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M. GRIGOLIA

ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE
GOURSAT PROBLEM FOR SYSTEMS OF FUNCTIONAL PARTIAL
DIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE

(Reported on October 12, 1998)

In the rectangle Dy, = [0,a] x [0,b] let us consider the system of functional partial
differential equations of hyperbolic type
Ou (z,y) duz(z,y)
—— = filur,u2)(z,y), ——F0—= = fo(ur,u2)(z,y) (1)
ox Oy
with the initial conditions
u1(0,y) =0 for 0<y<b, wusz,00=0 for 0<z<a, (2)

where f; : C(Dgp; R") X C(Dgp; R") — C(Dgp; R™) (i = 1,2) are continuous Volterra
operators.

A particular case of the system (1) is, for example, the system of integro-differential
equations

w =q (%yyul(an(x),ﬂn(y)),u2(a12($)7512(y)),
T

B13(y)

Gl(:r, t)u1 (a13(:r), t)dt) s
Oua(z,y) ; (1)
T’ =92 (%yy u1(a21(2), B21(y)), uz(a22(z), B22(y)),
Yy
asg(z)

G (s, y)ua (s, Baa(w)ds )
0
where g; : Dgp X R™ X R X R® — R™ and G; : Dy, — R"*™ (i = 1,2) are continuous
vector and matrix functions, respectively, while a;j, : [0,a] — [0,a] and B; : [0,b] — [0, 0]
(i =1,2; k =1,2,3) are continuous functions such that
aip(z) <z for 0<z<a, Buly) <y for 0<y<b (i=12 k=1,2,3). (3)
Along with (1'), (2) consider also the Goursat problem for the second order hyperbolic

system with retarded arguments, i.e., the problem

ou(z.y)
i = 0y u(n @), A1), ploa(e), B20)), (s (@), B50) ()

u(0,y) =0, for 0<y<b, u(z,00=0 for 0<z<a, (5)
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where

oulr,y) o ulry)

p(Ia y) = oz ay > (6)

g: Dgp X R® X R™® x R® — R™ is a continuous vector function, while «y, : [0,a] — [0, a]
and By, : [0,b] — [0,b] (k = 1,2, 3) are continuous functions such that

(@) <@ for 0<a <a, Bily) <y for 0<y<b (k=1,2,3). (7)

Let the problem (4), (5) have a solution u. Suppose

ou(x, Ou(w,
ul(may) = ( y)7 u?(may) = ( y)
dy ox
Then
Y z
u(z,y) :/M(I,t)dt, u(z,y) :/w(s,y)d&
0 0

Therefore the vector function (u1,u2) is the solution of the problem (1'), (2), where

gi(ﬂ?,y,ZhZQ,Z:;)Eg(ﬂ?',y,Z:;,ZQ,Zl), Gl(xay)EE (i:172)7 (8)
air(z) = gk (@), Bir(z) = Ba—k(z) (1=1,2; k=1,2,3)

and E is the unit n X n matrix.
The inverse assumption is obvious: if the identities (8) are fulfilled and the problem
(1"), (2) has a solution (u1,u2), then the vector function u given by the equality

is the solution of the problem (4), (5). Thus the problem (4), (5) is equivalent to the
problem (17), (2) for the case, where g¢;, G;, ok, and B (i = 1,2; k = 1,2,3) are given
by the equalities (8).

In the cases, where ap(z) = =z, Br(y) = y (k = 1,2,3), ap(z) = =z, Bix(y) = y
(: = 1,2; k = 1,2,3), the problems of the existence and uniqueness of a solution of
the problems (4), (5), and (1’), (2) were investigated by many authors (see, e.g., [1-9]
and references therein). However, the problem (1), (2) as well as the problems (1), (2)
and (4), (5) are studied insufficiently in the general case. The existence and uniqueness
theorems formulated below concern with this case.

We shall use the following notation and definitions.

R™ is the space of n-dimensional real vectors in which under the norm ||z]| of an
arbitrary vector z is meant a sum of absolute values of this vector.

R ={z2 € R" :||z|| < r}.

R™*™ is the space of real n x n matrices in which under the norm ||Z|| of an arbitrary
matrix Z is meant maximal value among absolute values of components of this matrix.

C(Dgp; R™) is the space of n-dimensional continuous vector functions z : Dy, — R™
with the norm

I2llap = max {[|z(z,)|: 0<z<a, 0<y<b)
If z € C(Dgp; R™) and (z,y) € Dgyyp, then

2lle,y = max {||z(s,t)][ : 0<s<m, 0<t<y}.
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C’(I’O)(Dab; R™) is the space of continuous vector functions z : Dy, — R™ having the
continuous partial derivative in the first argument.

C L (Dgy; R) =

=52

- { € Cr(Daps RY) : |l2(a, )l < 1y
ox

| <ro tor (@) € Dus}.

C’(O’l)(Dab; R™) is the space of continuous vector functions z : Dy, — R™ having the
continuous partial derivative in the second argument.

O (Dgp; R) =

0z(z,y)

={zecovwuirn: el < |Z5
Y

| <ro or @) e Das}.

v1(z)(-,y) and va(z)(-,z) are moduli of continuity of the vector function (z,y) —
z(z,y) in the first and second arguments, i.e.,

vi(2)(8,y) = max {||z(z,y) — 2(%,y)|| :
v2(2)(8,x) = max {||2(z,y) — 2(x,7)| :

Definition 1. We say that f : C(Dgp; R™) x C(D

; C(Dgp; R™) is a Volterra
operator if for any z; and Z; € C(Dgp; R™) (i = 1,2) and

N
z,y) € Dgyyp from the equalities
Yy

—~
2
o

zi(s,t) =Zi(s,t) for 0<s<z, 0<t<

—~

i=1,2)
there follows the equality f(z1,22)(z,y) = f(Z1,22)(z,y)-

Definition 2. We say that the system (1) is evolutional if f; : C(Dgp; R™)X
C(Dgp; R™) — C(Dgp; R™) (i = 1,2) are Volterra operators.

For example, the system (1’) is evolutional if the functions a;; and B (¢ = 1,2;
k =1,2,3) satisfy the inequalities (3).

Throughout the remainder it will be assumed that f; : C(Dgp; R™) X C(Dgp; R™) —
C(Dgp; R™) (i = 1,2) are the continuous Volterra operators, i.e. the system (1) is evolu-
tional.

By a solution of (1) we understand a vector function (ur,us) € C(10)(Dyy; R x
c©1(D,y; R™) satisfying (1) on Dgy.

Theorem 1. Let there exist positive numbers r, ro, and continuous nondecreasing
functions € : [0,+oo[— [0,400[, ¢ : [0,+00[—]0,400[, and w; : [0,+occ[— [0,+o0[
(i = 1,2) such that £(0) =0,

-

/ﬁ >2(a+b), ro=e(r), ()
¢(s)
0
1
wi(s) >0 for s >0, /wd(ss) =+oo (i=1,2), (10)

0
(1,0) n (0,1) n "
and for any 21 € Cy2y" (Dap; R™) and 22 € Cy 25" (Dap; R™) the conditions
[ fi(z1,22) (@) || < e (ll21lley + 122]le) (0 =1,2), (11

(| f1(e1, 22) (@, 9) = fr(21, 22) (@, 9) || < elly = F1) + w1 [ve(z1)(ly — Tl )],
(| 221, 22) @, y) = fo(z1, 22) () | < ella —F]) +wz [v1(22) (12 — F, )]
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are fulfilled on Dyy,. Then the problem (1), (2) has at least one solution.

Theorem 2. Let there exist positive numbers r, ro, and continuous nondecreasing
functions ¢ : [0, 4+o00[ —]0,4+00[ and w : [0,+o00[— [0,+00[ such that for any z1 and
Z1 € CT(I’O)(Dab; R"™) and z2 and Z> € CT(O’I)(Dab; R"™) along with (11) the condition

holds on D.,,. Moreover, let

fitz1,2)(@9)~ fi(21,7) @ 0| <w (s~ Zilley +lz — llay) (=1,2)

1

w(0) =0, w(s)>0 for s>0, /% = +00, (12)

0

and let the condition (9) hold. Then the problem (1), (2) has at most one solution.

From Theorems 1 and 2 we obtain the following propositions on the solvability and
unique solvability of the problems (1), (2) and (4), (5).

Corollary 1. Let there exist positive numbers [, r, and continuous nondecreasing
functions ¢ : [0, +00[ —]0, +00[ and w; : [0, +00[ — [0, +oo[ (i =1,2) such that

B13(y) a3 (z)
IG1(z, )l dt <1, / |G2(s,y)llds <1 for (z,y) € Dap (i =1,2) (13)
0 0

and the conditions

9:(@, 3,21, 22, 28) || < o (lleall + leall + llzall) G = 1,2), (14)

||91($,yyzl,z2,23) - gl(fvayyfl,zmzza)n L wi(llzr =z,
(

|91(2,y, 21,22, 23) — g1(w,y, 21, %2, 23) || | < wa(]]22 — 7))
hold on Dy, X R} X R} X R}. Moreover, let

r

d
/ L S 21 +1)(a+b) (15)
o(s)
0
and the functions a;k, Bik, wi (¢ = 1,2; k = 1,2,3) satisfy the conditions (3) and (10).
Then the problem (1'), (2) has at least one solution.

Corollary 2. Let there exist positive numbers I, r, and continuous nondecreasing
functions ¢ : [0,400[ —]0, 400 and w : [0, +00[ — [0, +00[ such that the matriz functions
G; (i = 1,2) satisfy the inequalities (13), and along with (14) the condition

<w(ller = Zul + [le2 = Z2l| + |23 = Zl) (1=1,2)

gi(x,y721,z2,213) — gi(x7y721722723)|| <

holds on Dy, X R™ X R X R*. Moreover, let the functions oy, Bir (i1 =1,2; k =1,2,3),
w and @ satisfy the conditions (3), (12) and (15). Then the problem (1'), (2) has one
and only one solution.
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Corollary 3. Let there exist positive numbers I, r, and continuous nondecreasing
functions ¢ : [0, +00[ =0, +o0[ and w; : [0,+00[ — [0, 400 (i =1,2) such that

ai(z) < for 0<z<a, Pi(y) <L for 0<y<h, (16)
and the conditions
|9(z,y, 21,22, z3) || < @ (Ilz1ll + llz2ll +[123]1), (17)
|9(z,y, 21, 22,23) — g(@,y, 21, %2, 23) || < wi(llz2 — 22,
|9(z,y, 21,22, 23) — g,y 21,22, F3)|| < wa(llzs —Zs]))

hold on Dy, x R™ X R* X R". Moreover, let the functions ay, Br (kK = 1,2,3), w;
(i =1,2) and ¢ satisfy the conditions (7), (10), and (15). Then the problem (4), (5) has
at least one solution.

In the case, where ay(z) = = and Bx(y) = y (k = 1,2,3), the results of Hartman—
Wintner [1] and Alexiewicz—Orlicz [3] concerning the solvability of the Goursat problem
follow from Corollary 3.

Corollary 4. Letl there exist positive numbers I, r, and continuous nondecreasing
functions ¢ : [0, 4+00[ —]0, +00[ and w : [0, +oo[ — [0, +oo[ such that the inequalities (7)
and (16) are fulfilled and along with (17) the condition

9(@,y, 21,22, 23)—g(w,y, %1, 72, %) | <w (llz1 =21l + |72 —Z2 | 4|25 —Za]l)

holds on Dy, X R™ X R™ x R"™. Moreover, let the functions w and ¢ satisfy the conditions
(12) and (15). Then the problem (4), (5) has one and only one solution.
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