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OF DENSITY



Abstract. In the paper a parabolic equation with a small parameter is
considered, the vanishing of the patameter implying the concentration of
perturbations of the coefficients in a small neighbourhood. Full asymp-
totic expansions with respect to rational powers of the small parameter are
constructed.
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INTRODUCTION

In mathematics, equations with a small parameter have been being con-
sidered for a long time. The works of M. I. Vishik and L. A. Lyusternik
[1]-]2] exerted great influence on the investigation of problems with a small
parameter. In their works, the above-mentioned authors systematized dif-
ferent classes of problems with a small parameter and gave general principles
and methods for their solution. Then followed many excellent works dealing
with the theory of equations with a small parameter. We mention here only
the works of E. Sanchez-Palencia [3], N. S. Bakhvalov and G. A. Panasenko
[4], A. M. Tl’in[5], O. A. Oleinik, G. A. Tosifyan and A. S. Shamaev [6], V.
G. Maz’ya, S. A. Nazarov and B. A. Plamenevskii [7], S. A. Nazarov [8],
A. S. Demidov [9], etc. A range of problems studied in these and in many
other works is too wide, but we will restrict ourselves to the consideration
of those problems which are closely connected with the problems studied in
the present paper.

E. Sanchez-Palencia and H. Tchatat ([10], [11]) were the first who focused
their attention on the problems appearing in mechanics, physics and engi-
neering. They treated the eigenvalue problem on for the Laplace operator
in a medium with density perturbing in a small neighborhood of the origin.

Subsequently, O. A. Oleinik, S. A. Nazarov, Yu. D. Golovatyi, T. S.
Soboleva, G. A. Tosifyan and A. S. Shamaev [6], [12]-[17] elaborated methods
for the solution of such problems. In particular, the eigenvalue problem for
the second order elliptic equation of in a medium with apparent additional
density is studied in [12]. This problem corresponds to the physical problem
dealing with proper oscillations of a fixed string with apparent additional
mass.

In the present work we consider the problem on heat distribution in a
medium with density perturbing in a small neighborhood of the origin.

1. AsyMPTOTIC EXPANSION OF THE SOLUTION OF HEAT EQUATION
WITH A WEAK CONCENTRATED PERTURBATION OF DENSITY

In the domain @ = (—1,1) x (0,T) let us consider the initial boundary
value problem for the heat equation of the kind

(l—i—e_mx(g))ut:um, (1.1)
with the boundary conditions
w(—1,t) =u(l,t)=0 (1.2)
and the initial condition

u(z,0) = up(x), (1.3)
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where ¢ € (0,1), m < 1 is some rational number, and y is a function
satisfying the following conditions: x(£) = 0 for || > 1, x(£) > 0, |§] < 1
and f_ll x(&)dé = M = const > 0.

It is assumed that the initial function wug is continuous on [—1, 1], satis-
fies the conditions ug(£1) = 0 and in the neighborhood of # = 0 can be
expanded in Taylor series. We can easily see that in this case

&€
lime_m/ X(f)
e—0 _: g
and just because of it we call the perturbation of the coefficient a weak
perturbation.

Under a solution of the problem (1.1)-(1.3) will be meant a function u
which under the conditions (1.2) and (1.3) satisfies the equation (1.1) in
2 for © # +e, and at the points of discontinuity & = +¢ of the function
X (there are only two points of discontinuity) satisfies continuous “sewing”
conditions

ule +0,t) =u(e —0,t), uz(e +0,t) =us(c—0,1),

1.4
u(—e+0,t) = u(—e—0,1), uz(—c+0,t) = uz(—¢—0,1). (14)

According to O.A. Oleinik’s work [18], the problem (1.1)—(1.3) is uniquely
solvable in the domain €.

Let m = ZL), where p > 0 and ! < p (here [ and p are integers). The
use will be made of the following notation: & = £, Q% = (¢,1) x (0,1,
Qf = (=1,—¢) x (0,T), Q4 = (0,1) x (0,T), Q_ = (=1,0) x (0, 7).

Construct a complete asymptotic expansion of the solution u, of the
problem (1.1)—(1.3) into power series 6 = ¥ as ¢ — 0. A solution is sought
in the form

e (2, 1) ~ iaiv;t(x,t), (x,t) € QF, (1.5)
e (2, 1) ~ Zéiwi(g,t), (z,1) € (—¢,€) x (0, 7). (1.6)

We have treated this problem in [20], where the detailed construction of
the complete asymptotic expansion of the form (1.5)—(1.6) is given.
Denote

N
o vE(et), x| >
=0

N X

S :6lwi(—,t), 2] < e.
c g

2=0

In [20] the following theorem is proved:

Un(z,t) =
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Theorem 1.1. Let u. be a solution of the problem (1.1)—(1.3), and let Uy
be a partial sum of the formal asymptotic series (1.5)~(1.6) which is defined
by the formula (1.7). Then the following inequality is valid:

[Jue = Unl| oy < MENFY
where the constant M does not depend on & and N.

2. ASYMPTOTICS OF THE SOLUTION OF HEAT EQUATION WITH
DELTA-SHAPED PERTURBATION OF DENSITY

In the domain © = (—1,1) x (0,T) consider the initial boundary value
problem for the heat equation of the kind

x
(1+6_1x(g))ut:um (2.1)
under the boundary conditions
u(—=1,t) = u(1,t) = 0, (2.2)

and the initial conditions
u(,0) = uo(2), (2.3)

where the functions x and wug are the same as in [20].
Obviously, in this case we have the equality

6_1/ X(;)dl‘ =M,

and such a perturbation is called a delta-shaped perturbation.
As to the initial function, we assume that it is continuous on [—1, 1] and
in the neighborhood of the point £ = 0 can be expanded in Taylor seties.
Just as in [20], under a solution of the problem (2.1)-(2.3) it will be
understood a function u which in the neighborhood of the point Q, with
the possible exception of the points & = =+¢, satisfies the equation (2.1),
whereas at the points of discontinuity the “sewing” conditions

u(le +0,t) =ule = 0,1), uz(e+0,t) =uz(c—0,1),
u(—e+0,t) = u(—e = 0,1), uz(—e+0,t) = ux(—c —0,1)
are fulfilled.
It follows as in Section 1 of Oleinik’s work [18] that the problem (2.1)-

(2.3) is uniquely solvable.
A formal asymptotic expansion will be sought in the form

i .
> vt (x, ), x| >,
i=0
(o]

. x
Zelwi(—,t), |z] < e.
; €
+=0

(2.4)

ue (2, ) ~
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Similarly to [20] we get that the functions v;t and w; satisfy the following
initial and boundary conditions:

ot (@,0) = uola), vE(x,0)=0, i>1, (2.6)
vE(£1,6)=0 i>0. (2.8)

Substituting the formal expansion (2.5) into the equation (2.1), we find
as in [20] that the functions v;t and w;t satisfy the equations

62
—E — — _F = ;
SroE @) = Sk ) =0, 00, (2.9)
O &)+ (6)g ; (€t)——62 (&) =0, i>0, (2.10)
ath—Z 3 X ath—l ) atzwz 3 =Y, 12V .

where the functions with negative indices are absent.
Assume now that the functions v;t in the neighborhood of the points
(0,1) are represented by the Taylor series:
00 5 5
z” 0
o (x,t) ~

)

56?1}?:(0,15), |l’|>€
5=0 ’

Then the formal expansion (2.5) results in

[ [ 25 85 N
Ug(I,t)NZE ywvl (O,t), |l‘| > €,
=0 S=0
Ue N A S
a_x(xat)'vzg Z (S— 1);@?”2 (Oat)a x| > e,
1=0 S=1
=L . Ue > i—1 Ow;
ua(l‘,t)NZEZwi(f,t), |€|<1a a?(xat)NZE ! 6€ (gat)a |€|<1
=0 =0

Substitute £ = £¢ and £ = £1 in the latter expansion. Taking into account
that the function u. must satisfy the “sewing” condition, as in [20] we find
that
dwo (DS 05 . .
a—g(il,t):o, wi(ﬂ,t):; S 6?1}2»_5(:&0,15), i>0,
B (2.11)

8102' d +1 o 6S+1 .
65+1 (£1,1) = Z ( S!) _MSHUZFE_S(iO,t), i>0.

Show how one can construct successively the functions v; and w; (in what
follows, instead of v;t we will write v;).
I. First step. The equations (2.10) and the conditions (2.11) for the

function wq result in 6551”2” (&,t) = 0, 66—“’50(:&1,15) = (. This implies that
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wo(€,t) = a1(t). Since form (2.11) we have wy(£1,t) = wv(F0,¢), it is
obvious that wg(&,t) = wvg(0,t) and ve(+0,¢) — vg(—0,t) = 0. For the

function wy, from (2.10) we obtain 6;?; (&,1) = X(f)%wo(f,t), whence

662;021 (&,t) = x(£)Zv0(0,t). Consequently,

w1 ¢
6€ (£,1) = gtvo(o,t) / X(S)dS + as(t). (2.12)

For the function wy, from (2.11) we get

6101

5 —L(£1,1) =

aio vo(£0,1). (2.13)
Then we find
Ovg
Ox

Thus for the function vy we obtain the problem

600 621}0
ot (l‘ t) Or? (l‘,t), z 7& Oa
vo(£,t) = vo(—1,2) =0, wo(x,0) = ug(x), ve(+0,%) —ve(—0,%) =0,

600 8 Vo 8
5y (F00) = 2 2(=0,1) = M 200(0,1)

with the discontinuity conditions at # = 0. This problem is uniquely solvable

according to [18]. Hence the function vy is defined uniquely. Then the

function wg can be defined uniquely by the formula wq(€,t) = vo(0,1).
Revert now to the function w;. It is easily seen that

o0, - G0, = 000 [ vede =y 0.0,

61}0
60 = 220, S)dSdny + as(t)é + as(t).
wn( [ pasan+ e+ aato

So we have to determine the functions as and az. From (2.12) and (2.13)
we have

0 ! 0
avto (0,1) /D X(6)dE + as(t) = %(4-0,15),
aUO 61}0

T [ e+ ol = G200,

After addition we obtaln

3| 00+ 500+ 500, t)(/:x(ﬁ)dH/_lx(&)d&)],

o

as(t) =

and then the function w; is defined to within the summand as(¢). Thus
at the first step we have defined vy and wg uniquely, whereas w; has been
defined to within a summand ¢; depending only on ¢.
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II. Second step. It follows from (2.9) and (2.6)—(2.8) that the function
vy satisfies the equation

dv v
)= (e t), x £0,

and the conditions v1(z,0) = 0, v1(—1,¢) = v1(1,¢) = 0. We have to find

the conditions of conjugation at the point = + 0.
The conditions (2.11) for the function wy yield

wl(ﬂ:l,t) — vl(:I:O,t) = iivo(ﬂ:o,t),

Oz
whence
600 6v0
Ul(—|—0,t) - vl(_oat) = fl(lat) - fl(_lat) a (+0 t) + a—( Oat)a
C'l(t):% v1(H0,t)+v (=0, ) —f1 (1, t)—fL (=1, )+ 361}0 (+0, t)—aaﬂ( 0,1)],

where f1(€,1) = wi(€,t) — C4(2) is the given function. Thus we have defined
the difference vy (+0,%) — v1(—0,1).

The equations (2.10) and the conditions (2.11) for the function ws result
in the following problem:

20 w w
63—522(5%) = %(f,t)ﬂ(&f)a ~(&,1), (2.14)
85‘; (*1,0) = 86”1 (+0,1) + 6622 o(2£0,1). (2.15)

The condition for the solvability of the problem (2.14)-(2.15) consists in
that the difference 6“’2 (1 1) — 6“’2 (—1,t) be the same for (2.14) and (2.15).

Since from (2.14) we have

d d L dw ! d
Tewn -2 = [ Shendr [ e nde+ i
-1 -1
and the condition (2.15) gives
66—1?(1,15)_66—“;( 1,1) = %—(—I—O,t)—l—fmcﬁvlﬁx(—o,t)—l—
Lo 82
a 2 (+0 t) or 2 (_O’t)’
we obtaln
o v 82 82
a;( 0,t) — a_( 0.1) + 55 00(+0,1) + 5 —uo(=0,1) =
6100

- <>&+19@>ﬁ@w&+MqU

-1



89

Taking into account the above-obtained expression for (7, we find that

v, v, M9 9 B
a—x(+0,t) - a—x(—O,t) - 7 avl(—i—o,t) + avl(—o,t) = \Ifl(t),

where ¥y 1s a known function.
Thus for the function v; we have the problem with the following condi-
tions of conjugation:
61}1 821}1
W(l‘,t):a?(l‘,t), l‘#o,
Ul(l‘, 0) = 0, Ul(—l,t) = Ul(l,t) = 0, 1}1(—|—0,t) - vl(—O,t) = hl(t),
61}1 61}1 M 61}1 61}1

a—x(+0,t) - 6—x(_0’t) ey W(-I-O,t) + W(—O,t) =Wy (t),

where h; and ¥, are known functions.

According to [18], this problem is uniquely solvable.

Having defined the function v1, we can easily determine (7 and hence
the function w;y.

Now, to determine the function ws, we first obtain the equation

82w2
9&?

where a4 i1s a known function, and then find that

(f,t) = a4(£,t),

3
Teten = [ asnds+ o,

€ m
wz(g,t):/ / as(S,1)dSdn + as(t)é + as(t).

But from (2.15) it follows

9oy + 2L v+ zs)—/1 (5, 6)dS + as (1)
81‘ ) a$2vo ) — ; (e ) as )

O o= & =0 t)—/l (5, 4)dS + as(t)
al‘ ) a$2vo ) — ; aqlo, as .

Thus we have defined uniquely the function as. The function ws is defined
to within the summand C5(t) = ag(t) which depends only on ¢.

Consequently, the functions vy, wg, vy, wy are defined exactly, whereas
the function ws is defined to within the summand Cy = Cs(2).

ITI. n-th step. Suppose that the functions v; w; are defined uniquely
for all ¢ < n, and the function wyy4; is defined in the form w,41(€,) =
fat1(€,1) + Crg1(t), where fh41 is a known function.

It follows from (2.9) and (2.6)—(2.8) that the function v, 41 satisfies the
equation

Hvy, 9%vy,
S ) = = (), a #0,
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and also the conditions vy 41(2,0), vp41(—1,%) = ve41(1,%) = 0. We have
to find the conditions of conjugation at the point z = 0.
For the function w41 we find from (2.11) that

K
IS
S=1 S a

n+l 5 58
—1)5 9
(S!) ga5 Unri=s (20,0

Wng1(1, 1) — vy41(4+0,1) = o Vnt1-5(+0,1),

Wnp1(=1,1) = vp41(=0,1) =

(]

S=1

After addition and subtraction of these two expressions, we obtain respec-
tively

2Cp41(1) = va41(+0,8) + 0041 (=0,8) = fay1(=1,8) = faga (1, 1) +
n+1 s n+1 s
10 1) 9
S' oz g Untl- 5(—|—0 t + E (S')6 g Untl- 5( 0 t) (216)

Un+1(+0 t) — vpy1(—0,1) = fn+1(1,t) — fap1(=1,8) +

n+1 s n+1 s
10 -1) 0
S' a Svn+1 S(+0 t) E (S—')wvn+1_5(—0,t). (217)
S=1 ’

The right-hand side of (2.17) contains known values, and therefore

Un41(4+0,2) = vpy1(=0,1) = hnpa(2),

where hy,41 18 a known function.

The equations (2.10) and the conditions of conjugation (2.11) result for
the function wy 42 in the following problem:

2
’ ;”g;z €= 2 v 2t e o), 2.18)
”"‘1 S+1
awa?z(il t)= a 68x5+1vn+1—5(:|:0,t). (2.19)

For the problem (2.18)-(2.19) to be solvable, it is necessary that the dif-

ference 2 "+2(1 1) — aw"“ (=1,%) be the same for (2.18) and (2.19). Simi-
larly to the second step, We arrive at the condition

Oy, Ovp, M [0vy, Ovp,
gr (P00~ 5 (00 = S |G m (0.0 + 50,0 =)

where W, 41 is a known function.
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Thus for determination of the function v,4; we obtain the following
problem:

Hvy, 9%vy,
TH(xa ) = 61‘;—1 (l‘,t), T 7& Oa Un+1(l‘, 0) = Oa

Un-l—l(_lat) = Un-l—l(lat) = 0’ Un+1(+0at) - Un+1(_0,t) = hn-l—l(t)a

g1 OUn 41 (=0,1) — % Ovp 41 (—0,1)| =Wy (1),

Ox Ox 2 ot
where h,41 and ¥y, 41 are known functions.

According to [18], this problem is uniquely solvable. The function C), 44
is defined from (2.16), and thus the function wyy4; is defined uniquely. Tt
remains to notice that in the same way as we have defined the functions w;
and wy at the first and the second steps, we can now define the function
Wy 42 in the form wy42(8,1) = fr42(€,1) + Cnya(t), where fhy2 is a known
function.

Thus the functions v; and w; are now defined uniquely for all  <n+1, and
the function wyyo is defined to within the summand C), 12 which depends
only on t.

Consequently, we have constructed by induction the formal asymptotic
series (2.5).

Introduce the notation

aUn+1
ot

(+0,¢) — (+0,¢) +

N .
> vtz t), x> e,
1=0

Un(z,t) = J_V

i (T
g gwi =, 1), |z|<e.
£

i=0

Theorem 2.1. Let u. be a solution of the problem (2.1)-(2.3), and let
Un be a finite portion of the asymptotic series (2.5). Then the following
mequality holds:

Jus = Unleainy < e,

where the constant C does not depend on £ and N.

The proof of this theorem repeats word for word that of Theorem 1.1
from [20].
3. ASYMPTOTICS OF THE SOLUTION OF HEAT EQUATION FOR m € (1,2)

In the domain 2 = (—1,1) x (0,7, consider the initial boundary value
problem for the heat equation of the kind

(1—|—€_mx(§))ut = Uy, (3.1)

w(—=1,1) =u(l,¢) =0, (3.2)
u(z,0) = up(x),
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where ¢ € (0,1), and the functions y and wg are the same as in [20] and
Section 2. Let the rational number m € (1,2). We can represent it in the
formm =1+ ZL), where [, p are positive integers, and [ < p.

As above, under a solution of the problem (3.1)—(3.3) will be understood a
function u, which satisfies the equation (3.1) for # # +¢ and the conditions
(3.2) and (3.3), and at the points # = +¢ it satisfies the “sewing” conditions

e+ 0, =uz—0,8), Pet0,6)=2% 0,
u(—e +0,1) = u(—e — 0,1), g—“(—e+o,t) = g—“(—e —0,1).
X X

According to [18], the problem (3.1)—(3.3) is uniquely solvable as in [20]
and Section 2. Introduce § = ¢# and construct an asymptotic expansion of
the function u. in powers of § as § — 0.

The asymptotic expansion will be sought in the form

(o]
o svE(et), x| >

ue(z,t) ~ {150 (3.5)

E 6iwi(£,t), |z| < ¢,
; 3
+=0

and v, are defined for x > € and x < —¢, respectively. In what
follows, 1nstead of v we will write simply v;.

Similarly as in [20] the functions v; and w; satisfy the following condi-
tions:

where v+

vo(2,0) = ug, vi(w,0)=0, i>1, (3.6)

z dz ] xr
wip(f,O)—id z (0), 220,1,2,..., f:g, (37)
w](gao)_oa j#pka kIOalaQaa (38)
vi(—l,t):vi(l,t):o, ZZO (39)

Substituting the formal expansion (3.5) into the equation (3.1), we obtain

mzmm QZMN%M
=S (- 2 <m>>~o;
B (e >>atwt 2 S suen-o=
> (146700) S0 Bt - S Bt ~ 0=
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0D 9 o
= ;6 2”(5%—2}; + X(g)awi—p+l - @wz) ~ 0.

This implies that

7, 9* .
avi(l‘,t)—wvi(l‘,t)zo, |l‘|>€, ZZO, (310)
0? 0 0
gez il& 1) = Grwimap (&) +x(@) gruipn(&1), [ <1, (310

where the terms with negative indices are absent.
The “sewing” conditions (3.4) and the formal expansion (3.5) similarly

to [20] yield

L
P

(+
TESEDY S)' ——vi_ps(£0,1) = 0, (3.12)
S5=0
(511 §5+1
rwi(£L, 1) = e Viep— ,1). 1
agw(i ) fore ax5+1v P pS(iO ) (3 3)

Let us now show how one can construct successively all the functions v;
and w;.

I. First step. Consider the equation (3.11) and the conditions (3.13) for
wy. We have

2
%wo(f,t) = 0, %wo(ﬂ:l,t) = 0,

whence wg(€,t) = Co(t). Tt is easily seen that the equations wy(€,1)
Ci(t), ..., wp_1—1(€,t) = Cp_1_1(t) can be obtained analogously. For i
p — [ we find that
2
o¢?
This implies

a T Wp— l(:l:l t) 0.

0
wp_l(gat) :X(g)awo(gat)a a€

d
23

Then we obtaln

13
Serm(€0 = C4(0) [ ()45 + a0

1 -1
C'é(t)/ x(9)dS + ap_i(t) = 0, C'é(t)/ x(9)dS + ap_;(t) = 0.
Hence a%wp_l(f,t) = 0, and so w,_i(¢,t) = Cp_i(t) and wo(€,t) =
C’ét) = const. It follows from (3.7) that wy(&,¢) = wue(0). Analogously
we obtain C{(t) = C4(t) = --- = C|_;(t) = 0. Thus wi(&,t) =0, wa(£,%) =
0,...,wi—1(&,t) = 0 since w;(£,0) = 0 for j # pk, and wy, wiy1, ..., wp_1
are defined as functions of ¢.
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For the function vy we have the problem

0 52
atvo(x 1) = Ee Zvo(x 1), x=#0,

vo(—1,8) =0, wvo(=0,%) = up(0), wvo(1,2) =0, wo(z,0) = up(x).

Obviously, the problem is divided into two problems, one on the domain
(=1,0) x (0, T) and the other in (0, 1) x (0,7"). Both problems are uniquely
solvable.

For the functions vy,...,v—; we find from (3.12) that v;(+0,¢) = 0.
Then we can see that these functions are equal to zero.

Thus at the first step we have defined uniquely the functions vg, v1, ..., vi1,
Wo, W1, . .., wi—1 while the functions wy, ..., w,_1 have been defined as de-
pending on ¢.

II. Second step. To define the function wy, consider the problem

0? 0 0
S 6.0 =\ e, g,

Since wi(€,t) = Ci(t), we have

B
wy(1,) = -v0(£0,1).

13
(€)= Cll >/D A(S)dS + ay (),

0 0 0 0
(1 t) axvo(—i_oat)a %wp(_lat) a_xUO( 0 t)

o™
This implies

CHO) [ (@ + a0 = 5w+,

ci(t) / O ayl1) = ~uf=0,1)

From this system, C] and a, are defined uniquely. Hence ag;p is defined
exactly, and then the function w, is defined to within a summand ¢}, which
depends only on t. At the same step we find that the function w; 1s defined
to within a constant Cj,,. Thus Cj, and hence the function w; are defined
uniquely from (3.7)—(3.8). It follows from (3.12) that v;(4+0,t) = w;(1,1),
Ul(—o, t) = wl(—l, t).

To define the function v;, we have two problems:

A) %vl(x,t) ;Zvl(l‘ 1), z€(-1,0)
v(2,0)=0, u(=1,0)=0, v,(0,t)=wi(—1,1%);
0 0?

B) —ul(x,t) = —=wv(z,t), »€(0,1),

Oz2
vi(2,0) =0, v(0,¢) =wi(1,t), wu(l,t)=0.
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Obviously, these problems are uniquely solvable. Thus at the second step
we have defined uniquely the functions w; and v;, and the function w, have
been defined to within a summand C}, which depends only on 7.

III. n-th step. Suppose the functions w; and v; are defined uniquely
for all ¢ < n, and the functions wy41,..., Wnp4p—; are defined to within
summands Cp41, ..., Chip—; depending only on ¢

Write out the problem for wy4p_i141:

0? 0
@wn+p+l—l(€at) = X(f)awnﬂ(f,t),

(=54

0 Z (£1)° 95!

%wn+p+1_l(:|:1,t) = 3 an+1_l_p5(ﬂ:0,t).

5=0
It is easily seen that the right-hand side in the boundary conditions de-
pends on the functions v; for ¢ < n, and hence is defined uniquely.
Thus we have obtained the problem
0? , n
@wnﬂwl—l(fat) = Chrp1 (X)) frus1(&,1),

0
%wn+p+1—l(il’ t) = hn+1(:|:0, t)’

where the functions f,4+1 and h,41 are defined uniquely.
Hence we have

0

3 3
%wn+p+1—l(€at) = Z+1(t)/ X(9)dS + [ fap1(S,0)dS + angppr-i(t).
€o €o

To define the functions Cy 41 and @pn4py1-7, We obtain the system

1

1
T/L+1(t)/ X(9)dS + anypy1-1(t) = hngr(40,8) = [ fuga(S,1)dS,
0 o
-1

-1
C1T/l-|-1(t)‘/E X(S)dS + a”+P+1—l(t) = hn-l—l(_oat) - ; fn-l—l(Sat)dS

from which the functions C, ,; and @, 4p41-; are defined uniquely. But then
for the function wpypy1-1 We obtain %wn+p+1_l(€,t) = fat1(&,1), where
fn+1 is a known function. This implies that the function wy,4p41-7 1s defined
to within a summand C),4p41-; which depends on t. The function Cj 41
and hence w, 1 are now defined to within constant summands. Therefore

from (3.7)—(3.8) one can already define wpy1 uniquely. By (3.12), in this
case for the function v, 11 we get

3
H
-

(=1
" (£ 97
wn+1(il’t) - Uﬂ-l-l(:to’t) = ( SI) 6?0”+1—p5(io’t)’

n
1
-
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and v,41(40,1) = H:_I_l(t), Uny1(—0,t) = H,,(t), where H:_I_l and
Hy ,, are known functions.
To define the function v,41, we obtain two problems:

2

d d
A) avn+1(l‘,t) = wvn+1(l‘,t), T e (—1,0)

Un41(2,0) =0, vny1(=1,0) =0, vny1(0,) = Hr:+1(t);
B) 2v (x t):a—zv (x,t), x€(0,1)
615 n+1 5 69@2 n+1 sy b)s 3 3
Un41(2,0) =0, vny1(0,8) = Hr-zl—+1(t)’ vnt1(1,4) =0,
which are uniquely solvable.

Thus we have defined uniquely the functions v,41 and wy 41, while the
function wp4p—141 has been defined to within a summand which depends
on t.

By induction we conclude that the steps I, II and III enable one to con-
struct the functions v; and w; for all 7. Thus we have constructed the formal
asymptotic expansion.

Introduce the notation

N .
o svE(et), x| >«
UN(I,t) = (=0

=35 i
Sodtwi(1), el <=
; 2
+=0
Theorem 3.1. Let u. be a solution of the problem (3.1)~(3.3), and let uy
be a finite part of the series (3.5). Then the following inequality is valid:
[[ue = Unll ey < C6NF,
where the constant C does not depend on £ and N.

The proof of this theorem is the same as that of Theorem 1.1 from [20].

4. ASYMPTOTICS OF THE SOLUTION OF HEAT EQUATION FOR m = 2

In the domain © = (—1,1) x (0,T) consider the initial boundary value
problem for the heat equation of the kind

-2 (T _
(1—1—6 X(E))ut_um, (4.1)
uw(=1,t) = u(1,t) =0, (4.2)
u(,0) = uo(2), (4.3)
where the functions ug and x are the same as in [20].

As before, under a solution of the problem (4.1)—(4.3) is understood a
function w. which satisfies the equation (4.1) for # # e, the conditions
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(4.2) and (4.3), and at the points of discontinuity the function x satisfies
the “sewing” conditions

e+ 0, =uz—0,8), Pet0,6)=2% 0,
u(—e +0,0) = u(—e — 0,1), g—“(—e+o,t):g—“(—e—o,t).
X X

As it has been shown previously, the problem (4.1)-(4.3) is uniquely
solvable according to [18].
Formal asymptotic expansion will be written in the form of the series

(o]
> vz, t),  Jw|> e,

ue(z,t) ~ ¢ 150 (4.5)

Zeiwi(g,t), |z < e.
=0

As in the foregoing sections, we easily find that the functions v; and w;
satisfy the following conditions:

vo(2,0) = ug(x), vi(x,0)=0, >0, (4.6)
vi(£1,8) =0, >0,
&g . x
; = —— > = —. .
w;(€,0) f dxluo(o)’ 1>0, & 6 (4.8)

~—~~

Substituting the formal asymptotic series (4.5) into (4.1), we obtain

8t2€let aZZEUth~0:>

= iei [%vi(x,t) - 5—;1;2'(90,15)] ~ 0;
i=0
B) (1—1—5 ())atZEwlft Zew25t~0:>

iZEl *(Gruimaeot) + (O grus(6, 1) = ezuie.)) ~ 0

We can see that the functions v; and w; satisfy the equations

d 9*

g (m) uilat), 20, (4.9)

2

(5) w;(€,1)— 552 i(€, t):_%wi—z(f,t), i>0, (4.10)

where the functions with negative indices are absent.
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Decomposition of the function v; and substitution of the formal asymp-
totic expansion (4.5) into the “sewing” conditions (4.4) result, as in Section
3,in

i S5 9§
wi(:tl,t):z(i;') %vi_s(io,t), i >0, (4.11)
5=0 ’

B ) SN (£1)5 95+ ,
g (ELH=0, %wi(:l:l,t)zz( 51) rrtins-1(£0,), i> 1. (4.12)
S5=0 :

Let us show how one can construct successively the functions v; and w;.
I. First step. To define the function wy, we obtain from the equation
(4.1) and the conditions (4.8) and (4.11) the following Neumann problem

0 0?
X(g)awo(gat) = wwo(gat)a

wo(€, 0) = uo(0), aa—gwo(—lat)IO, %wo

for the heat equation whose solution wg(&,?) = ug(0) is defined uniquely.
From the conditions (4.11) we find that wg(+1,%) = vo(£0,¢), whence

(=0, 1) = vo(+0, 1) = uo(0). (4.13)

To define the function vy, we obtain from the (4.9) and the conditions
(4.6)-(4.7) and (4.13) the following two problems:

(1,H)=0

A) 2vo(av 1) = a—zvo(x 1), z€(-1,0)

ot ’ Ox? o ’

vo(#,0) = ug(z), vo(—1,0) =0, wvp(0,t) = up(0);
B) 2vo(av 1) = a—zvo(x t), z€(0,1)

ot ’ Ox? T T

vo(,0) = ug(®), vo(0,%) = ue(0), wo(l,2) =0

which are uniquely solvable. Thus this step enables one to define uniquely
the functions v; and w;.

I1. Second step. Assume that the functions v; and w; are defined uniquely
for all 7 < n. Define the functions v,41 and wp41.

To define the function w,41, we obtain from the equations (4.10) and
conditions (4.8) and (4.12) the following Neumann problem

0 52 0
X(f)awn+1(€,t) — @wnﬂ(f,t) = _gw”—l(g’t)’
€n+1 an+1
wn41(€,0) = WWUO(O)’
()5 p5+!

d
%wn+1(i1,t) = SZ:% T%T_an_g(io,t)
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for the inhomogeneous heat equation. This problem is uniquely solvable.
The conditions (4.12) yield

()5 88
Wop1 (£, 1) = vnga (£0,1) + > o gt s(E0,0). (414)
S=1 ’

To define the function v,41, we obtain from the equations (4.9) and the
conditions (4.6)—(4.7) and (4.14) the following two problems:

0 0?
A) avm_l(x,t) = wvn+1(l‘,t), z e (—1,0)

Unt1(2,0) =0, wv,41(—1,1)=0,

n+tl (-1)5 &%
Unt1(0,1) = wnya(—1,1) — 523—1 o1 5 -5 (=0,1);
B) %vm_l(x,t) = aa—:zvn“(x,t), z€(0,1), vhg1(2,0)=0,
ntl | 58
Un41(0,1) = wpy1(1,t) — 2 56?1;”_5(—1—0,15), vn41(1,8) = 0.

These problems are uniquely solvable. Consequently, we have defined the
function v, 41.

Thus assuming that the functions v; and w; are known for all ¢ < n,
we can define them for ¢ = n + 1. Then by induction one can construct
the functions v; and w; for all i. Hence we have constructed the formal
asymptotic series.

Introduce the notation

N
E (2, 1), |z| > ¢,
=0
N
. x
g elwi(—,t), |z] < e.
< €
1=0

UN(x,t) =

Theorem 4.1. Let u. be a solution of the problem (4.1)—(4.3), and let Un
be a finite part of the formal asymptotic series (4.5). Then the following
mequality holds:

lJue — Unlleaa) < CeNFL

where the constant C does not depend on £ and N.
The proof of this theorem is the same as that of Theorem 1.1 from [20].
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5. ASYMPTOTICS OF THE SOLUTION UNDER STRONG PERTURBATION OF
DENSITY

In the domain © = (—1,1) x (0,T) consider the initial boundary value
problem for the heat equation of the kind

(1—|—€_mx(§))ut = Uy, (5.1)
u(—1,%) = u(1,t) = 0, (5.2)
u(z,0) = up(x), (5.3)

where the functions x and wy are the same as in [20], ¢ € (0,1), and m
is a rational number greater than 2. Let m = 2 + L, where { and p are
positive integers. As for the function y, we additionally assume that in
some neighborhood of the point # = ¢ and in the right neighborhood of the
point & = —¢ it can be expanded into Taylor series.

As before, under a solution of the problem (5.1)—(5.3) will be understood
a function u which satisfies (5.1) for # # +e as well as the conditions (5.2)
and (5.3) and the “sewing” conditions at the points # = +¢

u(e +0,t) = ule —0,1), g—u(e +0,t) = g—z(e —0,1),
du du (54)

u(—e+0,t) = u(—e - 0,t), ——(—e+40,t)= 6x(_€_0’t)'

Ox

The problem (5.1)-(5.3) is uniquely solvable by [18]. Construct an asymp-
totic expansion of the solution u. of the problem (5.1)-(5.3) as ¢ — 0.

We divide the segment [—1, 1] into several parts and introduce new vari-
ables.

Consider on (—1, —¢) and (¢, 1) the function u. (x,t) = u(x,t). It satisfies
the equation

Ot = Lt 6:5)
r,t) = —u*(x,1). .
ot ’ Ox? ’
Introduce on (—e + €1+2I_P,€ — €1+21_p) a new independent variable { = %
and consider the function w.(x,t) = v(£,t). Tt satisfies the equation

62
€ —U(&f )+ (5) Ju(Et) = ¢ (&, 1) (5.6)
On (—¢, eltay ) and (e— eltay ,€) we introduce new independent vari-

ables n = (:I:l —&)-«¢ LP , respectively, and consider the function w.(z,t) =
wk(n,t). It satisfies the equatlon

2

o, : 0 0
2+; + _ ~3p + — +
e oW (n,t) +x(£l—¢ U)atw (n,t) 2" (). (5.7)
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In what follows, we will omit the superscripts /4" and construct the func-
tions uT and wT. Obviously, the functions 4~ and w™ can be constructed
analogously.

Introduce § = £% and construct the formal asymptotic expansion of the
solution u. in the form

Zy e t), |e|>e
w(z )~ { D (€ t),  E=2, J¢| <1, (5.8)

S stwEmt), n=E£E ne(0,1).

Substituting the formal series (5.8) into each equation (5.5)—(5.7), we
have

8t252 (,1) 82252 (z,8) ~ 0 =
2

:Zél( (z,1) %ul(x,t)) ~ 0;

; _L 0 = 9? S
Ezgzél“i(g’tﬂf "X(f)gzélvi(f,t)—@;52%'(5,15)“’0:

2

§ 2 n(6.) ~0

:>Z (6z+4p f t)—l—éZ 21 (g)ﬁvl(f t) 85

ot

2

jZél 2 (0(€) gy 6 ) i€ )= i (6,0)) 0
©) S S a1 =) S st )

—zifsiwi(ﬁ,t)

22 (5402 O i 6@& (Ui, 1)

—aa—;wi(ﬁat)) ~0= Z (5”4”“’%% +

wlm

i~ (D s 507 9. G0
+6SZ::O < 67y 6€SX(1) w; 66772102) 0=
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S dS o 62
2262(615102 4p— 2]—1—2 S' de (1) wZ 15— @wi)f\lo.

We equate the coefficients to zero and find that the functions u;, v; and
w; satisfy the following equations:

%ui(x,t) = aa—:zui(x,t), i>0; (5.9)
0? 0
(g) (€ t) agz Se2 Vi— 4P(€ t) atvi—‘lp—zh i > Oa (510)

a 0* 9
X() 5 wi(n, 1) - Wwi(n,t) = — gy Wi-ap-2(n,1) =

—-n)° d° 0 .
(57,7') e (gpuinis, 020 (5.11)

S=1

Obviously, the terms in the equations (5.9)-(5.11) with negative indices
are absent.

Determine now the initial and boundary conditions. The boundary con-
ditions (5.2) and the formal expansion (5.8) result in

wi(=1,1) = ui(1,1) = 0. (5.12)

The initial conditions (5.3) and the formal expansion (5.8) yield

Zél (x)=uo(x,0) = To(x), ui(®,0)=0, i>1; (5.13)
;5%(5,0):@0(55):;mi(g0 Z < de p(0) =

o0 : o0 €S d B
e NEITEDY 62p5§d$—5uo(0) =
i=0 5=0

gS dS
o Jvps(60) = G osw(0), S=0,1,2,..., (5.14)
vi(§,1) =0, j#2nS5;

S 8t wi(n, 0) = To(e — e+ 37n) = W (8% — 82+ y) =

= iéi (n,0) = i Gl < (677) =
WA= S! dzs "
=0 S5=0

§ 2pk dS+k

= i 77
:>Z§ w;(n,0) Z 3] 5(2p+l)SZ T To5TE up(0). (5.15)
=0

S=0
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We easily see that w;(n,0) from (5.15) can be defined for any i after
equating the coefficients at the same degrees of 6. In particular,

d
wo(n,0) = uo(0), wi(n,0)=0,...,wap_1(n,0) =0, wap(n,0) = %UO(O),

d
w2p+1(77a 0) = Oa .- 'aw2p+l—1(77a 0) = Oa pr-I—l(na 0) = _nd_UO(O) ceee

It remains to find the conditions at the points # = ¢ — ¢! =% and ¢ = e.
We will start from the conditions v(1 — 6',¢) = w(1,t), u(e,t) = w(0,1),

M Le,t) = 5= 9 w(0,t). Tt follows from the condltlon w(l,1) = v(1 — &' 1)
that

> stwi(1,t) = Z §lvi(1,1) =
i=0 3
lS aS

= 6hwi(l,1) = Z&ZZ 5' T vi(1,1) =
i=0 i=0

15 65
Sl) g5 Vimis (1,0 =

:»iéiwi(u Zélz_:
i=0 i=0 =

z

4] S

=w;(1,1) = Z S! 8€Svl 15(1,1). (5.16)

From the condition u(e,t) = w(0,?) we obtain

iéiwi(o,t) = iéiui(at) =
=0 )
:»;aiwi(m ;6225'6 sui(0,8) =

62p5 aS

:»Zéiwi(o,t)zzy s (0.0) =
i=0

=0 S=0

= 13 g ! 1)5 65
= 6wi(0,1) = Zé Z o g ti-ops(0,1) =
=0 =0 =

1of
S@

Mle
=

:>wi(0,t) — ui(O,t) 5 Ui 2p5(0 t) (517)

IIM

while from the condition g—z(E,t) = ;—xw(o,t) we arrive at

=9 =0
;a—xui(e,t)_;é Sowi(0) =
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i 52p5 3S+1 o ciop_1 0
1=0 S=0 =0
(5]
g . 19 S+ i—2 la
:»Z(s iU 2p5(0,1) Zé g0 =
i=0 =0
0 5] —1 97+t
:>—wi(0,t) = gwui_zp_l_ng(o,t). (518)

677 S=0

Obviously, the terms with negative indices in the formulas (5.16)-(5.18)
are absent.

Let us now show how one can construct successively all the functions u;,
v; and w;.

I. First step. From the above-obtained relations we write out everything
which concerns the functions vy, wg and ug.

For vy we obtain respectively the equation and the initial condition:
%vo(g,t) =0, vg(&,0) = wo(0). Hence vo(€,1) = up(0).

For the function wy we obtain the problem

(1) gran(n.0) = 5. 0),
0

wo(ﬁ, 0) = UQ(O), wo(l,t) = Uo(l,t) = UQ(O), %wo(o,t) = 0

This simple problem for the heat equation has the unique solution wq(n) =
uy(0).
To define the function ug, we get the problem

0 52
p” —ug(z,t) = 5 Zuo(x 1),

Uo(l‘, 0) = Uo(l‘), Uo(l,t) = 0, Uo(o,t) = wo(O,t) = Uo(O).

This problem is uniquely solvable.
Thus at the first step we have defined uniquely the functions vg, wg and ug.
II. Second step. Suppose the function u;, v; and w; are given for all
¢ < n. Define the functions up41, vn41 and wp41.
To define the function v, 1, we get the problem

0 0? 0
(g)atvn+1(€ t) 6&’2 a5 Un— 4p+1(€ t) atvn—4p—21+1(€at)a

wp41(€,0) = £ uy(0), for n+1=2pS, SeZ,

dzs

unt1(£,0) =0, for n+1=2pS, SeZ.
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Obviously, this problem is uniquely solvable. To define the function wy 41,
we get the problem

0 52 0
X(l)awn+1(nat) - anﬂ(ﬁ,t) = _Ewn-l—l—élp—ﬂ(nat) -

[241]
~ (o) 90 0
- 3 %ﬁx(l)awnﬂ—w(%t%
S=1 ’
1
2T ys g
Wnt1(1,0) = frs1(n), wpyr(1,1) = 3 aé.TUn—lS+1(1at)a
S=0 ’
(251 1 §5+1
%wml(oat) = 57 gaor Unti-2p-1-2p5(0,1),
S=0 ’

where the function f, 11 is defined from (5.15).

The problem under consideration is an inhomogeneous initial bound-
ary value problem for the inhomogeneous heat equation. This problem is
uniquely solvable.

Thus, having supposed that the functions u;, v; and w; are known for
all # < n, we have defined them for ¢ = n 4+ 1. Then by induction one can
construct the functions wu;, v; and w; for all 2. Consequently, the formal
asymptotic series (5.8) is constructed.

Introduce the notation

N

> suF(w,t), x> e,

i=0

N
Uv(e,t) =33 6Twi(e1), €=2, [¢€l<1—e,
=0

N
Zéiw?:(n,t), n=:78 0<p<l.
i=0

We have to show that the above-constructed series (5.8) is in fact the asymp-
totic series for the function wu..

Estimate now the difference Un (4 0,1) —Un (e —0,1). As is easily seen,

N ) N ) 00 ES 65
Un(e+0,t)=> (e t)=> 8> a5 ui(0) =
i=0 i=0 S=0 '

N
_ g . _ g - N+1
=28 gm0 =2.9 , 51 g i=2es (0.1 OG0,
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N(e—=0,1) Zélwl 0,1).

The conditions (5.17) imply Un (e + 0,t) — Uy (e — 0, = O(6V+1).

Analogously it follows from (5.16)—(5.18) that the function Uy (as well as
its derivative) may have at the points # = —¢, x = 6—€1+2I_P, v =—ctec't %
discontinuities which are of order O(6V*1) for the function and of order
O(6N) for the derivative. Evidently, one can construct a function ¢y with
discontinuities at the same points, but with opposte sign, where ¢ and ¢’y
will be of order O(6V*1) and O(6Y), respectively, and pn(—1)=¢@n(1)=0.

Consider the function Viy defined by Vi (z,t) = Un(z,t) — on(2). The
function Vy is continuously differentiable, and ||[Vy(z,t) — Un(z,1)]| =
O(éN). From the construction of the function Vy we can see that

(g (2) v = gati) = 06"

Vn(z,0) = ug(z) + O(6N + 1).

Then for the function U, = u. — Vx we obtain the initial boundary value
problem of the kind

i (T D o?
il () gl - gt = B
U(=1,t)=U.(1,t) =0, U.(z,0)= ps,

where Fs = O(6V=2P™) and p5 = O(6V+1).

Then we multiply the equation (5.19) by U, and integrate the obtained
equality with respect to the domain [—1, 1] x [0, 7p]. Similarly to the proof
of Theorem 1.1 we arrive at

1 1 e 1
/Uf(x,ro)dx§/¢§(x)dx+g_m /X(g)gpg(x)dx—i—‘// Fg(x,t)U*dxdt‘.
0
-1 -1 —c -1

Hence we find

/ / (2, t)dedt < C§>N=2m),

Thus for any Ny we obtain ||U. — VN1||£2(Q) < C§N1—2pm

Let Ny = N4+2pm+-1. Then |Ju. =V, ||z,0) < C6MN . But [V, —Un, || <
C6MN1 | and we find [Jue — Uny142pm|| < O8N+ 1t immediately follows that
[|ue — Un|| < M&N*!, Thus we have proved the following

Theorem 5.1. Let u. be a solution of the problem (5.1)~(5.3), and let Uy
be a partial sum of the series (5.8). Then the inequality

Jue — Unl| < M6NF!

1s valid, where the constant M does not depend on & and N.
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