is an arbitrary real number suh that the open ball B

R

= fx 2

R

3

: jxj < Rg ontains the losed domain 


+

as a proper subset. Reall

that �B

R

=: �

R

:

Next, we set V

R

(x) := h

R

(x)U(x): Clearly, V

R

(x) 2 W

1

2;omp

(


�

) \

C

1

(


�

): Substitution of this vetor funtion in (9.39) in the plae of V

implies

E

1

+ E

2

= 0; (9.41)

where

E

1

=

R




�

R

n



kjpq

D

p

u

q

D

k

u

j

�!

2

juj

2

�

i

!T

0

�

pq

D

q

u

4

D

p

u

4

+



0

T

0

ju

4

j

2

o

dx; (9.42)

E

2

=

R

B

2R

nB

R

�



kjpq

D

p

u

q

D

k

(h

R

u

j

)� !

2

h

R

juj

2

� �

pq

[u

4

D

p

(h

R

u

q

)�

�h

R

u

4

D

p

u

q

℄� �

i

!T

0

�

pq

D

q

u

4

D

p

(h

R

u

4

) +



0

T

0

h

R

ju

4

j

2

o

dx; (9.43)

here 


�

R

= 


�

\ B

R

.
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The integration by parts in (9.43) leads to the equation

E

2

=�

R

B

2R

nB

R

[A(D;�i!)U ℄

k

u

k

h

R

dx+

i

!T

0

R

B

2R

nB

R

[A(D;�i!)U ℄

4

u

4

h

R

dx�

�

R

�

R

[P (D;n)U ℄

k

u

k

d�

R

+

i

!T

0

R

�

R

[�(D;n)u

4

℄u

4

d�

R

=

= �

R

�

R

n

[P (D;n)U ℄

k

u

k

�

i

!T

0

[�(D; �)u

4

℄u

4

o

d�

R

; (9.44)

sine A(D;�i!)U = 0 in 


�

and n = � on �

R

.

Therefore, (9.41), (9.42), and (9.43), due to the formulae (1.13) and

(1.25), yield

Im

n

R

�

R

n

[B(D;n)U ℄

k

u

k

�

i

!T

0

[�(D; �)u

4

℄u

4

o

d�

R

+

+

1

!T

0

R




�

R

�

pq

D

q

u

4

D

p

u

4

dx

o

= 0 (9.45)

for arbitrary solution U 2 W

1

2;lo

(


�

) to the homogeneous problem (P

4

)

�

!

.

Thus, we have obtained again the relation (9.22). This formula an be

derived in the same way for weak solutions of the other basi and mixed

BVPs indiated in the theorem. Now applying the same analysis as in the

proof of Theorem 9.5 we an show that U = 0 in 


�

. �

9.4. The uniqueness theorems for the homogeneous rak type problems

of thermoelasti osillations an be proved by quite the same approah as

above. To avoid the repetition of the arguments outlined in the previous

subsetions, we only note here that with the help of the identity (9.45)

these problems by the analysis given in the proof of Theorem 9.5 are again

redued to the orresponding homogeneous BVPs of steady state osilla-

tions of the elastiity theory with the displaement vetor whih behaves

like O(jxj

�2

) at in�nity. Therefore, due to the results in [55℄, [56℄, [17℄, [41℄,

suh a displaement vetor identially vanishes in the domain of analytiity.

This �nally leads to the orresponding uniqueness results for the above men-

tioned homogeneous rak type problems of the steady state thermoelasti

osillations. As a onsequene we have the following uniqueness theorem.

Theorem 9.7. The homogeneous rak type BVPs (CR:D)

!

and (CR:N )

!

have only the trivial solutions in the lassW

1

2;lo

(R

3

S

1

)\SK

m

r

(R

3

S

1

) with r = 1

for ! > 0 and r = 2 for ! < 0.

9.5. For the homogeneous basi and mixed interfae problems of the

steady state thermoelasti osillations we have a di�erent situation sine

not all of them have only the trivial solution.

Let us �rst onsider the basi homogeneous problem (C)

!

(see (7.3),

(7.4)).

Theorem 9.8. The homogeneous problem (C)

!

has only the trivial so-

lution in the lass (C

1

(


1

) ; C

1

(


2

) \ SK

m

r

(


2

)) with r = 1 for ! > 0 and

r = 2 for ! < 0.

Proof. Let (U

(1)

; U

(2)

) be a solution of the homogeneous problem (C)

!

from

the lass indiated in the theorem. Further, let R, B

R

, �

R

, and 


�

R

=: 


2

R
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be the same as in the proof of Theorem 9.6. By the Green formula (1.23)

then we have

R




1

�



(1)

kjpq

D

p

u
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q

D

k

u

(1)

j
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2
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�

i

!T
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�

(1)

pq

D

q

u

(1)

4

D

p

u

(1)

4

+



(1)

0

T

0

ju

(1)

j

2

�

dx=

=

R

S

n

[B

(1)

(D;n)U

(1)

℄

+

k

[u

(1)

k

℄

+

�

i

!T

0

[u

(1)

4

℄

+

[�

(1)

(D;n)u

(1)

4

℄

+

o

dS; (9.46)
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�
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S

n
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�
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4

℄

�

o

dS+

+

R

�
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n
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℄

k
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k
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i

!T
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℄
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: (9.47)
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j
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=

R

�
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n
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℄
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℄�
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(D;n)u
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℄

o

d�

R

;(9.48)

due to the homogeneity of the transmission onditions.

In turn (9.48) implies (if we look at the imaginary part)
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n
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�
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n
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℄�
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℄

o

d�
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+

+

1
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1

!T
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2

R

�

(2)

pq

D

q

u

(2)

4

D

p

u

(2)

4

dx = 0:(9.49)

From this equation, as in the proof of Theorem 9.5, we an show that

u

(1)

4

= 0 in 


1

; u

(2)

4

= 0 in 


2

; and u

(2)

= 0 in 


2

with r = 1 for ! > 0 and

r = 2 for ! < 0.

Next, the homogeneous interfae onditions (7.3) and (7.4) imply that

[U

(1)

℄

+

= 0 and [B

(1)

(D;n)U

(1)

℄

+

= 0 on S, whih together with the fol-

lowing general integral representation formula of the solution U

(1)

in 


1

U

(1)

(x) =

R

S

�

[Q

(1)

(D;n;�i!)[�

(1)

(x� y); !; r)℄

>

℄

>

[U

(1)

℄

+

�

��

(1)

(x� y; !; r) [B

(1)

(D;n)U

(1)

℄

+

	

dS; x 2 


1

; (9.50)

ompletes the proof. �

It is evident that in the ase of the homogeneous problems (G)

!

and (H)

!

we again obtain the equation (9.49). Therefore,

U

(2)

(x) = 0 in 


2

; (9.51)

u

(1)

4

(x) = 0 in 


1

: (9.52)
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From these equations and the orresponding homogeneous transmission on-

ditions we onlude:

i) In the ase of the homogeneous problem (G)

!

the displaement vetor

u

(1)

solves the following BVP

C

(1)

(D)u

(1)

(x) + !

2

u

(1)

(x) = 0

�

(1)

kj

D

j

u

(1)

k

(x) = 0

)

in 


1

; (9.53)

[T

(1)

(D;n)u

(1)

℄

+

= 0 and [u

(1)

� n℄

+

= 0 on S: (9.54)

ii) In the ase of the homogeneous problem (H)

!

the displaement vetor

u

(1)

solves the following BVP

C

(1)

(D)u

(1)

(x) + !

2

u

(1)

(x) = 0

�

(1)

kj

D

j

u

(1)

k

(x) = 0

)

in 


1

; (9.55)

[u

(1)

℄

+

= 0 and [T

(1)

(D;n)u

(1)

� n℄

+

= 0 on S: (9.56)

These homogeneous problems for the elasti �eld have not, in general, the

only trivial solutions.

Denote by J

G

(


1

) and J

H

(


1

), respetively, the set of values of the fre-

queny parameter ! for whih the above problems (9.53)-(9.54) and (9.55)-

(9.56) admit nontrivial solutions. Obviously, J

G

(


1

) is the intersetion of

the spetral sets of the so-alled seond and third interior BVPs of the the-

ory of steady state elasti osillations (in terms of the monograph [45℄),

while J

H

(


1

) is the intersetion of the spetral sets of the �rst and fourth

interior BVPs.

Suh frequenies are alled also Jones eigenfrequenies, while the or-

responding nontrivial solutions are referred to as Jones modes. Spetral

problems similar to (9.53)-(9.54) enounter also in the uid-struture inter-

ation problems (see, e.g., [26℄, [27℄, [48℄, [36℄, [39℄, and referenes therein).

Clearly, J

G

(


1

) and J

H

(


1

) are at most ountable and to eah Jones

eigenfrequeny there orrespond only �nitely many linearly independent

Jones modes (f. [56℄). In general, J

G

(


1

) and J

H

(


1

) are not empty (see

[45℄, [42℄), hoewer there exist domains for whih they are empty sets (for

details see [45℄, [25℄, [37℄).

The above arguments easily lead to the following proposition.

Theorem 9.9. The homogeneous problems (G)

!

and (H)

!

have only the

trivial solutions in the lass (C

1

(


1

) ; C

1

(


2

) \ SK

m

r

(


2

)) with r = 1 for

! > 0 and r = 2 for ! < 0, provided that ! is not a orresponding Jones

eigenfrequeny.

Analogous uniqueness theorems hold valid also in the ase of the weak

formulation of the basi steady state osillation interfae problems.

Theorem 9.10. The homogeneous interfae problem (C)

!

has only the

trivial solution in the lass (W

1

2

(


1

) ; W

1

2;lo

(


2

)\SK

m

r

(


2

)) with r = 1 for

! > 0 and r = 2 for ! < 0.
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Theorem 9.11. The homogeneous interfae problems (G)

!

and (H)

!

have only the trivial solutions in the lass (W

1

2

(


1

) ; W

1

2;lo

(


2

)\SK

m

r

(


2

))

with r = 1 for ! > 0 and r = 2 for ! < 0, provided that ! is not a

orresponding Jones eigenfrequeny.

The proofs of these assertions are quite similar to the proof of Theo-

rem 9.6.

The uiqueness theorems for the homogeneous mixed interfae problems

requires some new ideas whih will be presented below.

Theorem 9.12. The homogeneous mixed interfae problems (C �DD)

!

,

(C � NN )

!

, (C � DC)

!

, (C � NC)

!

, (C � G)

!

, (C � H)

!

, have only the

trivial solutions in the lass (W

1

2

(


1

) ; W

1

2;lo

(


2

) \ SK

m

r

(


2

)) with r = 1

for ! > 0 and r = 2 for ! < 0.

Proof. We demonstrate the proof for the problem (C � DD)

!

sine it is

verbatim for the other problems.

Let (U

(1)

; U

(2)

) be an arbitrary solution of the homogeneous interfae

problem (C � DD)

!

of the lass indiated in the theorem. By the same

analysis as in the proof of Theorems 9.6 and 9.8 we again arrive at the

equations (9.51) and (9.52). To see this, one has to apply the identities (9)

and (9) where the surfae integrals over S should be replaed by the ap-

propriate duality relations, in aordane with the de�nitions of funtional

traes, and afterwards to take into aount the homogeneity of the orre-

sponding transmission and boundary onditions of the problem in question

(see (7.13), (7.14)).

As a result we obtain that the vetor funtion U

(1)

= (u

(1)

; 0)

>

2W

1

2

(


1

)

has to satisfy the onditions:
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(D;�i!)U

(1)

(x) = 0 in 


1

; (9.57)

[U
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℄
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= 0 on S = S

1

[ S

2

; (9.58)
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(D;n)U
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℄

+

= 0 on S

1

: (9.59)

Note that we may apply the representation (9.50) for the vetor-funtion

U

(1)

under onsideration (see Theorem 10.8, item ii) in Setion 10). There-

fore, we have

U

(1)

(x) =
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(x � y; !; r) [B
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(D;n)U
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1

; (9.60)

where [B

(1)

(D;n)U

(1)

℄

+

2

e
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2;2

(S

2

) due to the ondition (9.59).

It is evident that we an extend the vetor funtion U

(1)

from 


1

onto

the whole R

3

S

2

by the same formula (9.60) sine the right-hand side integral

is de�ned in R

3

S

2

. Denote this extension by the symbol

e

U

(1)

From the above representation it follows that (f. Theorem 10.8)

e
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); (9.61)
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e

U

(1)

℄

+

= 0 and [

e

U
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℄

�

= 0 on S
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; (9.62)
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(x) = 0 in R
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S
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: (9.63)
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The seond equation in (9.62) is a onsequene of the \ontinuity" property

of the so-alled single layer integral operator (9.60) (see below Theorem

10.8).

Thus, we have established that the vetor funtion

e

U

(1)

given by the

integral (9.60) solves the homogeneous rak type problem (9.61)-(9.63) in

the sape W

1

2;lo

(R

3

S

2

) \ SK

m

r

(R

3

S

2

) where r and ! are as in Theorem 9.12.

Due to Theorem 9.7 we then onlude that

e

U

(1)

vanishes in R

3

S

2

, whih

ompletes the proof. �

We note that properties of surfae potentials similar to (9.60) and bound-

ary integral operators orresponding to them will be studied in detail in

various funtional spaes in the next hapter.
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CHAPTER IV

POTENTIALS AND BOUNDARY INTEGRAL OPERATORS

In this hapter we introdue and study the generalized single and double

layer potentials of the thermoelastisity theory of anisotropi bodies. We

investigate their smoothness properties in the losed domains, asymtoti

behaviour at in�nity and establish jump relations on the surfae of inte-

gration. We analyse also boundary integral (pseudodi�erential) operators

generated by these potentials and onsider their mapping properties in var-

ious funtional spaes. Note that the analogous questions for the potential

type operators in the elastiity theory of isotropi and anisotropi bodies

have been exaustively studied in [45℄, [8℄, [34℄, [35℄, [59℄, [17℄, [41℄, [13℄, [56℄,

[32℄.

In Setion 10 we examine in detail properties of the thermoelasti steady

state osillation potentials and afterwards, in Setion 11, we briey treat

the same topis for the pseudo-osillation potentials.

10. Thermoelasti Steady State Osillation Potentials

10.1. Let us introdue the following generalized single and double layer

steady state osillation potentials onstruted by the fundamental solution

(2.29)

V (g)(x) :=

R

S

�(x� y; !; r) g(y) dS

y

; x 2 R

3

n S; (10.1)

W (g)(x) :=

R

S

[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

g(y)dS

y

; x2R

3

n S; (10.2)

where S = �


�

, g = (g

1

; : : : ; g

4

)

>

= (eg; g

4

)

>

, eg = (g

1

; g

2

; g

3

)

>

; the operator

Q(D;n;�i!) is de�ned by (1.26) with { = �i!.

Note that here and in what follows, for simpliity of the notations, we do

not mark with the subsript ! the steady state osillation potentials and

the integral operators orresponding to them.

To investigate the existene of solutions to the nonhomogeneous BVPs

posed in Chapter II we need speial mapping properties of the above po-

tentials and the boundary integral (pseudodi�erential) operators generated

by them.

Let

H g(z) =

R

S

�(z � y; !; r) g(y) dS

y

; z 2 S; (10.3)

K

1

g(z) =

R

S

[B(D

z

; n(z))�(z � y; !; r)℄ g(y) dS

y

; z 2 S; (10.4)

K

2

g(z) =

R

S

[Q(D

y

; n(y);�i!)�

>

(z � y; !; r)℄

>

g(y) dS

y

; z 2 S; (10.5)

L

�

g(z) = lim




�

3x!z2S

B(D

x

; n(z))W (g)(x); z 2 S; (10.6)



64

where the boundary di�erential operator B(D;n) is given by (1.25). Here

the integrals (10.4) and (10.5) are understood in the Cauhy prinipal value

sense.

In the sequel everywhere the two positive numbers � and �

0

are subjeted

to the inequalities 0 < � < �

0

� 1:

Lemma 10.1. Let k � 0 be an integer and S 2 C

k+1;�

0

. Then for an ar-

bitrary summable g the potentials V (g) and W (g) are C

1

-smooth solutions

to the equation (1:10) in 


�

and belong to the lass SK

m

r

(


�

).

The following formulae

[V (g)(z)℄

+

= [V (g)(z)℄

�

= H g(z); g 2 C(S); (10.7)

[B(D;n)V (g)(z)℄

�

= (�2

�1

I

4

+K

1

) g(z); g 2 C

�

(S); (10.8)

[W (g)(z)℄

�

= (�2

�1

I

4

+K

2

) g(z); g 2 C

�

(S); (10.9)

hold and the operators

H : C

l;�

(S)! C

l+1;�

(S); (10.10)

K

1

; K

2

: C

l;�

(S)! C

l;�

(S); (10.11)

V : C

l;�

(S)! C

l+1;�

(


�

); (10.12)

W : C

l;�

(S)! C

l;�

(


�

); (10.13)

where 0 � l � k, are bounded.

Proof. The �rst part of the lemma follows immediately from the properties

of the fundamental matrix �(x� y; !; r) and is trivial, sine the olumns of

�(x� y; !; r) are solutions of the homogeneous equation (1.10) for x 6= y.

To prove the seond part, we proeed as follows.

From equations (1.25), (1.26), and Theorem 2.3 we have

�(x� y; !; r)� �(x� y) =:

e

�(x � y; !; r); (10.14)

B(D;n) = B

0

(D;n)�

e

B(n); (10.15)

Q(D;n;�i!) = B

0

(D;n)� i!T

0

e

B(n); (10.16)

where jD

�

e

�

kj

(x; !; r)j < '

(kj)

j�j

(x); k; j = 1; : : : ; 4; in a viinity of the

origin,

B

0

(D;n)=

�

[T (D;n)℄

3�3

[0℄

3�1

[0℄

1�3

�

n

�

4�4

;

e

B(n)=

�

[0℄

3�3

[�

kj

n

j

℄

3�1

[0℄

1�3

0

�

4�4

;

here �(x), �,  and '

(kj)

j�j

are as in Lemma 2.1.

Therefore, we an single out the dominant singular terms in the above

potentials and represent them in the form

V (g)(x) = V

0

(g)(x) +

e

V (g)(x); (10.17)

W (g)(x) =W

0

(g)(x) +

f

W (g)(x); (10.18)

B(D;n)V (g)(x) �B

0

(D;n)V

0

(g)(x) =: R(g)(x);
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where

V

0

(g)(x) =

R

S

�(x� y) g(y) dS

y

;

W

0

(g)(x) =

R

S

[B

0

(D

y

; n(y))�(x� y)℄

>

g(y) dS

y

:

The kernels of the potentials

e

V (g),

f

W (g) and R(g) have singularities of type

O(jx� yj

�1

) as jx� yj ! 0: Therefore,

e

V ,

f

W , and R are ontinuous vetors

in R

3

provided g 2C(S).

It is easy to see that

V

0

(g) = (v

(0)

(eg); v

(0)

4

(g

4

))

>

; W

0

(g) = (w

(0)

(eg); w

(0)

4

(g

4

))

>

;

B

0

(D;n)V

0

(g) = (T (D;n)v

(0)

(eg); �

n

v

(0)

4

(g

4

))

>

;

where v

(0)

(eg) and w

(0)

(eg) are single and double layer potentials of elastostat-

is (orresponding to the operator C(D)) onstruted by the fundamental

matrix �

(0)

(x):

v

(0)

(eg)(x) :=

R

S

�

(0)

(x� y) eg(y) dS

y

; (10.19)

w

(0)

(eg)(x) :=

R

S

[T (D

y

; n(y))�

(0)

(y � x)℄

>

eg(y) dS

y

; (10.20)

while v

(0)

4

(g

4

) and w

(0)

4

(g

4

) are potentials of the same type (orresponding to

the homogeneous operator �(D)) onstruted by the fundamental funtion



(0)

(x):

v

(0)

4

(g

4

)(x) :=

R

S



(0)

(x� y) g

4

(y) dS

y

; (10.21)

w

(0)

4

(g

4

)(x) :=

R

S

�

n(y)



(0)

(y � x) g

4

(y) dS

y

(10.22)

(see Lemma 2.1).

The properties of the latter potentials and boundary integral operators

on S, generated by them, are studied in detail for regular funtion spaes

in [8℄, [52℄, [56℄, [57℄, [59℄. The results in the above mentioned referenes

together with the representation formulae (10.17)-(10.18) yield equations

(10.7)-(10.9) and mapping properties (10.10)- (10.13). �

For a pseudodi�erential operator (	DO) K on S we denote by (K)

0

and

�(K)(x;

e

�) (x 2 S;

e

� 2 R

2

nf0g) the dominant singular part and the prinipal

homogeneous symbol, respetively. As usual, if no onfusion arises, in the

sequel the arguments x and

e

� will be omitted.

Lemma 10.2. The operators H; �2

�1

I

4

+ K

1

, and �2

�1

I

4

+ K

2

are

ellipti 	DOs of order �1; 0; and 0, respetively, with index equal to zero.

Proof. From equations (10.14)-(10.16) and (10.3)-(10.5) it follows that

(H)

0

=

�

[H

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(0)

4

�

4�4

; (10.23)
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(�2

�1

I

4

+K

1

)

0

=

�

[�2

�1

I

3

+K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+K

(0)

4

�

4�4

; (10.24)

(�2

�1

I

4

+K

2

)

0

=

2

4

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

3

5

4�4

; (10.25)

where

H

(0)

eg(z) =

R

S

�

(0)

(z � y) eg(y) dS

y

; H

(0)

4

g

4

(z) =

R

S



(0)

(z � y) g

4

(y) dS

y

;

K

(0)

eg(z) =

R

S

[T (D

z

; n(z))�

(0)

(z � y)℄ eg(y) dS

y

;

�

K

(0)

eg(z) =

R

S

[T (D

y

; n(y))�

(0)

(y � z)℄

>

eg(y) dS

y

;

K

(0)

4

g

4

(z) =

R

S

�

n(z)



(0)

(z � y) g

4

(y) dS

y

;

�

K

(0)

4

g

4

(z) =

R

S

�

n(y)



(0)

(y � z) g

4

(y) dS

y

:

(10.26)

Due to the general theory of 	DOs (see, e.g., [77℄, [20℄) we have to show

that the prinipal symbol matries of the operators (10.23), (10.24), and

(10.25) are nonsingular and that the indies of these operators are equal to

zero.

It is evident that K

(0)

[K

(0)

4

℄ and

�

K

(0)

[

�

K

(0)

4

℄ are mutually adjoint sin-

gular integral operators while H

(0)

[H

(0)

4

℄ is a formally self-adjoint integral

operator with a weakly singular kernel of the type O(jx� yj

�1

).

For the prinipal symbols we have (see [56℄, [59℄, [39℄)

�(H

(0)

) = �

1

2�

R

l

�

[C(a�)℄

�1

d�

3

= �

1

2�

+1

R

�1

[C(a�)℄

�1

d�

3

; (10.27)

�(�2

�1

I

3

+K

(0)

) =

i

2�

R

l

�

T (a�; n) [C(a�)℄

�1

d�

3

=

= [�(�2

�1

I

3

+

�

K

(0)

)℄

>

; (10.28)

�(H

(0)

4

) = �

1

2�

R

l

�

[�(a�)℄

�1

d�

3

= �

1

2�

+1

R

�1

[�(a�)℄

�1

d�

3

< 0; (10.29)

�(�2

�1

I

1

+K

(0)

4

) =

i

2�

R

l

�

�(a�; n) [�(a�)℄

�1

d�

3

=

= �(�2

�1

I

1

+

�

K

(0)

4

) = �2

�1

; (10.30)

where � = (

e

�; �

3

);

e

� = (�

1

; �

2

) 2 R

2

n f0g, �(�; n) is de�ned by (1.24),

a(x) =

2

4

l

1

(x) m

1

(x) n

1

(x)

l

2

(x) m

2

(x) n

2

(x)

l

3

(x) m

3

(x) n

3

(x)

3

5
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is an orthogonal matrix with deta(x) = +1, l = (l

1

; l

2

; l

3

)

>

; m = (m

1

;m

2

;

m

3

)

>

and n = (n

1

; n

2

; n

3

)

>

is a triple of orthogonal vetors at x 2 S (l

and m lie in the tangent plane at x 2 S and n is again the exterior unit

normal), l

�

(l

+

) is a losed lokwise (ounter-lokwise) oriented ontour

in the lower (upper) omplex half-plane �

3

= �

0

3

+ i�

00

3

enlosing all roots of

the equations detC(a�) = 0, �(a�) = 0, with respet to �

3

with negative

(positive) imaginary parts. The last equation in (10.30) follows due to the

fat that the kernel-funtion of the integral operators K

(0)

4

and

�

K

(0)

4

have

weak singularities of type O(jx � yj

�2+�

0

) on a C

1;�

0

-smooth manifold.

The entries of the matries (10.28) are homogeneous funtions of order

0, while (10.27) and (10.29) are homogeneous funtions of order �1 in

e

�.

Moreover, all the above prinipal homogeneous symbols are nonsingular for

j

e

�j = 1, the orresponding integral operators are ellipti 	DOs of order 0

and �1, respetively, and their indies are equal to zero (for details see [56℄,

[59℄, [41℄, [16℄).

Now (10.23), (10.24), and (10.25) imply

�(H) =

�

[�(H

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(H

(0)

4

)

�

4�4

; (10.31)

�(�2

�1

I

4

+K

1

) = [�(�2

�1

I

4

+K

2

)℄

>

=

=

"

[�(�2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(0)

4

)

#

4�4

; (10.32)

whih together with equations (10.23){(10.25) ompletes the proof. �

Remark 10.3. More subtle analysis of the fundamental solution �(x; !; r)

shows that in a viinity of the origin the following representation

�(x; !; r) = �(x) + i

e

�

0

(x)� !T

0

[

e

�

0

(x)℄

>

+

e

�

00

(x; !; r); (10.33)

e

�

0

(x) =

�

[0℄

3�3

[

e

�

0

k4

(x)℄

3�1

[0℄

1�3

0

�

4�4

;

holds, where �(x) is the same as in Lemma 2:1 and

e

�

0

k4

(x) is independent

of !; �rst order derivatives of

e

�

0

k4

(x) are homogeneous funtions of order

�1 and jD

�

e

�

0

k4

(x)j < '

(k4)

j�j

(x) with the same '

(k4)

j�j

(x) as in Lemma 2:1;

the seond order derivatives of the entries of the matrix

e

�

00

(x; !; r) have

singularities of the type O(jxj

�1

).

Remark 10.4. Note that the operator �H

(0)

[�H

(0)

4

℄ is a positive operator

whih implies that the orresponding prinipal homogeneous symbol is a

positive de�nite matrix [is a positive funtion℄ (see [56℄). Therefore, the

prinipal homogeneous symbol matrix �(�H) is also positive de�nite due

to the equation (10.31) and the inequality (10.29).
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10.2. Now we turn our attention to the equation (10.6). To prove the

existene of limits (10.6) and to study properties of the operators L

�

we

need some auxiliary results whih are now presented.

Lemma 10.5. Let U = (u; u

4

)

>

be a regular solution of the homogeneous

interior problem (P

1

)

+

!

. Then u

4

(x) = 0 in 


+

and u is a solution to

the following interior homogeneous BVP of steady state osillations of the

elastiity theory

C(D)u(x) + !

2

u(x) = 0 in 


+

; (10.34)

[u(z)℄

+

= 0 on S; (10.35)

satisfying, in addition, the equation �

kj

D

j

u

k

= 0 in 


+

.

Proof. The equation u

4

(x) = 0 in 


+

follows from the identity (1.23), if

we look at the imaginary part. Then we obtain the BVP (10.34)-(10.35)

for the displaement vetor u with the additional equation indiated in the

lemma due to the homogeneous onditions of the problem (P

1

)

+

!

. �

By �[(P

1

)

+

!

℄ we denote the spetral set orresponding to the problem

(P

1

)

+

!

(i.e., the set of values of the parameter ! for whih the homogeneous

problem (P

1

)

+

!

possesses a nontrivial solution). Note that the spetral set

orresponding to the problem (10.34){(10.35) is at most ountable. There-

fore, Lemma 10.5 implies the following proposition (f. [56℄).

Corollary 10.6. The set �[(P

1

)

+

!

℄ is either �nite or ountable (with the

only possible aumulation point at in�nity).

Now we are ready to examine the properties of the hypersingular opera-

tors L

�

.

Lemma 10.7. Let S 2 C

2;�

0

and g 2 C

1;�

(S). Then limits (10:6) exist

and

L

+

g(z) = L

�

g(z) =: L g(z); z 2 S: (10.36)

Moreover, the operator

L : C

l+1;�

(S)! C

l;�

(S); S 2 C

k+2;�

0

; k � 0; 0 � l � k; (10.37)

is a bounded singular integro-di�erential operator with nonsingular positive

de�nite prinipal homogeneous symbol matrix and with index equal to zero.

Proof. First we prove the existene of limits (10.6). With the help of

equations (10.15), (10.16), and (10.33) we dedue

B(D

x

; n(x))[Q(D

y

; n(y);�i!)�

>

(x� y; !; r)℄

>

=

e

K

3

(x; y; x� y) +

+[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x � y)℄ +

e

K

1

(x; y; x� y;!); (10.38)

where

e

K

3

(x; y; x� y) = B

0

(D

x

; n(x))[B

0

(D

y

; n(y))�(y � x)℄

>

=

=

�

[T (D

x

; n(x))[T (D

y

; n(y))�(y � x)℄

>

℄

3�3

[0℄

3�1

[0℄

1�3

�

n(x)

�

n(y)



(0)

(y � x)

�

4�4
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is a hypersingular kernel with the entries of the type O(jx�yj

�3

) as jx�yj !

0; while

e

K

0

2

(x; y; x� y) = iB

0

(D

x

; n(x))fB

0

(D

y

; n(y))[

e

�

0

(x� y)℄

>

g

>

�

�

e

B(n(x))[B

0

(D

y

; n(y))�(x � y)℄

>

and

e

K

00

2

(x; y; x� y) = �B

0

(D

x

; n(x))[B

0

(D

y

; n(y))

e

�

0

(x � y)℄

>

�

�i[B

0

(D

x

; n(x))�(x � y)℄

e

B

>

(n(y))

are singular kernels on S with the entries of the type O(jx�yj

�2

) as jx�yj !

0, and the entries of the matrix

e

K

1

(x; y; x � y;!) have singularities of the

type O(jx � yj

�1

). Note that here either x 2 


+

or x 2 


�

.

In turn, (10.38) implies

B(D

x

; n(x))W (g)(x) = (T (D

x

; n(x))w

(0)

(eg)(x); �

n(x)

w

(0)

4

(g

4

)(x))

>

+

+

R

S

[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x� y)℄ g(y) dS

y

+

+

R

S

e

K

1

(x; y; x� y;!) g(y) dS

y

; (10.39)

where w

(0)

(eg) and w

(0)

4

(g

4

) are de�ned by (10.20) and (10.22), respetively.

It an be shown (see [56℄, [59℄, [16℄, [39℄) that the limits

lim




�

3x!z2S

T (D

x

; n(x))w

(0)

(eg)(x) = L

(0)

eg(z); (10.40)

lim




�

3x!z2S

�

n(x)

w

(0)

4

(g

4

)(x) = L

(0)

4

g

4

(z) (10.41)

exist for any g

k

2C

1;�

(S); k = 1; : : : ; 4; and that the operators L

(0)

and L

(0)

4

are non-negative, formally self-adjoint singular integro-di�erential operators

with positive de�nite prinipal symbols

�(L

(0)

) = �

1

2�

R

l

�

T (a�; n) [C(a�)℄

�1

T

>

(a�; n) d�

3

; (10.42)

�(L

(0)

4

) = �

1

2�

R

l

�

�

2

(a�; n) [�(a�)℄

�1

d�

3

= �[4�(H

(0)

4

)℄

�1

: (10.43)

Here the ontours l

�

are the same as in formulae (10.27)-(10.30).

The operators L

(0)

and L

(0)

4

are ellipti 	DOs of order 1 with index equal

to zero and they possess mapping property (10.37) (for details see [16℄).

Further, Remark 10.3 yields that there exist limits on S from 


�

of the

seond term in the right-hand side expression of (10.39)

lim




�

3x!z2S

R

S

[

e

K

0

2

(x; y; x� y) + !T

0

e

K

00

2

(x; y; x� y)℄ g(y) dS

y

=

= [�

0

�

(z) + !T

0

�

00

�

(z)℄g(z) +

e

K

0

2

g(z) + !T

0

e

K

00

2

g(z);
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where

e

K

0

2

and

e

K

00

2

are singular integral operators with singular kernels

e

K

0

2

and

e

K

00

2

, respetively; �

0

�

and �

00

�

are some smooth matries independent of

! (we do not need their expliit expressions for our purposes).

The existene of the limits on S (from 


�

) of the third term in the right-

hand side of (10.39) is evident. It is also obvious that these limits are equal

to eah other and that the boundary operator

e

K

1

, generated by this term,

is a weakly singular integral operator (	DO of order s � �1).

Thus, the existene of the operators L

�

is proved in the spae C

1;�

(S)

and we have

L

�

g(z) =

�

[L

(0)

eg(z)℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

g

4

(z)

�

4�4

+

+[�

0

�

(z) + !T

0

�

00

�

(z)℄g(z) +

e

K

0

2

g(z) + !T

0

e

K

00

2

g(z) +

e

K

1

g(z): (10.44)

We also see that the operators (10) possess the mapping property (10.37).

It remains to show L

+

= L

�

:

The integral representation formulae (3.2) and (3.3) of a regular vetor

U we rewrite as follows

U(x) = �fW ([U ℄

�

)(x)� V ([BU ℄

�

)(x)g; x 2 


�

; (10.45)

provided A(D;�i!)U(x) = 0 in 


�

and U 2 SK

m

r

(


�

); here W and V are

double and single layer potentials operators (see (10.1) and (10.2)).

Due to Lemma 10.1 from (10.45) we have

(�2

�1

I

4

+K

2

)[U ℄

+

= H[BU ℄

+

; (2

�1

I

4

+K

2

)[U ℄

�

= H[BU ℄

�

;

where the operatorsH and K

2

are de�ned by (10.3) and (10.5), respetively.

If in these equations we substitute U(x) = W (g)(x) with an arbitrary

g 2C

1;�

(S), apply the same Lemma 10.1 and the above results onerning

the limits (10.6), we arrive at the following relations

(�2

�1

I

4

+K

2

)(2

�1

I

4

+K

2

) g = HL

+

g;

(2

�1

I

4

+K

2

)(�2

�1

I

4

+K

2

) g = HL

�

g:

(10.46)

Whene

H(L

+

g �L

�

g) = 0: (10.47)

By (10) we have L

+

g�L

�

g =: h 2 C

�

(S) and, therefore, V (h) is a regular

vetor in 


�

.

Now, on one side, (10.47) yields that V (h) is a regular solution to the

homogeneous roblem (P

1

)

�

!

and we onlude V (h)(x) = 0; x 2 


�

; due

to Theorem 9.5.

On the other side, the same equation (10.47) implies that V (h) is a regular

solution to the homogeneous problem (P

1

)

+

!

as well, and, by Corollary 10.6,

we get V (h)(x) = 0; x 2 


+

; provided ! 62 �[(P

1

)

+

!

℄:

The above equations imply h = [BV (h)℄

�

� [BV (h)℄

+

= 0:



71

Thus, we have proved that L

+

g = L

�

g for all g 2 C

1;�

(S) if ! 62

�[(P

1

)

+

!

℄; whih aording to (10) leads to the equation

[�

0

+

(z)� �

0

�

(z)℄g(z) + !T

0

[�

00

+

(z)� �

00

�

(z)℄g(z) = 0:

Consequently, �

0

+

(z) = �

0

�

(z); �

00

+

(z) = �

00

�

(z); and (10.36) holds for

an arbitrary value of the parameter !.

It is also evident that the dominant singular part (L)

0

of the operator L

and the orresponding prinipal homogeneous symbol matrix read

(L)

0

=

�

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

�

4�4

; (10.48)

�(L) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

(10.49)

(see (10.40){(10.43)). Whene the positive de�niteness of the matrix (10.49)

and the formally self-adjointness of the operator (10.48) follow immediately,

sine the matrix �(L

(0)

) is positive de�nite and, as formulae (10.46), (10.29),

and (10.30) show

�(L

(0)

4

) = �[4�(H

(0)

4

)℄

�1

> 0: (10.50)

The proof is ompleted. �

10.3. In this subsetion we ollet the known results onerning some

properties of the above introdued single and double layer potentials in

Besov and Bessel-potential spaes. The proof of the theorem below is, in

fat, the same as proof of analogous theorem in the elastiity theory (or

even in the theory of harmoni funtions). One has to relay on the fat that

regular funtion spaes are densely embedded in Besov and Bessel-potential

funtional spaes, and apply the usual limiting extension proedure together

with the duality and interpolation priniples (for details we refer to, for

example, [16℄, [17℄, [13℄, [53℄).

Theorem 10.8. The operators (10:12), (10:13), (10:10), (10:11), and

(10:37) an be extended by ontinuity to the following bounded operators

V : B

s

p;p

(S)!H

s+1+1=p

p

(


+

) [B

s

p;p

(S)!H

s+1+1=p

p;lo

(


�

)\SK

m

r

(


�

)℄;

: B

s

p;q

(S)!B

s+1+1=p

p;q

(


+

) [B

s

p;q

(S)!B

s+1+1=p

p;q;lo

(


�

)\SK

m

r

(


�

)℄;

W : B

s

p;p

(S)!H

s+1=p

p

(


+

) [B

s

p;p

(S)!H

s+1=p

p;lo

(


�

)\SK

m

r

(


�

)℄;

: B

s

p;q

(S)!B

s+1=p

p;q

(


+

) [B

s

p;q

(S)!B

s+1=p

p;q;lo

(


�

)\SK

m

r

(


�

)℄;

H : H

s

p

(S)! H

s+1

p

(S) [B

s

p;q

(S)! B

s+1

p;q

(S)℄;

K

1

;K

2

: H

s

p

(S)! H

s

p

(S) [B

s

p;q

(S)! B

s

p;q

(S)℄;

L : H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

for arbitrary s 2 R; 1 < p <1; 1 � q � 1; provided S 2 C

1

. Moreover,

i) for these extended operators the formulae (10:7), (10:8), (10:9), and

(10:36) remain valid in the orresponding spaes;
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ii) the integral representation formula (3:3) remains valid for U 2W

1

p

(


�

)

\ SK

m

r

(


�

) with A(D;�i!)U = 0 in 


�

; the integral representation for-

mula (3:2) in 


+

remains valid for U 2 W

1

p

(


+

) with � = �i! and

A(D;�i!)U = 0 in 


+

.

11. Thermoelasti Pseudo-Osillation Potentials

In this setion we deal with the single and double layer pseudo-osillation

potentials whih are de�ned as follows

V

�

(g)(x) :=

R

S

�(x� y; �) g(y) dS

y

; x 2 R

3

n S; (11.1)

W

�

(g)(x) :=

R

S

[Q(D

y

; n(y); �)�

>

(x � y; �)℄

>

g(y) dS

y

; x 2 R

3

n S; (11.2)

where �(x � y; �) is the fundamental matrix de�ned by (2.2), S = �


�

,

g = (g

1

; : : : ; g

4

)

>

= (eg; g

4

)

>

, eg = (g

1

; g

2

; g

3

)

>

; the operator Q(D;n; �) is

de�ned by (1.26) with { = � .

Due to the results of Setion 2 it is evident that the mapping properties

and the jump relations of the above pseudo-osillation potentials and the

steady state osillation potentials (10.1){(10.2) are the same. It is also

obvious that the asymptoti behaviour of the potentials (11.1){(11.2) at

in�nity is quite similar to the asymptoti behaviour of the fundamental

matrix �(x� y; �) sine S is a ompat surfae.

Next, we introdue the boundary integral (pseudodi�erential) operators

generated by the pseudo-osillation potentials

H

�

g(z) =

R

S

�(z � y; �) g(y) dS

y

; z 2 S; (11.3)

K

1;�

g(z) =

R

S

[B(D

z

; n(z))�(z � y; �)℄ g(y) dS

y

; z 2 S; (11.4)

K

2;�

g(z) =

R

S

[Q(D

y

; n(y); �)�

>

(z � y; �)℄

>

g(y) dS

y

; z 2 S; (11.5)

L

�

�

g(z) = lim




�

3x!z2S

B(D

x

; n(z))W

�

(g)(x); z 2 S; (11.6)

where the boundary di�erential operator B(D;n) is given again by (1.25),

and the integrals (11.4) and (11.5) are understood in the Cauhy prinipal

value sense.

The properties of the above introdued operators are desribed by the

following propositions.

Theorem 11.1. Let k � 0 be an integer and S 2 C

k+1;�

0

. Then for

an arbitrary summable g the potentials V

�

(g) and W

�

(g) are C

1

-smooth

solutions to the equation (1:9) in 


�

and together with all derivatives they

derease more rapidly then any negative power of jxj as jxj ! +1.

Moreover, if 0 � l � k, then

i) the operators

V

�

: C

l;�

(S)! C

l+1;�

(


�

); (11.7)

W

�

: C

l;�

(S)! C

l;�

(


�

) (11.8)
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are bounded, and

[V

�

(g)(z)℄

+

= [V

�

(g)(z)℄

�

= H

�

g(z); g 2 C(S); (11.9)

[B(D;n)V

�

(g)(z)℄

�

= (�2

�1

I

4

+K

1;�

) g(z); g 2 C

�

(S); (11.10)

[W

�

(g)(z)℄

�

= (�2

�1

I

4

+K

2;�

) g(z); g 2 C

�

(S); (11.11)

L

+

�

g = L

�

�

g =: L

�

g; g 2 C

1;�

(S); k � 1; (11.12)

ii) the operators

H

�

: C

l;�

(S)! C

l+1;�

(S); (11.13)

K

1;�

; K

2;�

: C

l;�

(S)! C

l;�

(S); (11.14)

L

�

: C

l+1;�

(S)! C

l;�

(S); (11.15)

are bounded.

Theorem 11.2. The operators H

�

, �2

�1

I

4

+K

1;�

, �2

�1

I

4

+K

2;�

, and L

�

are ellipti 	DOs of order �1; 0; 0; and 1, respetively, with index equal to

zero. Moreover, the prinipal homogeneous symbol matries of the operators

�H

�

and L

�

are positive de�nite.

Theorem 11.3. The operators (11:7), (11:8), and (11:13){(11:15) an

be extended by ontinuity to the following bounded operators

V

�

: B

s

p;p

(S)! H

s+1+1=p

p

(


�

) [B

s

p;q

(S)! B

s+1+1=p

p;q

(


�

)℄;

W

�

: B

s

p;p

(S)! H

s+1=p

p

(


�

) [B

s

p;q

(S)! B

s+1=p

p;q

(


�

)℄;

H

�

: H

s

p

(S)! H

s+1

p

(S) [B

s

p;q

(S)! B

s+1

p;q

(S)℄;

K

1;�

;K

2;�

: H

s

p

(S)! H

s

p

(S) [B

s

p;q

(S)! B

s

p;q

(S)℄;

L

�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

for arbitrary s 2 R; 1 < p <1; 1 � q � 1; provided S 2 C

1

. Moreover,

i) for these extended operators the formulae (11:9){(11:12) remain valid

in the orresponding spaes;

ii) the integral representation formula (3:2) remains valid for U 2W

1

p

(


�

)

with A(D; �)U = 0 in 


�

, provided that U satis�es the deay ondition

(1:30) at in�nity in the ase of the domain 


�

.

Clearly, the proofs of these theorems are verbatim the proofs of the anal-

ogous propositions in the previous setion and, therefore, we omit them (for

details see [16℄).

We note here that the formula similar to (10.46) holds also for the pseudo-

osillation operators and read as

(�2

�1

I

4

+K

2;�

)(2

�1

I

4

+K

2;�

) = H

�

L

�

: (11.16)

Applying the general integral representation formula (3.2) for U(x) =

V

�

(g)(x) we an also easily derive the following identity

(�2

�1

I

4

+K

1;�

)(2

�1

I

4

+K

1;�

) = L

�

H

�

: (11.17)

Remark 11.4. The results of Setion 2 imply that the dominant singular

parts and the prinipal homogeneous symbol matries of the operators H

�

,
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�2

�1

I

4

+K

1;�

, �2

�1

I

4

+K

2;�

, and L

�

read as (f. (10.23)-(10.25), (10.48),

(10.31), (10.32), (10.49))

(H

�

)

0

=

�

[H

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(0)

4

�

4�4

; (11.18)

(�2

�1

I

4

+ K

1;�

)

0

=

�

[�2

�1

I

3

+K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+K

(0)

4

�

4�4

; (11.19)

(�2

�1

I

4

+K

2;�

)

0

=

2

4

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

3

5

4�4

; (11.20)

(L

�

)

0

=

�

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

�

4�4

; (11.21)

and

�(�2

�1

I

4

+K

1;�

) = [�(�2

�1

I

4

+K

2;�

)℄

>

=

=

"

[�(�2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(0)

4

)

#

4�4

; (11.22)

�(H

�

) =

�

[�(H

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(H

(0)

4

)

�

4�4

; (11.23)

�(L

�

) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

: (11.24)

The matries (11.22){(11.24), as it has been shown in the previous se-

tion, are nonsingular. Moreover, �(�H

�

) and �(L

�

) are positive de�nite.
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CHAPTER V

REGULAR BOUNDARY VALUE AND

INTERFACE PROBLEMS

Here we onsider the nonhomogeneous regular basi boundary value and

interfae problems formulated in Chapter II for the pseudo-osillation and

steady state osillation equations of the thermoelastiity theory of anisotropi

bodies. The existene theorems will be proved in the H�older ontinuous and

Sobolev funtional spaes with the help of the boundary integral equation

method.

12. Basi BVPs of Pseudo-Osillations

12.1. Let us �rst onsider the regular problem (P

1

)

+

�

(see (5.1) and

(5.2)) S 2 C

2;�

0

.

We look for a solution in the form of the double layer potential (see

(11.2))

U(x) =W

�

(g)(x); x 2 


+

; (12.1)

where g = (g

1

; � � � ; g

4

)

>

2 C

1;�

(S) is the unknown density. As above, here

and in what follows we again provide that 0 < � < �

0

� 1.

Applying the jump formula for a double layer potential (see Theorem

11.1, item i)) and taking into aount the boundary onditions of the prob-

lem in question we arrive at the boundary integral equation (BIE)

N

+

1;�

g(x) := [2

�1

I

4

+K

2;�

℄ g(x) = G

(1)

(x); x 2 S; (12.2)

where G

(1)

= (f

1

; � � � ; f

4

)

>

2 C

1;�

(S) is the given vetor funtion on S (see

(5.1){(5.2)), and K

2;�

is de�ned by (11.5).

Due to Theorem 11.2 the singular integral operator in the left-hand side

of (12.2) is an ellipti 	DO with zero index.

Further, we show that the homogeneous version of the equation (12.2)

(i.e., when G

(1)

= 0) has only the trivial solution. Let g

0

2 C

1;�

(S) be an

arbitrary solution of the equation

[2

�1

I

4

+K

2;�

℄ g(x) = 0; x 2 S: (12.3)

It is evident that the vetor funtion

U

0

(x) =W

�

(g

0

)(x) 2 C

1;�

(


+

) (12.4)

represents then a regular solution of the homogeneous problem (P

1

)

+

�

due

to (12.3). Therefore, by the uniqueness Theorem 8.1 we onlude U

0

(x) = 0

in 


+

whih, in turn, implies

[B(D;n)U

0

℄

+

= L

�

g

0

= 0 on S;

where L

�

= L

�

�

is de�ned by (11.6).

In aordane with equation (11.12) we get

[B(D;n)U

0

℄

�

= 0 on S; (12.5)
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where U

0

is given again by (12.4) in 


�

.

Thus, we have obtained that the vetor funtion

U

0

(x) =W

�

(g

0

)(x) 2 C

1;�

(


�

) (12.6)

represents a regular solution to the problem (P

2

)

�

�

. Therefore, U

0

(x) = 0

in 


�

due to Theorem 8.1.

As a result we have for arbitrary x 2 S

[U

0

(x)℄

+

� [U

0

(x)℄

�

= [W

�

(g

0

)(x)℄

+

� [W

�

(g

0

)(x)℄

�

= g

0

= 0

whih proves that the equation (12.3) has only the trivial solution.

Aording to the general theory of singular integral equations (see, e.g.,

[51℄, [45℄, Ch.IV), the nonhomogeneous equation (12.2) is uniquely solvable

for an arbitrary right-hand side. Moreover, the orresponding embedding

theorems for the solution of SIE on losed manifold yield that, if S 2 C

k+1;�

0

and f 2 C

k;�

(S), then g 2 C

k;�

(S).

Finally, we arrive at the following existene theorem.

Theorem 12.1. Let S 2 C

k+1;�

0

and f

j

2 C

k;�

(S) where j = 1; 4

and k � 1 is an arbitrary integer. Then the problem (P

1

)

+

�

(i.e., (1:9),

(5:1), (5:2)) is uniquelly solvable in the spae C

k;�

(


+

) and the solution is

representable in the form (12:1), where g 2 C

k;�

(S) solves the BIE (12:2).

Remark 12.2. Note that, if one looks for a regular solution to the BVP

problem (P

1

)

+

�

in the form of a single layer potential (see (11.1))

U(x) = V

�

(h)(x); x 2 


+

; (12.7)

then one gets the 	DE

H

�

h(x) = G

(1)

(x); x 2 S; (12.8)

due to Theorem 11:1 (see (11.9)).

Applying again the uniqueness Theorem 8:1 and properties of the single

layer potential, by the arguments similar to the above ones it an be easily

shown that kerH

�

is trivial. Note that �H

�

is an ellipti 	DO of order

�1 (with positive de�nite prinipal homogeneous symbol matrix) and its

index equals zero. Invoking the general theory of 	DO on losed smooth

manifolds (see,e.g., [77℄) we onlude that the operator

H

�

: C

l;�

(S)! C

l+1;�

(S); S 2 C

k;�

0

0 � l � k � 1; k � 1; (12.9)

is an isomorphism. Therefore, the equation (12.8) is uniquely solvable in

the spae C

k�1;�

(S) provided that S 2 C

k;�

0

and f 2 C

k;�

(S) (k � 1).

As a result we obtain that the solution of the problem (P

1

)

+

�

an also be

uniquely represented as a single layer potential (12.7), where h 2 C

k�1;�

(S)

is the unique solution of the equation (12.8). Clearly, we again have U =

V

�

(h) 2 C

k;�

(


+

).

We remark that applying the equation (11.17) one an show that, in fat,

the operator

H

�1

�

: C

l+1;�

(S)! C

l;�

(S); S 2 C

k;�

0

0 � l � k� 1; k � 1; (12.10)
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whih is inverse to the operator (12.9), is a singular integro-di�erential oper-

ator (i.e., a 	DO of order 1). Obviously, the prinipal homogeneous symbol

matrix of the operator �H

�1

�

is also positive de�nite.

It should be noted that to prove the existene of a regular solution by

the single layer approah, as it is evident from the above arguments, C

1;�

0

-

smoothness of the boundary surfae �


+

= S is suÆient, while by the

double layer approah we need S 2 C

2;�

0

:

12.2. Let us look for a regular solution of the problem (P

2

)

+

�

(see (5.3){

(5.4)) again in the form (12.1). The boundary onditions of the problem

in question and the properties of the double layer potential lead to the

following system of equations for the unknown density g on S

f[2

�1

I

4

+K

2;�

℄ g(x)g

j

= f

j

(x); j = 1; 2; 3; (12.11)

fL

�

g(x)g

4

= F

4

(x): (12.12)

Note that the operators involved in the �rst three equations are singular in-

tegral operators (SIO), i.e., 	DOs of zero order, while in the fourth equation

we have singular integro-di�erential operators, i.e., 	DOs of order 1.

In order to rewrite these equations in the matrix form we set

N

+

2;�

:=

�

[(2

�1

I

4

+K

2;�

)

pq

℄

3�4

[(L

�

)

4q

℄

1�4

�

4�4

(12.13)

with p = 1; 2; 3 and q = 1; 4.

Clearly, then (12.11) and (12.12) are equivalent to the equation

N

+

2;�

g(x) = G

(2)

(x); x 2 S; G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

: (12.14)

We assume that G

(2)

2 [C

k;�

(S)℄

3

� [C

k�1;�

(S)℄, i.e.,

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); j = 1; 2; 3; F

4

2 C

k�1;�

(S); (12.15)

where k � 1; 0 < � < �

0

� 1: Moreover, we seek the unknown density

vetor g in the spae [C

k;�

(S)℄

4

.

The system of 	DEs (12.13) is ellipti in the sense of Douglis{Nirenberg

(f. [3℄, [2℄, [85℄) and its prinipal symbol matrix

�(N

+

2;�

) =

"

[�(2

�1

I

3

+K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

#

4�4

(12.16)

is nonsingular for arbitrary x 2 S and j

e

�j = 1 (see Remark 11.4, the formulae

(10.26), (10.28), (10.41), (10.43), and the proofs of Lemmata 10.2 and 10.7).

The index of the operator N

+

2;�

is equal to zero, sine the index of the

orresponding dominant singular part is zero.

Next, we show that the system (12.11)-(12.12) (i.e., (12.14)) an be equiv-

alently redued to the system of singular integral equations (SIEs). To this

end we formulate the following lemma whih will be frequently used in the

sequel (see, e.g., [60℄, [20℄).
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Lemma 12.3. The salar operator

Rh(z) =

1

2�

R

S

jz � yj

�1

h(y) dS

y

; z 2 S; S 2 C

1;�

0

; (12.17)

generated by the harmoni single layer potential, is a formally self-adjoint,

equivalent smoothing lifting 	DO of order �1, (i.e., Rh = 0 implies h = 0)

with the prinipal homogeneous symbol equal to j

~

�j

�1

(i.e., �(R)(x;

~

�) =

j

~

�j

�1

; x 2 S;

~

� 2 R

2

n f0g).

Due to this lemma it is evident that the system (12.11){(12.12) is equiv-

alent to the system of SIEs on S

f[2

�1

I

4

+K

2;�

℄ g(x)g

j

= f

j

(x); j = 1; 2; 3; (12.18)

RfL

�

g(x)g

4

= RF

4

(x); (12.19)

whih an also be written as

R

2

N

+

2;�

g(x) = G

(2)

�

; (12.20)

where

R

2

=

�

[I

3

℄

3�3

[0℄

3�1

[0℄

1�3

R

�

4�4

(12.21)

and

G

(2)

�

= (f

1

; f

2

; f

3

;RF

4

)

>

: (12.22)

Clearly, (12.20) is an ellipti SIE with index zero.

Further, we prove that the nonhomogeneous system (12.11)-(12.12) (i.e.,

(12.14) and (12.20)) is uniquely solvable. Invoking again the theory of SIEs

on smooth manifolds ([51℄, [45℄), we have to show that the homogeneous

version of the system (12.11)-(12.12) admits only the trivial solution. It is

an easy onsequene of the orresponding uniqueness theorem and the jump

relations of the double layer potential, and an be shown by the same argu-

ments as in the previous subsetion. These results imply that the equation

(12.20) has a unique solution g 2 C

k;�

(S) for arbitrary G

(2)

�

2 C

k;�

(S).

This immediately leads to the following assertion.

Theorem 12.4. Let onditions (12:15) be ful�lled. Then the problem

(P

2

)

+

�

(i.e., (1:9), (5:3), (5:4)) is uniquely solvable in the spae C

k;�

(


+

)

and the solution is representable in the form (12:1), where g 2 C

k;�

(S)

solves the system of BIEs (12:11){(12:12) (i.e., (12:20)).

Let us note here that the single layer aproah is again appliable and leads

to the existene of a unique solution in the spae C

k;�

(


+

) (f. Remark

12.2).

12.3. In this subsetion we onsider the nonhomogeneous problem (P

3

)

+

�

(see (5.5){(5.6)). We look for a regular solution U again in the form (12.1)

whih yields the following system of BIEs on S:

fL

�

g(x)g

j

= F

j

(x); j = 1; 2; 3; (12.23)

f[2

�1

I

4

+K

2;�

℄ g(x)g

4

= f

4

(x); (12.24)
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where we provide

S 2 C

k+1;�

0

; F

j

2 C

k�1;�

(S); j = 1; 2; 3; f

4

2 C

k;�

(S) (12.25)

with the same k; �

0

; and � as in (12.15). The unknown density g is again

assumed to belong to the lass C

k;�

(S).

We set

N

+

3;�

:=

�

[(L

�

)

pq

℄

3�4

[(2

�1

I

4

+K

2;�

)

4q

℄

1�4

�

4�4

(12.26)

with p = 1; 2; 3; and q = 1; 4.

The equations (12.23)-(12.24) an be then written in the matrix form as

N

+

3;�

g(x) = G

(3)

(x); x 2 S;

G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

2 [C

k�1;�

(S)℄

3

�C

k;�

(S):

(12.27)

The operator N

+

3;�

is ellipti (again in the sense of Douglis-Nirenberg) with

the nonsingular prinipal symbol matrix

�(N

+

3;�

) =

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(2

�1

I

1

+K

(0)

4

)

�

4�4

(12.28)

(see Setion 10 and Remark 11.4) and the index equal to zero.

Introdue the matrix operator

R

3

=

�

[I

3

R℄

3�3

[0℄

3�1

[0℄

1�3

I

1

�

4�4

; (12.29)

where R is the equivalent lifting operator (12.17).

Now it an be easily seen that

R

3

N

+

3;�

g(x) = G

(3)

�

; G

(3)

�

= (RF

1

;RF

2

;RF

3

; f

4

)

>

2 C

k;�

(S); (12.30)

is an ellipti system of SIEs equivalent to (12.23){(12.24), due to Lemma

12.3.

As in the previous subsetion we an easily establish that the homoge-

neous version of the system (12.23){(12.24) admits only the trivial solution.

Therefore, the nonhomogeneous system (12.30) and, onsequently, (12.23){

(12.24) are uniquely solvable in the lass C

k;�

(S) if the boundary data meet

the onditions (12.25). Thus, we have proved the following existene result.

Theorem 12.5. Let onditions (12:25) be ful�lled. Then the problem

(P

3

)

+

�

(i.e., (1:9), (5:5), (5:6)) is uniquely solvable in the spae C

k;�

(


+

)

and the solution is representable in the form (12:1), where g 2 C

k;�

(S)

solves the system of BIEs (12:23){(12:24) (i.e., (12:30)).

We emphasize that the single layer aproah is again appliable.

12.4. Here we onsider the nonhomogeneous boundary value problem

(P

4

)

+

�

(see (5.7), (5.8)). We look for a regular solution U again in the form
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(12.1) whih now leads to the hypersingular BIE (	DE of order +1) on S

N

+

4;�

g(x) := L

�

g(x) = G

(4)

(x);

G

(4)

= (F

1

; � � � ; F

4

)

>

2 [C

k�1;�

(S)℄

4

:

(12.31)

Due to Remark 11.4 the dominant singular part and the prinipal homo-

geneous positive de�nite symbol matrix of the singular integro-di�erential

operator N

+

4;�

:= L

�

are given by formulae (11.21) and (11.24), respetively.

Moreover, the index of L

�

is equal to zero.

The 	DE (12.31) is equivalent to the ellipti system of SIEs

R

4

N

+

4;�

g(x) = G

(4)

�

; G

(4)

�

= (RF

1

; � � � ;RF

4

)

>

2 C

k;�

(S); (12.32)

where

R

4

= [I

4

R℄

4�4

(12.33)

with R de�ned by (12.17).

Applying uniqueness Theorem 8.1 and formula (11.12) we onlude that

the homogeneous version of equation (12.31) has only the trivial solution.

Therefore, the nonhomogeneous systems (12.32) and (12.31) are uniquely

solvable in the spae C

k;�

(S). This implies the following proposition.

Theorem 12.6. Let S 2 C

k+1;�

0

and F 2 [C

k�1;�

(S)℄

4

with the same k;

�

0

; and � as in (12:15). Then the problem (P

4

)

+

�

(i.e., (1:9), (5:7), (5:8)) is

uniquely solvable in the spae C

k;�

(


+

) and the solution is representable in

the form (12:1), where g 2 C

k;�

(S) solves the system of BIEs (12:31) (i.e.,

(12:32)).

Remark 12.7. The lassial single layer approah for the problem (P

4

)

+

�

(see (12.7)) redues the BVP to the system of SIEs on S 2 C

k;�

0

(k � 1)

(�2

�1

I

4

+K

1;�

)h(x) = G

(4)

;

G

(4)

= (F

1

; � � � ; F

4

)

>

2 C

k�1;�

(S):

(12.34)

The SIO in the left-hand side is ellipti with index zero. Moreover, Theorems

8:1 and 11:1, item i) imply ker(�2

�1

I

4

+ K

1;�

) = f0g. Therefore, the

mapping

�2

�1

I

4

+K

1;�

: C

l;�

(S)! C

l;�

(S); 0 � l � k � 1; (12.35)

is an isomorphism.

These arguments show that the equation (12.34) is always solvable in the

spae C

k�1;�

(S): This, in turn, proves that the unique solution to the BVP

(P

4

)

+

�

is representable also in the form of a single layer potential

U(x) = V

�

(h)(x) 2 C

k;�

(


+

);

where h 2 C

k�1;�

(S) solves the SIE (12.34).

12.5. The existene theorems of solutions to the basi exterior BVPs for

the pseudo-osillation equations of thermoelastiity theory an be proved
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by the word for word repetition of the arguments outlined in the previ-

ous subsetions. Therefore, we on�ne oureselves by formulation the �nal

results.

Theorem 12.8. The basi exterior nonhomogeneous BVPs (P

n

)

�

�

(n =

1; 4), formulated in Setion 5 (see (5:1){(5:8)) are uniquely solvable in the

spae C

k;�

(


�

) provided that

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); F

j

2 C

k�1;�

(S); j = 1; 4; (12.36)

where 0 < � < �

0

� 1 and k � 1 is an arbitrary integer. The solutions are

representable in the form of a double layer potential

U(x) =W

�

(g)(x); x 2 


�

; (12.37)

where g 2 C

k;�

(S) solves the ellipti (in general, in the sense of Douglis-

Nirenberg) system of boundary integral (pseudodi�erential) equation on S

N

�

n;�

g(x) = G

(n)

(x): (12.38)

Here the BIOs are de�ned as follows

N

�

1;�

:= �2

�1

I

4

+K

2;�

; N

�

4;�

:= L

�

; (12.39)

N

�

2;�

:=

�

[(�2

�1

I

4

+K

2;�

)

pq

℄

3�4

[(L

�

)

4q

℄

1�4

�

4�4

;

N

�

3;�

:=

�

[(L

�

)

pq

℄

3�4

[(�2

�1

I

4

+K

2;�

)

4q

℄

1�4

�

4�4

;

(12.40)

where p = 1; 3, q = 1; 4, and K

2;�

and L

�

are given by (11:5) and (11:12),

respetively.

The right-hand side vetor funtions G

(n)

in (12:38) are onstruted by

the boundary data of the BVPs under onsideration and read as

G

(1)

= (f

1

; � � � ; f

4

)

>

2 [C

k;�

(S)℄

4

;

G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

2 [C

k;�

(S)℄

3

�C

k�1;�

(S);

G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

2 [C

k�1;�

(S)℄

3

�C

k;�

(S);

G

(4)

= (F

1

; � � � ; F

4

)

>

2 [C

k�1;�

(S)℄

4

:

(12.41)

Note that the mappings

N

�

1;�

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

4

; 0 � l � k;

N

�

2;�

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

3

�C

l�1;�

(S); 1 � l � k;

N

�

3;�

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

3

�C

l;�

(S); 1 � l � k;

N

�

4;�

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

4

; 1 � l � k;

are again isomorphisms. Moreover, the equations (12:38) (n=2,3,4) an be

equivalently redued to the orresponding ellipti SIEs by the same lifting

proedure as above with the help of the lifting operators R

n

.
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Finally, we remark that one an apply the single layer approah in the

all above exterior BVPs to prove the existene theorems.

12.6. In this subsetion we shall study the above onsidered problems

in the weak setting. Let us �rst treat the problems (P

1

)

�

�

. We again look

for the solutions U 2 W

1

p

(


�

), 1 < p < 1, in the form of double layer

potentials (12.1) and (12.37). Now the unknown density vetor funtion g

should be found in the natural spae B

1�1=p

p;p

(S) sine W

�

: B

1�1=p

p;p

(S) !

W

1

p

(


�

) (see Theorem 11.3 and Setion 4).

In what follows, for simpliity, we illustrate our approah for the ase

S 2 C

1

, and at the same time notie that, atually, some �nite smoothness

is suÆient for our purposes (for details see [59℄).

Applying again Theorem 11.3 and taking into aount the boundary on-

ditions (5.1){(5.2) we arrive at the BIEs on S

N

�

1;�

g(x) := [�2

�1

I

4

+K

2;�

℄ g(x) = G

(1)

(x); G

(1)

= (f

1

; � � � ; f

4

)

>

; (12.42)

whih formally oinide with the equations (12.2) and (12.38) (for n = 1).

But now here

G

(1)

2 B

1�1=p

p;p

(S) (12.43)

and we look for the unknown vetor funtion g in the same spae, i.e.,

g 2 B

1�1=p

p;p

(S); 1 < p <1: (12.44)

Now we prove the following proposition.

Lemma 12.9. The operators

N

�

1;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

(12.45)

are isomorphisms for arbitrary s 2 R; 1 < p <1, and 1 � q �1.

Proof. We outline the proof for the operator N

+

1;�

. For N

�

1;�

it is verbatim.

The mapping property (12.45) follows from Theorem 11.3. Sine N

+

1;�

is

an ellipti 	DO on losed smooth manifold S, the null-spae kerN

+

1;�

and

the index indN

+

1;�

are the same for arbitrary two pairs (s

1

; p

1

) and (s

2

; p

2

),

where s

1

; s

2

2 R and p

1

; p

2

2 (1;1), and for arbitrary 1 � q � 1 (see

[4℄, [43℄, [77℄, Ch.2). Let s = 0 and p = q = 2, and prove that in this

partiular ase the null-spae of the operator N

+

1;�

is trivial and the index

equals zero. In fat, let g

0

2 B

0

2;2

(S) = L

2

(S) be some solution to the

homogeneous equation N

+

1;�

g

0

= 0. The embedding theorems for solutions

of ellipti SIEs (see, e.g., [45℄, Ch.4) imply that, atually, g

0

2 C

k;�

(S)

for any k � 0, due to the smoothness of the boundary surfae S and the

right-hand side of the homogeneous SIE in question. The double layer

potential U

0

(x) = W

�

(g

0

)(x) represents then a regular vetor funtion of

the lass C

1;�

(


+

) whih solves the homogeneous BVP (P

1

)

+

�

. Therefore,

in the same way as above (see Subsetion 12.1) we onlude that g

0

= 0 on

S, whih proves that kerN

+

1;�

is trivial in L

2

(S). Aording to the above

remark it then follows that kerN

+

1;�

is trivial also in the spae B

s

p;q

(S) for

arbitrary s 2 R; 1 < p <1, and 1 � q � 1.
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Finally we note that the equality indN

+

1;�

= 0 follows from Theorem 11.2

whih ompletes the proof. �

This lemma yields the following existene results.

Theorem 12.10. Let the boundary data meet the ondition (12:43). Then

the BVP (P

1

)

+

�

[(P

1

)

�

�

℄ is uniquelly solvable in the Sobolev spae W

1

p

(


+

)

[W

1

p

(


�

)℄ with 1 < p <1 and the solution is representable in the form of a

double layer potential (12:1) [(12:37)℄ with the density g 2 B

1�1=p

p;p

(S) whih

solves the orresponding SIE (12:42).

Proof. Solvability of the problems (P

1

)

�

�

is a ready onsequene of Lemma

12.9 (for s = 1� 1=p and q = p).

Now let us prove that the homogeneous BVP (P

1

)

+

�

has only the trivial

solution in the spae W

1

p

(


+

) for 1 < p < 1: Obviously, this implies that

the orresponding nonhomogeneous problem is uniquely solvable in the same

spae. Note that the ase p = 2 has already been onsidered in Setion 8.

We proeed as follows. Let U 2 W

1

p

(


+

) be some solution to the ho-

mogeneous problem (P

1

)

+

�

. Then by Theorem 11.3, item ii), U an be

represented as (f. (3.2))

U(x) =W

�

([U ℄

+

)(x) � V

�

([B(D;n)U ℄

+

)(x) =

= �V

�

([B(D;n)U ℄

+

)(x); x 2 


+

; (12.46)

sine by assumption [U ℄

+

= 0 on S.

On the other hand the same homogeneous boundary ondition and the

representation (12.46) together with Theorem 11.3, item i) imply

[U ℄

+

= �H

�

([B(D;n)U ℄

+

) = 0 on S; (12.47)

where [B(D;n)U ℄

+

2 B

�1=p

p;p

(S).

Noting that �H

�

: B

s

p;q

(S)! B

s+1

p;q

(S) is an ellipti 	DO on the losed

smooth surfae S (with the positive de�nite prinipal homogeneous symbol

matrix) we onlude that the null-spae kerH

�

and the index indH

�

in the

spaes B

s

p;q

(S) do not depend on s 2 R; 1 < p < 1, and 1 � q � 1, and

are the same as, for example, in the sape B

�1=2

2;2

(S) = H

�1=2

2

(S). Apply-

ing the embeding theorem for the solution of the ellipti 	DEs on losed

smooth manifold (see, e.g., [77℄, Ch.2) we easily show that kerH

�

is trivial

in B

�1=2

2;2

(S). Further, we observe that the operator �H

�

: B

�1=2

2;2

(S) !

B

1=2

2;2

(S) and its adjoint �H

�

�

have the same mapping properties, i.e., �H

�

�

:

B

�1=2

2;2

(S)! B

1=2

2;2

(S). Sine the dominant singular part of the operator H

�

is self-adjoint we onlude that indH

�

= 0 in B

�1=2

2;2

(S). Therefore, the

equation (12.47) has only the trivial solution in the spae B

�1=p

p;p

(S) for ar-

bitrary p > 1. Thus, [B(D;n)U ℄

+

= 0, whih shows that U = 0 in 


+

due

to (12.46).

The proof for the BVP (P

1

)

�

�

is verbatim. �
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The analogous theorems hold valid for the problems (P

n

)

�

�

, n = 2; 3; 4:

The proofs rely upon the following assertions whih an be proved by the

arguments quite similar to that ones applied in the proof of Lemma 12.9.

Lemma 12.11. Let s 2 R; 1 < p <1, and 1 � q � 1.

Then the mappings

N

�

2;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

3

�B

s�1

p;q

(S);

N

�

3;�

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

3

�B

s

p;q

(S);

N

�

4;�

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are isomorphisms.

Here N

�

2;�

, N

�

3;�

, N

�

4;�

are de�ned as in Subsetions 12:1{12:5.

Proof. One needs only to apply the equivalent lifting operator R

n

, de�ned

by formulae (12.21), (12.29), and (12.33), to the operators N

�

l;�

and show

that the mappings

R

n

N

�

n;�

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

; n = 2; 3; 4;

are isomorphisms. Sine the operators R

n

N

�

n;�

are ellipti singular opera-

tors (i.e., 	DOs of order 0) on the losed smooth manifold S, we an use the

same arguments as in the proof of Lemma 12.9 to see that kerR

n

N

�

n;�

= f0g

and indR

n

N

�

n;�

= 0 in the spae [B

s

p;q

(S)℄

4

. Whene kerN

�

n;�

= f0g and

indN

�

n;�

= 0 (in the orresponding funtional spae) follow immediately. �

This lemma (for s = 1 � 1=p and q = p) together with Theorem 8.2

implies the following existene theorem.

Theorem 12.12. Let 1 < p < 1 and the boundary data in (5:3){(5:8)

meet the onditions

f

j

2 B

1�1=p

p;p

(S); F

j

2 B

�1=p

p;p

(S); j = 1; 4: (12.48)

Then the BVP (P

n

)

�

�

(n = 2; 3; 4) are uniquelly solvable in the Sobolev

spaes W

1

p

(


�

) and the solutions are representable in the form of double

layer potentials (12:1) and (12:37) with the density g 2 B

1�1=p

p;p

(S) whih

solves the orresponding 	DE on S

N

�

n;�

g = G

(n)

: (12.49)

Here N

�

n;�

are the same as in Subsetions 12:1{12:5.

Proof. For illustration of the method we outline the proof in the ase of

BVP (P

4

)

�

�

. For the other problems it is quite analogous.

Let us look for a solution in the form of a double layer potential (12.37),

where g belongs to the natural spae B

1�1=p

p;p

(S). Then due to Theorem 11.3

and the boundary onditions (5.7){(5.8) we get the following 	DE on S for

the unknown density g

N

�

4;�

g := L

�

g(x) = G

(4)

; (12.50)

where G

(4)

:= (F

1

; � � � ; F

4

)

>

2 B

�1=p

p;p

(S).
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By Lemma 12.11 (for s = 1 � 1=p and q = p) the equation (12.50) is

uniquely solvable in the spae g 2 B

1�1=p

p;p

(S). Whene W

�

(g) 2 H

1

p

(


�

) =

B

1

p;p

(


�

) = W

1

p

(


�

) by Theorem 11.3. Moreover, W

�

(g) represents a so-

lution of the BVP in question due to (12.50). Now by virtue of Theorems

8.2 and 11.3, and the arguments in the �nal part of the proof of Theorem

12.10, we onlude that the vetor funtion U(x) = W

�

(g) 2 W

1

p

(


�

) is a

unique solution of the problem (P

4

)

�

�

whih ompletes the proof. �

Remark 12.13. It is evident that one an apply a single layer approah

to obtain the same existense results in the Sobolev spaes W

1

p

(


�

) (see

Remarks 12:2 and 12:7).

We illustrate this alternative approah for the problem (P

1

)

�

�

. We look

for a solution in the form of a single layer potential (12.7) where the den-

sity h is to be found in the appropriate spae B

�1=p

p;p

(S). We reall that

V

�

: B

�1=p

p;p

(S) ! W

1

p

(


�

) (see Theorem 11:3). Taking into aount the

boundary onditions (5.1){(5.2) and applying the trae properties of a single

layer potential, we arrive at the ellipti BIE (ellipti 	DE of order �1)

H

�

h = G

(1)

; (12.51)

where

G

(1)

:= f = (f

1

; � � � ; f

4

)

>

2 B

1�1=p

p;p

(S): (12.52)

By the same arguments as above we an easily show that the mapping

�H

�

: B

s

p;q

(S)! B

s+1

p;q

(S); (12.53)

where s 2 R; 1 < p <1, and 1 � q � 1, is an isomorphism.

Therefore, there exists the unique solution h 2 B

�1=p

p;p

(S) of the equation

(12.51) with the right-hand side (12.52). Further, invoking Theorem 8:2 it

an be established that the single layer potential U(x) = V

�

(h)(x) represents

the unique solution to the problems (P

1

)

�

�

in the spae W

1

p

(


�

).

We note that the ellipti 	DO of order +1

�H

�1

�

: B

s+1

p;q

(S)! B

s

p;q

(S) (12.54)

is a singular integro-di�erential operator with a positive de�nite prinipal

homogeneous symbol matix. Here H

�1

�

stands for the inverse of H

�

, and

s 2 R; 1 < p <1, and 1 � q �1.

A ready onsequene of the above results is that every solution U 2

W

1

p

(


�

); 1 < p < 1; of the homogeneous equation (1.9) an be uniquely

represented in the form of the single layer potential

U(x) = V

�

(H

�1

�

[U ℄

�

)(x); x 2 


�

; (12.55)

where [U ℄

�

are the traes of the solution U on S from 


�

.
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13. Basi exterior BVPs of Steady State Osillations

In this setion we shall investigate the basi exterior BVPs for steady

state osillation equations of thermoelastiity theory. In what follows we

provide that r = 1 for ! > 0 and r = 2 for ! < 0.

13.1. First we present the following lemma whih will essentially be used

below in the proof of existene theorems.

Lemma 13.1. Let g 2 C

1;�

(S); S 2 C

2;�

0

, and

U(x) =W (g)(x) + p

0

V (g)(x); x 2 R

3

n S; S = �


�

; (13.1)

p

0

= p

1

+ ip

2

; p

1

� 0; p

2

! < 0; (13.2)

where V and W are single and double layer potentials de�ned by (10:1) and

(10:2), respetively, while ! is the frequeny parameter.

If the vetor U vanishes in 


�

, then the density g = 0 on S.

Proof. Due to Lemmata 10.1 and 10.7 we have

g = [U ℄

+

� [U ℄

�

= [U ℄

+

;

�p

0

g = [B(D;n)U ℄

+

� [B(D;n)U ℄

�

= [B(D;n)U ℄

+

;

(13.3)

whene

[B(D;n)U ℄

+

= �p

0

[U ℄

+

on S (13.4)

follows.

Sine U is a regular vetor in 


+

we an apply the identity (1.23). Taking

into aount (13.4) and separating the imaginary part, we arrive at the

equation

1

!T

0

R




+

�

kj

D

k

u

4

D

j

u

4

dx� p

2

R

S

j[u℄

+

j

2

dS +

p

1

!T

0

R

S

j[u

4

℄

+

j

2

dS = 0:

In view of (1.18), (13.2), and (13.4) from this equality it follows that

[U ℄

+

= 0 and by (13.3) we get g = 0: �

In the sequel we �x the omplex number p

0

as follows

p

0

= 1� i!: (13.5)

Remark 13.2. In what follows we shall use the representation (13.1)

to prove the existene of solutions to the exterior BVPs for the steady

state osillation equations of the thermoelastiity theory. The similar rep-

resentation for the Helmholtz equation has been �rst applied in the papers

[6℄, [64℄, [46℄. This type of representation of solutions proved to be very

useful sine it redues the exterior BVPs to the uniquely solvable BIEs for

arbitrary values of the frequeny parameter ! (for details see below).

Remark 13.3. In ontrast to the pseudo-osillation ase the lassial single

layer or double layer approah redues the exterior BVPs of steady state

osillations to the BIEs whih for a ountable set of the so-alled exep-

tional values of the frequeny parameter ! are not solvable for arbitrary

boundary data (see [83℄, [45℄, [10℄, [11℄). To investigate the solvability of

these BIEs one needs to �nd expliitly all eigenvalues and eigenfuntions of
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the orresponding boundary integral operators and their adjoint ones (for

details see [83℄, [45℄).

13.2. We start with the problem (P

1

)

�

!

. We look for a solution of

the problem in the form (13.1) with p

0

de�ned by (13.5). By virtue of the

boundary onditions (5.1){(5.2) and Lemma 10.1, we get the following 	DE

on S for the unknown density vetor g

N

�

1

g := (�2

�1

I

4

+K

2

+ p

0

H) g = G

(1)

(13.6)

with G

(1)

= (f

1

; : : : ; f

4

)

>

2 C

k;�

(S):

Lemma 13.4. Let

S 2 C

k+1;�

0

with integer k � 1 and 0 < � < �

0

� 1: (13.7)

Then the 	DE (13.6) is an ellipti SIO with index zero, while the mapping

N

�

1

:= �2

�1

I

4

+K

2

+ p

0

H : C

l;�

(S)! C

l;�

(S); 0 � l � k; (13.8)

is an isomorphism.

Proof. First let us note that the operator N

�

1

is an ellipti singular integral

operator with index equal to zero and possesses the mapping property (13.8)

due to Lemmata 10.1 and 10.2. Therefore, it remains to prove that

N

�

1

g = 0 (13.9)

has only the trivial solution in C

l;�

(S).

Let g be some solution of (13.9) and onstrut the vetor U by for-

mula (13.1). Applying the embedding theorems for solutions to a singular

integral equation of normal type on losed smooth manifold we infer that

g 2 C

k;�

(S) (see, e.g., [45℄, Ch. 4). This implies that U is a regular vetor in




�

. Now the equation (13.9) yields that [U ℄

�

= 0 on S, and, onsequently,

U(x) = 0 in 


�

follows immediately by Theorem 9.5, sine U 2 SK

m

r

(


�

).

Then g = 0 by Lemma 13.1. Therefore (13.8) is a one-to-one orrespondene

and N

�

1

is invertible. �

The material olleted until now is enough to prove the existene theorem.

Theorem 13.5. Let S, k, �

0

, and � be as in (13:7) and let f

j

2 C

k;�

(S)

(j = 1; : : : ; 4). Then Problem (P

1

)

�

!

has a unique regular solution of the

lass C

k;�

(


�

) \ SK

m

r

(


�

) and the solution is representable in the form

(13:1) with the density g 2 C

k;�

(S) de�ned by the uniquely solvable SIE

(13:6).

Proof. It follows from Lemmata 10.1, 13.4, and Theorem 9.5. �

Remark 13.6. We note that the speial representation (13.1) redues

the BVP (P

1

)

�

!

to the equivalent boundary integral equation (13.6) for an

arbitrary value of the frequeny parameter !. If one seeks the solution in

the form of either single or double layer potential then suh equivalene will

be, in general, violated (see Remark 13:3).
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13.3. We look for a regular solution to the problem (P

2

)

�

!

again in

the form (13.1). Then the boundary onditions (5.3) and (5.4) lead to the

following system of 	DEs on S for the unknown density g

N

�

2

g := fB

(2)

(D;n)[W (g) + p

0

V (g)℄g

�

= G

(2)

; G

(2)

= (f

1

; f

2

; f

3

; F

4

)

>

;

i.e.,

f[�2

�1

I

4

+K

2

+ p

0

H℄ gg

q

= f

q

; q = 1; 2; 3; (13.10)

f[L+ p

0

(2

�1

I

4

+K

1

)℄ gg

4

= F

4

; (13.11)

where (13.12)

f

q

2 C

k;�

(S); F

4

2 C

k�1;�

(S); q = 1; 2; 3: (13.12)

Therefore, the operator N

�

2

is represented as

N

�

2

=

�

[f�2

�1

I

4

+K

2

+ p

0

Hg

ql

℄

3�4

[fL+ p

0

(2

�1

I

4

+ K

1

)g

4l

℄

1�4

�

4�4

= (N

�

2

)

0

+

e

N

�

2

; (13.13)

q = 1; 2; 3; l = 1; : : : ; 4;

where (N

�

2

)

0

is the dominant singular part of N

�

2

. Due to (10.25), (10.48),

and Lemma 10.1 we have

(N

�

2

)

0

=

"

[�2

�1

I

3

+

�

K

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(0)

4

#

4�4

: (13.14)

The entries of the �rst three rows of the matrix

e

N

�

2

are weakly singular

integral operators (	DOs of order s � �1), while the fourth row ontains

singular integral operators (	DOs of order s � 0). It is easy to see that

(13.14) is a 	DO ellipti in the sense of Douglis-Nirenberg.

Now it is also evident that the operator R

2

, de�ned by (12.21), is an

equivalent lifting operator whih redues the system (13.10)-(13.11) to the

equivalent system of singular integral equations

R

2

N

�

2

g = G

(2)

�

; G

(2)

�

= (f

1

; f

2

; f

3

;RF

4

)

>

:

For the prinipal homogeneous symbol matrix we have

�(R

2

N

�

2

) =

"

[�(�2

�1

I

3

+

�

K

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(RL

(0)

4

)

#

4�4

;

whih is nonsingular due to Lemmata 10.2, 10.7, and 12.3.

Lemma 13.7. Let onditions (13:7) be ful�lled. Then the 	DO

N

�

2

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

3

�C

l�1;�

(S); 1 � l � k; (13.15)

is an isomorphism.

Proof. The mapping property (13.15) of the operator N

�

2

is an easy onse-

quene of Lemmata 10.1 and 10.7. Clearly, the invertibility of the operator

(13.15) is equivalent to the invertibility of the operator

R

2

N

�

2

: [C

l;�

(S)℄

4

! [C

l;�

(S)℄

4

; 0 � l � k; (13.16)
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aording to Lemma 12.3.

Now from Lemmata 10.2, 10.7, and 12.3 it follows that R

2

N

�

2

is an

ellipti singular integral operator with index zero. By the arguments applied

in the proof of Lemma 13.4 we an show that the homogeneous equation

N

�

2

g = 0; where g 2 C

l;�

(S), has only the trivial solution g = 0. Further,

by Lemma 12.3 we onlude that the null-spae of the operator R

2

N

�

2

in

C

l;�

(S) is trivial, whih ompletes the proof. �

Theorem 13.8. Let onditions (13:7) and (13:12) be ful�lled. Then

the problem (P

2

)

�

!

has a unique regular solution of the lass C

k;�

(


�

) \

SK

m

r

(


�

) and the solution is representable in the form (13:1) with the den-

sity g 2 C

k;�

(S) de�ned by the uniquely solvable 	DEs (13:10){(13:11).

Proof. It is a ready onsequene of Lemmata 10.1, 13.7 and Theorem 9.5.

�

13.4. Here we onsider the problem (P

3

)

�

!

. Applying again the same

representation formula (13.1) and taking into aount the boundary on-

ditions (5.7) and (5.8), we arrive at the following system of 	DEs for the

unknown density g on S:

N

�

3

g := fB

(3)

(D;n)[W (g) + p

0

V (g)℄g

�

= G

(3)

; G

(3)

= (F

1

; F

2

; F

3

; f

4

)

>

;

i.e.,

f[L+ p

0

(2

�1

I

4

+K

1

)℄ gg

q

= F

q

; q = 1; 2; 3; (13.17)

f[�2

�1

I

4

+K

2

+ p

0

H℄ gg

4

= f

4

; (13.18)

where

F

q

2 C

k�1;�

(S); f

4

2 C

k;�

(S); q = 1; 2; 3: (13.19)

Clearly, N

�

3

is representable in the form

N

�

3

=

�

[fL+ p

0

(2

�1

I

4

+K

1

)g

ql

℄

3�4

[f�2

�1

I

4

+K

2

) + p

0

Hg

4l

℄

1�4

�

4�4

= (N

�

3

)

0

+

e

N

�

3

; (13.20)

q = 1; 2; 3; l = 1; : : : ; 4;

where

(N

�

3

)

0

=

"

[L

(0)

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�1

I

1

+

�

K

(0)

4

#

4�4

is the dominant singular part of N

�

3

due to (10.25) and (10.48); the operator

e

N

�

3

ontains 	DOs of order s � 0 in the �rst three rows and 	DOs of order

s � �1 in the fourth row. Obviously, N

�

3

is again an ellipti 	DO in the

sense of Douglis-Nirenberg.

The diagonal operator R

3

, de�ned by (12.29), is an equivalent lifting

operator whih redues (13.17)-(13.18) to the equivalent system of singular

integral equations

R

3

N

�

3

g = G

(3)

�

; G

(3)

�

= (RF

1

;RF

2

;RF

3

; f

4

)

>

:
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The prinipal homogeneous symbol matrix of the operator R

3

N

�

3

reads

�(R

3

N

�

3

) =

"

[�(RL

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+

�

K

(0)

4

)

#

4�4

and is nonsingular aording to the results of Setion 10.

Now in the same way as in the previous subsetion we an prove the

following assertions.

Lemma 13.9. Let the onditions (13:7) be ful�lled. Then the 	DO

N

�

3

: [C

l;�

(S)℄

4

! [C

l�1;�

(S)℄

3

�C

l;�

(S); 1 � l � k;

is an isomorphism.

Theorem 13.10. Let the onditions (13:7) and (13:19) be ful�lled. Then

the problem (P

3

)

�

!

has a unique regular solution of the lass C

k;�

(


�

) \

SK

m

r

(


�

) and the solution is representable in the form (13:1) with the den-

sity g 2 C

k;�

(S) de�ned by the uniquely solvable 	DEs (13:17){(13:18).

13.5. The representation (13.1) of a regular solution and the boundary

onditions (5.7), (5.8) redue the BVP (P

4

)

�

!

to the system of 	DEs on S

N

�

4

g := [L+ p

0

(2

�1

I

4

+K

1

)℄ g = G

(4)

; G

(4)

= (F

1

; : : : ; F

4

)

>

: (13.21)

For the dominant singular part we have the following ellipti 	DO (of order

1) (N

�

4

)

0

= (L)

0

, where (L)

0

is given by (10.48). It is easy to hek that

the diagonal operator R

4

= I

4

R with R de�ned by (12.17), is a lifting

operator, whih redues equivalently the equations (13.21) to the following

ellipti system of singular integral equations with index equal to zero

R

4

N

�

4

g = G

(4)

�

; G

(4)

�

= (RF

1

; : : : ;RF

4

)

>

:

The proofs of the next lemma and theorem are quite similar to the proofs

of Lemma 13.4 and Theorem 13.5.

Lemma 13.11. Let the onditions (13:7) be ful�lled. Then the 	DO

N

�

4

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k;

is an isomorphism.

Theorem 13.12. Let the onditions (13:7) be ful�lled and F

j

2 C

k�1;�

(S),

j = 1; 4: Then the problem (P

4

)

�

!

has a unique regular solution of the lass

C

k;�

(


�

) \ SK

m

r

(


�

) and the solution is representable in the form (13:1)

with the density g 2 C

k;�

(S) de�ned by the uniquely solvable 	DE (13:21).

13.5. In this subsetion we onsider the problems (P

n

)

�

!

(n = 1; 4) in

the Sobolev spae W

1

p;lo

(


�

). The orresponding existene theorems an

be proved with the help of the following lemma (f. Lemmata 12.9 and

12.11).

Lemma 13.13. Let S be a C

1

-regular surfae and let s 2 R; 1 < p <1,

1 � q � 1. Then the mappings

N

�

1

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4
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N

�

2

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

3

�B

s�1

p;q

(S);

N

�

3

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

3

�B

s

p;q

(S);

N

�

4

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are isomorphisms.

Here the 	DOs N

�

1

, N

�

2

, N

�

3

,and N

�

4

are given by formulae (13:8),

(13:13), (13:20), and (13:21), respetively.

Proof. The mapping properties indiated in the lemma follow from Theorem

10.8. The operators N

�

n

(n = 1; 4) have zero indies sine N

�

n

� N

�

n;�

are

ompat operators in the orresponding funtional spaes due to the results

of Setion 2 and sine indN

�

n;�

= 0 (n = 1; 4) (see Lemmata 12.9 and 12.11).

Here the operators N

�

n;�

are the same as in Setion 12.

It remains to prove that kerN

�

n

is trivial. To see this, let us onsider

the homogeneous equations N

�

n

g = 0 whih are equivalent to the SIEs

R

n

N

�

n

g = 0, where R

n

(n = 2; 4) are the same invertible lifting operators

as in Setion 12, R

1

= I

4

, and g 2 B

s

p;q

(S): Bearing in mind that R

n

N

�

n

(n = 1; 4) are ellipti SIOs on the losed smooth manifold S we infer that

any solution g 2 L

2

(S) to the above SIEs, atually, belongs to the spae

C

1;�

(S) due to the embedding theorems. Moreover, by the above men-

tioned equivalene we get N

�

n

g = 0. These relations imply that the linear

ombination of the double and single layer potentials W (g)(x) + p

0

V (g)(x)

onstruted by the density g 2 C

1;�

(S) and p

0

given by (13.5), belong to the

lass C

1;�

(


�

)\SK

m

r

(


�

) and solves the homogeneous exterior BVP (P

n

)

�

!

.

By the uniqueness theorems (see Setion 9) W (g)(x) + p

0

V (g)(x) = 0 in




�

whene g = 0 on S follows by Lemma 13.1. Thus, kerR

n

N

�

n

is trivial

in the spae L

2

(S). It is then trivial also in the spae B

s

p;q

(S) for arbitrary

s 2 R, 1 < p < 1; and 1 � q � 1 (see the reasonings in the proof of

Lemma 12.9). Terefore, kerR

n

N

�

n

= f0g again due to the invertibility of

the operator R

n

(n = 1; 4) whih ompletes the proof. �

This lemma implies the following existene results.

Theorem 13.14. Let 1 < p < 1 and the boundary data in (5:1){(5:8)

satisfy the onditions

f

j

2 B

1�1=p

p;p

(S); F

j

2 B

�1=p

p;p

(S); j = 1; 4:

Then the BVP (P

n

)

�

!

(n = 1; 4) are uniquely solvable in the lassW

1

p;lo

(


�

)

\ SK

m

r

(


�

) and the solutions are representable in the form (13:1), where

the density g 2 B

1�1=p

p;p

(S) solves the orresponding 	DE on S

N

�

n

g = G

(n)

; n = 1; 4:

Here G

(n)

are the vetors given by (12:41).

Proof. It is quite similar to the proof of Theorems 12.10 and 12.12. In-

deed, the solvability of the BVPs indiated in the theorem follows from

Lemma 13.13. To prove the uniqueness of solutions in the lassW

1

p;lo

(


�

)\

SK

m

r

(


�

), we an again apply the general integral representation formula
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(see Theorem 10.8, item ii)) and show that all solutions to the homogeneous

BVPs (P

n

)

�

!

of this lass, atually, belong to the lass of regular vetor fun-

tions C

1

(


�

) \ SK

m

r

(


�

) due to the elliptiity of the orresponding 	DEs

on losed smooth surfae S. This ompletes the proof. �

14. Basi Interfae Problems of Pseudo-Osillations

In this setion we shall onstrut an \expliit" solution to the basi non-

homogeneous interfae problem (C)

�

whih will essentially be employed af-

terwards in the study of the other regular and mixed interfae problems.

14.1. Let us onsider the problem (C)

�

, i.e., we look for four-dimensional

vetor funtions U

(1)

= (u

(1)

; u

(1)

4

)

>

2 C

1

(


1

) and U

(2)

= (u

(2)

; u

(2)

4

)

>

2

C

1

(


2

) whih are solutions of the pseudo-osillation equations

A

(1)

(D; �)U

(1)

(x) = 0 in 


1

; (14.1)

A

(2)

(D; �)U

(2)

(x) = 0 in 


2

; (14.2)

and satisfy the transmission onditions on the interfae S

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (14.3)

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F ;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;

)

(14.4)

where P

(�)

(D;n) and �

(�)

(D;n) are the thermostress and heat ux opera-

tors de�ned by (1.13) and (1.24), respetively. Here

S 2 C

k+1;�

0

; f

j

2 C

k;�

(S); F

j

2 C

k�1;�

(S); j = 1; 4;

f = (f

1

; : : : ; f

4

)

>

; F = (F

1

; : : : ; F

4

)

>

;

(14.5)

where as above k � 1 is an integer and 0 < � < �

0

� 1.

Making use of the notation (1.25) the above transmission onditions an

be written as follows

[U

(1)

℄

+

� [U

(2)

℄

�

= f; (14.6)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F: (14.7)

We look for a solution to the problem (C)

�

in the form of single layer

potentials

U

(1)

(x) = V

(1)

�

[(H

(1)

�

)

�1

g

(1)

℄(x); x 2 


1

; (14.8)

U

(2)

(x) = V

(2)

�

[(H

(2)

�

)

�1

g

(2)

℄(x); x 2 


2

; (14.9)

where g

(�)

= (eg

(�)

; g

(�)

4

)

>

; eg

(�)

= (g

(�)

1

; g

(�)

2

; g

(�)

3

)

>

; � = 1; 2; are unknown

densities and (H

(�)

�

)

�1

is the operator inverse to H

(�)

�

(see Remark 12.2).

Here and in what follows the supersript � (� = 1; 2) denotes that the

orresponding operator is onstruted by the thermoelasti harateristis

of the elasti material oupying the domain 


�

.
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Due to Theorem 11.1, the transmission onditions (14.3) and (14.4), i.e.,

(14.6) and (14.7), lead to the following system of boundary equations on S:

g

(1)

� g

(2)

= f; (14.10)

(�2

�1

I

4

+K

(1)

1;�

)(H

(1)

�

)

�1

g

(1)

� (2

�1

I

4

+K

(2)

1;�

)(H

(2)

�

)

�1

g

(2)

= F; (14.11)

where K

(�)

1;�

; � = 1; 2; are de�ned by (11.4).

Let

N

1;�

= (�2

�1

I

4

+K

(1)

1;�

)(H

(1)

�

)

�1

; N

2;�

= �(2

�1

I

4

+K

(2)

1;�

)(H

(2)

�

)

�1

;

N

�

= N

1;�

+N

2;�

: (14.12)

Then equations (14.10) and (14.11) yield:

g

(1)

= f + g

(2)

; (14.13)

N

�

g

(2)

= F �N

1;�

f: (14.14)

Now we will study properties of the boundary operatorsN

1;�

;N

2;�

, and N

�

.

Lemma 14.1. Let S be as in (14:5). Then

N

�

; N

j;�

: C

l;�

(S)! C

l�1;�

(S); j = 1; 2; 1 � l � k; (14.15)

are bounded operators with the trivial null-spaes.

Operators N

�

; N

j;�

; j = 1; 2, de�ned by (14:12) and (14:15), are iso-

morphisms.

Proof. The mapping property (14.15) is an easy onsequene of Theorem

11.1, item ii), sine the operator (H

(�)

�

)

�1

: C

l;�

(S) ! C

l�1;�

(S) is an

isomorphism due to Remark 12.2.

From Remark 12.7 it follows also that the equations N

j;�

h = 0 (j = 1; 2)

have only the trivial solutions. Therefore, the operators N

j;�

; (j = 1; 2)

de�ned by (14.12), (14.15) are invertible and their inverses are bounded.

It remains to prove that the null-spae of the operatorN

�

is trivial as well.

Let h = (h

1

; : : : ; h

4

)

>

2 C

1;�

(S) be an arbitrary solution of the equation

N

�

h = 0; i.e., N

1;�

h+N

2;�

h = 0: Then it an be easily seen that the vetors

U

(1)

(x) = V

(1)

�

[(H

(1)

�

)

�1

h℄(x); x 2 


1

and U

(2)

(x) = V

(2)

�

[(H

(2)

�

)

�1

h℄(x);

x 2 


2

; are regular and they solve the homogeneous problem (C)

�

, sine

[U

(1)

℄

+

= h, [U

(2)

℄

�

= h, and [B

(1)

U

(1)

℄

+

� [B

(2)

U

(2)

℄

�

= N

�

h = 0.

Therefore, by Theorem 8.6 we have U

(1)

= 0 in 


1

and U

(2)

= 0 in 


2

,

whene h = 0 on S follows immediately. �

Lemma 14.2. The prinipal homogeneous symbol matries of the oper-

ators N

1�

; N

2;�

, and N

�

are positive de�nite.

Proof. Here again �(K)(x; �) with x 2 S and

e

� 2 R

2

nf0g denotes the

prinipal homogeneous symbol of the pseudodi�erential operator K.

Equations (14.12) imply

�(N

�

) = �(N

1;�

) + �(N

2;�

); �(N

1;�

) = �(�2

�1

I

4

+K

(1)

1;�

) [�(H

(1)

�

)℄

�1

;

�(N

2;�

) = ��(2

�1

I

4

+K

(2)

1;�

) [�(H

(2)

�

)℄

�1

: (14.16)
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In the same way as in the proof of Lemma 10.2 we an easily show that

�(H

(�)

�

) = �((H

(�)

)

0

), �(K

(�)

1;�

) = �((K

(�)

)

0

), where (H

(�)

)

0

and (K

(�)

)

0

are 4� 4 matrix boundary operators on S:

(H

(�)

)

0

g(x) :=

R

S

�

(�)

(x � y) g(y) dS

y

; x 2 S;

(K

(�)

)

0

g(x) :=

R

S

[B

(�)

0

(D

x

; n(x))�

(�)

(x� y)℄ g(y) dS

y

; x 2 S;

with g = (eg; g

4

)

>

and eg = (g

1

; g

2

; g

3

)

>

; here �

(�)

(x) is given by (2.8) and

B

(�)

0

(D;n) =

�

[T

(�)

(D;n)℄

3�3

[0℄

3�1

[0℄

1�3

�

(�)

(D;n)

�

4�4

:

Therefore,

(H

(�)

)

0

=

�

[H

(�;0)

℄

3�3

[0℄

3�1

[0℄

1�3

H

(�;0)

4

�

4�4

; (14.17)

(K

(�)

)

0

=

�

[K

(�;0)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(�;0)

4

�

4�4

; (14.18)

whereH

(�;0)

, K

(�;0)

, andH

(�;0)

4

, K

(�;0)

4

are 3�3 matrix and salar operators,

respetively, generated by the single layer potentials onstruted by the

fundamental matrix �

(�;0)

(x) and the fundamental funtion 

(�;0)

(x)℄ (see

(2.6), (2.7), (10.19){(10.22), (10.26)):

H

(�;0)

eg(x) =

R

S

�

(�;0)

(x � y) eg(y) dS

y

;

H

(�;0)

4

g

4

(x) =

R

S



(�;0)

(x� y) g

4

(y) dS

y

; (14.19)

K

(�;0)

eg(x) =

R

S

[T

(�)

(D

x

; n(x))�

(�;0)

(x� y)℄ eg(y) dS

y

;

K

(�;0)

4

g

4

(x) =

R

S

�

(�)

(D

x

; n(x))

(�;0)

(x� y) g

4

(y) dS

y

:

Taking into aount the struture of the matries (14.17) and (14.18) we

get from (14.16)

�(N

1;�

) = �

�

�2

�1

I

4

+ (K

(1)

)

0

�

[�((H

(1)

)

0

)℄

�1

= (14.20)

=

"

�

�(�2

�1

I

3

+K

(1;0)

)[�(H

(1;0)

)℄

�1

�

3�3

[0℄

3�1

[0℄

1�3

�(�2

�1

I

1

+K

(1;0)

4

)[�(H

(1;0)

4

)℄

�1

#

4�4

;

�(N

2;�

) = ��

�

2

�1

I

4

+ (K

(2)

)

0

�

[�((H

(2)

)

0

)℄

�1

= (14.21)

=�

"

�

�(2

�1

I

3

+K

(2;0)

)[�(H

(2;0)

)℄

�1

�

3�3

[0℄

3�1

[0℄

1�3

�(2

�1

I

1

+K

(2;0)

4

)[�(H

(2;0)

4

)℄

�1

#

4�4

:

Next, let us note that the following Green formulae hold for regular solutions

to the system of lassial elastostatis C

(�)

(D)u

(�)

= 0 and to the ellipti
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salar equation �

(�)

kj

D

k

D

j

u

(�)

4

= 0 in 


�

:

R




1

E

(1)

0

(u

(1)

; u

(1)

) dx =

R

�


1

[u

(1)

℄

+

[T

(1)

(D;n)u

(1)

℄

+

dS;

R




2

E

(2)

0

(u

(2)

; u

(2)

) dx = �

R

�


2

[u

(2)

℄

�

[T

(2)

(D;n)u

(2)

℄

�

dS;

R




1

�

(1)

kj

D

k

u

(1)

4

D

j

u

(1)

4

dx =

R

�


1

[u

(1)

4

℄

+

[�

(1)

(D;n)u

(1)

4

℄

+

dS;

R




2

�

(2)

kj

D

k

u

(2)

4

D

j

u

(2)

4

dx = �

R

�


2

[u

(2)

4

℄

�

[�

(2)

(D;n)u

(2)

4

℄

�

dS;

(14.22)

where E

(�)

0

(u

(�)

; u

(�)

) = 

(�)

kjpq

D

k

u

(�)

j

D

j

u

(�)

k

� 0 (see (1.15)), the lassial

stress operator T

(�)

(D;n) and the o-normal derivative (the heat ux op-

erator) �

(�)

(D;n) are given by (1.12) and (1.24), respetively; moreover,

u

(2)

= o(1) and u

(2)

4

= o(1) at in�nity.

Further, if we substitute in these formulae the orresponding single layer

potentials v

(�;0)

and v

(�;0)

4

(see (10.19), (10.21)) with densities (H

(�;0)

)

�1

eg

and (H

(�;0)

4

)

�1

g

4

, respetively, in the plae of u

(�)

and u

(�)

4

, we an show

that (�2

�1

I

3

+K

(1;0)

)(H

(1;0)

)

�1

and �(2

�1

I

3

+K

(2;0)

)(H

(2;0)

)

�1

are non-

negative 3 � 3 matrix pseudodi�erential operators with positive de�nite

prinipal symbol matries, while (�2

�1

I

1

+K

(1;0)

4

)(H

(1;0)

4

)

�1

and �(2

�1

I

1

+

K

(2;0)

4

)(H

(2;0)

4

)

�1

are non-negative salar 	DOs with positive prinipal sym-

bol funtions (here we note that the Fourier transform is unitary and that

the prinipal symbol of the produt of two operators is equal to the prod-

ut of the prinipal symbols of these operators; for details see the proof of

Lemma 4.2 in [41℄).

Therefore, the equations (14.20) and (14.21) together with (14.16) yield

that �(N

1;�

), �(N

2;�

), and �(N

�

) are positive de�nite matries for arbitrary

x 2 S and

e

� 2 R

2

nf0g. �

Corollary 14.3. Let S; k; �

0

, and � be as in (14:5). Then the operator

N

�1

�

, inverse to the operator N

�

de�ned by (14:15), is an isomorphism;

onsequently, N

�1

�

: C

l�1;�

(S)! C

l;�

(S), 1 � l � k, is a bounded operator.

Applying the above results we get from (14.13) and (14.14):

g

(1)

= N

�1

�

(F +N

2;�

f); g

(2)

= N

�1

�

(F �N

1;�

f): (14.23)

Clearly, g

(�)

2 C

k;�

(S); (� = 1; 2) if onditions (14.5) are ful�lled. Now we

are ready to formulate the following existene results.

Theorem 14.4. Let S; k; �

0

, �, f and F meet the onditions (14:5).

Then the nonhomogeneous problem (C)

�

is uniquely solvable, and the

solution is representable in the form of potentials

U

(1)

(x) = V

(1)

�

h

(H

(1)

�

)

�1

N

�1

�

(F +N

2;�

f)

i

(x); x 2 


1

; (14.24)

U

(2)

(x) = V

(2)

�

h

(H

(2)

�

)

�1

N

�1

�

(F �N

1;�

f)

i

(x); x 2 


2

: (14.25)

Moreover,

U

(�)

2 C

k;�

(


�

); � = 1; 2; (14.26)
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and

jjU

(�)

jj

(


�

;k;�)

� C

0

�

jjf jj

(S;k;�)

+ jjF jj

(S;k�1;�)

�

; C

0

=onst>0; (14.27)

where jj � jj

(M;k;�)

denotes the norm in the spae C

k;�

(M).

Proof. It follows from (14.8), (14.9), (14.23), Corollary 14.3 and Remark

12.2. �

14.2. In this subsetion we assume S 2 C

1

, and establish the existene

results for the problem (C)

�

in the weak setting with 1 < p <1.

First we prove the following statement.

Lemma 14.5. The operators (14:15) an be extended by ontinuity to

the following bounded ellipti 	DOs (of order �1)

N

�

; N

j;�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄ (14.28)

for arbitrary s 2 R; 1 < p < 1; 1 � q � 1: Moreover, the operator N

�

de�ned by (14:28) is invertible.

Proof. The boundedness, elliptiity, and mapping properties (14.28) of the

operators N

�

and N

j;�

easily follow from Theorem 11.3 and Lemma 14.2.

The invertibility of the operator N

�

is a onsequense of the embed-

ding theorems for solutions of ellipti pseudodi�erential equations on losed

smooth manifold (see the proof of the analogous assertions in Setion 12).

In fat, any solution h 2 H

s+1

p

(S) [B

s+1

p;q

(S)℄ of the homogeneous pseudo-

di�erential equation N

�

h = 0; belongs also to the spae C

k;�

(S), where

k � 1 is an arbitrary integer and 0 < � < 1. Therefore, we an derive h = 0

on S, due to Corollary 14.3. Thus kerN

�

= f0g. Moreover, indN

�

= 0;

sine the prinipal homogeneous symbol matrix of N

�

is positive de�nite.

These results imply the unique solvability of the nonhomogeneous equation

N

�

h = f in the spaes H

s+1

p

(S) [B

s+1

p;q

(S)℄ for the arbitrary right-hand side

vetor f 2 H

s

p

(S) [B

s

p;q

(S)℄. �

Now we are able to prove the existene theorem.

Theorem 14.6. Let

S 2 C

1

; f

j

2 B

1�1=p

p;p

(S); F 2 B

�1=p

p;p

(S); j = 1; 4; 1 < p <1: (14.29)

Then the problem (C)

�

is uniquely solvable in the spae (W

1

p

(


1

);W

1

p

(


2

))

and the solution is representable by formulae (14:24){(14:25).

Proof. Let onditions (14.29) be ful�lled. Then Lemma 14.5 and Theorem

11.3 imply that the pair of vetors (U

(1)

; U

(2)

) de�ned by (14.24) and (14.25)

represent a solution to the problem (C)

�

of the lass (W

1

p

(


1

);W

1

p

(


2

)).

Next we show the uniqueness of solution to the problem (C)

�

in the

Sobolev spaes (W

1

p

(


1

);W

1

p

(


2

)).

Let (U

(1)

; U

(2)

) 2 (W

1

p

(


1

);W

1

p

(


2

)) be some solution to the homoge-

neous problem (C)

�

. We reall that U

(�)

2 C

1

(


�

). Then Theorem 11.3,

item ii) yield

U

(1)

(x)=W

(1)

�

�

[U

(1)

℄

+

�

(x)�V

(1)

�

�

[B

(1)

(D;n)U

(1)

℄

+

�

(x); x2


1

; (14.30)
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U

(2)

(x)=�W

(2)

�

�

[U

(2)

℄

�

�

(x)+V

(2)

�

�

[B

(2)

(D;n)U

(2)

℄

�

�

(x); x2


2

;(14.31)

where [U

(1)

℄

+

; [U

(2)

℄

�

2 B

1�1=p

p;p

(S), [B

(1)

(D;n)U

(1)

℄

+

, [B

(2)

(D;n)U

(2)

℄

�

2

B

�1=p

p;p

(S). The homogeneous transmission onditions read as (see (14.6),

(14.7))

[U

(1)

℄

+

= [U

(2)

℄

�

; [B

(1)

(D;n)U

(1)

℄

+

= [B

(2)

(D;n)U

(2)

℄

�

: (14.32)

Denote

[U

(1)

℄

+

=: g; [B

(1)

(D;n)U

(1)

℄

+

=: h: (14.33)

Then (14.32) along with (14.30), (14.31), and Theorem 11.3 implies that

the vetor funtions h and g solve the homogeneous system of boundary

	DEs:

�(H

(1)

�

+H

(2)

�

)h+ (K

(1)

2;�

+K

(2)

2;�

) g = 0; (14.34)

�(K

(1)

1;�

+K

(2)

1;�

)h+ (L

(1)

�

+ L

(2)

�

) g = 0: (14.35)

From the positive de�niteness of the prinipal symbol matries ��(H

(�)

�

),

�(L

(�)

�

) (see Theorem 11.2), and the equation �(K

(�)

2;�

) = [�(K

(�)

1;�

)℄

>

, it

follows that the system of 	DEs (14.34) and (14.35) is strongly ellipti in

the sense of Douglis-Nirenberg. Therefore, by the embedding theorems we

onlude that h and g are smooth vetor funtions on S, i.e. h 2 C

k�1;�

(S)

and g 2 C

k;�

(S) for any k � 1 and 0 < � < 1. But then the vetors

U

(�)

; � = 1; 2; given by (14.30) and (14.31), are regular due to the for-

mulae (14.32), (14.33), and Theorem 11.1. Now the onditions (14.32) and

Theorem 8.6 omplete the proof. �

Remark 14.7. Using the representation formulae (14:30) and (14:31) we

an solve the problem (C)

�

by the so-alled diret boundary integral equa-

tion method. This method redues the transmission problem in question to

the strongly ellipti (in the sense of Douglis-Nirenberg) system of 	DEs on S

G

�

 = Q; (14.36)

where  = ( 

0

;  

00

)

>

is the unknown vetor with  

0

= [B

(1)

(D;n)U

(1)

℄

+

and  

00

= [U

(1)

℄

+

; the matrix operator G

�

is given by formula

G

�

=

"

[�H

(1)

�

�H

(2)

�

℄

4�4

[K

(1)

2;�

+K

(2)

2;�

℄

4�4

[�K

(1)

1;�

�K

(2)

1;�

℄

4�4

[L

(1)

�

+ L

(2)

�

℄

4�4

#

8�8

;

while the given on S right hand-side 8-vetor Q reads as

Q =

�

(2

�1

I

4

+K

(2)

2;�

) f �H

(2)

�

F ; L

(2)

�

f + (2

�1

I

4

�K

(2)

1;�

)F

�

>

:

Atually, in the proof of Theorem 14:6 we have shown that the operators

G

�

: [C

k�1;�

(S)℄

4

� [C

k;�

(S)℄

4

! [C

k;�

(S)℄

4

� [C

k�1;�

(S)℄

4

: [H

s

p

(S)℄

4

� [H

s+1

p

(S)℄

4

! [H

s+1

p

(S)℄

4

� [H

s

p

(S)℄

4

: [B

s

p;q

(S)℄

4

� [B

s+1

p;q

(S)℄

4

! [B

s+1

p;q

(S)℄

4

� [B

s

p;q

(S)℄

4
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are invertible.

Therefore, the unique solution to the problem (C)

�

an be represented

also in the form

U

(1)

(x) =W

(1)

�

( 

00

)(x) � V

(1)

�

( 

0

)(x);

U

(2)

(x) = �W

(2)

�

( 

00

� f)(x) + V

(2)

�

( 

0

� F )(x);

(14.37)

where  solves the system of 	DEs (14:36).

Note that the onlusions of Theorems 14:4 and 14:6 remain valid for the

vetors de�ned by (14.37) if the onditions (14.5) and (14.29) are ful�lled.

14.3. In this subsetion we investigate the problem (G)

�

.

First let us rewrite the transmission onditions (7.5){(7.8) in the following

equivalent form

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

+

e

F

(�)

l

; (14.38)

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

+

e

F

(�)

m

; (14.39)

[P

(1)

(D;n)U

(1)

� l℄

+

� [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

�

e

F

(�)

l

; (14.40)

[P

(1)

(D;n)U

(1)

�m℄

+

� [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

�

e

F

(�)

m

; (14.41)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; (14.42)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (14.43)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

:(14.44)

Clearly, due to (14.40), (14.41), (14.43), and (14.44), the vetor

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F is a given vetor on S with

F =

�

(

e

F

(+)

l

�

e

F

(�)

l

) l + (

e

F

(+)

m

�

e

F

(�)

m

)m+

e

F

n

n; F

4

�

>

: (14.45)

Denote

[u

(1)

� l℄

+

� [u

(2)

� l℄

�

=  

1

; [u

(1)

�m℄

+

� [u

(2)

�m℄

�

=  

2

; (14.46)

where  

1

and  

2

are the unknown salar funtions. Equations (14.42),

(14.44), and (14.46) imply [U

(1)

℄

+

� [U

(2)

℄

�

= f; where

f = ( 

1

l +  

2

m+

e

f

n

n; f

4

)

>

: (14.47)

Now let us look for a solution to the problem (G)

�

in the form (14.24) and

(14.25), where F and f are given by (14.45) and (14.47), respetively. Then

from the results of the previous subsetion it follows that the transmission

onditions (14.40)-(14.44) are automatially satis�ed. It remains to satisfy

only the onditions (14.38) and (14.39). Taking into aount Theorem 11.1

and the equations (14.12), we get from (14.24) and (14.25):

[B

(1)

(D;n)U

(1)

℄

+

= [(P

(1)

(D;n)U

(1)

; �

(1)

(D;n)u

4

)

>

℄

+

=

= N

1;�

N

�1

�

(F +N

2;�

f);

[B

(2)

(D;n)U

(2)

℄

�

= [(P

(2)

(D;n)U

(2)

; �

(2)

(D;n)u

4

)

>

℄

�

=

= �N

2;�

N

�1

�

(F �N

1;�

f):
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Further, we put

l

�

= [(l; 0)

>

℄

4�1

; m

�

= [(m; 0)

>

℄

4�1

; n

�

= [(n; 0)

>

℄

4�1

; (14.48)

where l; m and n are again the tangent and the normal vetors introdued

in Subsetion 7.2.

Conditions (14.38) and (14.39) then imply

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

= [B

(1)

(D;n)U

(1)

� l

�

℄

+

+ [B

(2)

(D;n)U

(2)

� l

�

℄

�

=

=(N

1;�

�N

2;�

)N

�1

�

F � l

�

+ 2N

2;�

N

�1

�

N

1;�

f � l

�

=

e

F

(+)

l

+

e

F

(�)

l

;

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

= [B

(1)

(D;n)U

(1)

�m

�

℄

+

+

+[B

(2)

(D;n)U

(2)

�m

�

℄

�

= (N

1;�

�N

2;�

)N

�1

�

F �m

�

+

+2N

2;�

N

�1

�

N

1;�

f �m

�

=

e

F

(+)

m

+

e

F

(�)

m

; (14.49)

sine N

2;�

N

�1

�

N

1;�

= N

1;�

N

�1

�

N

2;�

: By virtue of (14.47) from (14.49) we

have the following system of 	DEs for the unknown funtions  

1

and  

2

:

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

( 

1

l

j

+  

2

m

j

)℄l

k

= q

1

; (14.50)

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

( 

1

l

j

+  

2

m

j

)℄m

k

= q

2

; (14.51)

where

q

1

= 2

�1

f

e

F

(+)

l

+

e

F

(�)

l

� (N

1;�

�N

2;�

)N

�1

�

F � l

�

g�

�

3

X

k=1

[(N

2;�

N

�1

�

N

1;�

)

k4

f

4

℄l

k

�

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

(

e

f

n

n

j

)℄l

k

;

q

2

= 2

�1

f

e

F

(+)

m

+

e

F

(�)

m

� (N

1;�

�N

2;�

)N

�1

�

F �m

�

g�

�

3

X

k=1

[(N

2;�

N

�1

�

N

1;�

)

k4

f

4

℄m

k

�

3

X

k;j=1

[(N

2;�

N

�1

�

N

1;�

)

kj

(

e

f

n

n

j

)℄m

k

(14.52)

are given funtions on S.

Now let

M

G;�

:=

�

l

k

(N

2;�

N

�1

�

N

1;�

)

kj

l

j

l

k

(N

2;�

N

�1

�

N

1;�

)

kj

m

j

m

k

(N

2;�

N

�1

�

N

1;�

)

kj

l

j

m

k

(N

2;�

N

�1

�

N

1;�

)

kj

m

j

�

2�2

:

We reall that the summation over repeated indies is meant from 1 to 3.

Clearly, (14.50) and (14.51) an be written in the matrix form as

M

G;�

 = q

�

(14.53)

with the unknown vetor  = ( 

1

;  

2

)

>

and the right-hand side q

�

=

(q

1

; q

2

)

>

given by formulae (14.52).
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Lemma 14.8. The operator M

G;�

is an ellipti 	DO of order 1 with a

positive de�nite prinipal homogeneous symbol matrix and the index equal

to zero.

Proof. The equations (14.12), (14.20), and (14.21) imply that M

G;�

is a

	DO of order 1 with the prinipal homogeneous symbol matrix

�(M

G;�

) =

�

l

k

l

j

E

kj

l

k

m

j

E

kj

m

k

l

j

E

kj

m

k

m

j

E

kj

�

2�2

= E

1

EE

>

1

; (14.54)

where

E

1

=

�

l

1

; l

2

; l

3

; 0

m

1

; m

2

; m

3

; 0

�

2�4

;

E = �(N

2;�

N

�1

�

N

1;�

) = �(N

2;�

)�(N

�1

�

)�(N

1;�

) =

= �(N

2;�

)[�(N

1;�

) + �(N

2;�

)℄

�1

�(N

1;�

):

Due to Lemma 14.2 the matries �(N

j;�

); j = 1; 2; are positive de�nite

for arbitrary x 2 S and

e

� 2 R

2

n0 (see (14.20), (14.21)). Therefore, the

matrix E is positive de�nite as well. Next, for arbitrary � = (�

1

; �

2

)

>

2 C

2

we have

�(M

G;�

)� � � = (E

1

EE

>

1

)� � � = E(E

>

1

�) � (E

>

1

�) =

= E(l

�

�

1

+m

�

�

2

) � (l

�

�

1

+m

�

�

2

) � j

e

�j j�

1

l

�

+ �

2

m

�

j

2

=

=  j

e

�j (j�

1

j

2

+ j�

2

j

2

);  > 0;

whene the positive de�niteness of the matrix (14.54) follows. This implies

that the index of the operator M

G;�

is equal to zero sine the positive

de�niteness of �(M

G;�

) yields the formally self-adjointness of the dominant

singular part of the M

G;�

. �

Lemma 14.9. Let S; k; �, and �

0

be as in (14:5). Then the operator

M

G;�

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k; (14.55)

is an isomorphism.

If S 2 C

1

, then (14:55) an be extended by ontinuity to the following

bounded, invertible, ellipti 	DO (of order 1)

M

G;�

: H

s+1

p

(S)! H

s

p

(S) [B

s+1

p;q

(S)! B

s

p;q

(S)℄;

s 2 R; 1 < p <1; 1 � q �1:

Proof. It is quite similar to the proofs of Lemmata 14.1 and 14.5. �

The above results yield the following existene theorems.

Theorem 14.10. Let S; k; �

0

, and � be as in (14:5), and let

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 C

k�1;�

(S);

e

f

n

; f

4

2 C

k;�

(S):

Then the problem (G)

�

is uniquelly solvable, and the solution is representable

in the form (14:24) � (14:25) with F and f given by (14:45) and (14:47),

where  

1

;  

2

2 C

k;�

(S) are de�ned by the system of 	DEs (14:50) and

(14:51) (i.e., (14:53)). Moreover, (14:26) and the inequality (14:27) hold.
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Theorem 14.11. Let S 2 C

1

and

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 B

�1=p

p;p

(S);

e

f

n

; f

4

2 B

1�1=p

p;p

(S):

Then the problem (G)

�

is uniquely solvable in the spae (W

1

p

(


1

);W

1

p

(


2

));

and the solutions are representable by the formulae (14:24){(14:25) with F

and f given by (14:45) and (14:47), where  

1

;  

2

2 B

1�1=p

p;p

(S) are de�ned

by the system of 	DEs (14:50) and (14:51) (i.e., (14:53)).

The proof of these theorems are quite similar (in fat, verbatim) to the

proofs of Theorems 14.4 and 14.6. �

14.4. In this subsetion we shall study the problem (H)

�

. As in the

previous subsetion let us rewrite the transmission onditions of the problem

(see Subsetion 7.2) in the equivalent form

[u

(1)

� l℄

+

+ [u

(2)

� l℄

�

=

e

f

(+)

l

+

e

f

(�)

l

; (14.56)

[u

(1)

�m℄

+

+ [u

(2)

�m℄

�

=

e

f

(+)

m

+

e

f

(�)

m

; (14.57)

[u

(1)

� l℄

+

� [u

(2)

� l℄

�

=

e

f

(+)

l

�

e

f

(�)

l

; (14.58)

[u

(1)

�m℄

+

� [u

(2)

�m℄

�

=

e

f

(+)

m

�

e

f

(�)

m

; (14.59)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; (14.60)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (14.61)

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

=F

4

: (14.62)

Equations (14.58){(14.60) imply [U

(1)

℄

+

� [U

(2)

℄

�

= f; where f is a given

vetor on S

f =

�

(

e

f

(+)

l

�

e

f

(�)

l

) l + (

e

f

(+)

m

�

e

f

(�)

m

)m+

e

f

n

n; f

4

�

>

: (14.63)

It is also evident that [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F with

F = ( 

1

l +  

2

m+

e

F

n

n; F

4

)

>

; (14.64)

where

e

F

n

and F

4

are given funtions on S; while  

1

= [P

(1)

(D;n)U

(1)

� l℄

+

�

[P

(2)

(D;n)U

(2)

� l℄

�

and  

2

= [P

(1)

(D;n)U

(1)

�m℄

+

� [P

(2)

(D;n)U

(2)

�m℄

�

;

are yet unknown salar funtions.

We look for a solution to the problem (H)

�

again in the form (14.24)-

(14.25), with F and f de�ned by (14.63) and (14.64), respetively. It an

be easily heked that the transmission onditions (14.58)-(14.62) are then

automatially satis�ed, while the equations (14.56) and (14.57) lead to the

following system of 	DEs for the unknown vetor  = ( 

1

;  

2

)

>

on S:

M

H;�

 = q

�

; (14.65)

where

M

H;�

=

�

l

k

(N

�1

�

)

kj

l

j

l

k

(N

�1

�

)

kj

m

j

m

k

(N

�1

�

)

kj

l

j

m

k

(N

�1

�

)

kj

m

j

�

2�2

(14.66)
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and the right hand-side vetor q

�

= (q

1

; q

2

)

>

is de�ned by formulae:

q

1

= 2

�1

f

e

f

(+)

l

+

e

f

(�)

l

� [N

�1

�

(N

2;�

�N

1;�

)f � l

�

℄g

� [(N

�1

�

)

kj

(

e

F

n

n

j

)℄l

k

� [(N

�1

�

)

k4

F

4

℄l

k

;

q

2

= 2

�1

f

e

f

(+)

m

+

e

f

(�)

m

� [N

�1

�

(N

2;�

�N

1;�

)f �m

�

℄g

� [(N

�1

�

)

kj

(

e

F

n

n

j

)℄m

k

� [(N

�1

�

)

k4

F

4

℄m

k

;

here l

�

and m

�

are given by (14.48).

By quite the same arguments as in Subsetion 14.3 we an easily show

thatM

H;�

is an ellipti invertible 	DO of order �1 with a positive de�nite

prinipal symbol matrix.

Therefore the operators

M

H;�

: C

k�1;�

(S)! C

k;�

(S); S 2 C

k+1;�

0

;

: H

s

p

(S)! H

s+1

p

(S); S 2 C

1

;

: B

s

p;q

(S)! B

s+1

p;q

(S); S 2 C

1

;

are isomorphisms.

These results lead us to the following existene theorems.

Theorem 14.12. Let S; k; �; and �

0

be as in (14:5) and let

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 C

k;�

(S);

e

F

n

; F

4

2 C

k�1;�

(S):

Then the problem (H)

�

has the unique solution representable in the form

(14:24){(14:25) with f and F given by (14:63) and (14:64), where  

1

;  

2

2

C

k�1;�

(S) in (14:64) are de�ned by the system of 	DEs (14.65).

Theorem 14.13. Let S 2 C

1

and

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 B

1�1=p

p;p

(S);

e

F

n

; F

4

2 B

�1=p

p;p

(S):

Then the problem (H)

�

is uniquely solvable in the spae (W

1

p

(


1

);W

1

p

(


2

));

and the solution is representable by the formulae (14.24) and (14.25) with

f and F given by (14:63) and (14:64), where  

1

;  

2

2 B

�1=p

p;p

(S) in (14:64)

are de�ned by the system of 	DEs (14:65).

Again proofs are verbatim the proofs of Theorems 14.4 and 14.6.

15. Basi Interfae Problems of Steady State Osillations

In this setion we deal with the basi interfae problems (C)

!

, (G)

!

, and

(H)

!

of steady state thermoelasti osillations formulated in Setion 7. In

ontrast to the pseudo-osillation ase, one an not here apply the single

layer approah to obtain the \expliit" solution to the basi interfae prob-

lem (C)

!

for an arbitrary value of the frequeny parameter !, sine the

integral operator H (see (10.3)) is not invertible for the so-alled exep-

tional values of !. Therefore, we o�er another approah whih relays on the

representation of a solution in the form of a omplex linear ombination of

the single and double layer potentials (see Setion 13).
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15.1. Here we again assume that the onditions (14.5) are ful�lled and

look for the solution to the nonhomogeneous interfae problem (C)

!

(see

(7.3){(7.4) or (7.11){(7.12)) in the following form

U

(1)

(x) =W

(1)

(g

(1)

)(x); x 2 


1

; (15.1)

U

(2)

(x) =W

(2)

(g

(2)

)(x) + p

0

V

(2)

(g

(2)

)(x); x 2 


2

; (15.2)

whereW

(�)

and V

(�)

are the double and single layer potentials onstruted

by the fundamental solution �

(�)

(x � y; !; r) (see (10.1){(10.2)), g

(�)

=

(g

(�)

1

; � � � ; g

(�)

4

)

>

(� = 1; 2) are unknown densities, and p

0

is given by (13.5).

Moreover, in the sequel we again provide that

r = 1 for ! > 0 and r = 2 for ! < 0: (15.3)

Taking into aount the properties of the above potentials and inserting

the representations (15.1)-(15.2) into the transmission onditions (7.11){

(7.12), we get the system of 	DEs on S for g

(�)

(� = 1; 2):

[2

�1

I

4

+K

(1)

2

℄ g

(1)

� [�2

�1

I

4

+K

(2)

2

+ p

0

H

(2)

℄ g

(2)

= f; (15.4)

L

(1)

g

(1)

� [L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

)℄ g

(2)

= F; (15.5)

where H

(�)

, K

(�)

1

, K

(�)

2

, and L

(�)

(� = 1; 2) are de�ned by (10.3), (10.4),

(10.5), and (10.6), respetively.

To investigate the solvability of the above system of 	DEs we �rst prove

the following lemma.

Lemma 15.1. Let g

(�)

2 C

1;�

(S) (� = 1; 2) and let the vetor funtions,

represented by (15:1){(15:2), vanish in 


1

and 


2

, respetively.

Then g

(�)

= 0 (� = 1; 2) on S.

Proof. Obviously, the regular vetor funtion U

(1)

, de�ned by (15.1), an

be extended by the same formula from the domain 


1

into 


2

. Denote the

extended vetor funtion again by U

(1)

. By Lemmata 10.1 and 10.7 then

we have

[U

(1)

℄

�

= �g

(1)

and [B

(1)

(D;n)U

(1)

℄

�

= 0 on S; (15.6)

in aordane with the assumption U

(1)

= 0 in 


1

. Sine U

(1)

is a (m; r)-

thermo-radiating regular vetor funtion, we dedue by virtue of Theorem

9.5 and the seond equation in (15.6) that U

(1)

= 0 in 


2

; whene g

(1)

= 0

on S follows.

The assertion for g

(2)

is a ready onsequene of Lemma 13.1. �

In the matrix form the system (15.4)-(15.5) reads

M

C

g = Q; (15.7)

where g = (g

(1)

; g

(2)

)

>

, Q = (f; F )

>

, and

M

C

=

"

[2

�1

I

4

+K

(1)

2

℄

4�4

[2

�1

I

4

�K

(2)

2

� p

0

H

(2)

℄

4�4

[L

(1)

℄

4�4

[�L

(2)

� p

0

(2

�1

I

4

+K

(2)

1

)℄

4�4

#

8�8

: (15.8)
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Next, let us introdue the following operators

�

1

:= 2

�1

I

4

+K

(1)

2

; 	

1

:= L

(1)

; (15.9)

�

2

:= �2

�1

I

4

+K

(2)

2

+ p

0

H

(2)

; 	

2

:= L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

); (15.10)

and rewrite the system (15.4)-(15.5) as

�

1

g

(1)

��

2

g

(2)

= f; (15.11)

	

1

g

(1)

�	

2

g

(2)

= F: (15.12)

Note that the mappings

�

2

: C

l;�

(S)! C

l;�

(S); 0 � l � k; (15.13)

	

2

: C

l;�

(S)! C

l�1;�

(S); 1 � l � k; (15.14)

are isomorphisms due to Lemmata 13.4 and 13. 11. Therefore, (15.11)-

(15.12) equivalently an be redued to the system

g

(2)

= �

�1

2

�

1

g

(1)

��

�1

2

f; (15.15)

[	

1

�	

2

�

�1

2

�

1

℄ g

(1)

= F �	

2

�

�1

2

f: (15.16)

Remark 15.2. Note that the system (15.4)-(15.5) (i.e., (15.11)-(15.12)) is

equivalent to the following system of SIEs

�

1

g

(1)

��

2

g

(2)

= f; (15.17)

R

4

	

1

g

(1)

�R

4

	

2

g

(2)

= R

4

F; (15.18)

where the equivalent lifting matrix operator R

4

is given by (12.33).

Lemma 15.3. The operator M

C

is ellipti in the sense of Douglis-Ni-

renberg with index equal to zero. The mapping

M

C

: [C

l;�

(S)℄

8

! [C

l;�

(S)℄

4

� [C

l�1;�

(S)℄

4

; 1 � l � k; (15.19)

is an isomorphism.

Proof. First we show that M

C

is an ellipti 	DO in the sense of Douglis-

Nirenberg. To this end let us remark that, due to the results of Setion 10

(see (10.23){(10.30),(10.48), (10.49)), for the prinipal homogeneous symbol

matries of the operators (15.9) and (15.10) we have the following expres-

sions:

�(�

1

) = �((2

�1

I

4

+K

(1)

2

)

0

) =:

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(1)

44

�

4�4

; (15.20)

�(�

2

) = �((�2

�1

I

4

+K

(2)

2

)

0

) =:

�

[K

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

K

(2)

44

�

4�4

; (15.21)

�(	

1

) = �((L

(1)

)

0

) =:

�

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

�

4�4

; (15.22)

�(	

2

) = �((L

(2)

)

0

) =:

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

�

4�4

; (15.23)
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where (K)

0

denotes again the dominant singular part of the operator K;

here we employed the notations:

K

(1)

= �(2

�1

I

3

+

�

K

(1;0)

) = [�(2

�1

I

3

+K

(1;0)

)℄

>

; (15.24)

K

(2)

= �(�2

�1

I

3

+

�

K

(2;0)

) = [�(�2

�1

I

3

+K

(2;0)

)℄

>

; (15.25)

K

(1)

44

= �(2

�1

I

3

+

�

K

(1;0)

4

) =

1

2

; (15.26)

K

(2)

44

= �(�2

�1

I

3

+

�

K

(2;0)

4

) = �

1

2

; (15.27)

L

(�)

= �(L

(�;0)

); � = 1; 2; (15.28)

L

(�)

44

= �(L

(�;0)

4

) = �[4�(H

(�;0)

4

)℄

�1

> 0; � = 1; 2; (15.29)

where by

�

K

(�;0)

, K

(�;0)

,

�

K

(�;0)

4

, K

(�;0)

, L

(�;0)

, and L

(�;0)

4

are denoted again

the operatos (10.26), (10.40), and (10.41) orresponding to the thermo-

elasti harateristis of the medium oupying the domain 


�

(f. (14.19)).

In Lemma 3.3 of the referene [41℄ it has been proved that

�

�

= det

�

[K

(1)

℄

3�3

�[K

(2)

℄

3�3

[L

(1)

℄

3�3

[�L

(2)

℄

3�3

�

6�6

6= 0 (15.30)

for arbitrary x 2 S and

e

� 2 R

2

n f0g:

Let us now onsider the symbol matrix of the operator M

C

�(M

C

) =

�

�(�

1

) ��(�

2

)

�(	

1

) ��(	

2

)

�

8�8

(15.31)

and show that the orresponding determinant does not vanish for arbitrary

x 2 S and

e

� 2 R

2

n f0g; whih in turn implies the usual elliptiity of the

system (15.17)-(15.18) (or the elliptiity of the system (15.4)-(15.5) in the

sense of Douglis-Nirenberg). By virtue of formulae (15.20)-(15.29) we get

from (15.31) after some simple rearrangements

det�(M

C

) = det

2

6

6

4

[K

(1)

℄

3�3

[0℄

3�1

�[K

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

1

2

[0℄

1�3

�

1

2

[L

(1)

℄

3�3

[0℄

3�1

[�L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

[0℄

1�3

�L

(2)

44

3

7

7

5

8�8

=

= det

�

[K

(1)

℄

3�3

�[K

(2)

℄

3�3

[L

(1)

℄

3�3

[�L

(2)

℄

3�3

�

6�6

det

�

1

2

1

2

L

(1)

44

�L

(2)

44

�

2�2

=

= �

1

2

�

L

(1)

44

+ L

(2)

44

�

�

�

6= 0; (15.32)

due to (15.29) and (15.30).

Next we show that the index of the operator M

C

equals zero. To see

this, let us note that the index does not depend on a ompat pertubation,
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and onsider the following operator

f

M

C

=

"

[

f

M

(1)

C

℄

4�4

[

f

M

(2)

C

℄

4�4

[

f

M

(3)

C

℄

4�4

[

f

M

(4)

C

℄

4�4

#

8�8

; (15.33)

where

f

M

(1)

C

=

2

4

[2

�1

I

3

+

�

K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

+

�

K

(1;0)

4

3

5

4�4

;

f

M

(2)

C

=

2

4

[2

�1

I

3

�

�

K

(2;0)

� fH

(2;0)

g℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

�

�

K

(2;0)

4

�fH

(2;0)

4

g

3

5

4�4

;

f

M

(3)

C

=

�

[L

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1;0)

4

�

4�4

;

f

M

(4)

C

=

�

[�L

(2;0)

�f2

�1

I

3

+K

(2;0)

g℄

3�3

[0℄

3�1

[0℄

1�3

�L

(2;0)

4

�f2

�1

I

1

+K

(2;0)

4

g

�

4�4

:

Clearly, the dominant singular parts (M

C

)

0

and (

f

M

C

)

0

oinide. In-

deed, these dominant singular parts in the both ases an be represented in

the form (15.33) where the summands in urly brakets are removed.

The orresponding formally adjoint operator to

f

M

C

reads as

f

M

�

C

=

"

[

f

M

(1)�

C

℄

4�4

[

f

M

(2)�

C

℄

4�4

[

f

M

(3)�

C

℄

4�4

[

f

M

(4)�

C

℄

4�4

#

8�8

; (15.34)

where

f

M

(1)�

C

=

�

[2

�1

I

3

+K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

+K

(1;0)

4

�

4�4

;

f

M

(2)�

C

=

�

[L

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1;0)

4

�

4�4

;

f

M

(3)�

C

=

�

[2

�1

I

3

�K

(2;0)

�H

(2;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

I

1

�K

(2;0)

4

�H

(2;0)

4

�

4�4

;

f

M

(4)�

C

=

2

4

[�L

(2;0)

� 2

�1

I

3

�

�

K

(2;0)

℄

3�3

[0℄

3�1

[0℄

1�3

�L

(2;0)

4

�2

�1

I

1

�

�

K

(2;0)

4

3

5

4�4

:

We again reall that the operators involved in (15.33) and (15.34) are de�ned

in Setion 10. Moreover, here we have applied that the operators L

(�;0)

,

L

(�;0)

4

, H

(�;0)

, and H

(�;0)

4

are formally self-adjoint (see [34℄, [59℄).

In what follows we prove that the homogeneous equations

f

M

C

' = 0; ' = ('

(1)

; '

(2)

)

>

; '

(j)

= ('

(j)

1

; � � � ; '

(j)

4

)

>

; j = 1; 2; (15.35)
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and

f

M

�

C

 = 0;  = ( 

(1)

;  

(2)

)

>

;  

(j)

=( 

(j)

1

; � � � ;  

(j)

4

)

>

; j=1; 2; (15.36)

have only the trivial solutions.

Due to the above established elliptiity we onsider these equations in

the regular spae of C

1;�

-smooth vetor funtions.

Note that the system (15.35) an be deomposed into the following two

independent systems:

[2

�1

I

3

+

�

K

(1;0)

℄ e'

(1)

� [� 2

�1

I

3

+

�

K

(2;0)

+H

(2;0)

℄ e'

(2)

= 0;

L

(1;0)

e'

(1)

� [L

(2;0)

+ 2

�1

I

3

+K

(2;0)

℄ e'

(2)

= 0;

)

(15.37)

[2

�1

I

1

+

�

K

4

(1;0)

℄'

(1)

4

� [� 2

�1

I

1

+

�

K

4

(2;0)

+H

(2;0)

4

℄'

(2)

4

= 0;

L

(1;0)

4

'

(1)

4

� [L

(2;0)

4

+ 2

�1

I

1

+K

(2;0)

4

℄'

(2)

4

= 0;

)

(15.38)

where e'

(j)

= ('

(j)

1

; '

(j)

2

; '

(j)

3

)

>

; j = 1; 2:

These systems are generated by the following interfae problems for the

equations of elastostatis and the stationary distribution of temperature

C

(�)

(D)u

(�)

= 0 in 


�

; u

(�)

= (u

(�)

1

; u

(�)

2

; u

(�)

3

)

>

; � = 1; 2;

[u

(1)

℄

+

� [u

(2)

℄

�

= 0 and [T

(1)

(D;n)u

(1)

℄

+

�

�[T

(2)

(D;n)u

(2)

℄

�

= 0 on S;

u

(2)

(x) = o(1) as jxj ! +1;

9

>

>

=

>

>

;

(15.39)

and

�

(�)

pq

D

p

D

q

u

(�)

4

= 0 in 


�

; � = 1; 2;

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= 0 and [�

(1)

(D;n)u

(1)

4

℄

+

�

�[�

(2)

(D;n)u

(2)

4

℄

�

= 0 on S;

u

(2)

4

(x) = o(1) as jxj ! +1;

9

>

>

>

=

>

>

>

;

(15.40)

where C

(�)

(D), T

(�)

(D;n), and �

(�)

(D;n) are given by (1.7), (1.12), and

(1.24), respetively.

If one looks for solutions (u

(1)

; u

(2)

) and (u

(1)

4

; u

(2)

4

) in the form of follow-

ing potentials (see (10.19){(10.22))

u

(1)

(x) =

R

S

[T

(1)

(D

y

; n(y))�

(1;0)

(y � x)℄

>

e'

(1)

(y) dS

y

=:

=: w

(1;0)

(e'

(1)

)(x); (15.41)

u

(2)

(x) =

R

S

[T

(2)

(D

y

; n(y))�

(2;0)

(y � x)℄

>

e'

(2)

(y) dS

y

+

+

R

S

�

(2;0)

(y � x) e'

(2)

(y) dS

y

=: w

(2;0)

(e'

(2)

)(x) + v

(2;0)

(e'

(2)

)(x); (15.42)

u

(1)

4

(x) =

R

S

�

(1)

(D

y

; n(y))

(1;0)

(y � x)'

(1)

4

(y) dS

y

=:

=: w

(1;0)

4

('

(1)

4

)(x); (15.43)

u

(2)

4

(x) =

R

S

�

(2)

(D

y

; n(y))

(2;0)

(y � x)'

(2)

4

(y) dS

y

+

+

R

S



(2;0)

(y � x)'

(2)

4

(y) dS

y

=: w

(2;0)

4

('

(2)

4

)(x) + v

(2;0)

4

('

(2)

4

)(x); (15.44)

one arrives at the systems (15.37) and (15.38).
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Using the usual Green identities (14.22) it an be easily shown that the

homogeneous problems (15.39) and (15.40) have only the trivial solutions.

These uniqueness results and standard arguments of the potential theory

imply that the systems (15.37) and (15.38) possess only the trivial solutions

as well.

Indeed, let ('

(1)

; '

(2)

)

>

be some solution to the homogeneous system

(15.37), and let us onstrut by these densities the potentials (15.41) in 


1

and (15.42) in 


2

: Due to the above uniqueness u

(�)

(x) = 0 in 


�

, � = 1; 2:

Applying the jump properties of the single and double layer potentials of

elastostatis (see [8℄, [34℄, [56℄) we onlude that '

(1)

= '

(2)

= 0 on S. For

the system (15.38) the proof is verbatim. Thus, ker

f

M

C

= f0g:

To prove that ker

f

M

�

C

= f0g; we deompose analogously the system

(15.36) into the two systems

[2

�1

I

3

+K

(1;0)

℄

e

 

(1)

+ L

(1;0)

e

 

(2)

= 0;

[� 2

�1

I

3

+K

(2;0)

+H

(2;0)

℄

e

 

(1)

+

+[L

(2;0)

+ 2

�1

I

3

+

�

K

(2;0)

℄

e

 

(2)

= 0;

9

>

=

>

;

(15.45)

[2

�1

I

1

+K

(1;0)

4

℄ 

(1)

4

+ L

(1;0)

4

 

(2)

4

= 0;

[� 2

�1

I

1

+K

(2;0)

4

+H

(2;0)

4

℄ 

(1)

4

+

+[L

(2;0)

4

+ 2

�1

I

1

+

�

K

(2;0)

4

℄ 

(2)

4

= 0:

9

>

=

>

;

(15.46)

Denote by (

e

 

(1)

;

e

 

(2)

)

>

some solution of the homogeneous system (15.45)

and by these densities onstrut the vetors (see (15.41){(15.44))

u

(1)

�

(x) = v

(1;0)

(

e

 

(1)

)(x) + w

(1;0)

(

e

 

(2)

)(x) in 


�

= 


2

; (15.47)

u

(2)

�

(x) = v

(2;0)

(

e

 

(1)

)(x) + w

(2;0)

(

e

 

(2)

)(x) in 


+

= 


1

: (15.48)

Obviously, C

(1)

(D)u

(1)

�

= 0 in 


�

= 


2

and C

(2)

(D)u

(2)

�

= 0 in 


+

= 


1

.

It an be also easily veri�ed that the equations (15.45) orrespond to the

onditions

[T

(1)

(D;n)u

(1)

�

℄

�

= 0; (15.49)

[T

(2)

(D;n)u

(2)

�

℄

+

+ [u

(2)

�

℄

+

= 0: (15.50)

Therefore, u

(1)

�

is a solution of the homogeneous exterior stress problem

in 


�

, while u

(2)

�

represents a solution to the Robin type problem in 


+

.

By uniqueness theorems, whih an be established again with the help of

(14.22), we onlude u

(1)

�

= 0 in 


�

, and u

(2)

�

= 0 in 


+

. The jump relations

then lead to the equations

[u

(1)

�

℄

+

=

e

 

(2)

; [T

(1)

(D;n)u

(1)

�

℄

+

= �

e

 

(1)

;

[u

(2)

�

℄

�

= �

e

 

(2)

; [T

(2)

(D;n)u

(2)

�

℄

�

=

e

 

(1)

;

(15.51)
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whene

[u

(1)

�

℄

+

+ [u

(2)

�

℄

�

= 0;

[T

(1)

(D;n)u

(1)

�

℄

+

+ [T

(2)

(D;n)u

(2)

�

℄

�

= 0:

(15.52)

Making use one again of Green formulae (14.22) together with homoge-

neous onditions (15.52) we obtain that u

(1)

�

= 0 in 


+

and u

(2)

�

= 0 in 


�

.

Now (15.51) shows

e

 

(1)

=

e

 

(2)

= 0 on S. In the same way we an show that

the system (15.46) has also only the trivial solution. Thus, ker

f

M

�

C

= f0g as

well, and, therefore, ind

f

M

C

= 0; whih proves the �rst part of the lemma.

Next we prove that the mapping (15.19) is an isomorphism. Due to the

�rst part of the lemma it remains to hek that the homogeneous equation

f

M

C

g = 0 admits only the trivial solution. Let g = (g

(1)

; g

(2)

)

>

be an

arbitrary solution of this equation. Then the potentials (15.1) and (15.2)

solve the homogeneous problem (C)

!

and by Theorem 9.8 they vanish in

the orresponding domains. Now Lemma 15.1 ompletes the proof. �

Corollary 15.4. Let S 2 C

1

and let s 2 R; 1 < p < 1, 1 � q � 1.

Then the operators

M

C

: [H

s

p

(S)℄

8

! [H

s

p

(S)℄

4

� [H

s�1

p

(S)℄

4

;

: [B

s

p;q

(S)℄

8

! [B

s

p;q

(S)℄

4

� [B

s�1

p;q

(S)℄

4

are isomorphisms.

Proof. It follows from the fat that, due to the general theory of ellipti

	DEs on losed smooth manifolds, the uniqueness of solution implies the

orresponding existene results for the nonhomogeneous equation (15.7) in

the Besov B

s

p;q

(S) and the Bessel-potential H

s

p

(S) spaes (see the proof of

Lemma 12.9). �

We are now ready to present the solution of the system (15.4)-(15.5) (i.e.,

(15.17)-(15.18)) in terms of expliitly given boundary integral operators and

their inverses. To this end we need the following lemma.

Lemma 15.5. Let S, k, and � be as in (14:5). Then the mapping

[	

1

�	

2

�

�1

2

�

1

℄ : [C

l;�

(S)℄

4

! �[C

l�1;�

(S)℄

4

; 1 � l � k; (15.53)

is an ellipti invertible 	DO of order +1.

Proof. First we show the elliptiity of the prinipal homogeneous symbol

matrix of the operator in question. Due to the equations (15.20)-(15.29) we

have

M := �(	

1

�	

2

�

�1

2

�

1

) = �(	

1

)� �(	

2

)[�(�

2

)℄

�1

�(�

1

) =

=

�

�(	

1

)[�(�

1

)℄

�1

� �(	

2

)[�(�

2

)℄

�1

	

�(�

1

) =

=

��

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

� �

[(K

(1)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2

�

�

�

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

��

[(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

�2

��

�



110

�

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

�

=

=

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2L

(1)

44

+ 2L

(2)

44

�

�

�

�

[K

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

�

: (15.54)

We used here that the matriesK

(1)

andK

(2)

de�ned by (15.24) and (15.25)

are not singular (see, e.g., [34℄, [56℄) and employed the following simple fats:

if

X =

�

[

e

X ℄

3�3

[0℄

3�1

[0℄

1�3

x

44

�

4�4

and Y =

�

[

e

Y ℄

3�3

[0℄

3�1

[0℄

1�3

y

44

�

4�4

;

then

XY =

�

[

e

X

e

Y ℄

3�3

[0℄

3�1

[0℄

1�3

x

44

y

44

�

4�4

and X

�1

=

�

[(

e

X)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

(x

44

)

�1

�

4�4

where det

e

X 6= 0 and x

44

6= 0 are assumed.

We reall that the matries (15.28) are nonsingular, too. Moreover, by

the arguments similar to that of applied in the proof of Lemma 14.2 we an

show that the matries

L

(1)

(K

(1)

)

�1

and � L

(2)

(K

(2)

)

�1

(15.55)

are positive de�nite (for details see [41℄, [59℄, [34℄, [57℄). Therefore, the

matrix

M

0

:=

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2L

(1)

44

+ 2L

(2)

44

�

4�4

; (15.56)

is positive de�nite. Consequently, the matrix M de�ned by (15.54), whih

represents the prinipal homogeneous symbol matrix of the operator (15.53),

is nonsingular. Thus, the operator (15.53) is an ellipti 	DO.

Further, from (15.54) it follows that the dominant singular part of the

operator (15.53) an be represented as the omposition of two operators

where the �rst one is the operator with the positive de�nite prinipal symbol

matrix (15.56), while the seond one is the following invertible operator

"

[2

�1

I

3

+

�

K

(1;0)

℄

3�3

[0℄

3�1

[0℄

1�3

2

�1

#

4�4

;

whih orresponds to the seond matrix multiplyer in (15.54). These fats

yield that the index of the operator (15.53) is equal to zero.

Next we prove that the operator (15.53) has the trivial null-spae . Let

the homogeneous equation

[	

1

�	

2

�

�1

2

�

1

℄ g

0

= 0; g

0

= (g

0

1

; � � � ; g

0

4

)

>

; (15.57)
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admits a nontrivial solution g

0

6=0. Then the nontrivial vetor (g

0

;�

�1

2

�

1

g

0

)

>

6= 0 solves the system (15.11){(15.12) (with f = 0, F = 0). This ontra-

dits to Lemma 15.3. Therefore, (15.57) has only the trivial solution, whih

ompletes the proof. �

Corollary 15.6. Let S 2 C

1

and let s 2 R; 1 < p < 1, 1 � q � 1.

Then the operators

	

1

�	

2

�

�1

2

�

1

: [H

s

p

(S)℄

4

! [H

s�1

p

(S)℄

4

;

: [B

s

p;q

(S)℄

4

! [B

s�1

p;q

(S)℄

4

are ellipti invertible 	DOs of order +1.

Proof. It is verbatim the proof of Corollary 15.4. �

Let us introdue the following 	DO of order �1

	 := [	

1

�	

2

�

�1

2

�

1

℄

�1

: (15.58)

From Lemma 15.5 it follows that we an represent the solution of the system

(15.7) \expliitly" by formulae

g

(1)

= 	F �		

2

�

�1

2

f; (15.59)

g

(2)

= �

�1

2

�

1

	F ��

�1

2

(�

1

		

2

�

�1

2

+ I) f; (15.60)

where I is again the identity operator.

Substituting (15.59) and (15.60) into (15.1) and (15.2) we obtain the

following representation of solution of the problem (C)

!

:

U

(1)

(x) =W

(1)

�

	F �		

2

�

�1

2

f

�

(x); (15.61)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F�

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f

�

(x); (15.62)

where F and f are the boundary data of the interfae problem under on-

sideration (see (7.3){(7.4) or (7.11){(7.12)).

Now we are in the position to formulate the basi existene results in the

form of the following propositions.

Theorem 15.7. Let onditions (14:5) be ful�lled. Then the formulae

(15:61){(15:62) de�ne the unique regular solution to the problem (C)

!

of the

lass

(U

(1)

; U

(2)

) 2 ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

) \ SK

m

r

(


2

)℄

4

) (15.63)

(with r and ! as in (15:3)).

Proof. It is a ready onsequene of the uniqueness Theorem 9.8 and Lem-

mata 10.1, 15.3, and 15.5. �

Theorem 15.8. Let S 2 C

1

, 1 < p <1, and

f 2 [B

1�1=p

p;p

(S)℄

4

; F 2 [B

�1=p

p;p

(S)℄

4

: (15.64)
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Then the formulae (15:61){(15:62) represent the unique solution to the prob-

lem (C)

!

of the lass

(U

(1)

; U

(2)

) 2 ([W

1

p

(


1

)℄

4

; [W

1

p;lo

(


2

) \ SK

m

r

(


2

)℄

4

) (15.65)

(with r and ! as in (15:3)).

Proof. Solvability of the problem (C)

!

in the lass indiated in the theorem

is an immediate onsequene of the formulae (15.61)-(15.62), and Theorem

10.8 (with s = 1� 1=p).

To prove the uniqueness of solution to the problem (C)

!

for arbitrary

p 2 (1;1), we have to repeate word for word the arguments of the proof

of Theorem 14.6. The ase is that the key integral representation formulae

similar to (14.30)-(14.31) we an also write for a solution (U

(1)

; U

(2)

) to

the homogeneous problem (C)

!

of the lass (15.65) (see Theorem 10.8, item

ii)). �

15.2. In this subsetion we present the existene results for the prob-

lem (G)

!

. First we transform the interfae onditions (7.5){(7.8) to the

equivalent equations on S (f. Subsetion 14.3):

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F; (15.66)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

n

; [u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

; (15.67)

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

F

(+)

l

+

e

F

(�)

l

; (15.68)

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

e

F

(+)

m

+

e

F

(�)

m

; (15.69)

where

F =

�

(

e

F

(+)

l

�

e

F

(�)

l

) l + (

e

F

(+)

m

�

e

F

(�)

m

)m+

e

F

n

n; F

4

�

>

; (15.70)

and l, m, and n are as in Subsetion 7.2.

We seek the solution of the problem (G)

!

in the form of potentials (15.61)-

(15.62), where F is given by (15.70), and

[U

(1)

℄

+

� [U

(2)

℄

�

= f = (' l +  m+

e

f

n

n; f

4

)

>

: (15.71)

Here ' and  are unknown salar funtions of the spae C

k;�

(S), while

e

F

(�)

l

,

e

F

(�)

m

,

e

F

n

, F

4

,

e

f

n

, and f

4

are given funtions on S. We assume that

e

F

(�)

l

;

e

F

(�)

m

;

e

F

n

; F

4

2 C

k�1;�

(S);

e

f

n

; f

4

2 C

k;�

(S);

S 2 C

k+1;�

0

; k � 1; 0 < � < �

0

� 1:

(15.72)

From the results of the previous subsetion it is evident that the vetors U

(1)

and U

(2)

given by (15.61) and (15.62) are regular solutions to the steady

state osillation equations of thermoelastiity theory (7.2). Moreover, they

automatially satisfy the onditions (15.66) and (15.67). It remains to ful�l

the onditions (15.68) and (15.69) by hoosing the unknown funtions '

and  appropriately.
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Due to the jump relations of the single and double layer potentials (see

Lemmata 10.1 and 10.7) we have from (15.61)-(15.62) (see also (15.9),

(15.10) and (15.58))

[B

(1)

(D;n)U

(1)

℄

+

= L

(1)

	 [F �	

2

�

�1

2

f ℄ = 	

1

	 [F �	

2

�

�1

2

f ℄ =

= 	

1

	F �	

1

		

2

�

�1

2

(' l +  m+

e

f

n

n; f

4

)

>

; (15.73)

[B

(2)

(D;n)U

(2)

℄

�

= [L

(2)

+ p

0

(2

�1

I

4

+K

(2)

1

)℄ �

�1

2

[�

1

	F �

�(�

1

		

2

�

�1

2

+ I)f ℄ = 	

2

�

�1

2

[�

1

	F � (�

1

		

2

�

�1

2

+ I)f ℄ =

=	

2

�

�1

2

�

1

	F�	

2

�

�1

2

(�

1

		

2

�

�1

2

+I)('l+ m+

e

f

n

n; f

4

)

>

: (15.74)

Now let l

�

, m

�

, and n

�

, be the 4-vetors de�ned by (14.48) and let

e

�

= (0; 0; 0; 1)

>

: (15.75)

Then

(' l +  m+

e

f

n

n; f

4

)

>

= ' l

�

+  m

�

+

e

f

n

n

�

+ f

4

e

�

: (15.76)

Next we set

eq

1

= 	

1

	F �	

1

		

2

�

�1

2

(

e

f

n

n

�

+ f

4

e

�

);

eq

2

= 	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(

e

f

n

n

�

+ f

4

e

�

):

(15.77)

Applying these notations in (15.73) and (15.74) we get

[B

(1)

(D;n)U

(1)

℄

+

=

�

[P

(1)

(D;n)U

(1)

; �

(1)

(D;n)u

(1)

4

℄

+

�

>

=

= �	

1

		

2

�

�1

2

(' l

�

+  m

�

) + eq

1

; (15.78)

[B

(2)

(D;n)U

(2)

℄

�

=

�

[P

(2)

(D;n)U

(2)

; �

(2)

(D;n)u

(2)

4

℄

�

�

>

=

= �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I) (' l

�

+  m

�

) + eq

2

=

= �	

1

		

2

�

�1

2

(' l

�

+  m

�

) + eq

2

; (15.79)

sine

�	

2

�

�1

2

[�

1

		

2

�

�1

2

+ I ℄ = �[	

2

�

�1

2

�

1

	 + I ℄	

2

�

�1

2

=

= �[(	

1

�	

�1

)	 + I ℄ 	

2

�

�1

2

= �	

1

		

2

�

�1

2

(15.80)

due to (15.58).

Substitution of the formulae (15.78){(15.79) into the interfae onditions

(15.68){(15.69) leads to the following system of 	DEs on S for the unknown

funtions ' and  :

�[	

1

		

2

�

�1

2

('l

�

+ m

�

)℄�l

�

=2

�1

(

e

F

(+)

l

+

e

F

(�)

l

�eq

1

�l

�

�eq

2

�l

�

); (15.81)

�[	

1

		

2

�

�1

2

('l

�

+ m

�

)℄�m

�

=2

�1

(

e

F

(+)

m

+

e

F

(�)

m

�eq

1

�m

�

�eq

2

�m

�

): (15.82)

This system an also be rewritten as

M

G

h = q; (15.83)
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where h = (';  )

>

is the sought for 2-vetor, q = (q

1

; q

2

)

>

is the given

2-vetor,

q

1

= 2

�1

(

e

F

(+)

l

+

e

F

(�)

l

� eq

1

� l

�

� eq

2

� l

�

);

q

2

= 2

�1

(

e

F

(+)

m

+

e

F

(�)

m

� eq

1

�m

�

+ eq

2

�m

�

);

(15.84)

M

G

=

�

l

k

(K

G

)

kj

l

j

l

k

(K

G

)

kj

m

j

m

k

(K

G

)

kj

l

j

m

k

(K

G

)

kj

m

j

�

2�2

; (15.85)

K

G

= �	

1

		

2

�

�1

2

; (15.86)

in (15.85) the summation over repeated indies k and j is meant from 1 to 3.

Note that K

G

is a 4�4 matrix 	DO of order 1. As in the proof of Lemma

15.5 we easily derive that the prinipal homogeneous symbol matrix of the

operator K

G

reads as

�(K

G

) = ��(	

1

)�(	)�(	

2

)[�(�

2

)℄

�1

= �

�

[L

(1)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(1)

44

�

�

�M

�1

�

[L

(2)

℄

3�3

[0℄

3�1

[0℄

1�3

L

(2)

44

� �

[(K

(2)

)

�1

℄

3�3

[0℄

3�1

[0℄

1�3

�2

�

with the sameM; K

(j)

; L

(j)

; and L

(j)

44

as in (15.54), due to formulae (15.20)-

(15.29) and (15.54). The last equation together with (15.56) implies

�(K

G

) =

�

[Z℄

3�3

[0℄

3�1

[0℄

1�3

Z

44

�

4�4

; (15.87)

where

Z

44

= 2L

(1)

44

L

(2)

44

[L

(1)

44

+ L

(2)

44

℄

�1

(15.88)

is a positive funtion, while

Z = �L

(1)

(K

(1)

)

�1

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

�1

L

(2)

(K

(2)

)

�1

=

= f�K

(2)

(L

(2)

)

�1

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄K

(1)

(L

(1)

)

�1

g

�1

=

= [K

(1)

(L

(1)

)

�1

�K

(2)

(L

(2)

)

�1

℄

�1

(15.89)

is a positive de�nite 3 � 3 matrix (sine the matries (15.55) are positive

de�nite). Whene for arbitrary x 2 S,

e

� 2 R

2

n f0g, and � 2 C

3

there hold

the inequalities

Z

44

(x;

e

�) � 

0

j

e

�j; Z(x;

e

�)� � � � 

00

j

e

�j j�j

2

; (15.90)

with positive onstants 

0

and 

00

.

Lemma 15.9. The prinipal homogeneous symbol matries of the 	DOs

K

G

amd M

G

are positive de�nite.

Proof. The positive de�niteness of �(K

G

) follows from (15.87)-(15.90). In

the ase of the matrix M

G

, for arbitrary x 2 S,

e

� 2 R

2

n f0g, and � 2 C

2

,

we have

�(M

G

)� � � =
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=

�

l

k

(x)l

j

(x)[�(K

G

)℄

kj

l

k

(x)m

j

(x)[�(K

G

)℄

kj

m

k

(x)l

j

(x)[�(K

G

)℄

kj

m

k

(x)m

j

(x)[�(K

G

)℄

kj

�

2�2

�

�

1

�

2

�

�

�

�

1

�

2

�

=

= [l

k

(x)l

j

(x)Z

kj

�

1

+ l

k

(x)m

j

(x)Z

kj

�

2

℄�

1

+

+[m

k

(x)l

j

(x)Z

kj

�

1

+m

k

(x)m

j

(x)Z

kj

�

2

℄�

2

=

= Z

kj

[l

j

(x)�

1

+m

j

(x)�

2

℄[l

k

(x)�

1

+m

k

(x)�

2

℄ =

= Z[�

1

l(x) + �

2

m(x)℄ � [�

1

l(x) + �

2

m(x)℄ �

� 

00

j

e

�j j�

1

l(x)+�

2

m(x)j

2

= 

00

j

e

�j j�j

2

;

due to the seond inequality in (15.90). Therefore, �(M

G

) is a positive

de�nite matrix as well. �

Corollary 15.10. The dominant singular parts of the operators (15:85)

and (15:86) are formally self-adjoint ellipti 	DOs of order 1 with indies

equal to zero.

Next we reall that J

G

(


1

) denotes the set of Jones eigenfrequenies for

the problem (G)

!

(see (9.54){(9.55)) and prove the following assertion.

Lemma 15.11. If ! 62 J

G

(


1

), then the operators

M

G

: [C

l;�

(S)℄

2

! [C

l�1;�

(S)℄

2

; 1 � l � k;

: [H

s

p

(S)℄

2

! [H

s�1

p

(S)℄

2

; S 2 C

1

; s 2 R; 1 < p <1;

: [B

s

p;q

(S)℄

2

! [B

s�1

p;q

(S)℄

2

; S 2 C

1

; s 2 R;

1 < p <1; 1 � q � 1;

are isomorphisms.

Proof. Again due to the general theory of 	DOs on losed smooth mani-

folds, it suÆes to show that the homogeneous version of equation (15.83)

(q = 0) has only the trivial solution in the spae C

1;�

(S). Let h = (';  )

>

2

[C

1;�

(S)℄

2

be some solution of the homogeneous equation and onstrut

the vetors U

(1)

and U

(2)

by formulae (15.61){(15.62), where F = 0 and

f = l

�

'+m

�

 . Clearly, to the nontrivial pair (';  ) there orresponds the

nontrivial vetor f sine l

�

and m

�

are orthonormal (see (14.48)). On the

other hand it is evident that (U

(1)

; U

(2)

) 2 (C

1;�

(


1

) ; C

1;�

(


2

)\SK

m

r

(


2

))

and they satisfy the homogeneous onditions (15.66)-(15.69), whih are

equivalent to the homogeneous version of equations (7.5){(7.8). Therefore,

by Theorem 9.9 we onlude U

(�)

= 0 in 


�

(� = 1; 2): Now, from the equa-

tion [U

(1)

℄

+

� [U

(2)

℄

�

= f = l

�

'+m

�

 = 0; it follows that ' =  = 0. �

With quite the same arguments as in the previous subsetion (see proofs

of Theorems 15.7 and 15.8) we derive the following propositions.

Theorem 15.12. Let ! 62 J

G

(


1

) and onditions (15:72) be ful�lled.

Then the problem (G)

!

is uniquely solvable in the lass ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

)\

SK

m

r

(


2

)℄

4

) and the solution is representable in the form of potentials (15:61)

{(15:62), where F and f are given by (15:70) and (15:71), respetively, and

where (';  )

>

2 [C

k;�

(S)℄

2

is the unique solution of the system of 	DEs

(15:83) with the right-hand side q 2 [C

k�1;�

(S)℄

2

:
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Theorem 15.13. Let ! 62 J

G

(


1

), S 2 C

1

; and

e

F

(�)

l

e

F

(�)

m

;

e

F

n

; F

4

2 B

�1=p

p;p

(S);

e

f

n

; f

4

2 B

1�1=p

p;p

(S); 1 < p <1:

Then the problem (G)

!

is uniquely solvable in the lass ([W

1

p

(


1

)℄

4

,

[W

1

p;lo

(


2

) \ SK

m

r

(


2

)℄

4

) and the solution is representable in the form of

potentials (15:61){(15:62), where F and f are given by (15:70) and (15:71),

respetively, and where (';  )

>

2 [B

1�1=p

p;p

(S)℄

2

is the unique solution of the

system of 	DEs (15:83) with the right-hand side q 2 [B

�1=p

p;p

(S)℄

2

:

15.3. Here we investigate the nonhomogeneous problem (H)

!

applying

the same approah as above. Again we start with the reformulation of the

interfae onditions (7.7){(7.10) to the equivalent equations

[U

(1)

℄

+

� [U

(2)

℄

�

= f; [�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

;(15.91)

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

n

; (15.92)

[u

(1)

� l℄

+

+ [u

(2)

� l℄

�

=

e

f

(+)

l

+

e

f

(�)

l

;

[u

(1)

�m℄

+

+ [u

(2)

�m℄

�

=

e

f

(+)

m

+

e

f

(�)

m

;

(15.93)

where

f =

�

[

e

f

(+)

l

�

e

f

(�)

l

℄ l+ [

e

f

(+)

m

�

e

f

(�)

m

℄m+

e

f

n

n; f

4

�

>

: (15.94)

Next we set

F = (' l +  m+

e

F

n

n; F

4

)

>

= ' l

�

+  m

�

+

e

F

n

n

�

+ F

4

e

�

; (15.95)

where ' and  are unknown salar funtions, while l

�

, m

�

, n

�

, and e

�

are

the same 4-vetors as in the previous subsetion. Here we assume either

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 C

k;�

(S);

e

F

n

; F

4

2 C

k�1;�

(S);

S 2 C

k+1;�

0

; k � 1; 0 < � < �

0

� 1;

(15.96)

or

e

f

(�)

l

;

e

f

(�)

m

;

e

f

n

; f

4

2 B

1�1=p

p;p

(S);

e

F

n

; F

4

2 B

�1=p

p;p

(S); S 2 C

1

; 1 < p <1:

(15.97)

Now we look for the solution to the nonhomogeneous problem (H)

!

in the

form of potentials (15.61){(15.62), where f and F are de�ned by (15.94)

and (15.95), respetively.

One an easily hek that the onditions (15.91) and (15.92) are auto-

matially ful�lled. It remains to satisfy onditions (15.93).

Note that (see (15.10), (15.11), (15.58))

[U

(1)

℄

+

= �

1

	(F �	

2

�

�1

2

f) = �

1

	(' l

�

+  m

�

) + eq

3

; (15.98)

[U

(2)

℄

�

= �

2

(�

�1

2

�

1

	F ��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f) =

= �

1

	('l

�

+  m

�

) + eq

4

; (15.99)
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where eq

3

and eq

4

are given 4-vetors:

eq

3

= �

1

	(

e

F

n

n

�

+ F

4

e

�

)��

1

		

2

�

�1

2

f;

eq

4

= �

1

	(

e

F

n

n

�

+ F

4

e

�

)� [�

1

		

2

�

�1

2

+ I ℄ f:

(15.100)

Therefore, the interfae onditions (15.93) lead to the system of 	DEs for

' and  on S:

�

1

	(' l

�

+  m

�

) � l

�

= 2

�1

[

e

f

(+)

l

+

e

f

(�)

l

� eq

3

� l

�

� eq

4

� l

�

℄;

�

1

	(' l

�

+  m

�

) �m

�

= 2

�1

[

e

f

(+)

m

+

e

f

(�)

m

� eq

3

�m

�

� eq

4

�m

�

℄:

(15.101)

We rewrite these equations in matrix form

M

H

h = q

0

; (15.102)

where h = (';  )

>

is the sought for 2-vetor, q

0

= (q

0

1

; q

0

2

)

>

is the given

2-vetor,

q

0

1

= 2

�1

[

e

f

(+)

l

+

e

f

(�)

l

� eq

3

� l

�

� eq

4

� l

�

℄;

q

0

2

= 2

�1

[

e

f

(+)

m

+

e

f

(�)

m

� eq

3

�m

�

� eq

4

�m

�

℄;

(15.103)

M

H

=

�

l

k

(K

H

)

kj

l

j

l

k

(K

H

)

kj

m

j

m

k

(K

H

)

kj

l

j

m

k

(K

H

)

kj

m

j

�

2�2

; (15.104)

K

H

= �

1

	; (15.105)

here again the summation over repeated indies k and j is meant from 1 to 3.

By formulae (15.20)-(15.29) and (15.54) we get

�(K

H

) = �(�

1

)�(	) =

�

[X ℄

3�3

[0℄

3�1

[0℄

1�3

X

44

�

4�4

; (15.106)

where

X = K

(1)

�

[L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄K

(1)

�

�1

=

= [L

(1)

(K

(1)

)

�1

� L

(2)

(K

(2)

)

�1

℄

�1

(15.107)

is a positive de�nite 3 � 3 matrix and X

44

= 2

�1

[L

(1)

44

+ L

(2)

44

℄

�1

> 0 for

arbitrary x 2 S and

e

� 2 R

2

n f0g.

Now by the same reasonings as in the previous subsetion one an prove

the following propositions.

Lemma 15.14. The prinipal homogeneous symbol matries of the 	DOs

K

H

amd M

H

are positive de�nite.

Corollary 15.15. The dominant singular parts of the operators (15:104)

and (15:105) are formally self-adjoint ellipti 	DOs of order �1 with indies

equal to zero.

Lemma 15.16. If ! 62 J

H

(


1

) (i.e., see (9:56), (9:57), then the operators

M

H

: [C

l�1;�

(S)℄

2

! [C

l;�

(S)℄

2

; 1 � l � k;

: [H

s

p

(S)℄

2

! [H

s+1

p

(S)℄

2

; S 2 C

1

; s 2 R; 1 < p <1;

: [B

s

p;q

(S)℄

2

! [B

s+1

p;q

(S)℄

2

; S 2 C

1

; s 2 R;
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1 < p <1; 1 � q � 1;

are isomorphisms.

Theorem 15.17. Let ! 62 J

H

(


1

), S 2 C

1

; and onditions (15:96)

[(15:97)℄ be ful�lled. Then the nonhomogeneous problem (H)

!

is uniquely

solvable in the lass

(U

(1)

; U

(2)

) 2 ([C

k;�

(


1

)℄

4

; [C

k;�

(


2

) \ SK

m

r

(


2

)℄

4

)

h

(U

(1)

; U

(2)

) 2 ([W

1

p

(


1

)℄

4

; [W

1

p;lo

(


2

) \ SK

m

r

(


2

)℄

4

)

i

and the solution is representable in the form of potentials (15:61){(15:62),

where f and F are given by (15:94) and (15:95), and where

(';  )

>

2 [C

k;�

(S)℄

2

h

(';  )

>

2 [B

1�1=p

p;p

(S)℄

2

i

is the unique solution to the system of 	DEs (15:102).
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