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SOME QUALITATIVE PROBLEMS
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Abstract. The first and the second boundary value problems of statics
are considered. The dependence of the solutions and of the corresponding
eigenfrequencies of these problems on the elastic constants and density is
investigated. The same dependence is studied for the total deformation
energy and for Green’s operators. The following theorem is proved: among
anisotropic elastic convex bodies of a given volume there exists one for which
the first eigenfrequency of the first boundary value problem is minimal.
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1. DEPENDENCE OF THE SOLUTIONS AND OF THE DEFORMATION
ENERGY OF THE FIRST AND THE SECOND BOUNDARY VALUE
PrROBLEMS BOTH ON THE ELASTIC CONSTANTS AND ON THE

DENSITY OF THE MEDIUM

1.1. On the Continuous Dependence. Let R™(n > 2) be an n-dimensional

Fuclidean space, = (#1,...,2,) and y = (y1,...,Yn) be its points and let

D be a bounded domain in R” with the compact connected boundary 5.
Consider the matrix differential operator of the elasticity theory (see [1])

A, 9) = Mg Dl Aje(.0) = 5 (w505 ), (1)
where a;;., € C(D,R) are elastic constants satisfying
aijer(2) = ajier(2) = aepij(z), Vo €D, (2)
and
Im >0, V& € RYE; =€) aijen(@)Eijer > méij&ij. (3)

Here and in what follows, the repetition of an index denotes summation
with respect to that index from 1 to n.

Introduce an n’-dimensional vector function a :ﬁ—ﬁR”l(n’ = %n(n—i—l) X
x(n? + n +2)) defined by
VeeD: a(z) = (a1111(%), a1112(2), . . ., Annnn()) (4)

and assume

Va € C(D;R™) : lall o pnry = sup [la(@)lgar,
zeD

where

k 1/2
€]z = {Z&?} :
=1

Denote by K the set of the vector functions (4) satisfying (2) and (3)
and show that this set is an open convex cone in the space C(D; R”I).

Indeed, let 0 <t <1 and a9 € K(q = 0,1). Then, by (3), there exists
m > 0 such that Yz € D and V&;; € R(&; = &)

ag]q'ik(l‘)fzj&k > m&;&; (¢ =0,1).
The vector function tal® + (1 — t)a'") obviously satisfies (2) and (3), i.e.,
ta® 4 (1 = t)a) € K. Moreover, ¥t > 0: ta € K if a € K.

Let € > 0 and HAaHC(B;]R"') < 7. Then for any z € D aﬂd &l = 1,
we have |Ad;jer(2)&ijéer| < €, whence by virtue of (3) Vo € D, &; &; = 1:
(aijen(z) + Aayjen(®))ij€er > m — ¢, that is, a + Aa € K. Thus the set K
is an open, convex cone in C(D; R”I).



62

It is known that the elastic medium (D, p,a) is the set consisting of a
domain D and of functions p and a;jex, where a;;.5 satisfies (2) and (3) and
p (the density of the medium) satisfies p(z) > 0, Ve € D.

Consider the vector function b = (p,a), b : D — R™ m = n’ 4+ 1, and
the space C(D;R™) with the norm ||b||c(5;]Rm) = sug”b(x [|mm.

zeD
As above, we can show that the set K of vector functions b determining

the elastic medium (D, p, a) is an open convex cone in the space C(D;R™).
We consider the following boundary value

Problem 1 (see [1]). Find a vector function u : D — R™ satisfying
Ve € D: A(x,)u(x) + f(z;p,0) =0, Yo e S: lim u(z)=0,

Dez—z

where f € C(K; (Ho(D))"), and A(z, ) is defined by (1). Tt should be noted

that the setting of Problem 1 is understood in the generalized variational
sense (for the spaces H,, (D) and ﬁ[m(D), see [2], [3]).

As is well known, if b € K and f(-,b) € (Ho(D)"), then there exists
a unique vector function u(-,b) which belongs to the class (ﬁIl(D))” and

0
minimizes the functional %B(v, v,a)-(f(-,b),v) on the set (H1(D))" (that
is, u(-, b) is a solution of Problem 1 in the generalized variational sense),
where

B(u,v,a) = /aijek($)5ij(u)56k(v)dxa gij(u) = %(% + gz,z) (5)

and (f,v) is the scalar product in (Ho(D))".
Given M C K, we consider the following problem: find a vector function

b0 = (p ™) such that

B(u(, 6, u(, 6),a') = inf B(u(-,b),u(-,b),a).

To investigate this problem, we first show that if f € C'(K, (Ho(D))"), then
the solution (-, b) of Problem 1 depends continuously on b.

Choose Ab such that b + Ab € K. Then
0
Yo € (H1(D)" : B(u(-,b),v,a) = (f(-,b),v),
B(u(-, b+ Ab),v,a+ Aa) = (f(-, b+ Ab),v).

Taking into account (5), we find that

Vo€ (F1(D)" : B(AU(-,b),v,a) = (AS(-b),0) —

(Au
—/Aaijek(x)gij(u(~,b—|—Ab))eek(v)dl‘.
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If instead of v we write Au(-,b), then due to (3), Korn’s first inequality
(see [2], [4]) yields

[1Au(, b}l < ma([[ASC D)o + 1 Aall o) llul-, b+ AL, (6)

where m; does not depend on Ab. Moreover, we note that if ||Ab||c(5;ﬂgm)
is sufficiently small, then [Ju(-, b4+ Ab)||1 < mal|f(-, b+ Ab)||o (m2 does not
depend on Ab).

Consequently, (6) implies that

1Au(, b)[[r < mo([[AF(, b0 + (1Aall g gy 1 0+ AD) o). (7)

0
The latter proves that u(-,b) is continuous in b, i.e., u€ C(K;(H1(D))").

Finally, consider the function ¢; : K — IR defined as follows:
Vb e K () = B(u(-,b),u(-,b),a).

0
Taking into account (5) and the fact that w € C(K; (H1(D))"), we can

easily conclude that ¢; € C(K).
Thus the following theorem is valid.

Theorem 1. If M C K is a compact set in the space C(D;IR™), then there
exists al least one vector function b9 € M such that

Bu(-,b9), u(-,59),a(?) = Jnf B(u(-,b),u(,b), a).

Remark 1. The theorem has the following mechanical meaning: of the
elastic media (D, p,a), (p,a) € M, we can choose at least one medium
(D, p(9,a(®)) for which the total deformation energy ¢;(p(®),a(®)) corre-
sponding to the solution u(-, p(®), a(®)) of Problem 1 is minimal.

We will now proceed to the consideration of the second boundary value
Problem 2 (see [1]). Find a vector function u : D — R™ satisfying

Ve e D: A(x,d)u(x) + f(x,p,a) =0,
VeeS: ng T(0,,v(x))u(z) = 0,

where

0

v ——
zazea

1(9:,v) = |T5x(0:, V)llnxn, Tjr(0:,v) = ajjen(2)

and v(x) is the unit normal at the point & € S, exterior with respect to D
(the problem is posed in the generalized sense).
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For Korn’s second inequality to be valid (see [2], [3]), the boundary S is
assumed to be sufficiently smooth.

It is known that if f € C'(K;(Ho(D))") and the conditions

/f(x, b)ydz = 0, /(xifj —z;jfi)dz =0, (8)

are fulfilled, then Problem 2 has a solution u(-,b) of the class (H1(D))™.
Any two solutions of this problem differ by the rigid displacement vector
Lx 4+ C, where L = ||Lij|lnxn, Lij = —Lj; and C' = (1, ..., ¢n).

Similarly to the previous problem, the following equalities are valid:

Yo € (Hi (D))" : B(u(-,b),v,a) = (f(-,b),v),
B(u(-, b+ Ab),v,a+ Aa) = (f(-, b+ Ab),v),

where b € K and b+ Ab € K.

This implies that

Yo € (Hi(D)" : B(Au(-,b),v,a) = (Af(-,b),v) —

—/Aaijek(x)eij(u(x,b—l—Ab))gek(v)dl‘. (9)

Ifin (9) instead of v we write Au(+, ), then by virtue of (3), the left-hand
side of (9) will admit the estimate

B(Au(-,b), Au(-,b),a) >m > /E?j(Au(x,b))dx. (10)

i,j:lD

Let R be the set of all rigid displacement vectors and P be the operator
of orthogonal projection of (H1(D))"” onto R in the sense of Hy(D). Then,
taking into consideration the conditions (8) (which are valid for the vector
function Af) as well, we obtain

(Af(a b)’ Au(~, b)) = (Af(a b)’ Au(~, b) - PAU(" b))a
whence
[(AFC0), Aul, b)) < |AFC, b)lol|Aul-, b) = PAu(-,b)llo.  (11)

Moreover, it is known (see [4]) that

Yo e (Hy(D)" > [ ef(v)da > cllv— Po||2, (12)
ij:lD

where C' does not depend on v. Thus from (11) we find that

n 1/2
(AFC.b). Au(-, b)) < c1||Af<~,b>||o(Z / e?j@u(x,b))dx) (13)

ij:lD
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Estimate the last term in the right-hand side of (9):

/ Adgjep(2)eij(u(e, b+ Ab))ecp(Au(z, b))dz <

n 1/2
<Collall oy 3 lleis(ul-, b +A8) ||o{2 E(Aut s (14

ij=1 e k= 1D
Since
B(u(-, b+ Ab), u(-, b+ Ab),a+Aa)= (f(, b+ Ab), u(-, b+ Ab)— Pu(-, b—i—Ab)),

from (12) we have

n n

1/2
Z;IZEij(U(l‘,b-l-Ab))dl‘<—\/—||f( b-l—Ab)Ho{i]Z::lIZeij(u(.’b+Ab))dx} ’
that is,

> lleis(ul b+ Ab)lo <

ij=1

fllf( b+ Ab)lo-

Hence from (14) we get

/ Adgjep(2)eij(u(e, b+ Ab))ecp(Au(z, b))dz <

1/2
< malSallra 1.0+ 800] D [ sute e}

i1j= 1D

The latter together with (9) and with regard for (10) and (13) finally gives

1/2
{Z JENe) } <mo(IASC, Do+ Al ¢ g0 15+ AB) o),

i1j= lD

where mg does not depend on Ab. That is, ¢;;(Au(-, b)) = Agi;(u(-,6)) — 0
in the sense of Hy as Ab — 0 in the space C(D;R™). Consequently, ¢; €
C(K), and we can conclude that Theorem 1 is valid for the second boundary
value problem as well.

Remark 2. Let f in the first boundary value problem be a homogeneous
function of order « with respect to &. Then it can be easily shown that

VE>0 : (s, th) =t tu(-,b), @ (th) = 12 loys(b).
Clearly
DHifa< %, then tlif& pr(th) =
2)if o > %, then tlif& pr(th) =
Hifa= %, then ¢ (th) = ().

0, lim gy (th) = oc
oo, limp; (th) = 0;
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Remark 3. Let f be independent of . Then
Vi>0 @ u(-th) = %u(~,b), pp(th) = %gof(b).

Analogous remarks are valid for the second boundary value problem.

1.2. Differentiability of the Total Deformation Energy with Respect to the
Parameters p and a. Let the elastic constants a;;.; and the density p be

independent of z, x € D, i.e., the elastic medium is homogeneous and
anisotropic. Denote the above introduced cones K and K by Ky and Ky,
respectively. Moreover, assume that f € C1(Ko; (Ho(D))").

Consider Problem 1. If u(-, b) is a solution of this problem, then

Yv € (f%l(D))n : /aijek@]' (u(x, b))Eek(v)dl‘ = (f, U).

Let ¢ = (0,...,0,A#,0,...,0) be an m-dimensional vector (At’ is the
(s + 1)-component of the vector ¢'). Then

0
Vv € (H(D))" : /(%ek + tijer)ei (w(@, b+ ))eck (v)de =(f(-, b +1'), v),
D
where the set of the numbers t;»je
the space C(D; R”I)).
From these two equalities we find that

; 1s obtained from ¢’ (see the definition of

Vo € (Hy(D))" : /aijekeij(A/u(x,b)eek(v)dx -

= (Af(-,b),v) — At / Einjo (U, b+ ")) ey, (v)da. (15)

Note that here the summation takes place only for those indices g, jo, ko,
lo for which ¢}, = At'. Similarly, for the vector ¢ =(0,...,0,At" 0,...,0),

ije

0
Yv € (Hl(D))n : /aijekeij(A”u(x, b)Eek(v)dl‘ =
D
= (A"f(-,b),v) — A" / Einjo(U(@, b+ ")) o, (v)da. (16)
D
It follows from (15) and (16) that

A'u(z,b)  Alu(z,b) AF( b)) ATf(,b)
/aijekEij( A Ap )Eek(v)dl’:( A A ’U)""

D

+/ [Etaio (e, b+ 1)) = e, (1w, b+ 1)) | 2egpy (0)da.
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Substituting here iltlff — ilﬂ instead of v and taking into account (3),

from Korn’s first inequality we get

A" 6” A/Ei]'(u) A//f A
Z H At At/ Ho < C(H INZN ”0 +

+ 3 e (ulob +0) = e (aC b+ ). (17)

ij=1

From the above inequality it i1s clear that there exists

oy Aeiju) Oz (u)

At—0 At Oag

in the sense of Hy.

We can also show that the function ¢; has all partial derivatives with
respect to as, s = 1,...,n (the differentiability of ¢ with respect to p is
easily proved).

Suppose now that u(-, ) € (H1(D))" is a solution of the second boundary
value problem of elasticity. Then, analogously to the previous case,

Yv € (Hi(D)" : /aijekEij(W)Eek(U)dl‘ =(Fo)+

+ /Eiuju(u(l‘, b+t") —u(z, b+t )ecyr, (v)de,
D

where
ﬁl/u(',b) /u(~,b) ﬁ”f(',b) A/f(',b)
W(-. b) = A .
( ’ ) At At ) ( s ) = T t/
and the summation takes place only for those indices %y, jo, lo, ko for which
t;’ujueuku = At or t;ojoeoku — A"

If in the latter inequality we substitute W instead of v and apply the
operator of orthogonal projection P, then we obtain

mZ/ b))dx <

i1j= 1D
<(F,W—-PW)+ /Eiuju(u(l‘, b+t") —u(z,b+1"))epon, (W)da
D

which together with (12) yields

Z H A" 6” A/Ei]'(u)

R
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< C(H At Al

S D e (b4 1) = w4 )0

Consequently, ¢;;(u) is differentiable in the sense of Hy, and the total
deformation energy ¢, is differentiable with respect to b.

1.3. The Continuity of Green’s Operator of the First and the Second Boun-
dary Value Problems with Respect to the Parameter. Let G()(a):( Ho(D))"

— (ﬁIl(D))” be Green’s operator of the first boundary value problem for
the corresponding medium (D, p, a) (from the definition of Green’s operator
it follows that it depends only on a).

Estimate the norm of the operator G()(a + Aa) — G(a), where a,
a+ Aa € K.

Using the estimate (7), we can write

Yo € (Ho(D)" : (G (a + Aa) — GD(a)v||, = [Ju(-, a+ Aa) —
—u(+ a)lly = [[Au(-, a)lly < mollAdl| 55 [lV]]o,
where u(-,a) = G")(a)v, Ya € K. This implies that
(9] g
MG+ 80) — GO@))

vE(Ho(D))" [Iv]lo
vZ£0

< mol|Alle@ray,

that is, the operator G(1) depends continuously on a.

Consider the problem of differentiability of the operator G(!) with respect
to the parameter a, a € Ky.

Using Korn’s first inequality, from (17) and (7) we obtain

H (A"GMyw  (A'GMy
At At
It is clear that the operator G(1) is differentiable with respect to the
parameter a. Moreover, we can show that

(SClul att")—u( att) L <O =" llollo-

G € C*(Ko: L((Ho(D))", (H(D))")).

Let as before R = {Lz + C'}, where L = ||L;j|lnxn, Lij = —Lj; and
C=(Cy,...,Cp).
By the definition,

RY ={f € (Ho(D))" : (f,B) =0, VB ER}.

Introduce a norm in the space (H1(D))" as follows:

Vu e (Hi(D)" « lullf = D [ efj(w)de + lull5.
ij:lD
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By virtue of Korn’s second inequality, the above introduced norm is
n

equivalent to the standard norm of the space (Hy(D))".
Consider the quotient space H(D)=(H1(D))" /R and define the norm by

¥ii € H(D) : [l = jnf. lu+ Bl

le.,

~N2 _ 2 2 o 2 ~
= ot (||u+B||o+2 [t Bz ) = jot o+ Bl oG
7= D

where (%) = ¢(u), Vu € u.
Therefore
all3 = [l7 = Pullg + (),

where P is the operator of orthogonal projection of (H1(D))" onto R in the
sense of Hy, and

[ — Pullo = ||u— Pullo, Vu €.
For w, v € H we define
B(u,?) = B(u,v), u€w, veED.
The following inequality is valid: there is C; > 0 such that Va 5 H(D) :
e(@) > C1||u — Pul|? (see [4]), which implies that
3C > 0: B(w,u) > Cljuz, Yu € H(D).
Consider the functional equation
Yo € H(D) : B(u,v) = (£,7), feR™.

By Lax-Milgram’s theorem, the functional equation has a unique solution
u of the class H, and

1l < CT I flo-
Below we will denote the elements of the quotient space H by u, v, w,. ...

Define now Green’s operator for the second boundary value problem.
Let (D, p,a) be an elastic medium. Consider the functional equation

Yo € H(D) : B(u(-,a),v,a) = (g,v),

where ¢ € R+ and a € K.
Denote the unique solution u(-, @) of this equation by G(*)(a)g, and con-
sider the mapping

GP(a): RY — H(D)
defined by
Vg e RY - GP(a)g = u(-, a).
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Show that G*) € C(K; L(RY; H(D))). Indeed,
|G (a+ Aa)g — G (a)gllz, _ [lu(, a+ Aa) — u(:, a3

9113 B llg113
Aul-, a)—PAu(-, a)||2+e(Au(-, a Ce(|Au(-, a
_3ut ) P ) e(Aua)  CSU)
llgll llgll5
where
E(U) = /Elj(v)elj(v)dr.
D
Thus
IG® @ + Aa) = GE(@)]| < mol|Adllo 500
1.e.

G e C(K; L(R+; H(D))).

Show now that the operator G(?) is differentiable with respect to the
parameter a, a € Kg.

Indeed,
H A"GPD(a)  A'GP)(a) B
At At/ L(RLH)
||<A”G(2)(a) _ A’G<2)(a)) ” | Alu  Alu
—  swp AL Al Iy sup N <
gERL g#0 HgHO gERL g#0 HgHO
CIy % _ 2 (u(,a+ ")y —u(-,a+t'))dx 1z
S sup [Zzy_l fD ]( ( ) ( )) ] §C|t/—t//|.
gERL g#£0 HgHO
From the above we can conclude that there exists
AG®?) oG
m (a): s=1,....n"

bl bl

At—0 At da, ’
We can easily show that G(*) € C°(Ko; L(R*+; H(D))).

From the definition of Green’s operator
Vt >0, Ya€ K :GP(at) = %G(Z)(a).
Moreover, if f € C?*(Ko, R1), then ¢ (b) = (f(-,b), G(a)f(-,b)) and
A (b Of (b G (a
SDf():Q( f( ) ()f(,b)),

GA(@)f(-)) + (F(-0),

6&2' 6ai ’ 6ai
S (D G sen).
0%y (b) _ ?f(-,b) (2) af(-,b) (2) af(-,b)
8ai8aj - ( 6ai8aj ’G ’ (a)f(’b)) + 2( 8ai ’G i (a) aa]' ) +
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, (g : ®)(a

af@(a;b)’ aG@aj( )f(" b)) + Q(ag(a;b)’ aG@ai( )f(.’ b)) i
26(2)(q

+(f<~,b>,aai7&fj)f<"b>)’

o (b) azf(',b) 5 @f(.’b) 5 6f(~,b)
affap = ( 9a:0p G >(a)f(~,b)) +2(T”,G< )(a)Tp).

+2(

1.4. About Equivalent Forces. Let f, ¢ € C(Ko; (Ho(D))") in the case of
Problem 1 and f, g € C(Ko;R1) in the case of Problem 2.

Definition 1. The vector functions f and g are said to be weakly equiv-
(@) (4)

alent if the sets of local minimum points of the functions ey and ¢y,
¢t = 1,2, coincide.

Definition 2. The vector functions f and ¢ are said to be equivalent on

the compact M C K if for any i € {1, 2}, the sets of the minimum points of
(@) (4)

the functions ey and ¢y, ¢ = 1,2, coincide.

Theorem 2. If the functions f, g € CH(Ko;(Ho(D))™) are homogeneous
with respect to b of order o # % and 3 # %, respectively, and moreover

{b€ Ko: f(-8) = 0} = {b € Ko : g(-,b) = 0},
then f and g are weakly equivalent vector functions.

Proof. Indeed, since gogfl) and go(gl) are differentiable, at a point of local

minimum we have
1
e (b)
0b;

Moreover, using Euler’s formula, we obtain

:0, z:l,,m

m_ 9l (b
2 —@gbf b, = (20— 1)y ()

i=1

)

because ey i1s homogeneous of order 2a — 1.
This implies that gogtl)(b) = 0= f(-,b) = 0. Thus, the set of the local
(1)

minimum points of ey coincides with the set of zeros of f. This means
that the vector functions f and g are weakly equivalent. W

Theorem 3. If f,g € C*(Ko;RY) are homogeneous vector functions with
respect to b of order o # % and 3 # 12, respectively, and moreover

beky: f(-,0)=0}={be Ko :g(-,b) =0},

then f and g are weakly equivalent vector functions.
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1.5. On the Equivalence of Radial Forces in the Case of a Sphere for an
Isotropic Homogeneous Elastic Medinm. Let B(0,r) = {z € R™; |z| < r}
and f: B(0,r) — R™

Definition 3. We call f a radial vector function (radial force) if
VQ € O(n) and Ve e B(0,r): f(Qx) = Qf(z),
where O(n) is the group of orthogonal matrices.

Consider the differential system of equations of statics of the theory of
elasticity for an anisotropic homogeneous elastic medium:

O?uy(x) .
) _ o). (19

Tt is known that if u is a solution of the system (18) and @ € O(n), then

the vector function v(z) = Q'u(Qx) is a solution of the system

8%
o O
Ve € B(0,r) : A 9r.00, Apm [ (Q),

Vx € B(O, 7“) D Qijek

where QQ =||®j||lnxn, @ is the transpose to ) and

/
Asmhp = QijekXisVjmUeh Xfp.

If the medium is 1sotropic and homogeneous, that is, if
Uijek = A0ijber + p(6icbjk + i1 6jc),

then a’smhp = dymhp-
Note that A and p satisfy

nA+2u >0, pu>0.
Consider the first boundary value problem for a sphere:

Ve € B(0,r) : pAu(z)+ (A + p) grad divu(z) + f(x) = 0;
lim u(z)=0. (19)

|| —r

Theorem 4. If u: B(0,7) — R" is a solution of the problem (19) for the
radial vector function f € (Ho(D))", then u is a radial vector function.

Note that the general form of the radial vector function is
Ve € B(0,r) : f(x) = prg(|x]).

Consequently, if f(z) = zg(|z|) is a solid force, then by Theorem 4,
u(z) = zv(|x|) and it satisfies the ordinary differential equation

d?v(s) L + 1 duv(s) p

Vs € (0ir) ds? s ds :/\+2ug

(s) (20)



73

with the boundary conditions

. du(s)
= d lim —~< =0. 21
v(r)=0 an lim —- 0 (21)
After elementary calculations, we obtain that if v is a solution of the

problem (20), (21), then

r

B(u,u) = /\j_gﬂ/sn'l'ld)z(s)ds,
0

where w,, 1s the volume of the unit sphere, and

5

0 = = oy [atortan

0

Hence the total energy of deformation is of the form

_ o
oA+ 2

It is easily seen that given a compact subset M of the cone K; =
{p, Aspp) - p >0, nA+2u > 0, p > 0}, then for any two radial forces
f1 and fa of the form f; = pxg;(|z]), i = 1,2, the set of minimum points of
the functions ¢y, and ¢y, coincide, i.e., the radial forces are equivalent on
every compact M, M C K.

Let G be an arbitrary compact in the cone {A 4+ 2u > 0, u > 0} and
M = [po, p1] x G. Then the minimum points of the function ¢ (p, A, 1) are
such (po, Ao, pto) for which (Ag, po) satisfy the equation A + 2u = ¢y, where
to = max{t;{(\, p): A+ 2 =1t} NG # o}

r(p, A )

2. ON AN ISOPERIMETRIC PROBLEM IN THE ELASTICITY THEORY

In this section, we study the following isoperimetric problem: from the
set of elastic bodies of a given volume find the one for which the first funda-
mental frequency of the first boundary value problem is minimal. In math-
ematical physics, many works have been devoted to isoperimetric problems.
Among them we should point out [5].

As above, let R"(n > 2) be the Euclidean n-dimensional space. A subset
T of the space R™ is said to be convex if together with any two of its points,
it contains the linear segment connecting them. A closed convex bounded
set containing interior points is called a convex n-dimensional body.

Let T be a closed convex set. Consider the mapping d(-,7) : R” — R
defined by

Ve e R" 1 d(z,T) = inf || — y||r=.
yer

We can easily see that d(-,T) is a convex function satisfying the Lipschitz
condition (with the Lipschitz constant 1).
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Denote by A(R™) the set of convex bodies in the space R™ and define
the mapping © : A(R") — Lip(R™) which with VT € A(R") associates the
function Qr () defined by

Ve € R": Qp(x) = d(z,T).

As is easily seen, this mapping is injective. Indeed, if Qp, = Qrp,, then
Ve e R" i d(z,T1) = d(x,Ts). Let « € Ty. Then d(z,T1) = 0, and therefore
d(z,T2) = 0, i.e., # € Ty. Hence Ty C T5. The contrary can be proved
analogously, and therefore 77 = T5.

Define V77 € A(R") and V15 € A(R"): p(T1,T5) = sup,eg« |Qr, (x) —
Qp, ().

Clearly, p is a metric (well-known as the Hausdorff distance). Denote by
A(R"™; p) the metric space defined by the above-introduced metric.

It is easy to show that

p(T1,T2) = max{sup d(x,T>); sup d(z,T1)}.
z€Ty z€T>

The metric space A(R™; p) is complete (see [6]).

Let p be a Lebesgue measure in R, To every T € A(R™; p), u(T) > 0,
we put into correspondence a Hilbert space H(T) so that the following
conditions are fulfilled:

if 1 C T, then there exists Iy, 7, € L(H(T1); H(T%)) such that

Hrrullmer,y = |lullaery, Ve € H(Th).
Introduce the continuous bilinear forms
YT € AR p), By(T): H(T) x H(T)—C, j=1,2,

and the functional

_ Re By (T)(u,u)

vu€ H(T) : F(I)(W) = g )

where C is the set of complex numbers.

Suppose that the bilinear forms satisfy the following conditions:

1. VT € A(R"™; p) : B1(T') is coercive, i.e., there exists Mp > 0 such that
Vu e H(T): Re By (T)(u,u) > Mr|ul)*

2. Yu € H(T)\O : Re B2(T)(u, u) > 0;

3. V(u,v) S H(Tz) X H(Tz) : B]'(Tz)(u,v) = Bj(Tl)(ITnguajTQTlv), if
Ty C Tv;

4. Let ‘H% be the homothety with the center 0 and the coefficient k, and
let 0 be an interior point of the convex body 7', u(T) > 0. There exists an
isomorphism J§ of the space H(T') onto the space H(HE(T)) such that

B (HE(T))(JEu, JEv) =k B; (T)(u,v), a1<as, Y(u,v)€H(T)x H(T).
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Definition 4.

VT € AR"; p) : A(T) = inf  F(T)(u). (22)

i
u€H(T)\{0}
Establish some properties of A(T).

(I) If 75 C Ty, then A(Tl) < A(Tz)

Indeed,

. Re B1(T2)(u, u) . Re B1(T1)(Ip,1, u, IT,7, 1)
A(Ty) = f ————" = f 21 =12 >
) = A Re Bo(To)(w, w) ~ wetiira) (Re Ba(Th) Trursu, Trorott) =
u#0 u#0
> i Re B1(T1)(v,v)
- vEH(Tl)Re Bz(Tl)(U, U)
vZ£0
(IN). VT € A(R™; p) : A(HE(T)) = k*1=22A(T).
Taking into account the fourth property of the bilinear forms, we obtain
Re By (15 (1)) (JE u, Jbw)
= % k. TEy
weH(T) Re Bo(HE(T)(JEu, JEu)
uF#0
f Re B1(T)(u, u)
weH(T)\{0} Re Bo(T)(u, u)

Note that if oy = av, then YT € A(R"; p):
W(T) >0, j=1,2:A(Ty) = A(T»).
(II). If Ty € A(R™; p), u(Tp) > 0 and
lim T, = Ty, T, € A(R"p), then lim A(T}) = A(Th).

p—0oQ p—0oQ

= A(TY).

— kal—a2

= kT2 A(T).

By virtue of (IT), ¥e > 0 there exist numbers k; > 1 and 0 < k2 < 1 such

that
IA(H (To) — A(T)| < /2, j=1,2,
whence
[AHE (o)) = A(HG (To))] < e.

Let § = min{d(GHE (Ty), 0Ty), d(OHE*(Ty), 9Ty)}.

For § > 0, there exists pp (natural) such that p(7,,7p) < %, Vp
py. Denote B(To;%) ={z e R" : d(z,Ty) < %} Then Vp > po : 1}
B(Ty; %) C HE\(Ty). Therefore Vp > po : AT,) > AHEN(T)).

[} [}
Let R"\Ty = CTy and consider the set

2
-

B(CT0:8/2) = {e € ™ d(z, CTo) < 6/2).

[} [}
Since 9T, C B(CTTy; %), we have T, O B(CT; %) D HSQ(TO), Yp > po,
le.,

A(Th) < ACHE(T))).
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Hence we finally get
AR (To)) < M(T,) < AHG(To)). ¥p > po-
Clearly the above inequality is valid for A(Tp) as well. Therefore
|A(T;) = A(To)l <&, Vp 2> po.
Thus the property (EH) <>is proved.

[

Suppose ¥(u, v) € (H1(T))"* x (Hy(T))" :

B (T)(u,v) = /aijekgij(u)eek(v)dx, Boy(T)(u,v) = /u~vdx.

o o

T T

Let us prove that A(T') defined by the formula (22) is the first fundamen-
tal frequency for the first boundary value oscillation problem of the theory
of elasticity.

Consider the following boundary value problem: find a vector function

o
u: T — R" satisfying

VxE%:A(@x)u(x)—l—wzu(x):O, Vxeﬁ%: lim u(z)=0,
Tez—x

where )

6%’61‘6 ||n><n
It is known that this problem has a countable set of fundamental fre-

quencies {w?, . .,wf),. ..} such that w? <wi<.. .§w12) <... (see [1], [2]).
Let ¢1,92,...,9p, ... be the corresponding sequence of fundamental vec-

tor functions which form a complete orthonormal system in (Ho(7))™.
The Fourier expansion of u and A(0x)u in terms of eigenfunctions shows

that

A(0) = |laijer

/aijekgij(u)eek(u)dx = Z w;(]fn,
m=1

T
where
Cp = /u comde.
T
Since
BT (w) _ Y wheh
= (o) puiy W bl
By(T)(u,u) 321 Oh '
we obtaln

AT) > w?.
Taking into account the fact that in the above inequality the equality

occurs for u = @1, we have

AT) = w%.
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To obtain the final result, we have to estimate A(T) as diamT — co.

Lemma 1. Let T € AR™;p), p(T) > 0 and let E be the ellipsoid of
minimal volume with the center O, containing the convex body T'. Then

HY™(E) C T (see [7)).

Lemma 2. Let E be an ellipsoid with the major axis 2a. Then there exists
a parallelepiped 11, E C II, whose one edge is 2a and

u(Il) < C(n)u(E).

From these lemmas it follows that ¥VT' € A(R"; p) there exists a paral-
lelepiped II, 7" C II, such that %a < diamT' < 2a, where 2a 1s the major
edge of II and

u(IT) < 0" Cm)u(T). (23)

Note that the function A : A(R"; p) — R is invariant with respect to
a parallel translation. Therefore we may suppose that the middle point of
a diameter of the convex body T coincides with the origin of coordinates.
Consider a new coordinate system (y1, ..., y,) in which the coordinate axes
are parallel to the edges of the parallelepiped II and the Oy-axis is parallel
to the edge equal to 2a.

Let @ = [|aij|lnxn be the corresponding orthogonal transformation and
let in the new coordinate system the parallelepiped II have the form

O={yeR": q;<y; <b;,i=1,...,n}, b —a; = 2a.
It can be easily shown that under such a transformation the coefficients

of the equation are transformed by the formulas

/
Appsh = QijekXimAjpUesXkh -

If we denote Q'u(Qy) = v(y), then
b1 b 4
a Emp(V)Esh (0)d
A = int J “’; mpsh p(D)een(0)dy
veH, (1) Jai - J0 To(y)]2dy
vZ£0

The condition (3) and Korn’s first inequality result in

by by by bna P
/ Ve OVe
[ [dpnemicatidy = e [ [Se2eq,
ai an ai an Yi odi

where C does not depend on ay, by ..., an,by,.
By virtue of (23), 2a(bs — as)...(by — an) < C(n)nu(T). This implies

that the estimate
oo [y (T
b —as < hASAPALI ol SVl
Jo a]u = 2

holds for some jg, 1 < jy < n.
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From the obvious identity
Yio 9
v
= | —dz;,, Vyel
/ azju Z]Da Yy € )

30

V]
which is valid for every v € C5°(IT), we have

bio

P < (b, — aj, /

]Da
by by 5 . a
Ve Ue
d < J <
[ frorans M%//%y ] fi
Thus
b1 by o
m s Em EsplV dy
vo e Cap(my : Joi ol GpnEmp (Ve (Y
Jo [ () Pdy
¢ 4a?
> _— > C n—1 o
=4 =\ Gy Ty

and consequently

4R?
ATY>C" | —————
)2 ety
where 2R = diam 7.
From the above we can see that A(T) — oo as diamT — oo.

Theorem 5. Let F = {T € A(R™p), w(T) =V}, V> 0. Then there
exists Ty € F such that
A(Ty) = inf A(T).
TeF

Proof. Consider the sphere B(0,r) with u(B(0,r)) > V and let

M= max A(T). (25)
TCB(0,r)NF
Since A is continuous at every point T € A(R"™; p), u(T) > 0, and the set
{T € A(R™; p)} due to Blaschke’s theorem (see [8]) is compact, there exists
M satisfying (25).
It follows from (25) that there exists Ry > 0 such that A(T) > M, if only
R> Ry and diam7T = 2R.
Consider the sphere B(0;2Rg). Then for VT € F, with diamT < 2Ry,
there exists 77 € F congruent to 7" and obtained by a parallel tranlation
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such that the middle point of a diameter of 7} coincides with the origin
coordinates, and Ty C B(0;2Rp). Then there exists Ty € F such that
Ty C B(0;2Rp) and

A(Ty) = %Ielg-A(T) [ |

Consider the mapping J : A(R"™; p) — A(R"; p), where for VT € A(R"; p),
J(T) is the convex body obtained from T' by the parallel translation and
whose middle point of a diameter coincides with the origin of coordinates.
We have the following

Theorem 6. Let F € A(R™;p), VI € F: p(T) =V, and let J(F) be a
closed set. Then there exists Ty € F such that

A(Ty) = inf A(T),

Denote by A(T), a) the fundamental frequency of the first boundary value
problem for the elastic body (7'; p;a) and show that it is continuous with
respect to the parameter a. The use will be made of the well-known theorem
due to Weyl and Courant (see [9]): if 4; and Ay are completely symmetric
operators in a Hilbert space and if A = Ay + As, then the eigenvalues of the
operators A; and A with the same numbers differ not more than by || Az||.

Let GM(a) : (Ho(D))* — (Ho(D))", a € K, where GM(a) = IGM) (a)
and I is the embedding operator, (foIl(D))” — (Ho(D))". Then é(l)(a) is
completely continuous and the eigenvalues of the operator é(l)(a) coincide
with the inverse values of the corresponding fundamental frequencies of
the first boundary value problem. It follows from the continuity of the
operator G1) and from the above -mentioned theorem that all fundamental
frequencies of the first boundary value problem are continuous. Analogous
conclusion is valid for the second boundary value problem.

Theorem 7. A(T’;a) is continuous at every point (Tp; a®) € A(R™; p)x Ko,
w(To) > 0.
Proof. Let 0 € %0, k > 1 and suppose that HE(Ty) = T, Hé/k(To) =T.
Then, owing to the property (IT), Va € Ky:
A(Ty;a) = k“A(Ty;a) and A(Ts,a) = k~“A(To; a).
Therefore VI', 77 C T C 15 and Va € Ky:
FoA(Ty; ) < AT ) < K2A(Tos 0) (26)
In particular, we have
k™A (Th;a%) < A(Tp;a®) < k“A(Tp; a®). (27)

Since A(Ty; a) is continuous at the point ac Ky, for Ve > 0 there exists
§ > 0 such that A(Ty; a%)— < A(Tp; a) < A(Ty; aHe, if only ||a—a®||gar < 6.
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From the above arguments and from the formulas (26) and (27) we obtain
k™ *A(To;a%) — k™% < A(T;a) < k*A(Ty; a®) + k%,
k™A(To;a) — k™% < A(Tp;a”) < k“A(To;a”) + k%,

Estimating the difference
1 1
KA (Tp; a®)+ ke —k~A(Tp; a®) +k~ e = (k“—k—a)A(To; a®)+ (k“—i—k—a)e,
we can conclude that it may become arbitrarily small as & — 1 and ¢ is

sufficiently small. W

Theorem 8. Let M be a compactum from Ko and let F = {T € A(R"™; p) :
w(T) =V}, Then there exists (Tp;a’) € F x M such that

ATp;a®) =  inf  A(T;a).
(To;) (T,a)lgfo (Ta)
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