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Abstract. Plane problems of the stationary �ltration theory with par-

tially unknown boundaries are considered. The porous medium is assumed

to be homogeneous, isotropic and non-deformable. The motion of the 
uid

obeys the Darcy law. The simply connected domain occupied by the mov-

ing 
uid is bounded by a simple sectionally analytic contour consisting of

unknown depression curves, line segments, half-lines and straight lines. The

paper describes mathematical methods of �nding the unknown parts of the

boundary of the 
uid motion domain, as well as of determining geometric,

cinematic and physical characteristics of the moving 
uid. In solving the

corresponding mathematical problem, the use is made of the general solu-

tion of the non-linear Schwarz di�erential equation. The general solution is

constructed in the paper.
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reziume. ganxilulia stacionaruli filtraciis Teoriis brtKeli

amocanebi naCilobriv ucnobi sazGvrebiT. igulisxmeba, rom forovani

garemo erTgvarovani, izotropuli da aradeformirebadia. siTxis moZ-

raoba emorhileba darsis kanons. moZravi siTxis mier dakavebuli calad-

bmuli are SemosazGvrulia uban-uban analizuri konturiT, romelic

Sedgeba ucnobi depresiuli Cirebis, Crfivi segmentebis, naxevarCrfe-

ebisa da Crfeebisagan. naSromSi aGCerilia siTxis moZraobis aris sazG-

vris ucnobi naCilebis gansazGvris, moZravi siTxis geometriuli, kine-

matikuri da fizikuri maxasiaTeblebis moZebnis meTodebi. Sesabamisi

maTematikuri amocanis amoxsnisas gamoKenebulia Svarcis araCrfivi di-

ferencialuri gantolebis zogadi amonaxsni, romelic amave naSromSia

agebuli.
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1. Introduction

In the present paper we consider some plane problems of the �ltration

theory for the stationary motion of an incompressible 
uid in a porous

medium obeying the Darcy law. The porous medium is assumed to be non-

deformable, isotropic and homogeneous. The formulation and fundamental

investigation of these problems belongs to P. Ya. Polubarinova-Kochina [1{

5].

The plane of the motion of the 
uid coincides with that of the complex

variable z = x+ iy. We introduce the complex potential !(z) = '(x; y) +

i (x; y), where '(x; y) and  (x; y) are the velocity potential and the 
ow

function, respectively. The functions '(x; y),  (x; y) are connected by the

Cauchy{Riemann conditions.

If the analytic function !(z) is found, then by virtue of the equalities

'(x; y)=�k(p=
 + y) + c; !

0

(z)=u� iv; u=

@'

@x

=

@ 

@y

; v=

@'

@y

=�

@ 

@x

we can �nd all characteristics of the �ltration 
ow, i.e., the �ltration velocity,

the pressure, the stress, the discharge of the 
uid upon �ltration, etc. Here k

is the �ltration coe�cient, c is an arbitrary constant, p is the hydrodynamic

pressure, 
 is the speci�c weight of the 
uid, u, v are the components of the

vector of �ltration velocity, !

0

(z) is the complex velocity.

The boundary of the domain of the 
ow involves unknown parts, the

depression curves whose equations are to be found. Denote the simply

connected domains of the 
ow of the 
uid, of the complex potential and

of the complex velocity respectively by S(z), S(!) and S(w), and their

boundaries respectively by l(z), l(!) and l(w). Here w = !

0

(z). Below the

boundary l(z) of the domain S(z) will be assumed to be a simple, sectionally

analytic, closed contour consisting of a �nite number of unknown depression

curves, line segments, half-lines and straight lines. The domain S(z) may

be bounded or unbounded. In the particular case where all parts of the

boundary l(z) are known, the domain S(z) is a linear polygon.

In the domain S(z), we seek for an analytic function !(z) = '(x; y) +

i (x; y) satisfying two linearly independent boundary conditions of the

type [2]

a

11

'(x; y) + a

12

 (x; y) + a

13

x+ a

14

y = f

1

; (x; y) 2 l(z); (1.1)

a

21

'(x; y) + a

22

 (x; y) + a

23

x+ a

24

y = f

2

; (x; y) 2 l(z); (1.2)

where a

ik

, f

i

, i = 1; 2, k = 1; 2; 3; 4, are known piecewise-constant real func-

tions, i.e., they are constant on every above-mentioned part of the boundary,

and the rank of the matrix

a =

�

a

11

a

12

a

13

a

14

a

21

a

22

a

23

a

24

�

is equal to two.
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If a part of the boundary l(z) of S(z) is known, then in one of the

conditions (1.1) or (1.2) the coe�cients at the functions '(x; y),  (x; y) for

the known part of the boundary l(z) turn out to be equal to zero.

There is a theory [1{6] which allows one to determine the boundary

l(w) of S(w) and a part of the boundary l(!) of S(!) without solving

the basic problem. Moreover, one can determine the coordinates of those

vertices of the domain S(w) to which there correspond angular points on

the boundary l(z) of S(z). As for the vertices of the domain S(w) (the cut

ends with the angles 2�) to which there correspond ordinary (non-angular)

points on the boundary l(z) of S(z), the coordinates of these vertices remain

undetermined until the problem is solved completely.

In determining the boundary l(w) of the domain S(w), we have used

some known results from the complex analysis [2, 21, 30, 31, 32].

Under the conditions imposed on the domains S(z) and on the corre-

sponding boundaries l(z), one can claim that the function !(z) is analytic

in S(z), continuous in the closed domainS(z), satis�es !

0

(z) 6= 0 everywhere

including the boundary l(z) except its angular points, and is analytically

continuable across any part of the boundary l(z) not containing angular

points.

As far as the functions !(z) and !

0

(z) map conformally the domain S(z)

and its boundary l(z) (the conformity is violated at the angular points of

l(z)) respectively onto the domains S(!) and S(w) with the boundaries l(!)

and l(w), these functions are analytically continuable across the parts of the

boundaries not containing angular points [30, Ch. II, x28{29].

In the sequel, for the complex-conjugate functions we will use the nota-

tion f(z) = f

1

(x; y) + if

2

(x; y), f(z) = f

1

(x; y) � if

2

(x; y), while for the

derivatives of functions and matrices, the notation f

0

(z) =

d

dz

f(z).

Theorem. If an analytic function !(z) satis�es in the domain S(z)

two linearly independent boundary conditions (1:1){(1:2), then the function

w(z) = !

0

(z) maps the boundary l(z) of S(z) into the boundary of the do-

main S(w) consisting of a �nite number of circular arcs, line segments,

half-lines and straight lines, that is, to the domain S(z) with the boundary

l(z) there corresponds a circular polygon on the plane w(z).

Proof. If we take arbitrarily a part of the boundary l(z) of S(z) and

di�erentiate the conditions (1.1)-(1.2) along this part with respect to the

real parameter s, then we obtain

(a

11

u� a

12

v + a

13

) cos(x; s) + (a

11

v + a

12

u+ a

14

) cos(y; s) = 0; (1.3)

(a

21

u� a

22

v + a

23

) cos(x; s) + (a

21

v + a

22

u+ a

24

) cos(y; s) = 0; (1.4)

where s is the arc length of the arbitrarily taken part of the boundary S(z),

cos(x; s) = dx=ds, cos(y; s) = dy=ds.

In order for the system of equations (1.3), (1.4) to have a nonzero solution

with respect to cos(x; s) and cos(y; s), it is necessary and su�cient that the
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determinant of this system be equal to zero,

�

0

= (a

11

u� a

12

v + a

13

)(a

21

v + a

22

u+ a

24

) �

�(a

21

u� a

22

v + a

23

)(a

11

v + a

12

u+ a

14

): (1.5)

From (1.5) we obtain

A

0

(u

2

+ v

2

) + B

�

1

u+ B

�

2

v +D

0

= 0; (1.6)

where

A

0

=

�

�

�

�

a

11

a

12

a

21

a

22

�

�

�

�

; D

0

=

�

�

�

�

a

13

a

14

a

23

a

24

�

�

�

�

; (1.7)

B

�

1

=

�

�

�

�

a

11

a

14

a

21

a

24

�

�

�

�

+

�

�

�

�

a

13

a

12

a

23

a

22

�

�

�

�

; (1.8)

B

�

2

=

�

�

�

�

a

14

a

12

a

24

a

22

�

�

�

�

+

�

�

�

�

a

13

a

11

a

23

a

21

�

�

�

�

: (1.9)

The second order curve decompose into two straight (real or imaginary)

lines if and only if A

�

0

= �A

0

�=4 = 0, where � = (B

�

1

)

2

+ (B

�

2

)

2

� 4A

0

D

0

.

If A

�

0

6= 0, A

2

0

> 0, and A

�

0

and A

0

are of the same sign, then we have

an imaginary circle; if A

2

0

> 0, A

�

0

and A

0

are of di�erent signs, we have a

circle [7, 8].

The center coordinates (u

0

; v

0

) of the circle (1.6) and its radius R are

de�ned by

u

0

= �B

�

1

=[2a

0

]; v

0

= �B

�

2

=[2A

0

]; R =

p

�=[2A

0

]:

The circle (1.6) will be tangent to the axis of abscissas ou if (B

�

1

)

2

=

4A

0

D

0

and to the axis of ordinates ov if (B

�

2

)

2

= 4A

0

D

0

.

In deducing (1.6), a part of the boundary of S(z) has been taken arbi-

trarily. To some other parts of the boundary of S(z), on w there correspond

arcs of the circles, i.e., the domain S(w) is a circular polygon. In the case

where A

0

= 0 along the whole contour l(z), we have a linear polygon.

The equation (1.6) can be written as follows:

i2A

0

ww� B

0

w + B

0

w + i2D

0

= 0; (1.10)

where

w = u� iv; w = u+ iv; B

0

= B

�

2

� iB

�

1

; (1.11)

From (1.10) we �nd that w =

�B

0

w�i2D

0

i2A

0

w�B

0

, where � = B

0

B

0

� 4A

0

D

0

=

(B

�

1

)

2

+ (B

�

1

)

2

� 4A

0

D

0

6= 0.

Note that in the general case the equality

� = 4A

2

0

R

2

= 1 (1.12)

does not hold.

We will get back to the equality (1.12) later on.
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Here we make the following remark. Using a linear-fractional transfor-

mation, one can always transform the domain S(w) in a way that a part

of the boundary l(w) on the plane w will coincide with the abscissae axis

along which w = w, i.e., v = 0. This remark will be used later on.

Below we will come across the class of matrices G

j

, j = 1; 2; : : :; n; : : : ,

satisfying the following conditions: G

j

G

j

= G

j

G

j

= E, detG

j

= 1, G

j

G

k

6=

G

k

G

j

, k 6= j, (G

j

G

k

)(G

j

G

k

) 6= E, k 6= j where G

j

is a matrix which

is complex conjugate to the matrix G

j

, and E is the unit matrix. The

properties of the matrices G

j

, j = 1; 2; : : : are very close to those of the

complex-orthogonal ones [32].

The matrices G

j

can be represented as

G

j

=

�

B

j

�iD

j

iA

j

B

j

�

; j = 1; 2; : : : ;

where A

j

, D

j

are real and B

j

, B

j

are complex-conjugate numbers.

Denoting the characteristic numbers of the matrix G

j

by �

kj

, k = 1; 2,

we obtain �

1j

+ �

2j

= B

j

+B

j

, �

1j

�

2j

= 1.

It follows from the property of the matrix G

j

that �

2j

= �

1j

. Therefore

�

1j

�

1j

= 1, j�

1j

j = 1 and hence �

kj

= exp[i2��

kj

], where �

kj

are real

numbers.

If we take two arbitrary matrices G

j

and G

k

from the above-mentioned

class and consider the matrix g

jk

= G

j

G

k

, then we can see that the char-

acteristic numbers �

kj

of the matrices g

jk

satisfy the conditions �

kj

=

exp[i2��

kj

], where �

kj

are real numbers.

2. Statement of the Boundary Value Problem

Let a moving 
uid occupy a simply connected domain S(z) with the

boundary l(z) consisting of a �nite number of known and unknown simple

analytic Jordan arcs.

An analytic function !(z) maps conformally the domain S(z) onto a

domain S(!), and its boundary l(z) into the boundary l(!) of S(!). Note

that a part of angular points of the boundary l(z) is mapped by the function

!(z) into angular points of l(!), while the remaining angular points are

mapped into non-angular points of the boundary l(!) [1{6].

Analogously, the analytic function w(z) = !

0

(z) = u(x; y)�iv(x; y) maps

conformally the domain S(z) onto a domain S(w), and its boundary l(z)

into the boundary l(w) of S(w). Moreover, the function w(z) maps a part

of angular points of the boundary l(z) into those of l(w), and the remaining

angular points are mapped into ordinary non-angular points of the boundary

l(w). The function w(z) can map some non-angular points of the boundary

l(z) into angular points of the boundary l(w) with interior (with respect to

the domain S(w)) angles 2� [1{6].
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Below the points of the boundaries l(z), l(!), l(w) are assumed to be

singular if to these points on either of the boundaries l(z), l(!), l(w) there

correspond angular points.

Let us take arbitrarily a singular point on the boundary l(z) of the domain

S(z), for example, l(z; E

1

). Let to a point l(z; E

1

) on the boundaries l(!),

l(w) there correspond the points l(!;E

0

1

), l(w;E

00

1

). When the domain S(z)

is went around in the positive direction starting from the point l(z; E

1

), then

the boundaries l(!), l(w) are went aound in the positive direction starting

from the points l(!;E

0

1

), l(w;E

00

1

). We enumerate all the singular points

on the boundaries l(z), l(!), l(w) as follows: l(z; E

k

), l(!;E

0

k

), l(w;E

00

k

),

k = 1; 2; : : : ; n; n+ 1.

Of all singular points l(z:E

k

), l(!;E

0

k

), k = 1; 2; : : : ; n; n+ 1, we distin-

guish such ones to which on the boundary l(w) of the domain S(w) there

correspond ordinary non-angular points. Such singular points are commonly

called removable singularities. Let the number of such points be equal to

m

1

. When the boundary l(z) is went around in the positive direction, we

enumerate the removable singular points as "

�

1

; "

�

2

; : : : ; "

�

m

1

; "

�

m

1

. The inte-

rior angles on l(z) and l(!) at the removable singular points are equal to

�=2 [1{6].

In tracing l(!) we enumerate all angular points: l(!; !

k

), k = 1; 2; : : : ;

m

2

+ 1; while in tracing l(w) we enumerate them as follows: l(w;w

k

) = b

k

,

k = 1; 2; : : : ;m;m + 1, where b

k

, k = 1; 2; : : : ;m;m + 1; are the complex

coordinates of the vertices of the domain S(w).

The equation (1.6) determines completely the circle. Two circles pass

through every vertex of the domain S(w) (two straight lines upon degener-

ation), and each of them forms four angles. We have to choose one of them.

To this end we, �rst of all, use the equation (1.6) and then the value of the

corresponding angles of the domains S(z), S(!). By means of these angles

we can determine the angles at the vertices of the domains S(w), S(!) [1{6].

Despite the fact that some of the interior angles of S(!) are unknown, we

have the angle values for the corresponding vertices of the domain S(w).

By means of the latter we can determine the unknown interior angle at

the vertex of the domain S(!) [2]. This henceforth allows us to take for

granted that all the interior angles and the coordinates of the vertices of

S(w), excluding the cut ends with interior angles 2�, are determined.

Denote the interior angles at the vertices b

j

, j = 1; 2; : : :;m;m + 1, of

the domain S(w) by ��

j

, j = 1; 2; : : :;m;m+ 1, respectively.

Note that the two neighboring circles passing through the point b

k

inter-

sect at the point b

0

k

which in the general case is beyond the boundary l(w).

If these circles are tangent, then b

k

= b

0

k

.

In general it is quite di�cult to �nd an analytic function !(z) = '(x; y)+

i (x; y) by the boundary conditions (1.1){(1.2). Therefore one introduces

an auxiliary complex plane � = t + i� . The half-plane Im(�) > 0 of this

plane is mapped conformally onto the domains S(z), S(!), S(w). Denote

the domain Im(�) > 0 and its boundary respectively by S(�) and l(�).
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In what follows, we will need the following result from the papers [21,

30, 32].

If D and D

�

are simply connected domains whose boundaries consist of a

�nite number of analytic Jordan arcs, then there exists a unique conformal

mapping w = f(z) of the domain D onto the domain D

�

, transferring

three boundary points z

k

, k = 1; 2; 3; of D into three boundary points W

k

,

k = 1; 2; 3 of D

�

. The points z

k

and w

k

are given arbitrarily, their order in

tracing the boundaries of the domains being preserved.

Let the analytic functions z(�), !(�), w(�) = !

0

(�)=z

0

(�) map confor-

mally the domain S(�) (Im(�) > 0) onto the domains S(z), S(!), S(w),

respectively. Moreover, let the points of the boundary l(�) of S(�), that is

the points of the real axis t of the plane �, t = e

k

, k = 1; 2; : : :; n; n + 1

(�1 < e

1

< e

2

< � � � < e

n+1

=1), be respectively mapped into the points

l(z; E

k

), l(!;E

0

k

), l(w;E

00

k

), k = 1; 2; : : :; n; n + 1; of the boundaries l(z),

l(!), l(w) of the domains S(z), S(!), S(w).

The boundary values of the functions z(�), !(�), w(�), as � ! t, are

denoted by z(t) = x(t) + iy(t), !(t) = '(t) + i (t), w(t) = u(t) � iv(t);

and by z(t), !(t), w(t) we denote the complex functions conjugate to the

functions z(t), !(t), w(t).

The boundary conditions (1.1){(1.2) with respect to the analytic func-

tions !(�) and z(�) can be written in the form [2]

Im[m

11

(t)!(t) +m

12

(t)z(t)] = f

1

(t); �1 < t < +1; (2.1)

Im[m

21

(t)!(t) +m

22

(t)z(t)] = f

2

(t); �1 < t < +1; (2.2)

where m

k1

(t) = a

k2

(t) + ia

k1

(t), m

k2

(t) = a

k4

(t) + ia

k3

(t), f

k

(t), k = 1; 2,

are piecewise constant functions with the discontinuity points t = e

k

, k =

1; 2; : : : ; n; n+ 1.

In the domain S(�) we have to �nd analytic functions z(�), !(�) satisfying

the boundary conditions (2.1){(2.2). By means of these functions, the points

z(�), !(�) are mapped respectively into the points t = e

k

, k = 1; 2; : : : ; n; n+

1. Moreover, each part of the boundary must necessarily be mapped into the

corresponding parts of the boundaries l(z; E

k

), l(!;E

0

k

), k = 1; 2; : : :; n+1.

The unknown parts of the boundaries l(�), �1 < t < e

1

, e

k

< t < e

k+1

, k =

1; 2; : : : ; n and the parameters t = e

k

, k = 1; 2; : : :; n, are to be determined.

If we succeed in constructing analytic functions z(�), !(�), which map

conformally the domainS(�) respectively onto the domains S(z), S(!), then

the boundary values z(t), !(t) of these functions will satisfy the conditions

(2.1){(2.2). Moreover, if the functions z(�), !(�) are known, then we can

construct the function w(�) = !

0

(�)=z

0

(�).

If one or several coe�cients m

kj

, k = 1; 2; j = 1; 2, are equal to zero,

and m

11

(t)m

22

(t) � m

12

(t)m

21

(t) 6= 0, then by the conditions (2.1){(2.2)

the functions !(�), z(�) can be constructed by means of the Cauchy type

integrals. There are particular cases where allm

kj

(t) 6= 0, k = 1; 2, j = 1; 2,

but nevertheless one manages to construct the functions !(�), z(�) in the



117

elementary way [12].

As we will see below, in the general case we have managed to construct

�rst the analytic function w(�). Then, by means of this function, we have

constructed analytic functions !

0

(�), z

0

(�) and, �nally, we have found the

functions !(�) and z(�).

The notion of singular and removable singular points of the boundary

l(z) has been introduced above. As is said, to singular points of the bound-

ary l(z) there correspond singular points t = e

k

, k = 1; 2; : : : ; n; n + 1,

of the boundary l(�). They can be divided into two groups: removable

and unremovable. We have enumerated the removable points by t = "

k

,

n = 1; 2; : : : ;m

1

, and the unremovable ones by t = a

k

, k = 1; 2; : : : ;m;m+1.

To the points t = a

k

, k = 1; 2; : : :;m+1, on the boundary l(w) there corre-

spond the points l(w;w

k

) = b

k

while to the points t = "

k

, k = 1; 2; : : : ;m,

there correspond the points l(z; z

k

) = "

�

k

, k = 1; 2; : : : ;m

1

. By our choice,

the point t = e

n+1

= a

m+1

= 1 is a unremovable singular point. Among

the points t = a

k

, k = 1; 2; : : : ;m, we select and �x arbitrarily two points,

because one point t = a

m+1

=1 is already �xed.

An investigation of the problem (2.1){(2.2) from the point of view of the

Riemann-Hilbert problem can be found in [17, 18].

Introduce an analytic vector �(�) and a vector f(t) as follows:

�(�) = [!(�); z(�)]; Im(�) > 0; �(�) = [!(�); z(�)]; Im(�) < 0;

f(t) = [f

1

(t); f

2

(t)]; �1 < t < +1:

The conditions (2.1){(2.2) with respect to the vector �(�) can be writ-

ten as

�(t) = A

�1

�

(t)A

�

(t)�(t) + 2iA

�1

�

(t)f(t); �1 < t < +1; (2.3)

where

A

�

(t) =

�

m

11

(t) m

12

(t)

m

21

(t) m

22

(t)

�

; �1 < t < +1;

is a non-singular piecewise-constant matrix, A

�1

�

is the inverse to A

�

A

�1

�

(t) =

1

detA

�

(t)

�

m

22

(t) m

12

(t)

m

21

(t) m

11

(t)

�

; �1 < t < +1;

and A

�

(t) is the complex conjugate to A

�

(t).

It can be easily veri�ed that

A

�1

�

(t)A

�

(t) =

1

detA

�

(t)

�

�B

0

(t) �i2D

0

(t)

i2A

0

(t) �B

0

(t)

�

; �1 < t < +1;

where A

0

(t), B

0

(t), D

0

(t) are de�ned by (1.7){(1.9) and (1.11).

We can directly verify that the equalities

�(t) = B

0

(t)B

0

(t) � 4A

0

(t)D

0

(t) = detA

�

(t) � detA

�

(t);

det[A

�1

�

(t) �A

�

(t)] = [detA

�

(t)]=[detA

�

(t)]
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are also valid.

Di�erentiating the equality (2.3) along the t, u-axis and writing it in

terms of projections, we obtain

!

0

(t) = [�B

0

(t)!

0

(t) � i2D

0

(t)z

0

(t)]= detA

�

(t); �1 < t < +1; (2.4)

z

0

(t) = [i2a

0

(t)!

0

(t)� B

0

(t)z

0

(t)]= detA

�

(t); �1 < t < +1: (2.5)

After division, from (2.4) and (2.5) we get

!

0

(t)

z

0

(t)

=

�B

0

(t)!

0

(t)� i2D

0

(t)z

0

(t)

i2A

0

(t)!

0

(t)� B

0

(t)z

0

(t)

; �1 < t < +1: (2.6)

The equality (2.6) can also be written as

w(t) =

�B

0

(t)w(t)� i2D

0

(t)

i2A

0

w(t)� B

0

(t)

; �1 < t < +1; (2.7)

where w(t) = !

0

(t)=z

0

(t).

As we will see below, by means of the solution of the well-known Schwarz

di�erential equation we can �nd an analytic function satisfying (2.7) on the

t-axis, provided the condition

�(t) = B

0

(t)B

0

(t) � 4A

0

(t)D

0

(t) = 1; �1 < t < +1; (2.8)

is ful�lled.

However, the condition (2.8) may not be ful�lled. If we divide the nu-

merator and the denominator in (2.7) by

p

�(t) and introduce the notation

B(t) = �B

0

(t)=

p

�(t); B(t) = �B

0

(t)=

p

�(t); �1 < t < +1; (2.9)

A(t) = 2A

0

(t)=

p

�(t); D(t) = 2D

0

(t)=

p

�(t); �1 < t < +1; (2.10)

then the condition

�

1

(t) = B(t)B(t) �A(t)D(t) = 1; �1 < t < +1; (2.11)

will be ful�lled.

With regard for (2.9) and (2.10), we can rewrite (2.7) as

w(t) =

B(t)w(t) � iD(t)

iA(t)w(t) + B(t)

; �1 < t < +1; (2.12)

and (2.4) and (2.5) as

!

0

(t)=

q

detA

�

(t)=detA

�

(t)

�

B(t) !

0

(t)�iD(t)z

0

(t)

�

; �1<t<+1; (2.13)

z

0

(t)=

q

detA

�

(t)=detA

�

(t)

�

iA(t)!

0

(t)+B(t)z

0

(t)

�

; �1<t<+1: (2.14)
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A solution of the system (2.13)-(2.14) will be sought in the form

!

0

(t) = 
(t)!

1

(t); z

0

(t) = 
(t)z

1

(t); �1 < t < +1; (2.15)

where !

1

(t), z

1

(t) and 
(t) must satisfy the boundary conditions

!

1

(t) = B(t) !

1

(t) � iD(t)z

1

(t); �1 < t < +1; (2.16)

z

1

(t) = iA(t)!

1

(t) +B(t)z

1

(t); �1 < t < +1; (2.17)


(t) =

q

detA

�

(t)= detA

�

(t) 
(t); �1 < t < +1: (2.18)

Note that the value of the function w(t) = !

0

(t)=z

0

(t) does not change

after the representation (2.15), and hence so does (2.12). A little later we

will prove that (2.12) implies (2.16){(2.17) [13{16].

If we denote the values of the matrixA

�

(t) for the intervals �1 < t < e

1

,

e

j

< t < e

j+1

, j = 1; 2; : : : ; n, respectively by A

�(n+1)

, A

�j

, j = 1; 2; : : : ; n,

then we can write

detA

�j

= j detA

�j

j exp[i'

j

]; detA

�j

= j detA

�j

j exp[�i'

j

];

j detA

�j

j=j detA

�j

j = 1; j = 1; 2; : : : ; n; n+ 1;

q

detA

�j

= detA

�j

=

q

exp[�i2'

j

]=exp[�i'

j

]; j = 1; 2; : : : ; n+ 1: (2.19)

Taking into account (2.19), we rewrite (2.18) as


(t) = exp[i'

0

(t)]
(t); �1 < t < +1; (2.20)

where '

0

(t) is a piecewise constant function de�ned by

q

detA

�

(t)= detA

�

(t) = exp[�i'

0

(t)]; �1 < t < +1:

After taking the logarithm of (2.20), we get

ln
(t) � ln
(t) = �i'

0

(t); �1 < t < +1: (2.21)

We will not introduce here the notion of index but will act formally and

will �nd from (2.21) a particular solution belonging to some class, and then

we will de�ne more exactly which solution out of all possible solutions of

(2.21) is just needed.

The particular solution of the boundary value problem (2.21) can be

obtained by the formula [17]

ln 
(�) =

(�1)

2�

Z

+1

�1

� + i

t+ i

'

0

(t)dt

t� �

: (2.22)

From (2.22) we �nd that


(�) = const(� � e

1

)

�

1

(� � e

2

)

�

2

� � � (� � e

n

)

�

n

; (2.23)



120

where �

1

= ('

n+1

� '

1

)=2�, �

j

= ('

j�1

� '

j

)=2�, j = 2; 3; : : : ; n, and

'

j

, j = 1; 2; : : : ; n+ 1 are the values of the function '

0

(t) on the intervals

e

j

< t < e

j+1

, j = 1; 2; : : : ; n, �1 < t < e

1

, respectively.

The numbers '

j

, j = 1; 2; : : : ; n+1, in (2.23) will be chosen appropriately

after �nding the functions !

0

(�) and z

0

(�).

It follows from the above-said that to construct in the domain S(�) the

analytic functions !(�) and z(�) satisfying the boundary conditions (2.1){

(2.2), it is necessary �rst to construct in the domain S(�) the functions

!

1

(�), z

1

(�) satisfying the conditions (2.16){(2.17). And, as we will see

below, to construct the functions !

1

(�) and z

1

(�), it is necessary �rst to

construct in the domain S(�) the function w(�) = !

0

(�)=z

0

(�) = !

1

(�)=z

1

(�)

satisfying the boundary condition (2.12).

3. Investigation of the Problem (2.16){(2.17)

We write the boundary value problem (2.16){(2.17) in the vector form:

�

1

(t) = g(t)�

1

(t); �1 < t < +1; (3.1)

where

�

1

(�) = [!

1

(�); z

1

(�)]; Im(�) > 0; �

1

(�) = [!

1

(�); z

1

(�)]; Im(�) < 0;

g(t) =

�

B(t) �i2D(t)

iA(t) B(t)

�

; �1 < t < +1:

For the intervals a

j

< t < a

j+1

, j = 1; 2; : : : ; n, �1 < t < a

1

, denote

the values of the matrix g(t) respectively by g

j

, j = 1; 2; : : : ; n; n+1. There

is a close connection between the characteristic numbers of the matrices

g

�1

j

g

j�1

, j = 1; 2; : : : ; n + 1, and the interior angles at the vertices of the

circular polygon S(!). Indeed, consider the characteristic equation for the

point t = e

j

[2, 17, 18]:

det(g

�1

j

(t)g

j�1

(t) � �

j

E) = 0; (3.2)

where �

j

is a parameter and E is the unit matrix.

The equation (3.2) can be also written as det(g

j�1

(t) � �

j

g

j

(t)) = 0.

Hence, taking into account the fact that det g

j

= 1, j = 1; 2; : : :; n + 1, we

obtain �

2

j

� a

0

�

j

+ 1 = 0, a

0j

= B

j�1

B

j

+ B

j

B

j�1

� A

j�1

D

j

� A

j

D

j�1

,

which implies that �

1j

�

2j

= 1; �

1j

+�

2j

= a

0j

, where �

1j

and �

2j

are the

characteristic roots of (3.2).

Consider the numbers �

kj

=

1

2�i

ln�

kj

, which are de�ned to within inte-

ger summands.

It has been proved in [2] that �

kj

are real numbers satisfying �

1j

��

2j

=

�

j

.

Let us get back to the removable singular points "

1

; "

2

; : : : ; "

m

1

For these

points the neighboring matrices g

j�1

and g

j

are diagonal, and t = e

j

= "

j

,

�

kj

= �1, k = 1; 2, �

1j

= �1=2, �

2j

= �1=2 [1{5]. Moreover, A

0

(t) = 0,
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B

1

(t) = 0, B

2

(t) 6= 0, D

0

(t) = 0, v(t) = 0, u(t) 6= 0 or A

0

(t) = 0, B

2

(t) = 0,

B

1

(t) 6= 0, D

0

(t) = 0, u(t) = 0, v(t) 6= 0, where t 2 (a

j�1

; a

j+1

).

Introduce a new sought for vector �

2

(�) = [!

2

(�); z

2

(�)] by

�

1

(�) = �

1

(�)�

2

(�); (3.3)

where

�

1

(t) = [(t� "

1

)(t � "

2

) � � � (t� "

m

1

)]

�1=2

; �

1

(t) > 0; t > "

m

1

: (3.4)

The boundary condition (3.1) for �

2

(�) takes the form

�

2

(t) = G(t)�

2

(t); �1 < t < +1; (3.5)

where G(t) = [�

1

(t)]

�1

g(t)�

1

(t), �1 < t < +1, also is a piecewise con-

stant matrix with the discontinuity points a

1

; a

2

; a

3

; : : : , a

m

; a

m+1

=1.

The matrix G(t) di�ers from the matrix g(t) only by the fact that some

matrices g

j

are multiplied by �1 and the others remain unchanged.

If some elements of the matrix G(t) are equal to zero and detG(t) 6= 0,

then the problem (3.5) is solved completely by the Cauchy type integrals,

and the equations for the determination of the unknown parameters are

derived [17]. Besides these cases, there are the ones where all elements of

the matrix G(t) di�er from zero and the problem (3.5) is solved simply.

Such cases involve circular polygons, when the boundary S

1

(w) consists of

a �nite number of arcs of concentric circles with the center M (w

0

) and

straight cuts passing through M (w

0

) upon their extension. By means of

the logarithmic function such domains S

1

(w) can be transformed into linear

polygons. Moreover, there exist many domains S

2

(w) which by the linear-

fractional transformation reduce to a set of domainsS

1

(w). Hence, using the

Christo�el{Schwarz formula [12], for the domainsS

1

(w), S

2

(w) we construct

the functions w(�).

We will now proceed to the solution of (3.5). If a circular polygon is

bounded, then 0 � �

k

� 2. Below we will consider the case where one or

several vertices of the domain S(w) are at the point w = 1. This may

happen if two neighboring circular arcs degenerate to half-lines or straight

lines. Moreover, if the sides of the corresponding angle are parallel, then the

vertex of the interior angle is assumed to be equal to zero. If, however, the

sides at the vertex b

k

= 1 diverge and intersect at a �nite point b

�

k

upon

their extention, forming the angle ��

�

k

turned to the vertex b

�

k

, then we will

assume that ��

k

= ���

�

k

; hence, �

k

may take the values �2 � �

k

� 2.

It is known that the construction of the sought for function w(�) is re-

duced to the solution of the nonlinear Schwarz equation which in its turn

reduces to a Fuchs class equation. Therefore for the domain S(w) we con-

struct the Fuchs class equation

V

00

(�) + P

�

(�)V

0

(�) + q

�

(�)V (�) = 0; (3.6)
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where

P

�

(�) =

m

X

j=1

1� �

j

� � a

j

; q

�

(�) =

m

X

j=1

c

j

� � a

j

;

c

j

, j = 1; 2; : : : ;m, are the unknown accessory real parameters which for

the present satisfy the conditions

m

X

j=1

c

j

= 0;

m

X

j=1

c

j

a

j

= �

1

�

2

; (3.7)

m

X

j=1

�

j

+ �

1

+ �

2

= m � 1; �

1

� �

2

= �

m+1

:

Denote by V

1

(�), V

2

(�) linearly independent solutions of the equation

(3.6) and construct the function w

1

(�) = V

1

(�)=V

2

(�). The function w

1

(�)

is a particular solution of the following Schwarz equation:

w

000

(�)

w

0

(�)

�

3

2

�

w

00

(�)

w

0

(�)

�

2

= 2q

�

(�) � P

0

�

(�) �

1

2

[P

�

(�)]

2

; (3.8)

which is constructed with regard for the equation (3.6).

The general solution of the equation (3.8) is given by w(�) =

pw

1

(�)+q

rw

1

(�)+s

,

where p; q; r; s are constants (complex in general) of integration of (3.8)

satisfying ps� rq = 1.

The equation (3.8) is invariant under linear-fractional transformations

both of the function w(�) and of �. Note that the coe�cients of the trans-

formation of w(�) may be either complex or real, while those of the transfor-

mation of � may be only real. Moreover, the equation (3.6) is also invariant

under the transformations of � with real coe�cients [19{22].

In constructing a general solution of the equation (3.8), we have already

used its invariance property with respect to w(�). Exploit now the invari-

ance of the equation (3.6) with respect to �. Using this property, we choose

arbitrarily and �x three of the parameters t = a

k

, k = 1; 2; : : :;m+1, while

the remaining (m � 2) ones are to be de�ned. Moreover, the coe�cients

of the equation (3.6) involve the parameters c

j

, j = 1; 2; : : : ;m which for

the present satisfy only two conditions (3.7), so one can de�ne only two of

them. The remaining (m � 2) parameters are also to be de�ned. Conse-

quently, the coe�cients of the equation (3.6) depend on 2(m� 2) unknown

parameters. The parameters p, q, r, s are also to be de�ned. Thus, to

construct w(�) we must de�ne only 2(m+1) parameters, while to construct

the functions !

0

(�), z

0

(�) we must add the parameters connected with the

removable singular points. Their number is m

1

.
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4. Solution of Equation (3.6)

Each of the Fuchs class equations (3.6) near every singular point t = a

k

,

k = 1; 2; : : : ;m+1, and near any ordinary point, where p

�

(�), q

�

(�) are an-

alytic, have two linearly independent local solutions. They are constructed

by means of in�nite series whose coe�cients are de�ned in the well-known

manner. The series converge in the circles with centers at the points for

which they have been constructed. Radii of these circles are determined by

the distances to the singular points nearest from the centers.

Denote by V

kj

(�), k = 1; 2, j = 1; 2; 3; : : :;m + 1, linearly independent

local solutions of the equation (3.6) for the singular points � = a

k

, k =

1; 2; : : : ;m+1, and by '

kj

(�), k = 1; 2, j = 1; 2; : : : ;m� 1, the ones for the

points t = a

�

j

= (a

j

+ a

j+1

)=2, j = 1; 2; : : : ;m� 1.

Assume u

1j

(�) = pv

1j

(�) + qv

2j

(�), u

2j

(�) = rv

1j

(�) + sv

2j

(�), where

p; q; r; s are integration constants of (3.8).

The di�erential equation (3.6) can be written in the form of a system

�

0

(�) = �(�)P(�); (4.1)

where

�(�) =

�

u

1

(�) u

0

1

(�)

u

2

(�) u

0

2

(�)

�

; P(�) =

�

0 �q

�

(�)

1 �p

�

(�)

�

; (4.2)

u

1

(�) and u

2

(�) are linearly independent solutions of (3.6).

First we �nd the solution of (4.1), that is, we construct the matrix �(�).

Then by means of this matrix �(�) we seek for a solution of the boundary

value problem (3.5).

It is known that if the matrix �

�

(�) is a solution of (4.1), then the matrix

T�

�

(�) is also a solution of (4.1), where

T =

�

p q

r s

�

; detT = 1: (4.3)

If we construct the local linearly independent solutions v

kj

(�) and '

kj

(�)

of the equation (3.6) for the points � = a

j

, j = 1; 2; : : : ;m + 1, and � =

a

�

j

= (a

j

+ a

j+1

)=2, respectively, then the local fundamental matrices for

(4.1) will take the form

�

j

(�) =

�

v

1j

(�) v

0

1j

(�)

v

2j

(�) v

0

2j

(�)

�

; j = 1; 2; : : : ;m+ 1;

H

j

(�) =

�

'

1j

(�) '

0

1j

(�)

'

2j

(�) '

0

2j

(�)

�

; j = 1; 2; : : : ;m� 1:

(4.4)

Assume that the inequality ja

m

j > ja

1

j holds. Then at the point a

�

m

= �ja

m

j

we construct the local series '

�k

(�), k = 1; 2, and the corresponding local

matrixH

�

(�). Radii of convergence of these series will be determined by the

distance from the point t = a

�

m

to the singular point t = a

1

. Analogously,

if ja

1

j > ja

m

j, then at the point a

�

1

= ja

1

j we construct local series '

�

k

(�),
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k = 1; 2, and the matrix H. Radii of convergence of these series will be

determined by the distance from the point a

�

1

to the point t = a

m

.

After this we can see that there exists a �nite number of circles with the

centers � = a

j

, j = 1; 2; : : :;m+ 1, � = a

�

j

= (a

j

+ a

j+1

)=2, j = 1; 2; : : : ;m,

covering completely the abscissae axis. Note that by the circle with the

center � = 1 will be meant the exterior of the circle j�j < r, where r will

be assumed to be equal to the greatest of the numbers ja

1

j, ja

m

j.

The equation (3.6) near the point � = a

j

can be written as

(� � a

j

)

2

v

00

(�) + (� � a

j

)p

j

(�)v

0

(�) + q

j

(�)v(�) = 0; (4.5)

where

p

j

(�) =

1

X

k=0

p

kj

(� � a

j

)

k

; q

j

(�) =

1

X

k=1

q

kj

(� � a

j

)

k

: (4.6)

The solutions of the equations (4.5) and (4.6) for the point � = a

m+1

=1

by means of the transformation � = 1=�

1

, can be written in the form [29,

27]

�

2

1

v

00

(�

1

) + �

1

[2�

1

X

k=0

p

k1

�

k

1

]v

0

(�

1

) +

�

1

X

k=0

q

k1

�

k

�

v(�

1

) = 0; (4.7)

where

p

�

(1=�

1

) = �

1

1

X

k=0

p

k1

�

k

1

; q

�

(1=�

1

) = �

2

1

1

X

k=0

q

k1

�

k

1

: (4.8)

The solutions of the equations (4.5) and (4.7) for the points � = a

j

,

j = 1; 2; : : :;m, � =1 are sought respectively in the form [22, 27]

v

j

(t) = (t� a

j

)

�

j

ev

j

(t); ev

j

(t) =

1

X

n=0




nj

(t� a

j

)

n

; (4.9)

v

1

(t) = t

��

1

ev

1

(t); ev

1

(t) =

1

X

n=0




nj

t

�n

: (4.10)

Substituting (4.9) in (4.5), we obtain

(� � a

j

)

�

j

�

1

X

k=0

M

kj

(� � a

j

)

k

�

= 0;

whence there follows an in�nite recursion system of equations to de�ne 


nj

,

n = 1; 2; : : : ,

M

0j

(�

j

)=


0j

f

0j

(�

j

) = 0; f

0j

(�

j

)=�

j

(�

j

� 1)+�

j

p

0j

+q

0j

=0; (4.11)

M

1j

(�

j

) = 


1j

(�

j

)f

0j

(�

j

+ 1) + 


0j

f

1j

(�

j

) = 0; (4.12)

M

2j

(�

j

)=


2j

(�

j

)f

0j

(�

j

+ 2)+


1j

(�

j

)f

1j

(�

j

+ 1)+


0j

f

2j

(�

j

)=0; (4.13)
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:::::::::::::::::::::::::::::::::::::::::::::::::::::

M

nj

(�

j

) = 


nj

(�

j

)f

0j

(�

j

+ n) + 


(n�1)j

(�

j

)f

1j

(�

j

+ n� 1) + � � �+

+


[n�(k�2)]j

(�

j

)f

(k�2)j

(�

j

+ n � k + 2) + � � �+

+


1j

(�

j

)f

(n�1)j

(�

j

+ 1) + 


0j

f

nj

(�

j

) = 0; (4.14)

:::::::::::::::::::::::::::::::::::::::::::::::::::::

f

kj

(�

j

) = �

j

p

kj

+ q

kj

; q

0j

= 0: (4.15)

If the determining equation (4.11) has the roots �

1j

, �

2j

(�

1j

> �

2j

)

such that �

1j

� �

2j

6= n, n = 0; 1; 2, then by the formulas (4.12){(4.14) we

construct for the equation (4.5) two local linearly independent solutions of

the form

v

kj

(t) = (t � a

j

)

�

kj




0j

ev

kj

(t); ev

kj

(t) = 1 +

1

X

n=1




k

nj

(t� a

j

)

n

; (4.16)

k = 1; 2; j = 1; 2; : : : ;m:

The proof for the convergence of the series (4.16) can be found in [19,22].

The convergence radii of the series ev

kj

(�) are determined by the distance

from the point t = a

j

to the nearest of the points t = a

j�1

, t = a

j+1

.

In the case where the equation (4.11) has the roots such that �

1j

=

�

2j

, we di�erentiate it with respect to �

j

, calculate and obtain the second

solution,

v

2j

(�) = v

1j

(�) ln(� � a

j

) + v

�

2j

(�);

v

�

2j

(�) = (� � a

j

)

�

2j




0j

1

X

k=1

d

d�

j

[


kj

(�

j

)]

�

j

=�

2j

(� � a

j

)

k

:

The �rst one v

1j

(�) is of the form (4.16).

Finally, if the equation (4.11) has the roots such that �

1j

� �

2j

= s,

s = 1; 2; then the �rst solution in these cases can again be determined by

(4.16), and the second one is sought in the form [23]

v

j

(t) = 


0j

(t � a

j

)

�

j

[�

j

� �

2j

+

1

X

n=1




nj

(�

j

)(t� a

j

)

n

]: (4.17)

To calculate 


nj

(�

j

), in (4.11){(4.14) we substitute instead of 


0j

the

product 


0j

(�

j

� �

2j

) and then de�ne successively 


nj

(�

j

), n = 1; 2; : : : .

The de�ned in such a manner 


nj

(�

j

) we substitute in (4.17), di�erentiate

with respect to �

j

and then calculate the limit as �

j

! �

2j

. We obtain

v

2j

(t)= lim

�

j

!�

2j




0j

�

(t�a

j

)

�

j

�

�

j

��

2j

+

1

X

n=1




nj

(�

j

)(t�a

j

)

n

�

ln(t�a

j

)+
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+(t� a

j

)

�

j

�

1 +

1

X

n=1

d

d�

j

[


nj

(�

j

)](t� a

j

)

n

�

�

j

!�

2j

�

:

To de�ne v

k1

(t), k = 1; 2, we act as in de�ning v

kj

(�) but in this case

the use is made of the equation (4.7) and the representation (4.10).

Consider the case where the contour of the circular polygon contains a cut

with the vertex b

j

, where �

1j

��

2j

= 2. For this case, P.Ya. Polubarinova{

Kochina has proved that the solution v

2j

(�) must be with no logarithmic

term.She has also obtained an equation connecting the parameters a

j

; c

j

[2].

A necessary and su�cient conditions for the absense of the logarithmic

term in the solution v

2j

(�) is of the form [9, 11]




1

1j

(�

2j

)f

1j

(�

2j

+ 1) + f

2j

(�

2j

) = 0; (4.18)

where 


1

1j

(�

2j

) is de�ned by (4.12), and f

1j

(�

2j

+ 1), f

2j

(�

2j

) by (4.15).

After some transformations, (4.18) takes the form q

2j

+ q

2

1j

+ q

1j

p

1j

= 0.

To construct v

2j

(�) for the cut end, it su�ces to calculate 


2

2j

(�

2j

). The

other coe�cients 


2

nj

(�

2j

), n = 1; 3; 4; 5; : : : are calculated by the formulas

(4.14). The equation (4.13) is ful�lled under the condition (4.18), since

f

0j

(�

2j

+ 2) = f

0j

(�

1j

) = 0. To de�ne 


2

nj

(�

2j

) uniquely, we have to solve

(4.13) for any �

j

6= �

2j

with respect to 


2j

(�

j

):




2j

(�

j

) =

�[


1j

(�

j

)f

1j

(�

j

+ 1) + 


0j

f

2j

(�

j

)]

f

0j

(�

j

+ 2)

: (4.19)

In (4.19), the numerator and the denominator vanish as �

j

! �

2j

. Hence

there is an indeterminacy. Uncovering the indeterminacy by the L'Hospital

rule, we get 


2

2j

= �0; 5[p

1j

(p

1j

+ 2q

1j

) + p

2j

].

5. Local Matrices

From the set of branches of the functions exp[�

kj

ln(t�a

j

)] appearing in

the local solutions v

kj

(�) we choose as follows:

exp[�

kj

ln(t � a

j

)] > 0; t > a

j

;

[exp[�

kj

ln(t� a

j

)]]

�

= exp[�i��

kj

] exp[�

kj

ln(a

j

� t)]; t < a

j

;

exp[��

k1

ln(�t)]

�

> 0; �1 < t < a

1

;

[exp[��

k1

ln(t� a

j

)]]

�

=exp[�i�(��

k1

)] exp[��

k1

ln t]; a

m

<t<+1:

Besides the matrices (4.4), let us introduce the matrices

�

�

j

(t) =

�

v

1j

�

(t)

v

0

1j

�

(t)

v

2j

�

(t)

v

0

2j

�

(t)

�

; a

j�1

< t < a

j

;

where

v

�

kj

(t) = (a

j

� t)

�

kj




0j

ev

kj

(t); v

0

kj

�

(t) = �(a

j

� t)

�

kj




0j

ev

0

kj

�

(t);
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v

0

kj

(t) =

d

dt

[v

kj

(t)]; ev

0

kj

�

(t) = �

kj

+

1

X

n=1




k

nj

(�

kj

+ n)(t � a

j

)

n

:

Between the matrices �

j

(t) and �

�

j

(t) there is a connection:

�

�

j

(t)=�

�

j

�

�

j

(t); a

j�1

<t<a

j

; �

�

1

(t)=�

�

1

�

�

1

(t); a

m

<t<+1:

Here the matrices �

�

j

for �

1j

� �

2j

6= s, s = 0; 1; 2, are de�ned by

�

�

j

=

�

exp(�i��

1j

) 0

0 exp(�i��

2j

)

�

;

while for �

1j

� �

2j

= s, s = 0; 1; 2, by

�

�

j

= e

�i��

2j

�

1 0

��i 1

�

:

For the cut end w = b

j

, the matrices �

�

j

are de�ned as follows. If

the characteristic numbers are of the form �

1j

= 3=2, �

2j

= �1=2, then

�

�

j

= �iE, where E is the unit matrix, and if �

1j

= 2, �

2j

= 0 then

�

�

j

= E.

The elements of the matrix �

�

j

(t) containing the logarithmic terms are

de�ned by

v

�

2j

(t) = 


0j

n

(a

j

� t)

�

2j

[(t� a

j

)

s

ev

1j

(t) ln(a

j

� t) + ev

2

2j

(t)];

v

0

2j

�

(t) = �


0j

(a

j

� t)

�

2j�1

[(a

j

� t)

s

e

i�s

ev

0

2j

(t) ln(a

j

� t) + ev

1j

(t)] + ev

2

2j

(t)

o

:

In the local solutions v

kj

(�), '

kj

(�) there appear the constants 


0j

, '

0j

which are de�ned by means of the Liouville formula




0j

=

�

m

Y

k=1;k 6=j

j�

j

j ja

j

� a

k

j

1���k

�

�1=2

; '

0j

=

�

m

Y

k=1

ja

�

j

� a

k

j

1��

k

�

�1=2

:

If �

j

= 0, then we take j�

j

j = 1.

6. Construction of the Fundamental Matrix

Construct the matrix

�(�) =

�

u

1

(�) u

0

1

(�)

u

2

(�) u

0

2

(�)

�

; (6.1)

where u

1

(�) and u

2

(�) are linearly independent solutions of (3.6).

The convergence domains of the matrices �

j

(t) and H

j

(t) have always a

common part in which we can write the equalities

�

�

j

(t) = T

�

j

H

j

(t); H

j

(t) = T

0j

�

j�1

(t); a

j�1

< t < a

j

; (6.2)

�

�

1

(t) = T

�m

H

�m

(t); H

�m

(t) = T

�1

�

1

(t); �1 < t < a

1

; (6.3)

�

�

1

(t) = T

1

�

m

(t); a

m

< t < +1;
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where T

�

j

, T

0j

, T

�m

, T

�1

, T

1

are the constant real matrices de�ned from

the equalities (6.2) and (6.3). Note that in these equalities t can be �xed

arbitrarily in the domains where both local matrices occurring in the above-

mentioned equalities converge.

De�ne the matrix (6.1) along the t-axis of the plane � as follows:

�

�

(t) = T�

�

m

(t); �

+

m

(t) = �

�

m

(t); a

m

< t < +1;

�

�

(t) = T�

+

m

�

�

m

(t); a

m�1

< t < a

m

;

�

�

(t) = T�

�

m

T

m

�

m�1

(t); T

m

= T

�

m

T

0m

; a

m�1

< t < a

m

;

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

�

�

(t) = T�

�

m

T

m

� � �T

1

�

�

1

�

�

1

(t); �1 < t < a

1

;

�

�

(t) = T�

�

m

T

m

� � ��

�

1

�

�m

T

�1

�

1

(t); �1 < t < a

1

;

�

�

(t) = T�

�

m

T

m

� � ��

�

1

T

1

�

�

1

(t); a

m

< t <1:

(6.4)

The signs (�) in the matrices (6.4) denote the limiting values of the

matrix �(�) in the upper and in the lower half-planes, respectively. The

matrix T is de�ned by (4.3).

7. Solution of the Boundary Value Problem

Direct checking shows that the matrices (6.4) satisfy the equation (4.1).

Therefore, the parameters a

j

, c

j

, j = 1; 2; : : : ;m, p, q, r, s being chosen

appropriately, the same matrices must satisfy the boundary condition (3.5).

Indeed, begin our proof with the interval (a

m

;+1). We have

T�

+

m

(t)=G

m

T�

�

m

(t); �

+

m

(t)=�

�

m

(t); G

m

=E; T =T; a

m

<t<+1: (7.1)

For the interval (a

m�1

; a

m

) we obtain

T�

+

m

�

�

m

(t) = G

m�1

T�

�

m

�

�

m

(t); a

m�1

< t < a

m

: (7.2)

The equations (7.1) and (7.2) result in

(�

+

m

)

2

= T

�1

G

�1

m

G

m�1

T (7.3)

from which we can see that the matrices (�

+

m

)

2

, G

�1

m

G

m�1

are similar.

In a similar way we �nd the matrix equations for the remaining points

� = a

j

, j = m � 1;m� 2; : : : ; 2; 1, � =1. We have

T�

+

m

T

m

�

+

m�1

= G

m�2

T�

�

m

T

m

�

�

m�1

; (7.4)

T�

+

m

T

m

�

m�1

T

m�1

�

+

m�2

= G

m�3

T�

�

m

T

m

�

�

m�1

T

m�1

�

�

m�2

; (7.5)

:::::::::::::::::::::::::::::::::::::::::::::

T �

+

m

T

m

�

+

m�1

T

m�1

�

+

m�2

T

m�2

: : :T

1

�

+

1

=

= G

m+1

T�

�

m

T

m

�

�

m�1

T

m�1

�

�

m�2

T

m�2

: : :T

1

�

�

1

; (7.6)

T�

+

m

T

m

�

+

m�1

T

m�1

: : :T

�1

�

+

m

=G

m

T�

�

m

T

m

�

�

m�1

T

m�1

: : :T

�1

�

�

1

: (7.7)
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The matrix equations (7.4){(7.7) can be written as

(�

+

m�1

)

2

= T

�1

m

(�

+

m

)

�1

T

�1

G

�1

m�1

G

m�2

T�

�

m

T

m

: (7.8)

Here we make the following remark. In composing the matrix equations,

we must take into account that two neighboring circular arcs forming a cut

with the end w = b

j

belong to one circle.

We rewrite (7.3) as T�

+

m

= G

m�1

T�

�

m

, whence

p exp(i��

1m

) = B

m�1

p exp(�i��

1m

)� iD

m�1

r exp(�i��

1m

); (7.9)

r exp(i��

1m

) = iA

m�1

p exp(�i��

1m

) + B

m�1

r exp(�i��

1m

); (7.10)

q exp(i��

2m

) = B

m�1

q exp(�i��

2m

)� iD

m�1

s exp(�i��

2m

); (7.11)

s exp(i��

2m

) = iA

m�1

q exp(�i��

2m

) + B

m�1

s exp(�i��

2m

): (7.12)

If we divide the corresponding parts of the equalities (7.9), (7.10) and

(7.11), (7.12), then we can see that the ratios p=r and q=s in the interval

(a

m�1

; a

m

) satisfy the boundary condition (3.5),

p

r

=

B

m�1

p=r � iD

m�1

iA

m�1

p=r + B

m�1

;

q

s

=

B

m�1

q=s� iD

m�1

iA

m�1

q=s +B

m�1

:

The coordinates of the points w = b

m

and w = b

0

m

also satisfy this condition;

hence

p=r = b

m

; q=s = b

0

m

; (7.13)

where b

0

m

is the second intersection point of the two neighboring circles.

Take advantage of the remark made at the beginning of Section 1. The

origin on the plane w coincides with the point w = b

m

. Therefore b

m

= 0

and b

0

m

=1. Hence p = 0, s = 0.

Remind that by b

k

, b

0

k

, k = 1; 2; : : : ;m+ 1 we have denoted the complex

coordinates of the angular points of the circular polygon at which two neigh-

boring circles may intersect, and b

0

k

is more often exterior to the contour

l(w).

Note that if (a

m�1

; a

m

), then for the interval �

m

6= 0 we can always

suppose that

G

m�1

=

�

B

m�1

0

0 B

m�1

�

:

Consider the matrix equation (7.4),

T

+

�m�

m�1

= G

m�2

T

�m

�

�

m�1

; T

�m

= T�

+

m

T

m

: (7.14)

From (7.14) there follows the following system of equations:

p

�m

=r

�m

= b

m�1

; q

�m

=s

�m

= b

0

m�1

; (7.15)

where p

�m

, q

�m

, r

�m

, s

�m

are the elements of the matrix T

�m

.
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Taking into account (7.14), we rewrite the equalities (7.15) as

p

�

p

m

+ q

�

r

m

r

�

p

m

+ s

�

r

m

= b

m�1

;

p

�

q

m

+ q

�

s

m

r

�

q

m

+ s

�

s

m

= b

0

m�1

; (7.16)

where p

�

, q

�

, r

�

, s

�

are the elements of the matrix T

�

= T�

+

m

.

Bearing in mind (7.13), the equalities (7.16) can be written as

r

�

p

m

b

m

+ s

�

r

m

b

0

m

r

�

p

m

+ s

�

r

m

= b

m�1

;

r

�

q

m

b

m

+ s

�

s

m

b

0

m

r

�

q

m

+ s

�

s

m

= b

0

m�1

: (7.17)

After simpli�cation, the equalities (7.17) take the form

r

�

p

m

(b

m

� b

m�1

) + s

�

r

m

(b

0

m

� b

m�1

) = 0; (7.18)

r

�

q

m

(b

m

� b

0

m�1

) + s

�

s

m

(b

0

m

� b

0

m�1

) = 0: (7.19)

The condition of the compatibility of (7.18) and (7.19) with respect to

r

�

, s

�

is of the form

p

m

s

m

r

m

q

m

=

b

0

m

� b

m�1

b

m

� b

m�1

b

m

� b

0

m�1

b

0

m

� b

0

m�1

: (7.20)

From the matrix equation (7.5) we get the system of equations:

p

�(m�1)

p

m�1

+ q

�(m�1)

r

m�1

r

�(m�1)

p

m�1

+ s

�(m�1)

r

m�1

= b

m�2

;

p

�(m�1)

q

m�1

+ q

�(m�1)

s

m�1

r

�(m�1)

q

m�1

+ s

�(m�1)

s

m�1

= b

0

m�2

;

(7.21)

where p

�(m�1)

, q

�(m�1)

, r

�(m�1)

, s

�(m�1)

are the elements of the matrix

T

�(m�1)

= T�

+

m

T

m

�

m

�

+

m�1

.

After some transformations, (7.21) can be rewritten in the form

r

�(m�1)

p

m�1

(b

m�1

� b

m�2

) + s

�(m�1)

r

m�1

(b

0

m�1

� b

m�2

) = 0;

:r

�(m�1)

q

m�1

(b

m�1

� b

0

m�2

) + s

0

�(m�1)

s

m�1

(b

0

m�1

� b

0

m�2

) = 0:

These equalities imply

p

m�1

s

m�1

r

m�1

q

m�1

=

b

0

m�1

� b

m�2

b

m�1

� b

m�2

b

m�1

� b

0

m�2

b

0

m�1

� b

0

m�2

: (7.22)

All the matrix equations can be considered analogously.

The equations (7.20) and (7.22) are exactly the invariant anharmonic

ratios of the four points of the circle at which it intersects two neighboring

circles.

From the matrix equations one can obtain all the required equations with

respect to a

k

, c

k

and to the integration constants p, q, r, s. For every point

� = a

j

we obtain a system of two equations which are homogeneous with

respect to the elements of the matrix T

k

. Their conditions of compatibility,

for example, for the points � = a

m

, � = a

m�1

, are of the form (7.20) and
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(7.22). These conditions have been obtained under the assumption that

�

1j

� �

2j

6= s, s 6= 0; 1; 2.

Consider now the case where �

1j

� �

2j

= s, s = 0; 1; 2.

According to the representation (6.4), the unknown matrices �

+

(t), �

�

(t)

for the interval (a

j�1

; a

j

) must satisfy the boundary condition

�

p

�j

q

�j

r

�j

s

�j

�

e

i��

2j

�

1 0

�i 1

�

=

=

�

B

j�1

�iD

j�1

iA

j�1

B

j�1

��

p

�j

q

�j

r

�j

s

�j

�

e

�i��

2j

�

1 0

��i 1

�

;

where p

�j

, q

�j

, r

�j

, s

�j

are de�ned by (6.4).

Reasoning as when deducing (7.1){(7.8), we see that the ratios

p

�j

+�iq

�j

r

�j

+�is

�j

,

q

�j

s

�j

satisfy the boundary condition (3.5). But the coordinates of the point

w = b

j

and the coordinates b

j�1

and b

0

j�1

will also satisfy (3.5). Hence we

obtain the system of equations

p

�j

+ �iq

�j

r

�j

+ �is

�j

= b

j

;

q

�j

s

�j

= b

�

j

; (7.23)

where b

�

j

is equal either to b

j�1

or to b

0

j�1

.

The system (7.23) is also homogeneous with respect to the elements of

the corresponding matrices T

�j

, but the compatibility condition this time

fails to provide us with the ratios like (7.20) and (7.22).

As is mentioned above, the matrix equations similar to (7.1){(7.7) can

be obtained for all the points � = a

k

, with the exclusion of those � = a

n

to

which there correspond the cut ends w = b

j

whith �

j

= 2. For such points

there are the conditions for the absense of logarithmic terms in the solutions

v

2j

(�), for example, the equation (4.18). This gives us one condition for one

point; the second equation will be given below.

From the matrix representations �

+

(t) we de�ne �rst u

+

1

(t), u

+

2

(t) and

then construct the relation w

+

(t) = u

+

1

(t)=u

+

2

(t).

According to the representation (6.4), let the function (a

j

; a

j+1

) for the

interval w

+

(t) be de�ned by w

+

(t) =

A

�

j

v

+

1j

(t)+B

�

j

v

+

2j

(t)

C

�

j

v

+

1j

(t)+D

�

j

v

2j

(t)

. If, using this, we

calculate the limit as � ! a

j

, then we get the equation

b

j

= B

�

j

=D

�

j

: (7.24)

The corresponding equations for the other points � = a

k

, k = 1; 2; 3; : : : ;

m;m+ 1, can be obtained in a similar way.

Consequently, for every point t = a

j

we obtain two real equations ho-

mogeneous with respect to p

j

, q

j

, r

j

s

j

, for example, (7.3){(7.7). For �

j

6=

0; 1; 2, from the condition of compatibility of homogeneous equations there

follow invariant anharmonic ratios for four points of a circle, for example,
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(7.20), (7.22). In the case where �

j

= 0; 1; 2, the condition of compatibil-

ity of the two equations provides us with well-de�ned but not anharmonic

ratios.

Finally, we can take from every system of two equations one equation and

add one more equation of compatibility , i.e., we will have two equations

for every point � = a

j

. The number of equations will be 2(m + 1) and the

number of unknown parameters a

k

, c

k

, p, q, r, s, ps� rq = 1, will be equal

to 2m�1. Hence the number of equations will be greater by three than that

of the unknown parameters. This is connected with the fact that the going

around the singular points � = a

k

, k = 1; 2; : : : ; n in the positive direction

is equivalent to that of the point � = 1 in the negative direction. This

provides us with one matrix equation. Therefore any three equations from

the obtained system of equations are consequences of the remaining ones.

The appearance of the three additional equations can be explained as in

the case of linear polygons.

Having found the system of equations to determine a

k

, c

k

, p, q, r, s, it is

necessary to de�ne the intervals of variation of the parameters c

k

, to solve

the system with respect to a

k

, c

k

and �nally to determine p, q, r, s. Remind

that p

j

, q

j

, r

j

, s

j

, j = 1; 2; : : : ;m+ 1, depend implicitly on the parameters

a

k

, c

k

, k = 1; 2; : : : ;m via the coe�cients of the generalized hypergeometric

series . The variation intervals of the parameters c

k

, k = 1; 2; : : :;m, can

be de�ned according to [16].

It is known that the series v

kj

(�) and j = 1; 2; : : : ;m;m+1, converge near

the points � = a

j

, and j = 1; 2; : : : ;m;m+1, respectively. The convergence

radii '

kj

(�) of these series are determined by the distance a

�

j

= (a

j

+a

j+1

)=2

from the point t = a

j

(or from the point a

�

j

) to the nearest points � = a

j�1

,

� = a

j+1

.

The series v

kj

are entire functions of the parameters c

j

, j = 1; 2; : : : ;m,

and converge slowly with respect to �. This makes numerical calculations

very di�cult. As n grows, the coe�cients sometimes strongly increase,

though their multipliers (� � a

j

)

n

, on the contrary, decrease. Computers

are unable to multiply 


k

nj

by (t � a

j

)

n

despite the fact that these series

converge. To eliminate this defect, we suggest to write these series in the

form of rapidly and uniformly converging functional series.

Consider the structure of recursive formulas (4.12){(4.14). The sum of

the �rst lower indices in the expressions 


(k�n)j

f

nj

(� + k � n) is always

equal to k, i.e., to the exponent (t� a

j

)

k

. Instead of the series (4.9), let us

consider the functional series of the form

v

j

(t) = (t� a

j

)

�

j

ev

j

(t� a

j

); ev

j

(t) =

1

X

n=0

=

1

X

n=0




nj

(t � a

j

); (7.25)

where according to (4.12){(4.14) 


nj

is de�ned via 


1j

; 


2j

; : : : ; 


(n�1)j

while

the latters are de�ned via f

kj

(�

j

), where

f

kj

(t� a

j

; �

j

) = �

j

p

kj

(t� a

j

) + q

kj

(t � a

j

);
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p

nj

(t� a

j

) =

X

k=1;k 6=j

(�1)

n

(1� �

k

)

�

t� a

j

a

j

� a

k

�

n

; p

oj

= 1� �

k

;

q

nj

(t� a

j

) =

X

k=1;k 6=j

(�1)

n�1

c

k

�

t� a

j

a

j

� a

k

�

n

; q

oj

= 0; q

1j

= c

j

;

jt� a

j

j < minfja

j

� a

j�1

j; ja

j

� a

j+1

jg; (7.26)

�

�

�

t � a

j

a

j

� a

k

�

�

�

< 1; k 6= j: (7.27)

We can see from (7.27) that the functional series (7.25) converges in the

domain (7.26) more rapidly in comparison with the series (4.8).

The functional series for the point � = a

m+1

= 1 is constructed analo-

gously. In all the above formulas instead of v

kj

(�) we will have to substitute

the functional series (7.25). It is obvious that the functional series for the

ordinary points t = a

�

j

, a

�

j

= (a

j

+ a

j+1

)=2, j = 1; 2; : : : ;m � 1, will also

converge uniformly and rapidly.

8. On a Connection Between the Conditions (2.12) and

(2.16){(2.18)

We write the matrix �(�) de�ned by (4.2) as

�(�) = T�

2

(�); (8.1)

where the constant matrix T is de�ned by (4.3), and the matrix �

2

(�) by

�

2

(�) =

�

v

1

(�) v

0

1

(�)

v

2

(�) v

0

2

(�)

�

;

v

1

(�) and v

2

(�) being the linearly independent solutions of (3.6) along the

t-axis de�ned by (6.4).

The equality (8.1) implies

u

1

(�) = pv

1

(�) + qv

2

(�); u

2

(�) = rv

1

(�) + sv

2

(�): (8.2)

The functions u

1

(�), u

2

(�) are again linearly independent solutions of the

equation (3.6) provided ps � rq 6= 0, where p, q, r, s are arbitrary complex

numbers. Below we will assume that ps � rq = 1.

The functions w

1

(�) = v

1

(�)=v

2

(�) and w(�) = u

1

(�)=u

2

(�) satisfy

Schwarz's equation (3.8), where w

1

(�) will be its partial and w(�) its general

solutions.

Remind also that w(�) = !

0

(�)=z

0

(�) = !

1

(�)=z

1

(�) = !

2

(�)=z

2

(�),

where !

k

(s), z

k

(�), k = 1; 2; are de�ned by (2.15) and (3.3).

Now we present the proof of a theorem proven by us in [13{16]. It can be

formulated as follows: if the equality (2.12) holds, then so do the equalities

(2.16){(2.17), and vice versa, (2.16){(2.17) imply (2.12).

The second part of our theorem is evident, therefore we dwell on proving

the �rst part.
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The equality (2.12) with regard forw(�)=u

1

(�)=u

2

(�) can be rewritten as

u

1

(t)

u

2

(t)

=

B(t) u

1

(t) � iD(t)u

2

(t)

iA(t)u

1

(t) + B(t)u

2

(t)

; �1 < t < +1:

Assume that

u

1

(t) = �(t)u

�

1

(t); u

2

(t) = �(t)u

�

2

(t); �1 < t < +1; (8.3)

where u

�

1

(t) = B(t)u

1

(t)�iD(t)u

2

(t), u

�

2

(t) = iA(t)u

1

(t)+B(t)u

2

(t), �1 <

t < +1.

If we substitute (8.3) in (3.6), then we obtain

�

00

(t)u

�

1

(t) + �

0

(t)[2[u

�

1

(t)]

0

+ p

�

(t)u

�

1

(t)] = 0; �1 < t < +1; (8.4)

�

00

(t)u

�

2

(t) + �

0

(t)[2[u

�

2

(t)]

0

+ p

�

(t)u

�

2

(t)] = 0; �1 < t < +1: (8.5)

Multiplying (8.4) by u

�

2

(t) and (8.5) by u

�

1

(t) and then subtracting the

second equality from the �rst one, one gets

2�

0

(t)[[u

�

1

(t)]

0

u

�

2

(t) � [u

�

2

(t)]

0

u

�

1

(t)] = 0: (8.6)

In the braces of (8.6) there is the Wronskian w

�

[u

�

1

(t); u

�

2

(t)] 6= 0, there-

fore (8.6) implies �

0

(t) = 0, �1 < t < +1, which yields �(t) = const,

t 2 (a

j

; a

j+1

).

Note that

w

�

[u

�

1

(t); u

�

2

(t)] = w

�

[u

1

(t); u

2

(t)] = w

�

[u

1

(t); u

2

(t)]; (8.7)

since the equality (2.11) holds.

If for (8.3) we calculate the Wronskian with regard for (8.7), then we

obtain �

2

(t) = 1, t 2 (a

j

; a

j+1

), which in its turn, implies �(t) = �1,

t 2 (a

j

; a

j+1

).

But the functions A(t), B(t), D(t) are de�ned uniquely from the condi-

tions (1.1){(1.2), hence �(t) is also de�ned uniquely.

9. Definition of the Functions !(�), z(�)

The functionw

+

(t) along the real t-axis is de�ned byw

+

(t)=u

+

1

(t)=u

+

2

(t),

�1 < t < +1, where u

+

1

(t), u

+

2

(t) are de�ned by (6.4).

Given w

+

(t), we can �nd w(�) for all Im(�) > 0 by [24, 30]

w(�) =

1

�

Z

+1

�1

w

+

(t)

�dt

(t� �)

2

+ �

2

; � = � + i�:

Note that one can construct a canonical matrix for the problem (2.3) and

solve the inhomogeneous boundary value problem (2.3) by using the Cauchy

type integral. This has been done in our paper [13]. In the present work, we

seek the solution of the inhomogeneous problem (2.3) we seek in a somewhat

di�erent way [2].
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Multiply the functions u

+

1

(t), u

+

2

(t) by and �

+

1

(t), where 


+

(t) is de�ned

by (2.23) and �

+

1

(t) by (3.4).

The matrix �(�) de�ned by (6.1){(6.10) satis�es the boundary condition

(3.5) since the equalities (7.1){(7.2) are assumed to be ful�lled. This means

that the columns of the matrix �(�) de�ned by (6.1){(6.10) satisfy the

boundary condition (3.5).

In order to obtain a sought for solution �

2

(�) of the boundary value

problem (3.5), we have to take the �rst column elements of the matrix �(�)

and construct the vector �

2

(�) = [u

1

(�); u

2

(�)]; Im(�) � 0:

We have taken the �rst column elements of the matrix �(�) because the

ratio w(�) = u

1

(�)=u

2

(�) provides the general solution of the Schwarz di�er-

ential equation (3.8), while the ratio u

0

1

(�)=u

0

2

(�) does not satisfy Schwarz's

equation. This implies that !

2

(�) = u

1

(�), z

2

(�) = u

2

(�).

The vector �

1

(�) = �

1

(�)�

2

(�), where �

1

(�) is de�ned by (3.4), satis�es

the boundary condition (3.1), and the components of the vector �

1

(�) are

de�ned as !

1

(�) = �

1

(�)!

2

(�); z

1

(�) = �

1

(�)z

2

(�); Im(�) � 0:

The vector �

0

(�) = 
(�)�

1

(�), where �

0

(�) = d�(�)=d�, satis�es the

boundary condition �

0

(t) = A

�1

�

(t)A

�

(t) �

0

(t); �1 < t < +1; where 
(�)

is de�ned by (2.23).

Hence, the components of the vector �

0

(�), !

0

(�) = 
(�)�

1

(�)u

1

(�),

z

0

(�) = 
(�)�

1

(�)u

2

(�), Im(�) � 0; satisfy the boundary conditions (2.4){

(2.5).

According to [2], we are aware of the behavior of the functions !

0

(�), z

0

(�)

at all singular points t = e

k

, k = 1; 2; : : : ; n; n + 1. Therefore the choice

of the arguments '

j

, j = 1; 2; : : : ; n+ 1, of the complex numbers detA

j

(t)

should be performed with regard for the behaviors of the functions !

0

(�),

z

0

(�) at all singular points. In this way we construct uniquely the function

!

0

(�), z

0

(�). Then we can write

d!

+

(t) = u

+

1

(t)


+

(t)�

+

1

(t)dt; �1 < t < +1; (9.1)

dz

+

(t) = u

+

2

(t)


+

(t)�

+

1

(t)dt; �1 < t < +1: (9.2)

Obviously, the functions (9.1) and (9.2) satisfy the boundary conditions

(2.4){(2.5).

Integrating the equalities (9.1){(9.2) in the intervals (�1; t), (e

j

; t), j =

1; 2; : : : ; n, we obtain

!

+

(t) =

Z

t

�1

u

+

1

(t)


+

(t)�

+

1

(t)dt+ !

+

(�1); �1 < t < e

1

; (9.3)

z

+

(t) =

Z

t

�1

u

+

2

(t)


+

(t)�

+

1

(t)dt+ z

+

(�1); �1 < t < e

1

; (9.4)

!

+

(t)=

Z

t

e

j

u

+

1

(t)


+

(t)�

+

1

(t)dt+!

+

j

(e

j

); j=1; 2; : : : ; n; e

j

<t<e

j+1

; (9.5)
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z

+

(t)=

Z

t

e

j

u

+

2

(t)


+

(t)�

+

1

(t)dt+z

+

j

(e

j

); j=1; 2; : : : ; n; e

j

<t<e

j+1

; (9.6)

where !

+

(�1), z

+

(�1), !

+

(e

j

), z

+

(e

j

) are the right limits of the corre-

sponding functions at the points �1, e

j

, j = 1; 2; : : :; n.

It is also evident that the functions !

+

(t), z

+

(t) de�ned by (9.3){(9.6)

satisfy the boundary conditions (2.1){(2.2).

In (9.3){(9.6) we can separate the real and the imaginaryparts and obtain

the expression for the functions '(t),  (t), x(t), y(t).

Moreover, taking t = e

1

in (9.3){(9.4) and t = e

j+1

in (9.5) and (9.6),

we get

!

+

(e

1

) =

Z

e

1

�1

u

+

1

(t)


+

(t)�

+

(t)dt+ !

+

(�1); (9.7)

z

+

(e

1

) =

Z

e

1

�1

u

+

1

(t)


+

(t)�

+

1

(t)dt+ z

+

(�1); (9.8)

!

+

(e

j+1

) =

Z

e

j+1

e

j

u

+

1

(t)


+

(t)�

+

1

(t)dt+ !

+

(e

j

); j = 1; 2; : : :; n; (9.9)

z

+

(e

j+1

) =

Z

e

j+1

e

j

u

+

2

(t)


+

(t)�

+

1

(t)dt+ z

+

(e

j

); j = 1; 2; : : : ; n; (9.10)

where !

+

(e

j+1

), z

+

(e

j+1

) are the left limits of the function !

+

(t), z

+

(t) at

the point t = e

j+1

.

In (9.3){(9.6) the integrands are supposed to be integrable at the left

ends of the intervals. If it is not the case, then we can take as the lower

limits either the right end or an interior point of the corresponding interval.

For the unknown parameters a

j

, c

j

appearing in (3.6), we have obtained

a system of higher transcendental equations, e.g., the equation (7.24). As to

the parameters t = e

j

not coinciding with the parameters t = a

j

and which

the functions 
(�) and �

1

(�) depend on, and the parameter Q connected

with the discharge of the 
uid, we have obtained the system (9.7){(9.10) for

their determination.

Having found all the unknown parameters which the functions u

+

1

(t),

u

+

2

(t), 


+

(t), �

+

1

(t) depend on, by (9.3){(9.6) we can determine the equa-

tions of the unknown parts of the boundary of the domains s(z), s(!), s(w)

as well as other geometric and mechanical parameters of the 
ow of the


uid.
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