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Abstract. The �rst and the second boundary value problems of statics

are considered. The dependence of the solutions and of the corresponding

eigenfrequencies of these problems on the elastic constants and density is

investigated. The same dependence is studied for the total deformation

energy and for Green's operators. The following theorem is proved: among

anisotropic elastic convex bodies of a given volume there exists one for which

the �rst eigenfrequency of the �rst boundary value problem is minimal.
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1. Dependence of the Solutions and of the Deformation

Energy of the First and the Second Boundary Value

Problems Both on the Elastic Constants and on the

Density of the Medium

1.1. On the Continuous Dependence. Let R

n

(n � 2) be an n-dimensional

Euclidean space, x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

) be its points and let

D be a bounded domain in R

n

with the compact connected boundary S.

Consider the matrix di�erential operator of the elasticity theory (see [1])

A(x; @) = kA

jk

(x; @)k

n�n

; A

jk

(x; @) =

@

@x

i

�

a

ijek

(x)

@

@x

e

�

; (1)

where a

ijek

2 C(D;R) are elastic constants satisfying

a

ijek

(x) = a

jiek

(x) = a

ekij

(x); 8x 2 D; (2)

and

9m > 0; 8�

ij

2 R

1

(�

ij

= �

ji

) : a

ijek

(x)�

ij

�

ek

� m�

ij

�

ij

: (3)

Here and in what follows, the repetition of an index denotes summation

with respect to that index from 1 to n.

Introduce an n

0

-dimensional vector function a :D!R

n

0

(n

0

=

1

8

n(n+1)�

�(n

2

+ n+ 2)) de�ned by

8x 2 D : a(x) = (a

1111

(x); a

1112

(x); : : : ; a

nnnn

(x)) (4)

and assume

8a 2 C(D;R

n

0

) : kak

C(D;R

n

0

)

= sup

x2D

ka(x)k

R

n

0

;

where

k�k

R

k =

�

k

X

i=1

�

2

i

�

1=2

:

Denote by K the set of the vector functions (4) satisfying (2) and (3)

and show that this set is an open convex cone in the space C(D;R

n

0

).

Indeed, let 0 � t � 1 and a

(q)

2 K(q = 0; 1). Then, by (3), there exists

m > 0 such that 8x 2 D and 8�

ij

2 R(�

ij

= �

ji

):

a

(q)

ijek

(x)�

ij

�

ek

� m�

ij

�

ij

(q = 0; 1):

The vector function ta

(0)

+ (1 � t)a

(1)

obviously satis�es (2) and (3), i.e.,

ta

(0)

+ (1� t)a

(1)

2 K. Moreover, 8t > 0: ta 2 K if a 2 K.

Let " > 0 and k�ak

C(D;R

n

0

)

<

"

n

2

: Then for any x 2 D and �

ij

�

ij

= 1,

we have j�a

ijek

(x)�

ij

�

ek

j < ", whence by virtue of (3) 8x 2 D, �

ij

�

ij

= 1:

(a

ijek

(x) + �a

ijek

(x))�

ij

�

ek

� m� ", that is, a+�a 2 K. Thus the set K

is an open, convex cone in C(D;R

n

0

).
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It is known that the elastic medium (D; �; a) is the set consisting of a

domainD and of functions � and a

ijek

, where a

ijek

satis�es (2) and (3) and

� (the density of the medium) satis�es �(x) > 0; 8x 2 D:

Consider the vector function b = (�; a), b : D ! R

m

, m = n

0

+ 1, and

the space C(D;R

m

) with the norm kbk

C(D;R

m

)

= sup

x2D

kb(x)k

R

m

:

As above, we can show that the set K of vector functions b determining

the elastic medium (D; �; a) is an open convex cone in the space C(D;R

m

).

We consider the following boundary value

Problem 1 (see [1]). Find a vector function u : D ! R

n

, satisfying

8x 2 D : A(x; @)u(x) + f(x; �; a) = 0; 8x 2 S : lim

D2z!x

u(z) = 0;

where f 2 C(K; (H

0

(D))

n

), and A(x; @) is de�ned by (1). It should be noted

that the setting of Problem 1 is understood in the generalized variational

sense (for the spaces H

m

(D) and

0

H

m

(D), see [2], [3]).

As is well known, if b 2 K and f(�; b) 2 (H

0

(D)

n

), then there exists

a unique vector function u(�; b) which belongs to the class (

0

H

1

(D))

n

and

minimizes the functional

1

2

B(v; v; a){(f(�; b); v) on the set (

0

H

1

(D))

n

(that

is, u(�; b) is a solution of Problem 1 in the generalized variational sense),

where

B(u; v; a) =

Z

D

a

ijek

(x)"

ij

(u)"

ek

(v)dx; "

ij

(u) =

1

2

�

@u

j

@x

j

+

@u

j

@x

i

�

(5)

and (f; v) is the scalar product in (H

0

(D))

n

.

GivenM � K, we consider the following problem: �nd a vector function

b

(0)

= (�

(0)

; a

(0)

) such that

B(u(�; b

(0)

); u(�; b

(0)

); a

(0)

) = inf

b2M

B(u(�; b); u(�; b); a):

To investigate this problem, we �rst show that if f 2 C(K; (H

0

(D))

n

), then

the solution u(�; b) of Problem 1 depends continuously on b.

Choose �b such that b+�b 2 K. Then

8v 2 (

0

H

1

(D))

n

: B(u(�; b); v; a) = (f(�; b); v);

B(u(�; b+�b); v; a+�a) = (f(�; b+�b); v):

Taking into account (5), we �nd that

8v 2 (

0

H

1

(D))

n

: B(�u(�; b); v; a) = (�f(�; b); v)�

�

Z

D

�a

ijek

(x)"

ij

(u(�; b+�b))"

ek

(v)dx:
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If instead of v we write �u(�; b), then due to (3), Korn's �rst inequality

(see [2], [4]) yields

k�u(�; b)k

1

� m

1

(k�f(�; b)k

0

+ k�ak

C(D;R

n

0)ku(�; b+�b)k

1

); (6)

where m

1

does not depend on �b. Moreover, we note that if k�bk

C(D;R

m

)

is su�ciently small, then ku(�; b+�b)k

1

� m

2

kf(�; b+�b)k

0

(m

2

does not

depend on �b).

Consequently, (6) implies that

k�u(�; b)k

1

� m

0

(k�f(�; b)k

0

+ k�ak

C(D;R

n

0

)

kf(�; b+�b)k

0

): (7)

The latter proves that u(�; b) is continuous in b, i.e., u2C(K;(

0

H

1

(D))

n

).

Finally, consider the function '

f

: K ! R de�ned as follows:

8b 2 K : '

f

(b) = B(u(�; b); u(�; b); a):

Taking into account (5) and the fact that u 2 C(K; (

0

H

1

(D))

n

), we can

easily conclude that '

f

2 C(K).

Thus the following theorem is valid.

Theorem 1. IfM � K is a compact set in the space C(D;R

m

), then there

exists at least one vector function b

(0)

2M such that

B(u(�; b

(0)

); u(�; b

(0)

); a

(0)

) = inf

b2M

B(u(�; b); u(�; b); a):

Remark 1. The theorem has the following mechanical meaning: of the

elastic media (D; �; a), (�; a) 2 M , we can choose at least one medium

(D; �

(0)

; a

(0)

) for which the total deformation energy '

f

(�

(0)

; a

(0)

) corre-

sponding to the solution u(�; �

(0)

; a

(0)

) of Problem 1 is minimal.

We will now proceed to the consideration of the second boundary value

Problem 2 (see [1]). Find a vector function u : D ! R

n

satisfying

8x 2 D : A(x; @)u(x) + f(x; �; a) = 0;

8x 2 S : lim

D2z!x

T (@

z

; �(x))u(z) = 0;

where

T (@

z

; �) = kT

jk

(@

z

; �)k

n�n

; T

jk

(@

z

; �) = a

ijek

(z)�

i

@

@z

e

;

and �(x) is the unit normal at the point x 2 S, exterior with respect to D

(the problem is posed in the generalized sense).
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For Korn's second inequality to be valid (see [2], [3]), the boundary S is

assumed to be su�ciently smooth.

It is known that if f 2 C(K; (H

0

(D))

n

) and the conditions

Z

D

f(x; b)dx = 0;

Z

D

(x

i

f

j

� x

j

f

i

)dx = 0; (8)

are ful�lled, then Problem 2 has a solution u(�; b) of the class (H

1

(D))

n

.

Any two solutions of this problem di�er by the rigid displacement vector

Lx+ C, where L = kL

ij

k

n�n

, L

ij

= �L

ji

and C = (c

1

; : : : ; c

n

).

Similarly to the previous problem, the following equalities are valid:

8v 2 (H

1

(D))

n

: B(u(�; b); v; a) = (f(�; b); v);

B(u(�; b+�b); v; a+�a) = (f(�; b+�b); v);

where b 2 K and b+�b 2 K.

This implies that

8v 2 (H

1

(D))

n

: B(�u(�; b); v; a) = (�f(�; b); v)�

�

Z

D

�a

ijek

(x)"

ij

(u(x; b+�b))"

ek

(v)dx: (9)

If in (9) instead of v we write �u(�; b), then by virtue of (3), the left-hand

side of (9) will admit the estimate

B(�u(�; b);�u(�; b); a)� m

n

X

i;j=1

Z

D

"

2

ij

(�u(x; b))dx: (10)

Let R be the set of all rigid displacement vectors and P be the operator

of orthogonal projection of (H

1

(D))

n

onto R in the sense of H

0

(D). Then,

taking into consideration the conditions (8) (which are valid for the vector

function �f) as well, we obtain

(�f(�; b);�u(�; b)) = (�f(�; b);�u(�; b)� P�u(�; b));

whence

j(�f(�; b);�u(�; b))j � k�f(�; b)k

0

k�u(�; b)� P�u(�; b)k

0

: (11)

Moreover, it is known (see [4]) that

8v 2 (H

1

(D))

n

:

n

X

ij=1

Z

D

"

2

ij

(v)dx � ckv � Pvk

2

0

; (12)

where C does not depend on v. Thus from (11) we �nd that

j(�f(�; b);�u(�; b))j � c

1

k�f(�; b)k

0

�

n

X

ij=1

Z

D

"

2

ij

(�u(x; b))dx

�

1=2

: (13)
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Estimate the last term in the right-hand side of (9):

Z

D

�a

ijek

(x)"

ij

(u(x; b+�b))"

ek

(�u(x; b))dx �

�C

2

k�ak

C(D;R

n

0

)

n

X

ij=1

k"

ij

(u(�; b+�b))k

0

�

n

X

e;k=1

Z

D

"

2

ek

(�u(�; b))dx

�

1=2

: (14)

Since

B(u(�; b+�b); u(�; b+�b); a+�a)=

�

f(�; b+�b); u(�; b+�b)�Pu(�; b+�b)

�

;

from (12) we have

n

X

ij=1

Z

D

"

2

ij

(u(x; b+�b))dx�

1

m

p

c

kf(�; b+�b)k

0

�

n

X

ij=1

Z

D

"

2

ij

(u(�; b+�b))dx

�

1=2

;

that is,

n

X

ij=1

k"

ij

(u(�; b+�b))k

0

�

1

m

p

c

kf(�; b+�b)k

0

:

Hence from (14) we get

Z

D

�a

ijek

(x)"

ij

(u(x; b+�b))"

ek

(�u(x; b))dx �

� m

0

k�ak

C(D;R

n

0

)

kf(�; b+�b)k

0

�

n

X

ij=1

Z

D

"

2

ij

(�u(x; b))dx

�

1=2

:

The latter together with (9) and with regard for (10) and (13) �nally gives

�

n

X

ij=1

Z

D

"

2

ij

(�u(x; b))dx

�

1=2

�m

0

�

k�f(�; b)k

0

+k�ak

C(D;R

n

0

)

kf(�; b+�b)k

0

�

;

where m

0

does not depend on �b. That is, "

ij

(�u(�; b)) = �"

ij

(u(�; b))! 0

in the sense of H

0

as �b ! 0 in the space C(D;R

m

). Consequently, '

f

2

C(K), and we can conclude that Theorem 1 is valid for the second boundary

value problem as well.

Remark 2. Let f in the �rst boundary value problem be a homogeneous

function of order � with respect to b. Then it can be easily shown that

8t > 0 : u(�; tb) = t

��1

u(�; b); '

f

(tb) = t

2��1

'

f

(b):

Clearly

1) if � <

1

2

, then lim

t!1

'

f

(tb) = 0; lim

t!0

'

f

(tb) =1;

2) if � >

1

2

, then lim

t!1

'

f

(tb) =1; lim

t!0

'

f

(tb) = 0;

3) if � =

1

2

, then '

f

(tb) = '(b):
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Remark 3. Let f be independent of b. Then

8t > 0 : u(�; tb) =

1

t

u(�; b); '

f

(tb) =

1

t

'

f

(b):

Analogous remarks are valid for the second boundary value problem.

1.2. Di�erentiability of the Total Deformation Energy with Respect to the

Parameters � and a. Let the elastic constants a

ijek

and the density � be

independent of x, x 2 D, i.e., the elastic medium is homogeneous and

anisotropic. Denote the above introduced cones K and K by K

0

and K

0

,

respectively. Moreover, assume that f 2 C

1

(K

0

; (H

0

(D))

n

).

Consider Problem 1. If u(�; b) is a solution of this problem, then

8v 2 (

0

H

1

(D))

n

:

Z

D

a

ijek

"

ij

(u(x; b))"

ek

(v)dx = (f; v):

Let t

0

= (0; : : : ; 0;�t

0

; 0; : : : ; 0) be an m-dimensional vector (�t

0

is the

(s + 1)-component of the vector t

0

). Then

8v 2 (

0

H

1

(D))

n

:

Z

D

(a

ijek

+ t

0

ijek

)"

ij

(u(x; b+ t

0

))"

ek

(v)dx=(f(�; b+ t

0

); v);

where the set of the numbers t

0

ijek

is obtained from t

0

(see the de�nition of

the space C(D;R

n

0

)).

From these two equalities we �nd that

8v 2 (

0

H

1

(D))

n

:

Z

D

a

ijek

"

ij

(�

0

u(x; b)"

ek

(v)dx =

= (�

0

f(�; b); v) ��t

0

Z

D

"

i

0

j

0

(u(x; b+ t

0

))"

e

0

k

0

(v)dx: (15)

Note that here the summation takes place only for those indices i

0

, j

0

, k

0

,

l

0

for which t

0

ijek

=�t

0

. Similarly, for the vector t

00

=(0; : : : ; 0;�t

00

; 0; : : : ; 0),

8v 2 (

0

H

1

(D))

n

:

Z

D

a

ijek

"

ij

(�

00

u(x; b)"

ek

(v)dx =

= (�

00

f(�; b); v)��t

00

Z

D

"

i

0

j

0

(u(x; b+ t

00

))"

e

0

k

0

(v)dx: (16)

It follows from (15) and (16) that

Z

D

a

ijek

"

ij

�

�

00

u(x; b)

�t

00

�

�

0

u(x; b)

�t

0

�

"

ek

(v)dx=

�

�

00

f(�; b)

�t

00

�

�

0

f(�; b)

�t

0

; v

�

+

+

Z

D

h

"

i

0

j

0

(u(x; b+ t

00

))� "

i

0

j

0

(u(x; b+ t

0

))

i

"

e

0

k

0

(v)dx:
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Substituting here

�

00

u

�t

00

�

�

0

u

�t

0

instead of v and taking into account (3),

from Korn's �rst inequality we get

n

X

ij=1










�

00

"

ij

(u)

�t

00

�

�

0

"

ij

(u)

�t

0










0

� C

�

k

�

00

f

�t

00

�

�

0

f

�t

0

k

0

+

+

n

X

ij=1

k"

ij

(u(�; b+ t

00

)) � "

ij

(u(�; b+ t

0

))k

0

�

: (17)

From the above inequality it is clear that there exists

lim

�t!0

�"

ij

(u)

�t

=

@"

ij

(u)

@a

s

in the sense of H

0

.

We can also show that the function '

f

has all partial derivatives with

respect to a

s

, s = 1; : : : ; n

0

(the di�erentiability of '

f

with respect to � is

easily proved).

Suppose now that u(�; b) 2 (H

1

(D))

n

is a solution of the second boundary

value problem of elasticity. Then, analogously to the previous case,

8v 2 (H

1

(D))

n

:

Z

D

a

ijek

"

ij

(W )"

ek

(v)dx = (F; v) +

+

Z

D

"

i

0

j

0

(u(x; b+ t

00

) � u(x; b+ t

0

)"

e

0

k

0

(v)dx;

where

W (�; b) =

�

00

u(�; b)

�t

00

�

�

0

u(�; b)

�t

0

; F (�; b) =

�

00

f(�; b)

�t

00

�

�

0

f(�; b)

�t

0

and the summation takes place only for those indices i

0

, j

0

, l

0

, k

0

for which

t

0

i

0

j

0

e

0

k

0

= �t

0

or t

0

i

0

j

0

e

0

k

0

= �t

00

.

If in the latter inequality we substitute W instead of v and apply the

operator of orthogonal projection P , then we obtain

m

n

X

ij=1

Z

D

"

2

ij

(W (x; b))dx �

� (F;W � PW ) +

Z

D

"

i

0

j

0

(u(x; b+ t

00

)� u(x; b+ t

0

))"

p

0

k

0

(W )dx

which together with (12) yields

n

X

ij=1










�

00

"

ij

(u)

�t

00

�

�

0

"

ij

(u)

�t

0










0

�
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� c

�










�

00

f

�t

00

�

�

0

f

�t

0










0

+

n

X

ij=1

k"

ij

(u(�; b+ t

00

) � u(�; b+ t

0

))k

0

�

:

Consequently, "

ij

(u) is di�erentiable in the sense of H

0

, and the total

deformation energy '

t

is di�erentiable with respect to b.

1.3. The Continuity of Green's Operator of the First and the Second Boun-

dary Value Problems with Respect to the Parameter. Let G

(1)

(a):(H

0

(D))

n

! (

0

H

1

(D))

n

be Green's operator of the �rst boundary value problem for

the corresponding medium (D; �; a) (from the de�nition of Green's operator

it follows that it depends only on a).

Estimate the norm of the operator G

(1)

(a + �a) � G

(1)

(a), where a,

a+�a 2 K.

Using the estimate (7), we can write

8v 2 (H

0

(D))

n

:







(G

(1)

(a +�a)� G

(1)

(a))v







1

= ku(�; a+�a)�

�u(�; a)k

1

= k�u(�; a)k

1

� m

0

k�ak

C(D;R

n

0

)

kvk

0

;

where u(�; a) = G

(1)

(a)v, 8a 2 K. This implies that

sup

v2(H

0

(D))

n

v 6=0

k(G

(1)

(a +�a)� G

(1)

(a))vk

1

kvk

0

� m

0

k�k

C(D;R

n

0

)

;

that is, the operator G

(1)

depends continuously on a.

Consider the problem of di�erentiability of the operator G

(1)

with respect

to the parameter a, a 2 K

0

.

Using Korn's �rst inequality, from (17) and (7) we obtain










(�

00

G

(1)

)v

�t

00

�

(�

0

G

(1)

)v

�t

0










1

�Cku(�; a+t

00

)�u(�; a+t

0

)k

1

�Ckt

0

�t

00

kkvk

0

:

It is clear that the operator G

(1)

is di�erentiable with respect to the

parameter a. Moreover, we can show that

G

(1)

2 C

1

(K

0

;L((H

0

(D))

n

; (

0

H

1

(D))

n

)):

Let as before R = fLx + Cg; where L = kL

ij

k

n�n

, L

ij

= �L

ji

and

C = (C

1

; : : : ; C

n

).

By the de�nition,

R

?

= ff 2 (H

0

(D))

n

: (f;B) = 0; 8B 2 Rg:

Introduce a norm in the space (H

1

(D))

n

as follows:

8u 2 (H

1

(D))

n

: kuk

2

1

=

n

X

ij=1

Z

D

"

2

ij

(u)dx+ kuk

2

0

:
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By virtue of Korn's second inequality, the above introduced norm is

equivalent to the standard norm of the space (H

1

(D))

n

.

Consider the quotient space H(D)=(H

1

(D))

n

=R and de�ne the norm by

8eu 2 H(D) : keuk

H

= inf

B2R

ku+ Bk

1

;

i.e.,

keuk

2

H

= inf

B2R

�

ku+Bk

2

0

+

n

X

ij=1

Z

D

"

2

ij

(u+B)dx

�

= inf

B2R

ku+Bk

2

0

+"(eu);

where "(eu) = "(u), 8u 2 eu.

Therefore

keuk

2

H

= keu� Peuk

2

0

+ "(eu);

where P is the operator of orthogonal projection of (H

1

(D))

n

onto R in the

sense of H

0

, and

keu� P euk

0

= ku� Puk

0

; 8u 2 eu:

For eu, ev 2 H we de�ne

B(eu; ev) = B(u; v); u 2 eu; v 2 ev:

The following inequality is valid: there is C

1

> 0 such that 8eu 3 H(D) :

"(eu) � C

1

keu� P euk

2

0

(see [4]), which implies that

9C > 0 : B(eu; eu) � Ckeu

2

H

; 8eu 2 H(D):

Consider the functional equation

8ev 2 H(D) : B(eu; ev) = (f; ev); f 2 R

?

:

By Lax-Milgram's theorem, the functional equation has a unique solution

eu of the class H, and

keuk

H

� C

�1

1

kfk

0

:

Below we will denote the elements of the quotient space H by u; v; w; : : : .

De�ne now Green's operator for the second boundary value problem.

Let (D; �; a) be an elastic medium. Consider the functional equation

8v 2 H(D) : B(u(�; a); v; a) = (g; v);

where g 2 R

?

and a 2 K.

Denote the unique solution u(�; a) of this equation by G

(2)

(a)g, and con-

sider the mapping

G

(2)

(a) : R

?

!H(D)

de�ned by

8g 2 R

?

: G

(2)

(a)g = u(�; a):
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Show that G

(2)

2 C(K;L(R

?

;H(D))). Indeed,

kG

(2)

(a+�a)g �G

(2)

(a)gk

2

H

kgk

2

0

=

ku(�; a+�a)� u(�; a)k

2

H

kgk

2

0

=

=

k�u(�; a)�P�u(�; a)k

2

0

+"(�u(�; a))

kgk

2

0

�

C"(j�u(�; a))

kgk

2

0

�m

2

0

k�ak

C(D;R

n

0

)

;

where

"(v) =

Z

D

"

ij

(v)"

ij

(v)dx:

Thus

kG

(2)

(a+�a)� G

(2)

(a)k � m

0

k�ak

C(D;R

n

0

)

;

i.e.,

G

(2)

2 C(K;L(R

?

;H(D))):

Show now that the operator G

(2)

is di�erentiable with respect to the

parameter a, a 2 K

0

.

Indeed,










�

00

G

(2)

(a)

�t

00

�

�

0

G

(2)

(a)

�t

0










L(R

?

;H)

=

= sup

g2R

?

;g 6=0







�

�

00

G

(2)

(a)

�t

00

�

�

0

G

(2)

(a)

�t

0

�

g







H

kgk

0

= sup

g2R

?

;g 6=0







�

00

u

�t

00

�

�

0

u

�t

0







H

kgk

0

�

� sup

g2R

?

;g 6=0

C

�

P

n

ij=1

R

D

"

2

ij

�

u(�; a+ t

00

)� u(�; a+ t

0

)

�

dx

�

1=2

kgk

0

� Cjt

0

� t

00

j:

From the above we can conclude that there exists

lim

�t!0

�G

(2)

(a)

�t

=

@G

(2)

@a

s

; s = 1; : : : ; n

0

:

We can easily show that G

(2)

2 C

1

(K

0

;L(R

?

;H(D))):

From the de�nition of Green's operator

8t > 0; 8a 2 K : G

(2)

(at) =

1

t

G

(2)

(a):

Moreover, if f 2 C

2

(K

0

;R

?

); then '

f

(b) = (f(�; b); G

(2)

(a)f(�; b)) and

@'

f

(b)

@a

i

= 2

�

@f(�; b)

@a

i

; G

(2)

(a)f(�; b)

�

+

�

f(�; b);

@G

(2)

(a)

@a

i

f(�; b)

�

;

@'

f

(b)

@�

= 2

�

@f(�; b)

@�

;G

(2)

(a)f(�; b)

�

;

@

2

'

f

(b)

@a

i

@a

j

=

�

@

2

f(�; b)

@a

i

@a

j

; G

(2)

(a)f(�; b)

�

+ 2

�

@f(�; b)

@a

i

; G

(2)

(a)

@f(�; b)

@a

j

�

+
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+2

�

@f(�; b)

@a

i

;

@G

(2)

(a)

@a

j

f(�; b)

�

+ 2

�

@f(�; b)

@a

j

;

@G

(2)

(a)

@a

i

f(�; b)

�

+

+

�

f(�; b);

@

2

G

(2)

(a)

@a

i

@a

j

f(�; b)

�

;

@

2

'

f

(b)

@a

i

@�

=

�

@

2

f(�; b)

@a

i

@�

;G

(2)

(a)f(�; b)

�

+ 2

�

@f(�; b)

@a

i

; G

(2)

(a)

@f(�; b)

@�

�

:

1.4. About Equivalent Forces. Let f , g 2 C(K

0

; (H

0

(D))

n

) in the case of

Problem 1 and f , g 2 C(K

0

;R

?

) in the case of Problem 2.

De�nition 1. The vector functions f and g are said to be weakly equiv-

alent if the sets of local minimum points of the functions '

(i)

f

and '

(i)

g

,

i = 1; 2, coincide.

De�nition 2. The vector functions f and g are said to be equivalent on

the compactM � K if for any i 2 f1; 2g, the sets of the minimum points of

the functions '

(i)

f

and '

(i)

g

, i = 1; 2, coincide.

Theorem 2. If the functions f , g 2 C

1

(K

0

; (H

0

(D))

n

) are homogeneous

with respect to b of order � 6=

1

2

and � 6=

1

2

, respectively, and moreover

fb 2 K

0

: f(�; b) = 0g = fb 2 K

0

: g(�; b) = 0g;

then f and g are weakly equivalent vector functions.

Proof. Indeed, since '

(1)

f

and '

(1)

g

are di�erentiable, at a point of local

minimumwe have

@'

(1)

f

(b)

@b

i

= 0; i = 1; : : : ;m:

Moreover, using Euler's formula, we obtain

m

X

i=1

@'

(1)

f

(b)

@b

i

b

i

= (2�� 1)'

f

(b)

because '

(1)

f

is homogeneous of order 2�� 1.

This implies that '

(1)

f

(b) = 0 ) f(�; b) = 0: Thus, the set of the local

minimum points of '

(1)

f

coincides with the set of zeros of f . This means

that the vector functions f and g are weakly equivalent. �

Theorem 3. If f ,g 2 C

1

(K

0

;R

?

) are homogeneous vector functions with

respect to b of order � 6=

1

2

and � 6= 12, respectively, and moreover

fb 2 K

0

: f(�; b) = 0g = fb 2 K

0

: g(�; b) = 0g;

then f and g are weakly equivalent vector functions.
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1.5. On the Equivalence of Radial Forces in the Case of a Sphere for an

Isotropic Homogeneous Elastic Medium. Let B(0; r) = fx 2 R

n

; jxj < rg

and f : B(0; r)! R

n

.

De�nition 3. We call f a radial vector function (radial force) if

8Q 2 O(n) and 8x 2 B(0; r) : f(Qx) = Qf(x);

where O(n) is the group of orthogonal matrices.

Consider the di�erential system of equations of statics of the theory of

elasticity for an anisotropic homogeneous elastic medium:

8x 2 B(0; r) : a

ijek

@

2

u

k

(x)

@x

i

@x

e

= f

j

(x): (18)

It is known that if u is a solution of the system (18) and Q 2 O(n), then

the vector function v(x) = Q

0

u(Qx) is a solution of the system

8x 2 B(0; r) : a

0

smhp

@

2

v

p

@x

s

@x

h

= �

pm

f

p

(Qx);

where Q=k�

ij

k

n�n

, Q

0

is the transpose to Q and

a

0

smhp

= a

ijek

�

is

�

jm

�

eh

�

kp

:

If the medium is isotropic and homogeneous, that is, if

a

ijek

= ��

ij

�

ek

+ �(�

ie

�

jk

+ �

ik

�

je

);

then a

0

smhp

= a

smhp

:

Note that � and � satisfy

n� + 2� > 0; � > 0:

Consider the �rst boundary value problem for a sphere:

8x 2 B(0; r) : ��u(x) + (�+ �) grad divu(x) + f(x) = 0;

lim

jxj!r

u(x) = 0: (19)

Theorem 4. If u : B(0; r)! R

n

is a solution of the problem (19) for the

radial vector function f 2 (H

0

(D))

n

, then u is a radial vector function.

Note that the general form of the radial vector function is

8x 2 B(0; r) : f(x) = �xg(jxj):

Consequently, if f(x) = xg(jxj) is a solid force, then by Theorem 4,

u(x) = xv(jxj) and it satis�es the ordinary di�erential equation

8s 2 (0; r) :

d

2

v(s)

ds

2

+

n + 1

s

dv(s)

ds

=

�

� + 2�

g(s) (20)
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with the boundary conditions

v(r) = 0 and lim

s!0

dv(s)

ds

= 0: (21)

After elementary calculations, we obtain that if v is a solution of the

problem (20), (21), then

B(u; u) =

!

n

�+ 2�

r

Z

0

s

n+1

 

2

(s)ds;

where !

n

is the volume of the unit sphere, and

 (s) = �

1

s

n+1

s

Z

0

g(t)t

n+1

dt:

Hence the total energy of deformation is of the form

'

f

(�; �; �) =

c�

2

�+ 2�

:

It is easily seen that given a compact subset M of the cone K

1

=

f(�; �; �) : � > 0; n� + 2� > 0; � > 0g, then for any two radial forces

f

1

and f

2

of the form f

i

= �xg

i

(jxj), i = 1; 2, the set of minimum points of

the functions '

f

1

and '

f

2

coincide, i.e., the radial forces are equivalent on

every compact M , M � K

1

.

Let G be an arbitrary compact in the cone f� + 2� > 0; � > 0g and

M = [�

0

; �

1

]�G. Then the minimum points of the function '

f

(�; �; �) are

such (�

0

; �

0

; �

0

) for which (�

0

; �

0

) satisfy the equation � + 2� = t

0

; where

t

0

= maxft; f(�; �) : �+ 2� = tg \G 6= ?g:

2. On an Isoperimetric Problem in the Elasticity Theory

In this section, we study the following isoperimetric problem: from the

set of elastic bodies of a given volume �nd the one for which the �rst funda-

mental frequency of the �rst boundary value problem is minimal. In math-

ematical physics, many works have been devoted to isoperimetric problems.

Among them we should point out [5].

As above, let R

n

(n � 2) be the Euclidean n-dimensional space. A subset

T of the space R

n

is said to be convex if together with any two of its points,

it contains the linear segment connecting them. A closed convex bounded

set containing interior points is called a convex n-dimensional body.

Let T be a closed convex set. Consider the mapping d(�; T ) : R

n

! R

de�ned by

8x 2 R

n

: d(x; T ) = inf

y2T

kx� yk

R

n

:

We can easily see that d(�; T ) is a convex function satisfying the Lipschitz

condition (with the Lipschitz constant 1).
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Denote by A(R

n

) the set of convex bodies in the space R

n

and de�ne

the mapping 
 : A(R

n

) ! Lip(R

n

) which with 8T 2 A(R

n

) associates the

function 


T

(x) de�ned by

8x 2 R

n

: 


T

(x) = d(x; T ):

As is easily seen, this mapping is injective. Indeed, if 


T

1

= 


T

2

, then

8x 2 R

n

: d(x; T

1

) = d(x; T

2

). Let x 2 T

1

. Then d(x; T

1

) = 0, and therefore

d(x; T

2

) = 0, i.e., x 2 T

2

. Hence T

1

� T

2

. The contrary can be proved

analogously, and therefore T

1

= T

2

.

De�ne 8T

1

2 A(R

n

) and 8T

2

2 A(R

n

): �(T

1

; T

2

) = sup

x2R

n
j


T

1

(x) �




T

2

(x)j.

Clearly, � is a metric (well-known as the Hausdor� distance). Denote by

A(R

n

; �) the metric space de�ned by the above-introduced metric.

It is easy to show that

�(T

1

; T

2

) = maxf sup

x2T

1

d(x; T

2

); sup

x2T

2

d(x; T

1

)g:

The metric space A(R

n

; �) is complete (see [6]).

Let � be a Lebesgue measure in R

n

. To every T 2 A(R

n

; �), �(T ) > 0,

we put into correspondence a Hilbert space H(T ) so that the following

conditions are ful�lled:

if T

1

� T

2

, then there exists I

T

1

T

2

2 L(H(T

1

);H(T

2

)) such that

kI

T

1

T

2

uk

H(T

2

)

= kuk

H(T

1

)

; 8u 2 H(T

1

):

Introduce the continuous bilinear forms

8T 2 A(R

n

; �); B

j

(T ) : H(T )�H(T )! C ; j = 1; 2;

and the functional

8u 2 H(T ) : F (T )(u) =

ReB

1

(T )(u; u)

ReB

2

(T )(u; u)

;

where C is the set of complex numbers.

Suppose that the bilinear forms satisfy the following conditions:

1. 8T 2 A(R

n

; �) : B

1

(T ) is coercive, i.e., there exists M

T

> 0 such that

8u 2 H(T ): ReB

1

(T )(u; u) �M

T

kuk

2

;

2. 8u 2 H(T )n0 : ReB

2

(T )(u; u) > 0;

3. 8(u; v) 2 H(T

2

) � H(T

2

) : B

j

(T

2

)(u; v) = B

j

(T

1

)(I

T

2

T

1

u; I

T

2

T

1

v), if

T

2

� T

1

;

4. Let H

k

0

be the homothety with the center 0 and the coe�cient k, and

let 0 be an interior point of the convex body T , �(T ) > 0. There exists an

isomorphism J

k

0

of the space H(T ) onto the space H(H

k

0

(T )) such that

B

j

(H

k

0

(T ))(J

k

0

u; J

k

0

v)=k

�

j

B

j

(T )(u; v); �

1

��

2

; 8(u; v)2H(T )�H(T ):
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De�nition 4.

8T 2 A(R

n

; �) : �(T ) = inf

u2H(T )nf0g

F (T )(u): (22)

Establish some properties of �(T ).

(I). If T

2

� T

1

, then �(T

1

) � �(T

2

).

Indeed,

�(T

2

) = inf

u2H(T

2

)

u6=0

ReB

1

(T

2

)(u; u)

ReB

2

(T

2

)(u; u)

= inf

u2H(T

2

)

u6=0

ReB

1

(T

1

)(I

T

2

T

1

u; I

T

2

T

1

u)

(ReB

2

(T

1

)(I

T

2

T

1

u; I

T

2

T

1

u)

�

� inf

v2H(T

1

)

v 6=0

ReB

1

(T

1

)(v; v)

ReB

2

(T

1

)(v; v)

= �(T

1

):

(II). 8T 2 A(R

n

; �) : �(H

k

0

(T )) = k

�

1

��

2

�(T ).

Taking into account the fourth property of the bilinear forms, we obtain

�(H

k

0

(T )) = inf

u2H(T )

u6=0

ReB

1

(H

k

0

(T ))(J

k

0

u; J

k

0

u)

ReB

2

(H

k

0

(T )(J

k

0

u; J

k

0

u)

=

= k

�

1

��

2

inf

u2H(T )nf0g

ReB

1

(T )(u; u)

ReB

2

(T )(u; u)

= k

�

1

��

2

�(T ):

Note that if �

1

= �

2

, then 8T

j

2 A(R

n

; �):

�(T

j

) > 0; j = 1; 2 : �(T

1

) = �(T

2

):

(III). If T

0

2 A(R

n

; �), �(T

0

) > 0 and

lim

p!1

T

p

= T

0

; T

p

2 A(R

n

; �); then lim

p!1

�(T

p

) = �(T

0

):

By virtue of (II), 8" > 0 there exist numbers k

1

> 1 and 0 < k

2

< 1 such

that

j�(H

k

j

0

(T

0

))� �(T

0

)j < "=2; j = 1; 2;

whence

j�(H

k

2

0

(T

0

)) � �(H

k

1

0

(T

0

))j < ":

Let � = minfd(@H

k

1

0

(T

0

); @T

0

); d(@H

k

2

0

(T

0

); @T

0

)g.

For � > 0, there exists p

0

(natural) such that �(T

p

; T

0

) <

�

3

, 8p �

p

0

. Denote B(T

0

;

�

2

) = fx 2 R

n

: d(x; T

0

) <

�

2

g: Then 8p � p

0

: T

p

�

B(T

0

;

�

2

) � H

k

1

0

(T

0

). Therefore 8p � p

0

: �(T

p

) � �(H

k

1

0

(T

0

)).

Let R

n

n

�

T

0

= C

�

T

0

and consider the set

B(C

�

T

0

; �=2) = fx 2 R

n

: d(x;C

�

T

0

) < �=2g:

Since @T

p

� B(C

�

T

0

T

0

;

�

2

), we have T

p

� B(C

�

T

0

;

�

2

) � H

k

2

0

(T

0

), 8p > p

0

,

i.e.,

�(T

0

) � �(H

k

2

0

(T

0

)):
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Hence we �nally get

�(H

k

1

0

(T

0

)) � �(T

p

) � �(H

k

2

0

(T

0

)); 8p � p

0

:

Clearly the above inequality is valid for �(T

0

) as well. Therefore

j�(T

p

)� �(T

0

)j < "; 8p � p

0

:

Thus the property (III) is proved.

Suppose 8(u; v) 2 (

�

H

1

(

�

T ))

n

� (

�

H

1

(

�

T ))

n

:

B

1

(T )(u; v) =

Z

�

T

a

ijek

"

ij

(u)"

ek

(v)dx; B

2

(T )(u; v) =

Z

�

T

u � vdx:

Let us prove that �(T ) de�ned by the formula (22) is the �rst fundamen-

tal frequency for the �rst boundary value oscillation problem of the theory

of elasticity.

Consider the following boundary value problem: �nd a vector function

u :

�

T ! R

n

satisfying

8x2

�

T :A(@x)u(x)+!

2

u(x)=0; 8x2@

�

T : lim

�

T2z!x

u(z)=0;

where

A(@x) = ka

ijek

@

2

@x

i

@x

e

k

n�n

:

It is known that this problem has a countable set of fundamental fre-

quencies f!

2

1

;: : : ; !

2

p

;: : :g such that !

2

1

�!

2

2

�: : :�!

2

p

�: : : (see [1], [2]).

Let '

1

; '

2

; : : : ; '

p

; : : : be the corresponding sequence of fundamental vec-

tor functions which form a complete orthonormal system in (H

0

(T ))

n

.

The Fourier expansion of u and A(@x)u in terms of eigenfunctions shows

that

Z

�

T

a

ijek

"

ij

(u)"

ek

(u)dx =

1

X

m=1

!

2

m

C

2

m

;

where

C

m

=

Z

�

T

u � '

m

dx:

Since

B

1

(T )(u; u)

B

2

(T )(u; u)

=

P

1

m=1

!

2

m

c

2

m

P

1

m=1

C

2

m

� !

2

1

;

we obtain

�(T ) � !

2

1

:

Taking into account the fact that in the above inequality the equality

occurs for u = '

1

, we have

�(T ) = !

2

1

:
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To obtain the �nal result, we have to estimate �(T ) as diamT !1.

Lemma 1. Let T 2 A(R

n

; �), �(T ) > 0 and let E be the ellipsoid of

minimal volume with the center O, containing the convex body T . Then

H

1=n

0

(E) � T (see [7]).

Lemma 2. Let E be an ellipsoid with the major axis 2a. Then there exists

a parallelepiped �, E � �, whose one edge is 2a and

�(�) � C(n)�(E):

From these lemmas it follows that 8T 2 A(R

n

; �) there exists a paral-

lelepiped �, T � �, such that

2a

n

� diamT � 2a; where 2a is the major

edge of � and

�(�) � n

n

C(n)�(T ): (23)

Note that the function � : A(R

n

; �) ! R is invariant with respect to

a parallel translation. Therefore we may suppose that the middle point of

a diameter of the convex body T coincides with the origin of coordinates.

Consider a new coordinate system (y

1

; : : : ; y

n

) in which the coordinate axes

are parallel to the edges of the parallelepiped � and the Oy-axis is parallel

to the edge equal to 2a.

Let Q = k�

ij

k

n�n

be the corresponding orthogonal transformation and

let in the new coordinate system the parallelepiped � have the form

� = fy 2 R

n

: a

i

� y

i

� b

i

; i = 1; : : : ; ng; b

1

� a

1

= 2a:

It can be easily shown that under such a transformation the coe�cients

of the equation are transformed by the formulas

a

0

mpsh

= a

ijek

�

im

�

jp

�

es

�

kh

:

If we denote Q

0

u(Qy) = v(y), then

�(�) = inf

v2

�

H

1

(

�

�)

v 6=0

R

b

1

a

1

� � �

R

b

n

a

n

a

0

mpsh

"

mp

(v)"

sh

(v)dy

R

b

1

a

1

� � �

R

b

n

a

n

jv(y)j

2

dy

:

The condition (3) and Korn's �rst inequality result in

b

1

Z

a

1

� � �

b

n

Z

a

n

a

0

mpsh

"

mp

(v)"

sh

(v)dy � C

1

b

1

Z

a

1

� � �

b

n

Z

a

n

@v

e

@y

j

@v

e

@y

j

dy;

where C

1

does not depend on a

1

; b

1

: : : ; a

n

; b

n

.

By virtue of (23), 2a(b

2

� a

2

) : : : (b

n

� a

n

) < C(n)n

n

�(T ). This implies

that the estimate

b

j

0

� a

j

0

�

n�1

r

c(n)n

n

�(T )

2a

holds for some j

0

, 1 < j

0

� n.
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From the obvious identity

v(y) =

y

j

0

Z

a

j

0

@v

@z

j

0

dz

j

0

; 8y 2 �;

which is valid for every v 2 C

1

0

(

�

�), we have

jv(y)j

2

� (b

j

0

� a

j

0

)

b

j

0

Z

a

j

0

�

�

�

@v(y)

@y

j

0

�

�

�

2

dy

j

0

;

b

1

Z

a

1

� � �

b

n

Z

a

n

jv(y)j

2

dy� (b

j

0

� a

j

0

)

2

b

1

Z

a

1

� � �

b

n

Z

a

n

�

�

�

@v

@y

j

0

�

�

�

2

dy� (b

j

0

� a

j

0

)

2

b

1

Z

a

1

� � �

b

n

Z

a

n

@v

e

@y

j

@v

e

@y

j

dy:

Thus

8v 2 C

1

0

(�) :

R

b

1

a

1

� � �

R

b

n

a

n

a

0

mpsh

"

mp

(v)"

sh

(v)dy

R

b

1

a

1

� � �

R

b

n

a

n

jv(y)j

2

dy

�

�

c

(b

j

0

� a

j

0

)

2

� C

n�1

s

4a

2

n

2n

C(n)�

2

(T )

;

and consequently

�(T ) � C

n�1

s

4R

2

n

2n

C(n)�

2

(T )

; (24)

where 2R = diamT .

From the above we can see that �(T )!1 as diamT !1.

Theorem 5. Let F = fT 2 A(R

n

; �); �(T ) = V g, V > 0. Then there

exists T

0

2 F such that

�(T

0

) = inf

T2F

�(T ):

Proof. Consider the sphere B(0; r) with �(B(0; r)) > V and let

M = max

T�B(0;r)\F

�(T ): (25)

Since � is continuous at every point T 2 A(R

n

; �), �(T ) > 0, and the set

fT 2 A(R

n

; �)g due to Blaschke's theorem (see [8]) is compact, there exists

M satisfying (25).

It follows from (25) that there exists R

0

> 0 such that �(T ) > M , if only

R � R

0

and diamT = 2R.

Consider the sphere B(0; 2R

0

). Then for 8T 2 F , with diamT < 2R

0

,

there exists T

1

2 F congruent to T and obtained by a parallel tranlation
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such that the middle point of a diameter of T

1

coincides with the origin

coordinates, and T

1

� B(0; 2R

0

). Then there exists T

0

2 F such that

T

0

� B(0; 2R

0

) and

�(T

0

) = inf

T2F

�(T ): �

Consider the mapping J : A(R

n

; �)!A(R

n

; �), where for 8T 2 A(R

n

; �),

J(T ) is the convex body obtained from T by the parallel translation and

whose middle point of a diameter coincides with the origin of coordinates.

We have the following

Theorem 6. Let F 2 A(R

n

; �), 8T 2 F : �(T ) = V , and let J(F) be a

closed set. Then there exists T

0

2 F such that

�(T

0

) = inf

T2F

�(T ):

Denote by �(T; a) the fundamental frequency of the �rst boundary value

problem for the elastic body (T ; �; a) and show that it is continuous with

respect to the parameter a. The use will be made of the well-known theorem

due to Weyl and Courant (see [9]): if A

1

and A

2

are completely symmetric

operators in a Hilbert space and if A = A

1

+A

2

, then the eigenvalues of the

operators A

1

and A with the same numbers di�er not more than by kA

2

k.

Let

e

G

(1)

(a) : (H

0

(D))

n

! (H

0

(D))

n

, a 2 K, where

e

G

(1)

(a) = IG

(1)

(a)

and I is the embedding operator, (

�

H

1

(D))

n

! (H

0

(D))

n

. Then

e

G

(1)

(a) is

completely continuous and the eigenvalues of the operator

e

G

(1)

(a) coincide

with the inverse values of the corresponding fundamental frequencies of

the �rst boundary value problem. It follows from the continuity of the

operator

e

G

(1)

and from the above -mentioned theorem that all fundamental

frequencies of the �rst boundary value problem are continuous. Analogous

conclusion is valid for the second boundary value problem.

Theorem 7. �(T ; a) is continuous at every point (T

0

; a

0

) 2 A(R

n

; �)�K

0

,

�(T

0

) > 0.

Proof. Let 0 2

�

T

0

, k > 1 and suppose that H

k

0

(T

0

) = T

2

, H

1=k

0

(T

0

) = T

1

.

Then, owing to the property (II), 8a 2 K

0

:

�(T

1

; a) = k

�

�(T

0

; a) and �(T

2

; a) = k

��

�(T

0

; a):

Therefore 8T , T

1

� T � T

2

and 8a 2 K

0

:

k

��

�(T

0

; a) � �(T ; a) � k

�

�(T

0

; a): (26)

In particular, we have

k

��

�(T

0

; a

0

) � �(T

0

; a

0

) � k

�

�(T

0

; a

0

): (27)

Since �(T

0

; a) is continuous at the point

�

a 2 K

0

, for 8" > 0 there exists

� > 0 such that �(T

0

; a

0

)�"< �(T

0

; a)< �(T

0

; a

0

)+", if only ka�a

0

k

R

n

0

< �.
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From the above arguments and from the formulas (26) and (27) we obtain

k

��

�(T

0

; a

0

)� k

��

" � �(T ; a) � k

�

�(T

0

; a

0

) + k

�

";

k

��

�(T

0

; a)� k

��

" � �(T

0

; a

0

) � k

�

�(T

0

; a

0

) + k

�

":

Estimating the di�erence

k

�

�(T

0

; a

0

)+k

�

"�k

��

�(T

0

; a

0

)+k

��

"=

�

k

�

�

1

k

�

�

�(T

0

; a

0

)+

�

k

�

+

1

k

�

�

";

we can conclude that it may become arbitrarily small as k ! 1 and " is

su�ciently small. �

Theorem 8. LetM be a compactum from K

0

and let F = fT 2 A(R

n

; �) :

�(T ) = V g. Then there exists (T

0

; a

0

) 2 F �M such that

�(T

0

; a

0

) = inf

(T;a)2F�M

�(T ; a):
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