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UNKNOWN BOUNDARIES



Abstract. Plane problems of the stationary filtration theory with par-
tially unknown boundaries are considered. The porous medium is assumed
to be homogeneous, isotropic and non-deformable. The motion of the fluid
obeys the Darcy law. The simply connected domain occupied by the mov-
ing fluid is bounded by a simple sectionally analytic contour consisting of
unknown depression curves, line segments, half-lines and straight lines. The
paper describes mathematical methods of finding the unknown parts of the
boundary of the fluid motion domain, as well as of determining geometric,
cinematic and physical characteristics of the moving fluid. In solving the
corresponding mathematical problem, the use is made of the general solu-
tion of the non-linear Schwarz differential equation. The general solution is
constructed in the paper.
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1. INTRODUCTION

In the present paper we consider some plane problems of the filtration
theory for the stationary motion of an incompressible fluid in a porous
medium obeying the Darcy law. The porous medium is assumed to be non-
deformable, isotropic and homogeneous. The formulation and fundamental
investigation of these problems belongs to P. Ya. Polubarinova-Kochina [1-
The plane of the motion of the fluid coincides with that of the complex
variable z =  + iy. We introduce the complex potential w(z) = ¢(z,y) +
i(x,y), where p(z,y) and ¥(z,y) are the velocity potential and the flow
function, respectively. The functions ¢(z,y), ¢ (z,y) are connected by the
Cauchy—Riemann conditions.

If the analytic function w(z) is found, then by virtue of the equalities

. Jp Oy Oy oY
— / j— _ — — —_t -
(e, y)=—k(p/y+y) +ec, W'(2)=u—1iv, U= ST ey "oy oa

we can find all characteristics of the filtration flow, i.e., the filtration velocity,
the pressure, the stress, the discharge of the fluid upon filtration, etc. Here k
is the filtration coefficient, ¢ 1s an arbitrary constant, p is the hydrodynamic
pressure, v is the specific weight of the fluid, u, v are the components of the
vector of filtration velocity, w'(z2) is the complex velocity.

The boundary of the domain of the flow involves unknown parts, the
depression curves whose equations are to be found. Denote the simply
connected domains of the flow of the fluid, of the complex potential and
of the complex velocity respectively by S(z), S(w) and S(w), and their
boundaries respectively by {(z), {(w) and {(w). Here w = w'(z). Below the
boundary {(z) of the domain S(z) will be assumed to be a simple, sectionally
analytic, closed contour consisting of a finite number of unknown depression
curves, line segments, half-lines and straight lines. The domain S(z) may
be bounded or unbounded. In the particular case where all parts of the
boundary {(z) are known, the domain S(z) is a linear polygon.

In the domain S(z), we seek for an analytic function w(z) = ¢(x,y) +
it(x,y) satisfying two linearly independent boundary conditions of the

type [2]

ane(x,y) + azd(x,y) + aise + aray = fr, (x,y) €l(2), (1.1
anp(x,y) + asap(x, y) + azsx + azay = fo, (x,y) €l(2), (1.2)

where a;z, fi, i = 1,2,k = 1,2,3,4, are known piecewise-constant real func-
tions, i.e., they are constant on every above-mentioned part of the boundary,
and the rank of the matrix

is equal to two.
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If a part of the boundary {(z) of S(z) is known, then in one of the
conditions (1.1) or (1.2) the coefficients at the functions ¢(z, y), ¥ (z,y) for
the known part of the boundary {(z) turn out to be equal to zero.

There is a theory [1-6] which allows one to determine the boundary
l{(w) of S(w) and a part of the boundary !(w) of S(w) without solving
the basic problem. Moreover, one can determine the coordinates of those
vertices of the domain S(w) to which there correspond angular points on
the boundary {(z) of S(z). As for the vertices of the domain S(w) (the cut
ends with the angles 27) to which there correspond ordinary (non-angular)
points on the boundary [(z) of S(z), the coordinates of these vertices remain
undetermined until the problem is solved completely.

In determining the boundary [(w) of the domain S(w), we have used
some known results from the complex analysis [2, 21, 30, 31, 32].

Under the conditions imposed on the domains S(z) and on the corre-
sponding boundaries {(z), one can claim that the function w(z) is analytic
in S(z), continuous in the closed domain S(z), satisfies w’(z) # 0 everywhere
including the boundary (z) except its angular points, and is analytically
continuable across any part of the boundary {(z) not containing angular
points.

As far as the functions w(z) and w’(z) map conformally the domain S(z)
and its boundary /(z) (the conformity is violated at the angular points of
l(2)) respectively onto the domains S(w) and S(w) with the boundaries {(w)
and /(w), these functions are analytically continuable across the parts of the
boundaries not containing angular points [30, Ch. II, §28-29].

In the sequel, for the complex-conjugate functions we will use the nota-

tion f(z) = file,y) + ifa(z,y), f(z) = filz,y) — ifz(x,y)c,l while for the

derivatives of functions and matrices, the notation f'(z) = £ f(2).

Theorem. If an analytic function w(z) satisfies in the domain S(z)
two linearly independent boundary conditions (1.1)~(1.2), then the function
w(z) = w'(z) maps the boundary (z) of S(z) into the boundary of the do-
main S(w) consisting of a finite number of circular arcs, line segments,
half-lines and straight lines, that is, to the domain S(z) with the boundary
[(z) there corresponds a circular polygon on the plane w(z).

Proof. If we take arbitrarily a part of the boundary [(z) of S(z) and
differentiate the conditions (1.1)-(1.2) along this part with respect to the
real parameter s, then we obtain

(a11u — a12v + a13) cos(z, s) + (a11v + ajau + ag4) cos(y, s) = 0, (1.3)
(a1t — @220 + aa3) cos(z, s) + (@210 + a2zt + ag4) cos(y, s) =0, (1.4)

where s is the arc length of the arbitrarily taken part of the boundary S(z),
cos(x,s) = dx/ds, cos(y, s) = dy/ds.

In order for the system of equations (1.3), (1.4) to have a nonzero solution
with respect to cos(x, s) and cos(y, s), it is necessary and sufficient that the



determinant of this system be equal to zero,
Ag = (a11u — a12v + a13)(a1v + asott + asq) —
—(az1u — asov + asz)(a11v + ajpu + agq). (1.5)

From (1.5) we obtain

Ag(u? +v?) + Biu+ Biv+ Do = 0, (1.6)
where

Ag = aip 12 . Dy = a13  a14 ’ (1.7)
a21 29 a23 @24

Br = a1 Q14 + aiz  diz ’ (1.8)
a1 24 a3 @22

B;‘ — a14 @12 + a1z a1 . (1.9)
a24 @22 a3 @21

The second order curve decompose into two straight (real or imaginary)
lines if and only if Af = —AgA/4 =0, where A = (B})? + (B3)? — 4A¢Dy.
If Ay #0, AZ > 0, and A} and Ag are of the same sign, then we have
an imaginary circle; if A2 > 0, A} and Ay are of different signs, we have a
circle [7, 8].
The center coordinates (ug,vg) of the circle (1.6) and its radius R are

defined by
uy = —B}/[2a0], wvo = —B3}/[240], R=VAJ[24,].

The circle (1.6) will be tangent to the axis of abscissas ou if (B})? =
440Dy and to the axis of ordinates ov if (Bj)? = 4A¢Dy.

In deducing (1.6), a part of the boundary of S(z) has been taken arbi-
trarily. To some other parts of the boundary of S(z), on w there correspond
arcs of the circles, i.e., the domain S(w) is a circular polygon. In the case
where Ag = 0 along the whole contour {(z), we have a linear polygon.

The equation (1.6) can be written as follows:

i2A0wW — Bow + Bow + 12Dy = 0, (1.10)
where

w=u—iv, W=u+1iv, By=B;—iBj, (1.11)

From (1.10) we find that w = %, where A = ByBg — 440Dy =
(B7)? +(B7)? —4AgDg # 0.
Note that in the general case the equality
A=4A2R* =1 (1.12)

does not hold.
We will get back to the equality (1.12) later on.
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Here we make the following remark. Using a linear-fractional transfor-
mation, one can always transform the domain S(w) in a way that a part
of the boundary {(w) on the plane w will coincide with the abscissae axis
along which w = w, 1.e.; v = 0. This remark will be used later on.

Below we will come across the class of matrices G;, j = 1,2,...,n,...,
satisfying the following conditions: G;G; = G;G; = E, det G; = 1, GGy #
GGy, k # j, (GiGp)(G;Gy) # E, k # j where G is a matrix which
is complex conjugate to the matrix G;, and E is the unit matrix. The
properties of the matrices G, j = 1,2,... are very close to those of the
complex-orthogonal ones [32].

The matrices G can be represented as

_ (B —iD; .
GJ_(iAj B; ), j=12 ...,

where A;, D; are real and B;, Fj are complex-conjugate numbers.

Denoting the characteristic numbers of the matrix G; by Ax;, & = 1,2,
we obtaln /\1]' + /\2]' = Fj + B]', /\1]'/\2]' =1.

It follows from the property of the matrix G; that Ay; = le. Therefore
/\UXU =1, |A1;| = 1 and hence Ay; = expli2may;], where ay; are real
numbers.

If we take two arbitrary matrices 5 and G}, from the above-mentioned
class and consider the matrix ¢g;3z = GGy, then we can see that the char-
acteristic numbers py; of the matrices g;;, satisfy the conditions puz; =
expli2nfy;], where fp; are real numbers.

2. STATEMENT OF THE BOUNDARY VALUE PROBLEM

Let a moving fluid occupy a simply connected domain S(z) with the
boundary {(z) consisting of a finite number of known and unknown simple
analytic Jordan arcs.

An analytic function w(z) maps conformally the domain S(z) onto a
domain S(w), and its boundary /(z) into the boundary {(w) of S(w). Note
that a part of angular points of the boundary /(z) is mapped by the function
w(z) into angular points of {(w), while the remaining angular points are
mapped into non-angular points of the boundary {(w) [1-6].

Analogously, the analytic function w(z) = w’(z) = u(x, y)—iv(z, y) maps
conformally the domain S(z) onto a domain S(w), and its boundary I(z)
into the boundary {(w) of S(w). Moreover, the function w(z) maps a part
of angular points of the boundary {(z) into those of {(w), and the remaining
angular points are mapped into ordinary non-angular points of the boundary
[(w). The function w(z) can map some non-angular points of the boundary
[(z) into angular points of the boundary /(w) with interior (with respect to
the domain S(w)) angles 27 [1-6].
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Below the points of the boundaries {(z), l(w), I(w) are assumed to be
singular if to these points on either of the boundaries I(z), {(w), {(w) there
correspond angular points.

Let us take arbitrarily a singular point on the boundary {(z) of the domain
S(z), for example, {(z, ). Let to a point {(z, £1) on the boundaries /(w),
[(w) there correspond the points {(w, B}), {(w, EY). When the domain S(z)
is went around in the positive direction starting from the point {(z, ), then
the boundaries {(w), {(w) are went aound in the positive direction starting
from the points {(w, EY), {(w, EY). We enumerate all the singular points
on the boundaries {(#), l(w), {(w) as follows: (z, Ey), l(w, E}), {(w, EY),
k=1,2,...,n,n+ 1.

Of all singular points I(z.Ey), l(w, E}), k=1,2,...,n,n+ 1, we distin-
guish such ones to which on the boundary {(w) of the domain S(w) there
correspond ordinary non-angular points. Such singular points are commonly
called removable singularities. Let the number of such points be equal to
my. When the boundary {(z) is went around in the positive direction, we
enumerate the removable singular points as €7,¢5,...,¢,, , €5, - The inte-
rior angles on (z) and /(w) at the removable singular points are equal to
/2 [1-6].

In tracing {(w) we enumerate all angular points: [(w,wr), &k = 1,2,...,
ma + 1, while in tracing {(w) we enumerate them as follows: [(w, w;) = by,
k=1,2,...,mym+ 1, where by, k = 1,2,...,m,m + 1, are the complex
coordinates of the vertices of the domain S(w).

The equation (1.6) determines completely the circle. Two circles pass
through every vertex of the domain S(w) (two straight lines upon degener-
ation), and each of them forms four angles. We have to choose one of them.
To this end we, first of all, use the equation (1.6) and then the value of the
corresponding angles of the domains S(z), S(w). By means of these angles
we can determine the angles at the vertices of the domains S(w), S(w) [1-6].
Despite the fact that some of the interior angles of S(w) are unknown, we
have the angle values for the corresponding vertices of the domain S(w).
By means of the latter we can determine the unknown interior angle at
the vertex of the domain S(w) [2]. This henceforth allows us to take for
granted that all the interior angles and the coordinates of the vertices of
S(w), excluding the cut ends with interior angles 27, are determined.

Denote the interior angles at the vertices b;, j = 1,2,...,m,m+ 1, of
the domain S(w) by 7v;, j =1,2,...,m,m+ 1, respectively.

Note that the two neighboring circles passing through the point by inter-
sect at the point b} which in the general case is beyond the boundary {(w).
If these circles are tangent, then by = bf.

In general it is quite difficult to find an analytic function w(z) = ¢(z, y)+
ity(x,y) by the boundary conditions (1.1)—(1.2). Therefore one introduces
an auxiliary complex plane ¢ = t 4+ ¢r. The half-plane Tm({) > 0 of this
plane is mapped conformally onto the domains S(z), S(w), S(w). Denote
the domain Im(¢) > 0 and its boundary respectively by S(¢) and {(¢).
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In what follows, we will need the following result from the papers [21,
30, 32].

If D and D* are simply connected domains whose boundaries consist of a
finite number of analytic Jordan arcs, then there exists a unique conformal
mapping w = f(z) of the domain D onto the domain D*, transferring
three boundary points z;, k = 1,2, 3, of D into three boundary points Wy,
k=1,2,3 of D*. The points z; and wy are given arbitrarily, their order in
tracing the boundaries of the domains being preserved.

Let the analytic functions z({), w(¢), w(¢) = «'(¢)/Z'({) map confor-
mally the domain S(¢) (Im(¢) > 0) onto the domains S(z), S(w), S(w),
respectively. Moreover, let the points of the boundary /(¢) of S(¢), that is
the points of the real axis ¢ of the plane {, t = e, k = 1,2,....n,n+ 1
(—oo < ep <eg < - < epy1 = 00), be respectively mapped into the points
l(z,Ey), Uw,E), (w,EY), k= 1,2,...,n,n+ 1, of the boundaries {(z),
l(w), l(w) of the domains S(z), S(w), S(w).

The boundary values of the functions z(¢), w({), w({), as { — t, are
denoted by z(t) = x(t) + iy(t), w(t) = @(t) + iyp(t), w(t) = u(t) — iv(t),

and by z(t), w(t), W we denote the complex functions conjugate to the
functions z(#), w(t), w(t).

The boundary conditions (1.1)—(1.2) with respect to the analytic func-
tions w(¢) and z({) can be written in the form [2]

Im[my1(H)w(t) + mi2(t)z(8)] = fr(t), —o0 <t < +o0, (2.1)
Im[may (H)w(t) + maa(t)z(t)] = f2(2), —o0 <t < +o0, (2.2)

where mp1(t) = ar2(t) + iap1(t), mr2(t) = apa(t) + daps(t), fr(?), k= 1,2,
are piecewise constant functions with the discontinuity points ¢ = ex, k =
1,2,....,n,n+ 1.

In the domain S(¢) we have to find analytic functions z(¢), w((¢) satisfying
the boundary conditions (2.1)—-(2.2). By means of these functions, the points
z(¢), w(¢) are mapped respectively into the pointst = e, k= 1,2,...,n,n+
1. Moreover, each part of the boundary must necessarily be mapped into the
corresponding parts of the boundaries {(z, Ey), {(w, E}), k =1,2,... n+ 1.
The unknown parts of the boundaries [({), —oo <t < e1, ep <t < €p41, k =
1,2,...,n and the parameters t = e;, k = 1,2,...,n, are to be determined.

If we succeed in constructing analytic functions z(¢), w(¢), which map
conformally the domain S(¢) respectively onto the domains S(z), S(w), then
the boundary values z(t), w(t) of these functions will satisfy the conditions
(2.1)-(2.2). Moreover, if the functions z(¢), w(¢) are known, then we can
construct the function w(¢) = w'({)/%'(¢).

If one or several coefficients my;, k = 1,2; j = 1,2, are equal to zero,
and my1(t)maa(t) — mia(t)mar(t) # 0, then by the conditions (2.1)-(2.2)
the functions w((), z(¢) can be constructed by means of the Cauchy type
integrals. There are particular cases where all my; () #0,k=1,2, j = 1,2,
but nevertheless one manages to construct the functions w(¢), z(¢) in the



elementary way [12].

As we will see below, in the general case we have managed to construct
first the analytic function w(¢). Then, by means of this function, we have
constructed analytic functions w'(¢), z'({) and, finally, we have found the
functions w(¢) and z(¢).

The notion of singular and removable singular points of the boundary
[(z) has been introduced above. As is said, to singular points of the bound-
ary l(z) there correspond singular points ¢t = e;, k = 1,2,...,n,n + 1,
of the boundary {(¢). They can be divided into two groups: removable
and unremovable. We have enumerated the removable points by ¢ = ¢,
n=1,2,...,my, and the unremovableones by t = a3, k = 1,2,...,m, m+1.
To the points ¢ = ag, k = 1,2,...,m+1, on the boundary /(w) there corre-
spond the points {(w, wy) = by while to the points ¢t = e, k = 1,2,...,m,

there correspond the points {(z,2;) = €}, k = 1,2,...,m1. By our choice,
the point { = €41 = am41 = 00 is a unremovable singular point. Among
the points ¢t = a;, £k = 1,2,..., m, we select and fix arbitrarily two points,

because one point ¢t = a;,m41 = oo 1s already fixed.

An investigation of the problem (2.1)—(2.2) from the point of view of the
Riemann-Hilbert problem can be found in [17, 18].

Introduce an analytic vector ®(¢) and a vector f(t) as follows:

®(¢) = [w(0), 2(O)], m(¢)>0; Q) =), =(0)], Im(¢) <0,
@) =[HQ), f2(1)], —oo <t < +o0.

The conditions (2.1)-(2.2) with respect to the vector ®({) can be writ-
ten as

B(t) = A7) AL (D) + 26ATL ) F(1), —oo <t < 400, (2.3)

where

_ (ma(t) mas()) o
A = <m21(t) mzz(t)) ’ St

is a non-singular piecewise-constant matrix, A, ! is the inverse to A,

—1 _ 1 mzz(t) mlz(t)
AT = det A, (¢) <m21(t) mn(t)) ) o0 << oo,

and A, (?) is the complex conjugate to A, ().
It can be easily verified that
- 1 —Bo(t) —i2Dg(t)
AT OA() = ———— 0 - t
- OA0 = T (z?Ao(t) CBy(t) ) TSt
where Ag(t), Bo(t), Do(t) are defined by (1.7)-(1.9) and (1.11).
We can directly verify that the equalities

A(t) = Bo(t)Bo(l) — 440(1) Do(t) = det A, (1) - det A, (1),
det[AZ' (1) - A (0)] = [det 0]/ [det A ()]




118

are also valid.
Differentiating the equality (2.3) along the ¢, u-axis and writing it in
terms of projections, we obtain

W'(1) = [~ Bo() @' (1) — i2Do(1)2/(1)]/ det Au (1), —oo <1< +oo0, (2.4)
A(1) = [2a0()e' (1) — Bo(1)2(1)]/ det A1), —oco <1< +oo.  (2.5)

After division, from (2.4) and (2.5) we get

, —oo <t < +oo. (2.6)

w'(t) —Bo()w’) i2Dg ()2 (1)
0 T RA0 () — Bo0)(0)

The equality (2.6) can also be written as

where w(t) = &/ (1)//(0).

As we will see below, by means of the solution of the well-known Schwarz
differential equation we can find an analytic function satisfying (2.7) on the
t-axis, provided the condition

~—

A(t) = Bo(t)Bo(t) — 4A0(t)Do(t) = 1, —oo <t < 400,  (2.8)

1s fulfilled.
However, the condition (2.8) may not be fulfilled. If we divide the nu-
merator and the denominator in (2.7) by \/A(t) and introduce the notation

B( = —Bo(t)/\/A(t), B(t)=—Bo(t)//A(t), —co <t < 400, (2.9)
A(t) = 244(t /\/—t D(t) = 2Dy (t)//A(t), —oo <t < 400, (2.10)

then the condition
Ai(t) = BO)B(t) — A)D(t) =1, —oo <t < +0o0, (2.11)

will be fulfilled.
With regard for (2.9) and (2.10), we can rewrite (2.7) as

w(t) = — — . )), —00 < t < 400, (2.12)

and (2.4) and (2.5) as

det A.(t)/det A (t)[ B(t) w'(t)—iD(t)z'(t) ], —oo <t <400, (2.13)

= \/det A (D) /det AL (1) [FA@WT D+ B0 ], —o0 <t<+o0. (2.14)



A solution of the system (2.13)-(2.14) will be sought in the form
() = y(Owi(t), 2 =v(t)z(t), —oo <t < 400, (2.15)

where w1 (), z1(t) and () must satisfy the boundary conditions

wi(t) = B)wi(t) —iD@)z1(t), —oo <t < 400, (2.16)
z1() = tAwi (1) + B(t)z1(1), —oo <t < 400, (2.17)
(1) = At A0/ det A (1) 7(D), —o0 <t <450, (2.18)

Note that the value of the function w(t) = w’'(t)/2'(t) does not change
after the representation (2.15), and hence so does (2.12). A little later we
will prove that (2.12) implies (2.16)-(2.17) [13-16].

If we denote the values of the matrix A, (#) for the intervals —oo < t < ey,
ej <t<ejr1,J=1,2,...,n, respectively by Ayny1y, Asj, 7 =1,2,...,n,
then we can write

det A.; = |det A,j|explip;], det Ay; = |det A.j|exp[—ip;],
|det Ayj|/|det Aj| =1, j=1,2,...,n,n+1,

\/detA—*j/ det A,; :\/exp[—iQQDj]:eXp[—igoj], J=12...,n+1 (2.19)

Taking into account (2.19), we rewrite (2.18) as
7(t) = expligo(t)]y(1), —oo << +oc, (2.20)

where ¢g(t) is a piecewise constant function defined by

\/det A (t)/ det A, (t) = exp[—igo(t)], —oo <t < 4co.

After taking the logarithm of (2.20), we get

Iny(t) — Iny(t) = —ipo(t), —o0 <t < +o0. (2.21)

We will not introduce here the notion of index but will act formally and
will find from (2.21) a particular solution belonging to some class, and then
we will define more exactly which solution out of all possible solutions of
(2.21) is just needed.

The particular solution of the boundary value problem (2.21) can be
obtained by the formula [17]

s = G2 e polt)dt (2.29)

27 J_o t+i t—=(
From (2.22) we find that

7(¢) = const(¢ — 1) (¢ — €3)72 - (¢ — €,)7", (2.23)
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where 81 = (¢n41 — @1)/27, B, = (¢j-1 — ¢;)/27, j = 2,3,...,n, and
@i, 7 =1,2,...,n+ 1 are the values of the function ¢o(¢) on the intervals
e; <t<ejpr,j=12,...,n, —oco <t < ey, respectively.

The numbers ¢;, j = 1,2,...,n+1, in (2.23) will be chosen appropriately
after finding the functions w'(¢) and z/(¢).

It follows from the above-said that to construct in the domain S({) the
analytic functions w({) and z({) satisfying the boundary conditions (2.1)-
(2.2), it is necessary first to construct in the domain S(¢) the functions
w1(€), z1(¢) satisfying the conditions (2.16)-(2.17). And, as we will see
below, to construct the functions wi(¢) and z1({), it is necessary first to
construct in the domain S(¢) the function w(¢) = w’'(¢)/z'(¢) = w1(¢)/21(¢)
satisfying the boundary condition (2.12).

3. INVESTIGATION OF THE PROBLEM (2.16)—(2.17)

We write the boundary value problem (2.16)—(2.17) in the vector form:

Dy(t) = g(1)P1(1), —oo <t < 400, (3.1)
where
®1(¢) = [wi(€), 21(Q)], Im(¢) > 05 @1(¢) = [wi (), z1(Q)], Tm(¢) < 0,

B(t) —i2D(t
g(t) = (iA((t)) B(t)( )) , —00 <t < 4o0.

For the intervals a; <t < aj41, j = 1,2,...,n, —o0 <t < ap, denote
the values of the matrix g(¢) respectively by ¢;, j = 1,2,...,n,n+1. There
is a close connection between the characteristic numbers of the matrices
g]»_lgj_l, j=1,2...,n4 1, and the interior angles at the vertices of the
circular polygon S(w). Indeed, consider the characteristic equation for the
point t = ¢; [2, 17, 18]:

det(g7 " (t)gj-1(1) = N\ ) = 0, (3.2)

where A; is a parameter and £ is the unit matrix.

The equation (3.2) can be also written as det(g;_1(¢) — A;9;(¢)) = 0.
Hence, taking into account the fact that detg; =1, 7 =1,2,...,n 4+ 1, we
obtain /\]2 — ao/\]' +1=0, apj = Fj_lB]' —|—§ij_1 — A]'_lD]' — A]'D]'_l,
which implies that AijAo; = 1, Ayj + Az = ag;, where A and Ag; are the
characteristic roots of (3.2).

Consider the numbers ay; = # In Az;, which are defined to within inte-
ger summands.

It has been proved in [2] that ay; are real numbers satisfying aq; — ag; =
vj.

Let us get back to the removable singular points €1,¢3, ..., &y, For these
points the neighboring matrices g;_; and g; are diagonal, and ¢t = e¢; = ¢,
Arj = =1,k =1,2, ar; = —=1/2, an; = —1/2 [1-5]. Moreover, Ay(t) = 0,
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Bi(t) =0, B2(t) 0, Do(t) =0, v(t) = 0, u(t) £ 0 or Ag(t) =0, B2(t) = 0,
Bi(t) #0, Do(t) =0, u(t) =0, v(t) # 0, where t € (a;_1,aj11).
Introduce a new sought for vector ®5({) = [w2(¢), z2(¢)] by

®1(¢) = x1(Q)P2(¢), (3.3)

where

i) =[(t—e)t —ea) - (t—em )72 x1(t) >0, t>em,. (34)

The boundary condition (3.1) for ®5(¢) takes the form

Dy(t) = G)Da(t), —oo <t < 400, (3.5)
where G(1) = [Xl(t)]_lg(t)xl—(t), —00 < t < 400, also is a piecewise con-
stant matrix with the discontinuity points a1, as, as, ..., am, tme1 = 0.

The matrix G(t) differs from the matrix ¢(¢) only by the fact that some
matrices g; are multiplied by —1 and the others remain unchanged.

If some elements of the matrix G(¢) are equal to zero and det G(¢) # 0,
then the problem (3.5) is solved completely by the Cauchy type integrals,
and the equations for the determination of the unknown parameters are
derived [17]. Besides these cases, there are the ones where all elements of
the matrix G(t) differ from zero and the problem (3.5) is solved simply.
Such cases involve circular polygons, when the boundary S;(w) consists of
a finite number of arcs of concentric circles with the center M (wp) and
straight cuts passing through M (wy) upon their extension. By means of
the logarithmic function such domains S;(w) can be transformed into linear
polygons. Moreover, there exist many domains Sa(w) which by the linear-
fractional transformation reduce to a set of domains Sy (w). Hence, using the
Christoffel-Schwarz formula [12], for the domains 51 (w), S2(w) we construct
the functions w(¢).

We will now proceed to the solution of (3.5). If a circular polygon is
bounded, then 0 < v < 2. Below we will consider the case where one or
several vertices of the domain S(w) are at the point w = oo. This may
happen if two neighboring circular arcs degenerate to half-lines or straight
lines. Moreover, if the sides of the corresponding angle are parallel, then the
vertex of the interior angle is assumed to be equal to zero. If, however, the
sides at the vertex b; = oo diverge and intersect at a finite point &} upon
their extention, forming the angle 7v} turned to the vertex b, then we will
assume that 7y = —7v}; hence, v, may take the values —2 < vy, < 2.

Tt is known that the construction of the sought for function w(() is re-
duced to the solution of the nonlinear Schwarz equation which in its turn
reduces to a Fuchs class equation. Therefore for the domain S(w) we con-
struct the Fuchs class equation

V() + P(OV(Q) + a-(OV(C) =0, (3.6)
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where
1l —v; ULR
P — J — J
j=1 ji=1
¢j, 7 = 1,2,...,m, are the unknown accessory real parameters which for

the present satisfy the conditions

ch =0, chaj = ajas, (3.7)
ji=1

ji=1

m
E vi+oartas=m—1, o) —ar="Vp4.
ji=1

Denote by Vi(¢), V2(¢) linearly independent solutions of the equation
(3.6) and construct the function wi(¢) = V1(¢)/V2(¢). The function wy ()

is a particular solution of the following Schwarz equation:

w”"(¢) 3 (w”(C)

-~ 2\w(Q)

w(Q) 2 ) =200 - PUO — 5RO (38)

which is constructed with regard for the equation (3.6).

pwi(Q)+q
rwy(¢)+s’
where p,q,r,s are constants (complex in general) of integration of (3.8)

satisfying ps — rqg = 1.

The general solution of the equation (3.8) is given by w(¢) =

The equation (3.8) is invariant under linear-fractional transformations
both of the function w({) and of {. Note that the coefficients of the trans-
formation of w(¢) may be either complex or real, while those of the transfor-
mation of { may be only real. Moreover, the equation (3.6) is also invariant
under the transformations of ¢ with real coefficients [19-22].

In constructing a general solution of the equation (3.8), we have already
used its invariance property with respect to w(¢). Exploit now the invari-
ance of the equation (3.6) with respect to ¢. Using this property, we choose
arbitrarily and fix three of the parameterst = az, k = 1,2,...,m+ 1, while
the remaining (m — 2) ones are to be defined. Moreover, the coefficients
of the equation (3.6) involve the parameters ¢;, j = 1,2,...,m which for
the present satisfy only two conditions (3.7), so one can define only two of
them. The remaining (m — 2) parameters are also to be defined. Conse-
quently, the coefficients of the equation (3.6) depend on 2(m — 2) unknown
parameters. The parameters p, ¢, v, s are also to be defined. Thus, to
construct w(¢) we must define only 2(m+ 1) parameters, while to construct
the functions w’(¢), z/(¢) we must add the parameters connected with the
removable singular points. Their number is m;.
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4. SoLuTION OF EQUATION (3.6)

Fach of the Fuchs class equations (3.6) near every singular point ¢ = ag,
k=1,2,...,m+1, and near any ordinary point, where p,(¢), ¢.({) are an-
alytic, have two linearly independent local solutions. They are constructed
by means of infinite series whose coefficients are defined in the well-known
manner. The series converge in the circles with centers at the points for
which they have been constructed. Radii of these circles are determined by
the distances to the singular points nearest from the centers.

Denote by V3;(¢), k =1,2, j =1,2,3,...,m+ 1, linearly independent
local solutions of the equation (3.6) for the singular points ( = az, k& =
1,2,...,m+1,and by ¢;(¢), k=1,2,j=1,2,...,m—1, the ones for the
points ¢ = a = (aj + a;4+1)/2,j=1,2,...,m— 1.

Assume uq;(¢) = pv1;(Q) + quo; (), uz; () = rv1;(¢) + sv2;(¢), where
p,q, 7, s are integration constants of (3.8).

The differential equation (3.6) can be written in the form of a system

X' (€) = x(OP(C), (4.1)

where
u1(¢) Ui(C)) (0 —q*(C))
= CPE) = , 4.2
w0 = (1§ k) o= 30 2
u1(¢) and us(¢) are linearly independent solutions of (3.6).
First we find the solution of (4.1), that is, we construct the matrix x(¢).
Then by means of this matrix x(¢) we seek for a solution of the boundary
value problem (3.5).

Tt is known that if the matrix x.({) is a solution of (4.1), then the matrix
Tx«(€) is also a solution of (4.1), where

T:(p q), detT = 1. (4.3)
T S

If we construct the local linearly independent solutions vg;(¢) and ¢g;(C)
of the equation (3.6) for the points ( = a;, j = 1,2,...,m+ 1, and ¢ =

*

ai = (aj + aj41)/2, respectively, then the local fundamental matrices for

(4.1) will take the form

vij(C) v '(C)) ,
0, J U 19 m,
0= (e o)
ouQ) #is(0) .
H; J 1 ) =1,2,...,m—1.
0= (20 )
Assume that the inequality |am,| > |a;| holds. Then at the point a, = —|ay, |

we construct the local series ¢.;(¢), ¥ = 1,2, and the corresponding local
matrix H.(¢). Radii of convergence of these series will be determined by the
distance from the point ¢ = af, to the singular point ¢ = a;. Analogously,
if |ai| > |am|, then at the point af = |a1| we construct local series ¢ ((),



124

k = 1,2, and the matrix H. Radii of convergence of these series will be
determined by the distance from the point aj to the point ¢t = an,.

After this we can see that there exists a finite number of circles with the
centers ( = a;, j=1,2,....m+1,{=a] = (¢ +aj4+1)/2, ] =1,2,...,m,
covering completely the abscissae axis. Note that by the circle with the
center ¢ = co will be meant the exterior of the circle || < 7, where r will
be assumed to be equal to the greatest of the numbers |a1|, |am].

The equation (3.6) near the point { = a; can be written as

(€ = a;)*0"(¢) + (¢ = a7)p; (O)V'(€) + 45 (O)v(¢) =0, (4.5)

where

O=>mi¢—a))" ¢ = gk —ay". (4.6)

The solutions of the equations (4.5) and (4.6) for the point { = @41 =
by means of the transformation ¢ = 1/¢;, can be written in the form [29,

27]

@“«g+gm—§:mw&W«g+[}j%w&%«gzo,<4m
k=0 k=0
where

p<(1/G1) Q}jmwg,q*ua Q}j%wg (4.8)

k=0

The solutions of the equations (4.5) and (4.7) for the points { = qj,
J=1,2,...,m, { = co are sought respectively in the form [22, 27]

vi(t) = (t — a;)* (¢ Z'Vm —a;)", (4.9)

Voo (1) = 17T (t Z Yt T (4.10)

Substituting (4.9) in (4.5), we obtain

¢ — aj) [ZM’W ¢ — aj) ]:0,

whence there follows an infinite recursion system of equations to define 7,;,
n=12...,

Moj(aj) =05 foj(a;) = 0; foj(aj)=aj(aj — ) +a;poj+qo; =0, (4.11)
Myj(aj) = vy1j(e;) foj(aj + 1) + v05 frj(e;) = 0, (4.12)
Maj(aj)=va5(cj) foj(aj + 2)+715(;) frj(a; + 1) +v05 f25 (@) =0, (4.13)
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Myj(aj) = vnj(ag) foj (o + 1) + Yn—n)j(ep) frjlay +n = 1)+ +
= k=2 () fh—2)i (o +n —k+2) 4+ -+
+715 (@) frn—n)j (e + 1) + 705 faj(aj) = 0, (4.14)

fejlag) = ajprj +arj, qo0; = 0. (4.15)

If the determining equation (4.11) has the roots ayj, as; (a; > @gj)
such that aq; — ag; #n, n =0,1,2, then by the formulas (4.12)-(4.14) we
construct for the equation (4.5) two local linearly independent solutions of
the form

v (1) = (£ — @)™ y0;Tkj (1), T (1) = L+ D vk, (t—a;)", (4.16)
n=1

k=12

bl bl

j=1,2... m.

The proof for the convergence of the series (4.16) can be found in [19,22].
The convergence radii of the series 7y;(¢) are determined by the distance
from the point ¢ = a; to the nearest of the points t = a;_1, ¢ = a;41.

In the case where the equation (4.11) has the roots such that aq; =
aa;, we differentiate it with respect to «;, calculate and obtain the second
solution,

2(0) = w15 Q) (¢ — ) +055(C),
U350 = (€= 00305 3 7y (047 (€ — 17)"
k=1 J

The first one v1;(¢) is of the form (4.16).

Finally, if the equation (4.11) has the roots such that «1; — as; = s,
s = 1,2, then the first solution in these cases can again be determined by
(4.16), and the second one is sought in the form [23]

vi (1) = 70j(t — a;)*i[aj — asj + Y Ynj(a)(t —a))"].  (4.17)

n=1

To calculate v,;(«;), in (4.11)—(4.14) we substitute instead of 7p; the
product yg;(c; — cva;) and then define successively v,;(«;), n = 1,2,....
The defined in such a manner 7,;(c;) we substitute in (4.17), differentiate
with respect to o; and then calculate the limit as o; — a3;. We obtain

QAj—rQ2j

(0=l 0] (=) [aj—awivnj(an(t—am] In(t—a;)+

n=1
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H(t— ) [1 + gjl d%j[w(%)](t - aj)"] aﬁ%}'

To define vpoo(t), £ = 1,2, we act as in defining vy;({) but in this case
the use is made of the equation (4.7) and the representation (4.10).

Consider the case where the contour of the circular polygon contains a cut
with the vertex b;, where a1; — ao; = 2. For this case, P.Ya. Polubarinova—
Kochina has proved that the solution v9;(¢) must be with no logarithmic
term.She has also obtained an equation connecting the parameters a;, ¢; [2].

A necessary and sufficient conditions for the absense of the logarithmic
term in the solution v9;(¢) is of the form [9, 11]

yij(2j) frj(asj + 1) + foj(azj) =0, (4.18)

where 'y%j(azj) is defined by (4.12), and fi;(cs; + 1), fo2j(c2;) by (4.15).
After some transformations, (4.18) takes the form ¢o; + qf]» +qi5p1; = 0.
To construct v, () for the cut end, it suffices to calculate 'ygj (avn;). The

other coefficients %21]' (an;), n=1,3,45,... are calculated by the formulas

(4.14). The equation (4.13) is fulfilled under the condition (4.18), since

Joj(an; +2) = foj(er;) = 0. To define 'yfw»(ozzj) uniquely, we have to solve

(4.13) for any «; # ws; with respect to v9;(¢;):

—[y1j () f1j (e + 1) + 705 f2i ()]
Joj(aj +2)

In (4.19), the numerator and the denominator vanish as a; — «;. Hence
there is an indeterminacy. Uncovering the indeterminacy by the L’Hospital

rule, we get 'ygj = —0,5[p1;(p1; + 2q15) + p2;]-

v25 (@) = : (4.19)

5. LocAL MATRICES

From the set of branches of the functions exp[ay; In(f — a;)] appearing in
the local solutions vy;({) we choose as follows:

explag; In(t —a;)] >0, t>ay,
lexplag; In(t — aj)]]i = exp[Limay;]explag; In(a; — )], t < ay;
exp[—agoo In(—1)]F >0, —oco <t < ay;
[exp[— koo In(t — a;)]]F = exp[Him(—agoo )] €Xp[—akoo INt], @y <t < +00.

Besides the matrices (4.4), let us introduce the matrices

" _ [ V1i*0) Ui*(t))
OI(t) = J an , 1 <t<ay,
]( ) (UZj*(t) vlzj (t) aj—1 433

where

Vi (1) = (a5 =)™ y0; Tk (), vi5(1) = —(a — )™ y0;735(2),
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(0) = (O], T = g + 32k (g + )t~ )"

n=1
Between the matrices ©;(¢) and @}‘ (t) there is a connection:
OF (t)=0705(t), aj_1<t<aj, OX(t)=0L£05(t), an<t<+oo.
Here the matrices Hj»i for a; —anj # 5, s =0,1,2, are defined by

0t _ exp(ximaq;) 0
J 0 exp(Limas;)

while for a;; —ag; =5,5=0,1,2, by

iraas {10
+ _ _Fimag;
b =e (:l:m' 1)'

For the cut end w = b;, the matrices 0F are defined as follows. If
the characteristic numbers are of the form aq; = 3/2, ag; = —1/2, then
Hj»i = FuF, where E is the unit matrix, and if ay; = 2, as; = 0 then
9]:}: =F.

The elements of the matrix 07 (t) containing the logarithmic terms are

defined by
3;(t) = 703 { (a — )7 [(t = ;)*F15(8) In(a; — ) + T, (1))
055 (1) = =05 (a — )= [(aj — 1) €™ Ty (1) In(a; — ) + T3 (0] + T5,(0) }.

In the local solutions vg;(¢), ¢r;(¢) there appear the constants vo;, @o;
which are defined by means of the Liouville formula

m —1/2 m —1/2
Yoj = { IT 1wlle - akll_”_k} , $oj = { IT 1e; - akll_”k} :

k=1,k#5 k=1

If v; = 0, then we take |v;| = 1.
6. CONSTRUCTION OF THE FUNDAMENTAL MATRIX
Construct the matrix
u1(Q) UE(C))
= , 6.1
0= () e (6-1)
where u1(¢) and u3({) are linearly independent solutions of (3.6).

The convergence domains of the matrices ©;(t) and H;(t) have always a
common part in which we can write the equalities

@;(t) = E*H]'(t), H]'(t) = Toj@j_l(t), aj—1 < t < a;, (62)
O1(t) = TomHom(t), Hom(t) = ToOus(l), —o0<i<ay, (6.3)

O () =TeoOm(t), am <t < +oo,
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where 77, Toj, Ty, T_ oo, Tt are the constant real matrices defined from
the equalities (6.2) and (6.3). Note that in these equalities ¢ can be fixed
arbitrarily in the domains where both local matrices occurring in the above-
mentioned equalities converge.

Define the matrix (6.1) along the t-axis of the plane ¢ as follows:

X)) =TOL (), O%()=05(1), an <1< +oo;
Xi(t):TH;ZG):‘n(t), U1 < T < ap;
XE@) = T0ET,0,m 1(1), T =To5Tom, @mo1 <t < am;

........................................................... (6,4)
YE) =T0ET, - - T6EOI(1), —oo <t < ay;
XE(t) = TOET, - 60T0_,,T_.0u(t), —oo<t<ay;

xE() = T0ET,, - 01,05 (1), an <t < .

The signs (&) in the matrices (6.4) denote the limiting values of the
matrix y(¢) in the upper and in the lower half-planes, respectively. The
matrix 7' is defined by (4.3).

7. SOLUTION OF THE BOUNDARY VALUE PROBLEM

Direct checking shows that the matrices (6.4) satisfy the equation (4.1).
Therefore, the parameters a;, ¢;, j = 1,2,...,m, p, ¢, v, s being chosen
appropriately, the same matrices must satisfy the boundary condition (3.5).
Indeed, begin our proof with the interval (a,,, +00). We have

TON ) =GnTO;,t), 0F(1)=0,,t), Gpn=E,T=T, ay,<t<+oco. (7.1)
For the interval (am—1, am) we obtain
TOEO: () = Gu1T0,05, (1), am-1 <t < am. (7.2)
The equations (7.1) and (7.2) result in
O =T71G G T (7.3)

from which we can see that the matrices (6;%,)%, G,'Gp—1 are similar.

In a similar way we find the matrix equations for the remaining points
(=aj,j=m—-1m—2,...,2,1,{ = oco. We have
TOX T 08 | = GpoTO, Tr0 |, (7.4)
TO} T 1 T 1 0 = Gras 10, T 05 T 10, (7.5)
TOY T 08 T 108 ST o TH0T =
=G 10,100, L0, 5T .. . Th0],

TOFTm0F Ty T =G 10, 100 Ty .. T8, (7.7)
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The matrix equations (7.4)—(7.7) can be written as
(O_1)? = T (08) " T G G705 T, (78)

Here we make the following remark. In composing the matrix equations,
we must take into account that two neighboring circular arcs forming a cut
with the end w = b; belong to one circle.

We rewrite (7.3) as TH;!; =G T8

., Whence

pexp(imam) = Bmo1pexp(—iraim) — iDm_17exp(—ima1y), (7.9)
rexp(imay,) = zAm 1pexp(—imam ) + Bm—1rexp(—imaym), (7.10)
qexp(imagm) = Bmo1qexp(—imaam ) — iDm_15 exp(—iTaam, ), (7.11)
sexp(imaom) = iAm—19exp(—imaam) + Bm_15exp(—imaay). (7.12)

If we divide the corresponding parts of the equalities (7.9), (7.10) and
(7.11), (7.12), then we can see that the ratios p/r and ¢/s in the interval
(am—1, ) satisfy the boundary condition (3.5),

p Fm—lp/r_ Z.Dm—l q F771—1(]/5_ Z.Dm—l

ro iAm—lp/r‘i‘ B Ts iAm—lQ/5+Bm—1 .

The coordinates of the points w = by, and w = b/, also satisfy this condition;
hence

p/r="bm, q/5s=10, (7.13)

where b/, is the second intersection point of the two neighboring circles.

Take advantage of the remark made at the beginning of Section 1. The
origin on the plane w coincides with the point w = b,,. Therefore b,, = 0
and b/, = co. Hence p =0, s = 0.

Remind that by by, b, k =1,2,...,m+ 1 we have denoted the complex
coordinates of the angular points of the circular polygon at which two neigh-
boring circles may intersect, and b} is more often exterior to the contour
l{(w).

Note that if (am—1,am), then for the interval v, # 0 we can always

suppose that
I
Gm—l — ( 0 Bm—l) .

Consider the matrix equation (7.4),

T-I-

*M Oy —1

= Gm—aTumb, Tm = TOL T, (7.14)

m—1>
From (7.14) there follows the following system of equations:
p*m/r*m = bm—l, Q*m/s*m = bm 15 (715)

where Pum, Gem, Tem, S«m are the elements of the matrix 7Ty,
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Taking into account (7.14), we rewrite the equalities (7.15) as

D«Pm + 4xTm = b1, Dxm + ¢+5m _ b;n—la (7.16)
T«Pm + $+Tm T«qm + S+Sm
where py, qs, 7'«, S« are the elements of the matrix T, = T@,‘;.
Bearing in mind (7.13), the equalities (7.16) can be written as
* mbm * mb/ * mbm * mb/
Lebodm £ 5l DO ESSndn gy (77
T«Pm + $xTm T«qm + SxSm
After simplification, the equalities (7.17) take the form
7P (b — bm—1) + $u7m (b, — bp—1) = 0, (7.18)
PiGm (b — bl 1) + Susm(b, — b, _1) = 0. (7.19)

The condition of the compatibility of (7.18) and (7.19) with respect to
T4, Sy 18 of the form

PmSm b;n —bm—1 by — b;n—l

Pm@m  bm — b1 b — b, (7.20)
From the matrix equation (7.5) we get the system of equations:
Di(m—-1)Pm-1 + x(m-1)"m—-1 b,
e st s _ a1
- Ym-2»

Ts(m—-1)dm-1 + Sk(m—1)Sm—1
where pu(m_1), q«(m—1); Tx(m—1), S«x(m—1) are the elements of the matrix

Tem-1y = T} T 0,07,

m—1-
After some transformations, (7.21) can be rewritten in the form

r*(m—l)pm—l(bm—l - bm—2) + 5*(m—1)7am—1(b;n_1 - bm—2) = 0;
Tu(m=1)dm—1(bm—1 — b _o) + Si(m—l)sm—l(b;n—l — bln_z) = 0.

These equalities imply

/ /

Pm—-15m-1 by = bm—z b1 — by, (7 22)

m—19m—1 b—1 — bm—2 b;n—l - b;n_z

All the matrix equations can be considered analogously.

The equations (7.20) and (7.22) are exactly the invariant anharmonic
ratios of the four points of the circle at which it intersects two neighboring
circles.

From the matrix equations one can obtain all the required equations with
respect to ag, ¢ and to the integration constants p, ¢, r, s. For every point
¢ = a; we obtain a system of two equations which are homogeneous with
respect to the elements of the matrix 7. Their conditions of compatibility,
for example, for the points ¢ = am,, { = @m—1, are of the form (7.20) and
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(7.22). These conditions have been obtained under the assumption that
ay;—og; £, 5s#0,1,2.

Consider now the case where a; —ag; = s, s =0,1,2.

According to the representation (6.4), the unknown matrices x(¢), x~ (¢)
for the interval (a;_1, a;) must satisfy the boundary condition

Px+j  Qxj gimaz; 10 —
7°*]’ 5*]' 7Ti 1
_ B]'_l —iD]'_l ﬁ*]' a*]' e—iﬂ'ozzj 1 0
iA]'_l B]'_l F*]’ §*j -m 1)

where p.j, ¢xj, +j, s«; are defined by (6.4).

Reasoning as when deducing (7.1)—(7.8), we see that the ratios %,
Gug

=L satisfy the boundary condition (3.5). But the coordinates of the point
*37

w = b; and the coordinates b;_; and b}—1 will also satisfy (3.5). Hence we
obtain the system of equations

=L g o (7.23)
Thj + TSyj Skj

where b;f is equal either to b;_; or to b§—1~

The system (7.23) is also homogeneous with respect to the elements of
the corresponding matrices T%;, but the compatibility condition this time
fails to provide us with the ratios like (7.20) and (7.22).

As is mentioned above, the matrix equations similar to (7.1)—(7.7) can
be obtained for all the points { = a;, with the exclusion of those { = a,, to
which there correspond the cut ends w = b; whith v; = 2. For such points
there are the conditions for the absense of logarithmic terms in the solutions
v2;((), for example, the equation (4.18). This gives us one condition for one
point; the second equation will be given below.

From the matrix representations yt(¢) we define first u (¢), u¥(¢) and
then construct the relation wt(t) = uf (t)/uf(?).

According to the representation (6.4), let the function (a;, a;41) for the

it *ot

Jj 13
calculate the limit as ( — a;, then we get the equation

If, using this, we

bj = B} /D;. (7.24)

The corresponding equations for the other points { = agx, £ =1,2,3,...,
m, m + 1, can be obtained in a similar way.

Consequently, for every point ¢ = a; we obtain two real equations ho-
mogeneous with respect to p;, ¢;, r;s;, for example, (7.3)~(7.7). For v; #
0,1, 2, from the condition of compatibility of homogeneous equations there
follow invariant anharmonic ratios for four points of a circle, for example,
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(7.20), (7.22). In the case where v; = 0, 1,2, the condition of compatibil-
ity of the two equations provides us with well-defined but not anharmonic
ratios.

Finally, we can take from every system of two equations one equation and
add one more equation of compatibility , i.e., we will have two equations
for every point ¢ = a;. The number of equations will be 2(m + 1) and the
number of unknown parameters ag, cx, p, ¢, r, s, ps — rq = 1, will be equal
to 2m—1. Hence the number of equations will be greater by three than that
of the unknown parameters. This is connected with the fact that the going
around the singular points { = ag, £k = 1,2,...,n in the positive direction
is equivalent to that of the point ( = oo in the negative direction. This
provides us with one matrix equation. Therefore any three equations from
the obtained system of equations are consequences of the remaining ones.

The appearance of the three additional equations can be explained as in
the case of linear polygons.

Having found the system of equations to determine ay, g, p, q, 7, s, it 1s
necessary to define the intervals of variation of the parameters ¢y, to solve
the system with respect to ag, ¢ and finally to determine p, ¢, 7, s. Remind
that p;, ¢;, 75, 55,7 =1,2,...,m+ 1, depend implicitly on the parameters
ag, cp, k= 1,2,..., m via the coefficients of the generalized hypergeometric
series . The variation intervals of the parameters c;, & = 1,2,...,m, can
be defined according to [16].

It is known that the series vg;({) and j = 1,2,...,m, m+1, converge near
the points ( = a;, and j = 1,2,...,m, m+1, respectively. The convergence
radii ¢p;(¢) of these series are determined by the distance af = (a;+a;41)/2

J
from the point ¢ = a; (or from the point a}‘) to the nearest points { = a;_1,

C=aj41.

The series vy; are entire functions of the parameters ¢;, j = 1,2,...,m,
and converge slowly with respect to . This makes numerical calculations
very difficult. As n grows, the coefficients sometimes strongly increase,
though their multipliers (( — a;)", on the contrary, decrease. Computers
are unable to multiply 'yﬁj by (t — a;)" despite the fact that these series
converge. To eliminate this defect, we suggest to write these series in the
form of rapidly and uniformly converging functional series.

Consider the structure of recursive formulas (4.12)—(4.14). The sum of
the first lower indices in the expressions y(x—_n);fnj(a + k — n) is always
equal to k, i.e., to the exponent (¢ — a;)*. Instead of the series (4.9), let us
consider the functional series of the form

vi(t) = (t—a)) Tt —ay), T{t)=D_ =D it —a;), (7.25)

where according to (4.12)—(4.14) vy; is defined via 15,925, - - ., Y(n—1); While
the latters are defined via fi;(o;), where

foj(t —aj, 05) = ajprj(t — aj) + qri(t — a;),
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n t—a; \"
pilt=a)= 3 00w (=E) s p=1-w
F=1 k%]
gnj(t — a;) = Z (—1)"_1Ck(t_aj )n Goj =0, quj =¢j
" ’ k=1,k#5 aj—ay/ Y ’ ! ]’
=1,k#j
|t — a;| < min{|a; — aj_1|, |a; — aj11]}, (7.26)
t—ay .
1, % . 7.27
pypd IR #J (7.27)

We can see from (7.27) that the functional series (7.25) converges in the
domain (7.26) more rapidly in comparison with the series (4.8).

The functional series for the point { = @41 = o0 is constructed analo-
gously. In all the above formulas instead of vy;(¢) we will have to substitute
the functional series (7.25). Tt is obvious that the functional series for the
ordinary points ¢ = af, af = (a; + a;4+1)/2, j = 1,2,...,m — 1, will also
converge uniformly and rapidly.

8. ON A CONNECTION BETWEEN THE CONDITIONS (2.12) AND
(2.16)—(2.18)

We write the matrix x(¢) defined by (4.2) as

X(€) = Tx2(¢), (8.1)
where the constant matrix 7" is defined by (4.3), and the matrix x2(¢) by

_ (v(¢) (<)
w0 = (2 40)
v1(¢) and v2(¢) being the linearly independent solutions of (3.6) along the

t-axis defined by (6.4).
The equality (8.1) implies

u1(€) = pvi(¢) + qua2(€),  u2(¢) = rvi(Q) + sva(Q). (8.2)

The functions u1(¢), u2(¢) are again linearly independent solutions of the
equation (3.6) provided ps — rq # 0, where p, ¢, r, s are arbitrary complex
numbers. Below we will assume that ps — rq = 1.

The functions wi(¢) = v1({)/v2(¢) and w(¢) = u1({)/ua2(¢) satisfy
Schwarz’s equation (3.8), where wy({) will be its partial and w(¢) its general
solutions.

Remind also that w({) = w'({)/2'({) = wi1(€)/z1(¢) = wa({)/z2(C),
where wi(s), z1(C), k = 1,2, are defined by (2.15) and (3.3).

Now we present the proof of a theorem proven by us in [13—16]. It can be
formulated as follows: if the equality (2.12) holds, then so do the equalities
(2.16)—(2.17), and vice versa, (2.16)—(2.17) imply (2.12).

The second part of our theorem is evident, therefore we dwell on proving
the first part.



134

The equality (2.12) with regard for w(¢) =u1()/u2(¢) can be rewritten as

w(t) _ Bl wmD) —iD(t)us(l
us(t)  GA)ui(t) + B(t)us(t)

Assume that

~—

—o0 < 1 < +o0.

ur(t) = ADui (), u2(t) = A)us(t), —oo <t < 400, (8.3)

where uf(t) = B(t) ur(t)—iD(t)ua(t), ui(t) = tA(t)u1 (1) + B(t)ua(t), —oo <
t < +oo0.
If we substitute (8.3) in (3.6), then we obtain

N (@i () + N ORI + p-()ui(1)] =0, —o00 <1< fo0, (8.4)
N (s () + N (OR[us(1)) + p(us(1)] =0, —o00 <t < 400, (8.5)

Multiplying (8.4) by u5(¢) and (8.5) by uj(¢) and then subtracting the
second equality from the first one, one gets

2N O[[wi ()] u5(8) — [ws ()] ui(1)] = 0. (8.6)

In the braces of (8.6) there is the Wronskian w*[u(t), u5(¢)] # 0, there-
fore (8.6) implies X' (t) = 0, —o0 < t < 400, which yields A(t) = const,
te (a]', aj+1)'

Note that

wui(t), us(t)] = w[ui (1), us(t)] = w*[ui (t), ua(t)], (8.7)

since the equality (2.11) holds.

If for (8.3) we calculate the Wronskian with regard for (8.7), then we
obtain A*(t) = 1, ¢t € (aj,aj41), which in its turn, implies A(¥) = =1,
te (a]', aj+1)'

But the functions A(¢), B(t), D(t) are defined uniquely from the condi-
tions (1.1)—(1.2), hence A(¢) is also defined uniquely.

9. DEFINITION OF THE FuNcTIONS w((), 2(()

The function wt (¢) along the real t-axis is defined by w(¢) = uf (t) ud (1),
—00 < t < 400, where uf (t), u (t) are defined by (6.4).
Given wt(t), we can find w(¢) for all Im(¢) > 0 by [24, 30]

1 [tee n ndt )
WO =5 [ g (=etin
Note that one can construct a canonical matrix for the problem (2.3) and
solve the inhomogeneous boundary value problem (2.3) by using the Cauchy
type integral. This has been done in our paper [13]. In the present work, we
seek the solution of the inhomogeneous problem (2.3) we seek in a somewhat
different way [2].
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Multiply the functions u (¢), ud (t) by and x7F(t), where vt (t) is defined
by (2.23) and xT(¢) by (3.4).

The matrix x(¢) defined by (6.1)-(6.10) satisfies the boundary condition
(3.5) since the equalities (7.1)—(7.2) are assumed to be fulfilled. This means
that the columns of the matrix x(¢) defined by (6.1)-(6.10) satisfy the
boundary condition (3.5).

In order to obtain a sought for solution ®3(¢) of the boundary value
problem (3.5), we have to take the first column elements of the matrix x(¢)
and construct the vector ®3(¢) = [61(¢), u2(¢)], Im(¢) > 0.

We have taken the first column elements of the matrix x(¢) because the
ratio w(¢) = u1(¢)/u2(C) provides the general solution of the Schwarz differ-
ential equation (3.8), while the ratio «}(¢)/u5(¢) does not satisfy Schwarz’s
equation. This implies that wa(¢) = u1({), 22(¢) = u2(€).

The vector ®1(¢) = x1(()P2(C), where x1(¢) is defined by (3.4), satisfies
the boundary condition (3.1), and the components of the vector ®,(¢) are
defined as wi(¢) = x1(Qw2(¢), 21(¢) = x1(¢)#2(¢), Im(¢) > 0.

The vector ®'(¢) = y({)P1(¢), where ®'(¢) = d®(¢)/d(, satisfies the
boundary condition ®'(¢t) = A7 (¢) A (¢) 6/(15), —o0 < t < 400, where ()
is defined by (2.23).

Hence, the components of the vector ®'(¢), w'(¢) = Y({)x1()u1(€),
2(¢) = v(Ox1(Q)u2(¢), Im(¢) > 0, satisfy the boundary conditions (2.4)-
(2.5).

According to [2], we are aware of the behavior of the functions w’(¢), 2/(¢)
at all singular points ¢t = eg, &k = 1,2,...,n,n+ 1. Therefore the choice
of the arguments ¢;, j = 1,2,...,n+ 1, of the complex numbers det 4;(t)
should be performed with regard for the behaviors of the functions w’(¢),
Z'(¢) at all singular points. In this way we construct uniquely the function
w'({), 2/(¢). Then we can write

dwt(t) = u

¥ (t)dt, —oo <t < +oo0, (9.1)
d=T (1) = uf (y T (1)x

(t)dt, —oo <t < +o0. (9.2)
Obviously, the functions (9.1) and (9.2) satisfy the boundary conditions
(2.4)-(2.5).

Integrating the equalities (9.1)—(9.2) in the intervals (—o0, 1), (¢;,1), j =
1,2,...,n, we obtain

wt(t) = /t uf )yt () xT (@)dt +wt(—o0), —co<t<er, (9.3)

2T (t) = /t uf )yt () xT@)dt + 2T (—0), —co<t<er, (9.4)
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t
z+(t):/ ué"(t)*y"’(t)xi"(t)dt—l—z;'(ej), J=1,2,...,n, e; <t<ejt1, (9.6)

where wt(—00), 2t (—o0), wt(e;), 2t (e;) are the right limits of the corre-
sponding functions at the points —oo, ¢;, 7 =1,2,...,n.

It is also evident that the functions w¥(¢), z*(¢) defined by (9.3)—(9.6)
satisfy the boundary conditions (2.1)-(2.2).

In (9.3)—(9.6) we can separate the real and the imaginary parts and obtain
the expression for the functions ¢(t), ¥(1), z(t), y(t).

Moreover, taking ¢t = ey in (9.3)-(9.4) and ¢t = e;14 in (9.5) and (9.6),

we get

e = [t o i e, 0
e = [t O O+ (), 0:8)

541
e = [ ab O Od+ et ), F=1200m (09)
541

o) = [ a0 O Od+ ), G= 1200 (010
where w¥(ej41), 2% (ej41) are the left limits of the function w™(¢), 2T () at
the point ¢ = ¢;41.

In (9.3)-(9.6) the integrands are supposed to be integrable at the left
ends of the intervals. If it is not the case, then we can take as the lower
limits either the right end or an interior point of the corresponding interval.

For the unknown parameters a;, ¢; appearing in (3.6), we have obtained
a system of higher transcendental equations, e.g., the equation (7.24). As to
the parameters ¢ = e; not coinciding with the parameters ¢ = a; and which
the functions v(¢) and x1(¢) depend on, and the parameter @} connected
with the discharge of the fluid, we have obtained the system (9.7)—(9.10) for
their determination.

Having found all the unknown parameters which the functions uf(t),
uf(t), vT(t), xT(t) depend on, by (9.3)—(9.6) we can determine the equa-
tions of the unknown parts of the boundary of the domains s(z), s(w), s(w)
as well as other geometric and mechanical parameters of the flow of the

fluid.
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