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Abstract. The main purpose of the paper is to obtain complete asymp-
totic expansion of solutions to boundary value problems of elasticity of
Dirichlet, Neumann and mixed type for an n-dimensional (n > 2) com-
posed body in R™?. The body is composed of two anisotropic bodies with
smooth boundaries stick together along parts of their boundaries. Therefore
the body has a closed smooth cuspidal edge, along which the Dirichlet and
Neumann conditions in the mixed problem collide. Asymptotics of solutions
are obtained near the cuspidal edge (L,~theory), with precise description
of exponents and of logarithmic terms of the expansion.
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INTRODUCTION

In the present paper, we study asymptotics of solutions of the classical
(Dirichlet, Neumann and mixed) boundary value problems of anisotropic
elasticity in an n-dimensional domain £ C R” composed of two subdomains
Q = Q; UQy with smooth boundaries 897 and 9Qs. Sy = 01 NI is
assumed to be a smooth surface. Thus, the domain Q has a smooth, closed
cuspidal edge with the angle 27 viewed from . For a mixed problem,
the cuspidal edge is the place where the Dirichlet and Neumann conditions
collide. In the case of the plane n = 2 the cuspidal edge degenerates into
cuspidal points, the so-called interior peaks (any finite number of interior
peaks can be treated).

Interior and exterior Dirichlet and Neumann boundary value problems for
the Laplace equation as well as for the Lamé equation of isotropic elasticity
in plane domains (n = 2) were studied by V. Maz’ya and A. Solov’yev [22-
25]. They obtained conditions for unique solvability (which is non-trivial
for exterior peaks with the angle ¥ = 0) and established asymptotics of
solutions near these peaks.

In [6] the existence and uniqueness of solutions of the above-mentioned
problems were investigated in the Bessel potential and Besov spaces on the
basis of the potential method and the Wiener-Hopf method for pseudo-
differential equations on open manifolds. The obtained results enable one
to establish a priori smoothness of solutions which is restricted due to the
presence of a cuspidal edge even for the Dirichlet and Neumann problem,
although the solutions are C'*-smooth, where o < % for the Dirichlet and
Neumann problems, and o < % for the mixed problem.

G. Eskin and J. Bennish applied the Wiener-Hopf method and obtained
complete asymptotic expansion of solutions for elliptic pseudodifferential
equation on a manifold with a smooth boundary (the Ls-theory) (see [1],
[15]). In [7] we have developed this techniques and obtained more precise
asymptotics (the L,-theory). Particular results in this direction can be
found in [13] and [14].

Having in hand asymptotics of solutions for the boundary pseudodiffe-
rential equation on the boundary surface (such as a crack surface or the
interface between two anisotropic materials), we still need spatial asymp-
totics of solutions for the original boundary value problem which is rep-
resentable, as usual, by layer potentials with densities being solutions of
boundary pseudodifferential equations and thus having definite asymptotic
expansion near crack fronts or other geometric peculiarities of boundary
manifolds. These investigations were carried out in [8] in the most gen-
eral form: spatial asymptotics was established for functions representable
by layer potentials with prescribed asymptotics of density; exact formulae
were found relating the coefficients of spatial asymptotics and asymptotics
on the corresponding boundary surface. These formulae simplify substan-
tially the calculation of coefficients of spatial asymptotics and allow one to
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express them by coefficients of asymptotics on the surface. The latter can
be found from the boundary pseudodifferential equation with less dimension
than that of the corresponding boundary value problem.

The obtained results can be successfully applied in calculating stress
intensity factors (SIF) which play an important role in crack propagation
criteria.

In the present paper we demonstrate the results obtained in [7] and [8]
for the above-mentioned boundary value problems of elasticity and write
a complete asymptotic expansion of solutions near the cuspidal edge. For-
mulae relating to the SIF-coefficients (coefficients of the leading term of
asymptotics) of spatial and surface asymptotics are written out.

For different applications of the results dealing with asymptotics from [7]
and [8], the reader can be referred to [13], [11] and [4], [5].

A quite different approach to the problem of asymptotics, based on the
Mellin transform as well as on the calculus of boundary value problems (a
direct approach to spatial asymptotics) has been initiated by a pilot paper
of V. Kondrat’yev [18]. This method was developed in many outstanding
papers and monographs (see, e.g., [9], [10], [17], [19], [21], [27], [28]) and
encompass boundary value problems in domains with sophisticated singu-
larities occuring on the boundary (edges, wedges, conical singularities and
their arbitrary combinations). Although the Wiener-Hopf method cannot
(so far) be applied to the above-mentioned cases with singularities, in crack
and mixed type problems it demonstrates more precise asymptotics and
provides us with formulae for the exponents and coefficients.

1. FORMULATION OF THE PROBLEMS

Let a domain € C R™ n > 2, be either finite or infinite but have a
compact boundary S = 99, and let there exist a surface Sy of the class C'*°
of dimension n — 1 which divides the domain €2 into two subdomains £2; and
Qs with C*°-boundaries 9 and 9 (1 N = @, QN = ?0). Then
39Sy, the boundary of the surface Sy (0S5 C IQ), represents an (n — 2)-
dimensional closed cuspidal edge and 9Q; = S; U Sy, 003 = S5 U Sp.

Assume € is filled with anisotropic homogeneous elastic material.

The basic static equations of elasticity for anisotropic homogeneous elas-
tic media written in terms of displacement components are of the form

A(DJu+F=0 in Q (1.1)
([20], [16], [3]), where w = (u1,...,uy,) is the displacement vector, F' =
(Fy,..., Fy) is the volume force acting on § and A(D,) is an n X n-matrix
differential operator
A(Dx) = || Zn: ai'lk&'@lnnxn 6; = i Dl = —i@l (12)
i1=1 ’ ’ Oy’ ’

azj11 being elastic constants satisfying ;i = ais; = @ijni-
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The quadratic form

n

Z aijie&ij &k &ij =& (1.3)

i§0 k=1

is assumed to be positive-definite with respect to the variables &;;.
We introduce the differential stress operator

n

T(D:,n(2)) = |Ti(D:, n())lnwn,  Tix(Dzon(2)) = Y asjieni(2)dr,

i,i=1

where n(z) = (n1(2),...,n,(2)) is the unit normal vector to the manifold
S1 U S5 at the point z € 51 U S5, exterior to the domain 2. For convenience
in the sequel we will use the short notation 7 = 7(D,, n(z)).

From the symmetry of the coefficients a;;;z and the positive definiteness
of the quadratic form (1.1) it follows (the operator A(D,) is a strongly
elliptic formally self-adjoint differential operator [16]) that the symbol

A = H Zn: aiﬂk&&ann, E=(&,... &) eR

i,i=1
is positive definite, i.e. the inequality
(A©)n,n) = (AE)n,n) > Polél’n]* forall ¢€R" and peC"

holds with Py = const > 0 depending only on the elastic constants.
For the spaces we follow the notation suggested in [29] and in the case
of an infinite domain 2 we will invoke the spaces H;,loc(Q)a }B;JJOC(Q),

B comp (), B 4 comp (£2)-
Let u € W (Q) = H(Q) (W)

3 100(Q) = HL (). Then riu € W, (Q;)
(riu € Wpl,loc(Qi))a where r; is the operator of restriction to €, i =
1,2. From the theorem on traces (see [29]) there follows that the trace
of the function ~;u on 0€; exists and y;u € 1{5(6@»), i =129 =
p/(p—1). Let u € Wpl,loc(Q) be such that A(Dy)u € Lp comp(2) (if Q is
compact, we simply ignore the subscripts “loc” and “comp”). Then the
trace ;{7 (r;u)}T is correctly defined by the following Green formula (see

[12], [26])

o8

| FOAD i) + Bl o] = (3T (), 300
Q;
for all v e W) (v € W) 0y (), i=1,2;

here
n

E(TZ'U, v(l)) = Z amjklﬁm(riu)jﬁligci) ;

m,j, k=1
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the symbol {(-,-) denotes the duality between the spaces Bp_yzl,/p (05%;),
}B;,/i,,(@()i) and

<1/)a§0>3ﬂl = 1/)¢d5 for 'l/),QDE Cl(an)a i= 1a2
aqy,
If uw € I/Vp1 10.(§2) is a solution (in the sense of distributions) of (1.1)
with F' € Ly comp(€2), then A(Dy)u € Ly comp(R), ¢ > %. It is easy to
ascertain that the functions

ys,u = mi{y(riu)t on S,
v, Tu = mi{v7 (riw)} on S;, i=1,2,

where m; denotes the restriction from 9€2; to S;, @ = 1,2, are all correctly
defined.

In the case of an infinite domain €2, we require that a solution of (1.1)
satisfies the following condition

u(z) = o(1) for |z| — o0 if n>2,

u(z) = O(1) for |z] — oo if n=2. (1.4)

Tt is known (see [2]), that for any solution of (1.1) under condition (1.4) has
the following asymptotics at infinity

O(eP~"=1H)  for [z] — oo if n >
. B )
a U(l‘)— { O(|$|—|u|—1) for |x|—>OO if n=2

with an arbitrary multi-index p € Nj.

We will study the asymptotics of a function u € WZ}JOC(Q), which vanishes
at infinity (see condition (1.4)) and solves one of the following boundary
value problems:

Dirichlet Problem:

A(DjHu=0 in €,
Ys,u=¢@; on S,

where ¢ € BY (S), i=1,2, 1<p<oo, pi=
p—
Neumann Problem:
A(DyHu=0 in €,
vs;,7u=1; on 5

where 1); € JB;,;,/”(SZ»), i=1,2, 1<p<oo.
Mixed Problem:
A(Dyu=0 inQ,
Y5, U = ¢1 on Sy,
vs,Tu =y onSs,

where @1 € ]B;,/fl(sl), P2 € ]Bp_,zl)/p(s2)a I <p<oo.
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2. ASYMPTOTICS OF SOLUTIONS TO THE DIRICHLET BOUNDARY VALUE
PROBLEM

The simple layer potential

vy /Hx—y y)d, S, e, i=1,2,

where H(z) is the fundamental solution of (1.1), and the composition
(TV®)(g)(x) have the following traces on the surface

'yV() /Hz—y y)dy S,

HTVO) () = ~5a(:) / T(. n()H(: = 9)g()d, S

ZE@QZ', 221,2.

Let us use the notation

‘*féi)(g)(Z)I/T(ﬁz,n(z))H(z—y)g(y)dyS, 2 E0, i=1,2,

for the direct values of the corresponding potential operators.
In [6] a solution to the Dirichlet boundary value problem is represented
by the simple layer potential

riu = V(i)gi m ; =1,2.
Let <I>éi) € B;(gl(ﬁﬁi) be some fixed continuation of the function ¢; €

B;(gl(si) to 9 = S;USy, i = 1,2. Then any continuation ®(;) of the
function ¢; to 9 has the form &) = <I>gi) + gogi), where gogi) € @;,/fl (So),
i=1,2.

The Dirichlet boundary value problem can be reduced to the following
system of pseudodifferential equations on the manifold with boundary Sy:

AP =g
° (D7 xr(Dy—1, (1) L 5 (2 (1 (2) (2.1)
71'0(_51"1"[0 YVI) "oy Hmo(—=5T4+ V ) VE) T ey =1,

where
9= Foq)éz) - Foq)gl),

1 * — 1 * _
J==mol(= 52+ V) (VE) el —mo( = J7+ v ) (VE) Tl
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here 7y is the operator of restriction to Sy and 7 is the identity.

For the system (2.1) with ¢; € B; ,.(Si), g € B} . (So), 1 =1,2,1/p—1/2 <
s < 1/p+1/2 (in particular, for s = 1/p’, r = p) to be solvable we require
the compatibility condition

3o)) € B (00:) i=1,2,: g€ B (So). (2.2)

Note that when 1/p—1 < s < 1/p, this condition is fulfilled automatically
(see [29, Theorem 2.10.3(c)]).
In the case 1/p < s < 1/p+ 1 the compatibility condition acquires the
form
VSoP2 = VSo¥1-
In the case where s = 1/p the compatibility condition looks rather cum-
bersome (see [6, Remark 5.7]).
The system (2.1) is reduced to a pseudodifferential equation on an open
manifold Sy
moAph) =,

where
e T (So) (B, (So)),

1 * 1 *
A= <—§I—|— v g”) (VU4 <—§I+ v g@) (Ve

The pseudodifferential operator my A is positive definite and the following
proposition holds for it.

Theorem 2.1 (see [6, Theorem 4.2]). Let 1 < p < oo, 1 <r < oco. Then
the operator

moA EH;(SO) — H;_l (So)

1s Fredholm if and only if the inequality

1 1 1 1
S 4o 2.3
. 2<5<p+2 (2.3)

holds.
If (2.3) is the case, then the operator

moA o EB(So) — EETH(So)
B, (S0) — B (So)
15 tnvertible tn both cases.

It is worth noting that PsDO @y A is invertible in the anisotropic Bessel
potential spaces with weight m,“’s)’k (Sp) — Hfo”’s_l)’k (Sp)forallp e R, k €
Ny (see [7]) provided the conditions (2.3) hold.

Now let us formulate the main theorems about uniqueness, existence and
smoothness for solutions to the Dirichlet problem (see [6, Theorems 4.3, 4.4,

4.5 and Remark 5.7]).
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Theorem 2.2. Let 4/3 < p < 4 and the compatibility conditions (2.2) hold
for s =1 —1/p. Then the Dirichlet boundary value problem has a unique
solution of the class WZ}JOC(Q), (with the condition (1.4) at infinity); this
solution is giwen by the formula

riu=VOVE)TH@) +¢), a=1.2

where <I>éi) € 1(5(6(%) is a fized continuation of the function p; to 09,
satisfying condition (2.2) and gogl) € @;(f (So), i = 1,2, is a solution to the
system (2.1).

Theorem 2.3. Let4/3<p<4,1<t<oo, 1 <r<oo, I/t—1/2<s<
1/t + 1/2, the compatibility condition (2.2) with t instead of p be fulfilled.
Let u € Wpl(Q) (u € WZ}JOC(Q) with the condition (1.4) at infinity) be
solution of the Dirichlet problem. In that case:

o Ifoi €,(Si), i = 1,2, then u e H;TH(Q) (T (Q));

Joe

o If pi €5, (Si), i = 1,2, then u € Byt (), (B 1111 ();

o Ifp; € C¥(S), i=1,2, a €]0,1/2], thenue () C*(Q).
a'<a
Now we will write the asymptotics of the Dirichlet boundary value prob-
lem. It will be assumed below that the boundary data of the Dirichlet prob-
lem are sufficiently smooth, namely, ¢; € H;OO’HZMH)’OO (Si), i=1,2, (see
[7])-

The following equalities hold for the symbols of the operators V(_q and
v gi) (see [6]):

UV(_ll)(Z,f/) = avg)(z,f’) for z €Sy, o
(5,8) = =0, ) (5,€) for €50, ~

The symbol oa(2’, &) of the pseudodifferential operator A has the form
O'A(l‘/,fl)IO'_l (l‘/,fl)IO'_l (l‘/,fl).

Vo) Ve
The symbol ¢_,,) (2',€') (i = 1,2) is an even matrix—function with re-
-1

spect to & and therefore all eigenvalues of the matrix (oa(z’,0,4+1))7!
oa(z’,0,—1) =1 are trivial A;(2')=1,j=1,...,n.

Let us consider a local system of coordinates (#”,2,-1) € Sy, where
z' € 0S5y is a parameter which ranges along the cuspidal edge, while 2, ; =
dist(#, 0Sp) denotes the distance to the edge along the surface Sp.

Applying a result on strongly elliptic pseudodifferential equation (see [7,
Theorem 2.1]) and taking into account the first equation in (2.1), we obtain

the following asymptotic expansion for the function gogi), 1=1,2:

: 1
(" e g) = co(aeE_

)
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1k ;
+ Z x;f1,+Bk(x//a log@n_1,4) + @S\}-pl(lﬂ’ Tn-1,4), (2.5)
k=1

where ¢ € C*°(9S5p) and the remainder 30M+1 € Hfooo s HMA1),00 C(Sh), i=
1,2, M e N, ST = 85, x [0,¢].

Br(2",t)in (2.5) is a polynomial of degree k with respect to the variable ¢
and has C'°°(95Sg)-smooth vector coefficients on the cuspidal edge " € 9.5;.

Thus, recalling that solutions of the Dirichlet boundary value problem
are represented by a potential-type function (see Theorem 2.2) and using
asymptotic expansion of such functions from [8, Theorem 2.2 and 2.3]), as-
suming <I>él) € H—Hfgoo’s-l_zMH)’oo (Si), i = 1,2, we obtain the following asymp-
totic expansion of the solution to the Dirichlet boundary value problem:

i(n)

ns—1
(riw)(2” @p_1,n) = ZRe{ Z d( )(x” +1)ad, 31/_51] -
j=0

M+2 M42-1

; 1/2 otk
—dWD(@ D2l PN N el Bilz]p<x':logzs,ﬁ>}+
d= :I:llk 0 j+p=1
I+k+j+p#0

4

M_I_l(x Tp_1,2y) for

[5_ 1]’0}a = 1a2a

with the coefficients dg?(~, +1) € C*(95p) and ug\?_l_l € CM+L(Q,),i=1,2.

Here

25,41 = —Tn-1 = TnTs +1, Rs,—1 = Tn-1 — LnTs —1,
00
—T < Argzs 41 < W, Tox1 € CP(05),

{75,11}15(2 are all different roots of the polynomial det A (J ] (2", 0)(0, %1, 7))
of multiplicity ns, s = 1,...l(n), in the complex lower half-plane; J,, is
the Jacoby matrix of the mapping s (see [8]). Again, 2" € Sy, xp_1 =
dist(zs,,dSn), #n = dist(z, Sp), where xg, is the projection of z € Q onto
the hyperplane containing Sy.

Bgll)wp(x”,t) is a polynomial of order v, = k + p + j with respect to
t, with vector coefficients depending on the variable z”. The coefficients

dg?(x”, +1) have the following form:
d (2" +1) = G (2" 0V (2, 0,0, +1)07 (1)(36”,0,0,+1)c(j)(l‘”),
d (@, ~1) = —iG,.(z", 0V (", 0,0, - 1)o7 Vi (@”,0,0,+1)e W,
A2 (@ +1) = G (2", 0V (2, 0,0, +1)07 (2)(95“ 0,0, +1)c) ("),

A2 (@, ~1) = iG,. (", 0)V) . (+",0,0, )a;ﬁ)(x“, 0,0, +1)c¥)(z"),
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s=1,...,0n), j=0,...n5;—1,

where G,, is the square root from the Gramm determinant of the diffeomor-
phisms 3¢ (see [8]);
VY (2",0,0,41) =
g+ drs—1-7J

=— _ -7 ns g1 T 1
i (ns — 1 — j)! drns—1-i (T—T7s,x1) (/. (2",0)(0,£1,7)) ——

) (z) = f;;r (j - %) co(e™)

and co(2") is the first coefficient of the asymptotic expansion in (2.5).

3. ASYMPTOTICS OF SOLUTIONS TO THE NEUMANN BOUNDARY VALUE
PROBLEM
Let \I!gi) € B];;,/p (052;) be some fixed continuation of a function ¢; €
}Bp_yzl,/p (Si) on 9Q; = S; U Sy. Then any continuation o) ¢ }B;;,/p (0%3;) of
; on J§); has the form

v = w4y,
where 1/)5” € @;;/p(SO), 1=1,2.

In [6], a solution to the Neumann boundary value problem is sought in
the form of a simple-layer potential

riv = VOV =10 in @ i=1,2.
(

For unknown densities g1, g2 and functions 1/)(()1), 02) the following system
of boundary pseudodifferential equations was obtained (see [6]):

N \I!él)
(2)
N[ | = Yo , (3.1)
(()2) —To\pgz) — FO\Ifél)
where

(=574 V §) Vi) 0 -z 0
N = 0 (—Z+ v )VE)T 0 1
7TOI —7T()I 0 0
0 0 7 1

It is almost obvious that the system (3.1) has a solution if and only if
the following compatibility conditions

30 e BN O) i = 1,2 moUy) + mou) € BN(S)  (3.2)
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hold for ¢; € B7L(Si), moWs” + oWl € BTl (So), i = 1,2, 1 < r < ox,
1/p—1/2<s<1/p+1/2 (cf. [6]).

Note that the compatibility conditions hold automatically provided 1/p—
1/2 < s < 1/por 1/p < s < 1/p+1/2 (cf. [29]). Unfortunately, when
s = 1/p we can not provide the compatibility condition in explicit form.

Consider the operator

B, 0 -T o0

(2)
Ny = o BY o -z
7TOI —7T()I 0 0
0 0 I I
i i 1 * (i i)\
By i = (VI (5T VDV

i=1,2, M=012,...

bl

which differs from Njs by a compact operator.
The system of equations corresponding to the operator Njs has the form

(VUM 4 (524 v VD -0 =,
[(CVED 4+ (= 32+ Vv ) (VE) g — o) =907, (33
Tog1 — moga = G,
e =G,
where
e m (00 (B3(090)), i=1,2,
G € Hy (So) (B, (So)), G2 € H7'(S0) (B (S0))-

Note that while studying the Neumann problem in [6], the system (3.1)
was reduced to the system of equations corresponding to the operator Ny,
i.e., only the case M = 0 was considered. Here we have introduced the
operator Njs to obtain a complete asymptotics both for solutions to the
system (3.1) and for solutions to the Neumann problem.

We need the following auxiliary proposition which is proved similarly to
[6, Lemmata 5.2, 6.2].

Lemma 3.1. Let l < p< oo, 1 <r<oo, s €R. Then the pseudodiffer-
ential operators

; 1 * (s )y —1 s s —
(VI 4 (= 5Z+ v ) (VDT B o) — B (09)
B (09) — B2 (09)

are wnvertible for i = 1,2 and for M =0,1,2,....
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Therefore, after defining g1, g2 from the first and the second equation of
the system (3.3) and inserting them into the third and the fourth equation
in (3.3), we obtain the system of pseudodifferential equations on the open

manifold Sy with unknown functions Jél) and 1;(2):

1 * _1~
o[V 4 (—gze v ) v Y
1 = - ~ (34
Ve (g ) o] =6 0
o+ 9 =G,

where

Gi =Gi—m [(—V%M + (—%ﬂ v gw) <v<_11>>—1] b5 4
b [V 1 (A ) v

Th system (3.4) yields a pseudodifferential equation with respect to 1;(()1):

mBy) = G*,

where

The pseudodifferential operator myB is positive definite and the following
proposition is proved in [6, Theorem 5.3].

Theorem 3.2. Lel 1l < p< oo, 1 <r <oo, I/p—1/2<s<1/p+1/2.
Then the pseudodifferential operator

B ]ﬁ;—l(go) — [} (So),
B! (So) — B}, (So)

15 tnvertible tn both cases.

It is worth noting that PsDO #yB is invertible in the anisotropic Bessel
potential spaces with weight Hg,“’s_l)’k(So) — Hfou’s)’k(So) (see [7]).
Theorem 3.2 implies the following (see [6, Theorem 5.4])
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Theorem 3.3. Lel 1l < p< oo, 1 <r <oo, I/p—1/2<s<1/p+1/2.
Then the operator

G, (0€21) Hp =1 (92) B - (0821) Byt (09)
© © S ©
EI;(@QQ) ]}H;‘l(ﬁﬁz) B;,r (692) }B;;l (692)
N : _ b — o) _ b — o)
HE~1 (So) I (So) B (So) B} (So)
® @ @ _®
H~ (S0) HG™ 1 (S0) B (S0) B (S0)

15 Fredholm and has index zero: Ind N = 0.

Now we will formulate theorems about uniqueness, existence and smooth-
ness of solutions to the Neumann problem (see [6, Theorems 5.5, 5.6 and

Remark 5.7]).

Theorem 3.4. Let 4/3 < p < 4 and the compatibility condition (3.2) be
fulfilled. Then the Neumann boundary value problem has solutions of the
class Wpl(Q) in the bounded domain Q if and only if the condition

/1/)~(az—|—b)d5:0
E1)

holds for any constant antisymmetric n X n matriz a and any constant n-
dimenstonal vector b.

If Q is an nfinite domain and n > 2, then the Neumann boundary value
problem has a unique solution of the class WZ}JOC(Q), provided the solution
vanishes at infinity (see the first condition in (1.4)).

If Q is an infinite domain and n = 2, then the Neumann boundary value
problem has a unique solution of the class WZ}JOC(Q), provided the solution
has a finite limit at infinity (see the second condition in (1.4)) and the

condition
/1/) ds =0
a0

holds.

Solutions, if they exist, are given by the formulae

rw= VOV g i @, i=1,2
where ¢; € Hzl,/pl(ﬁQi), i=1,2, are found from the system (3.1).

Theorem 3.5. Lel 4/3 <p<4, 1<t <oo, 1 <r<oco, l/t—1/2<s<
1/t + 1/2, the compatibility condition (3.2) with t instead of p be fulfilled,
u € Wpl(Q) (Wpl,loc(Q) and conditions (1.4) hold at infinity). If we solve the
Neumann problem, then:

® ; € }Bf;l(Si), i=1,2, ensures uc Hf-l_l/t(Q) ( s+1/t(Q))'

Jdoe ’
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o Ui €BTNS), i=1,2, ensures weBE(Q), (BTN(Q);
® ; € }Bgojl (5i),i=1,2, 0 €]0,1/2] ensures uwe () C¥(Q).
al<a

Now let us investigate asymptotics of the Neumann boundary value prob-
lem. The boundary data of the Neumann problem are sufficiently smooth,

le., ¥ € moo,s+2M),oo(Si)’ 1=1,2.
In view of the equality (2.5), we can write the symbol og(z’,&’) of the

pseudodifferential operator B as follows
1 -1
om(e €)= (574 og Ny (]
1 -1
5T g N |

Since the symbol o « (1)( ,&') is an odd matrix—function with respect to

&', while the symbol Uv(l)( ,&) is an even matrix—function. Therefore one
can easily ascertain that the symbol op(z’,£’) is even with respect to the
variable &', 1.e

O'B(l‘/, _g/) = O-B(x/agl)
and all eigenvalues of the matrix (og(2’,0,—1))"top(2’,0,—1) = Z are
trivial /\(EZ;) =1,5=1,...,n
Let us consider a local system of coordinates (#”,2,-14) € Sy (see

(2.5)). Applying a result on strongly elliptic pseudodifferential equations
(see [7, Theorem 2.1]) and taking into account the second equation in (3.4),

we obtain the following result on asymptotic expansion of the function Jgi),
i=1,2

~é“<x“,xn_1>:<—1>i+1c (&) 1%+

+Z e B (@ Nog et 4) + 95, (35)

where ¢g € C(0Sy), and the remainder 1/)M+1 € m,w’s+M+1)’w (SH), i=
1,2, M € IN.

Blgl)(x”, t)in (3.5) is a polynomial of degree k with respect to the variable
t and has C°°(9Sp)-smooth vector coefficients on the cuspidal edge 2" €

050.
Let (glagZa ()a (()2))

be a solution of system (3.1), i.e.,

N(g1, g, 0§, 0) = 0, (3.6)

where ¥ = (\I!gl), \I!gz), 0, —(71'0(1)81) + 7TO<I>E)2))).
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By adding to both parts of the system (3.6) the expression

91 (V)M 0 0 0 g1
g2 0 (V(z))ZM 0 0 g2
T = -1 ,
o 1#%2 0 0 00 1#%2
0 0 0 0 0 5
we obtain the equality
Nonr (g1, 92, (1) (()2)) =vr. (3.7)

Here W= (W5 +(VI)M gy W+ (V)M g 0, —(mo®@) + mo@)). The
system (3.7) takes the form
BY) g — i) = Wl 4 (VD )2M g on 0y, i=1,2,
Tog1 — Togs = 0 on Sy, (3.8)
(1) 1/)(2) -0

onSy,

where
BG = (VD 4+ (— 24 V)V =1

As it 18 clear from the foregoing arguments, the system can be reduced
to a pseudodifferential equation with the positive definite operator.
From the first two equations of the system (3.8) we find that

=BT+ B, =12
where
P = (B ey 4+ (BE) T (V)M g,
F Emoo,s+2M+1),00(aQi)’ i = 1’2
Therefore we can write
ru= VOVEDTUBE T + Gr =12

here G; = V(')(V(i))_lFZ, G; € CM+(Q).

Thus by the asymptotic expansion of the functions 1/) , 4= 1,2, (see
(3.5)) and the asymptotic expansion of functions represented by potentials
(see [8, Theorems 2.2 and 2.3]) and \I!gi) € Hfooo’s-l_zM)’oo(@Qi), i=1,2, we
obtain the following asymptotics of the solutions of the Neumann boundary
value problems in the local coordinates

i(n)

ns—1
(riw)(a” 21,20 ZRe{ S 0 +1yed 22T — a1y x
j=0
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M+1 M42-1

i 1/2 2+ +k
BT S S Y Al B, 0 g 4

$=411k=0 j+p=1
I+k+j+p#l

gw)_l_l(x Tp_1,8n) for M

[s],0}, i=1,2,

with the coefficients dg?(~,:|:1) € C*®(0Sp) and the remainder u§\4)+1 €
CM+L(Qy), i = 1,2. Here

25,41 = —Tn-1 = TnTs +1, Rs,—1 = Tn-1 — LnTs —1,
—T < Argzs 41 <m, To41 € C(0S)),

{rs,ﬂ}ls(ﬁf are all different roots of the polynomial det A(J.T (2", 0)(0, 1, 7))
of multiplicity ns, s = 1,...l(n), in the complex lower half-plane;

Bgll)cyp( " t) is a polynomial of order vy, = k + p + j — 1 with respect
to ¢, with vector coeflicients depending on the variable z” € 9Sy. The
coefficients dglj)(x”, +1) have the form (see [8, Theorem 2.3])

A" +1) = G (", 00V (2,0,0,+1)0~ (z”,0,0,+1)c)(2"),
J II_I_V()

(@, ~1) = G, (", 0)V), (&",0,0, 1)~ («”,0,0,—1)cV)(a"),
ll—_l_v()

dgi)(x//a+1) :_g%(x//’o)vﬁi)j(x// 0 0 +1) (2 )(x/’,0,0,—l)c(j)(l‘”),
3 II+V

A", ~1) = iG. (", 0)V) (2”,0,0,~1)o (,0,0,+1)cV ("),
J II_I_V()

s=1,...0n), j=0,...,n;—1,

where G,, is the square root from the Gramm determinant of the diffeomor-
phisms s,

Vi (2",0,0,41) =
g+ drs—1-7J

= Ty et ) (AT 000, 21, 1)

() = Qf;_ ( ;)co(x”),

and co(2") is the first coefficient of the asymptotic expansion in (3.5).

T=Tg 41’

4. ASYMPTOTICS OF SOLUTIONS FOR THE MIXED BOUNDARY VALUE
PROBLEMS

In [6], a solution of the mixed boundary value problem is sought in the
form of a simple layer potential

riu:V(i)gi m ;, 1=12.
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Any continuation o) ¢ B;(gl(ﬁﬁl) of the function ¢; onto the entire
boundary 69, = S1 U Sy has the form

00 = af) 4 )

where <I>él) is a fixed continuation of the function ¢;, and gpél) € @;{éﬂ (So).
Similarly, any extension <I>éz) € _yzl,/p (023) of the function ¢ onto the

entire boundary 9€s = S5 U Sp has the form
2 2
&) = oY + o7,

where ®(?) is a fixed continuation of the function @5, and gogz) € @;}1/1) (So).
The mixed boundary value problem can be reduced to the following sys-
tem of equations (see [6]):

) ([
g2 oL’
N = 0 , 4.1
305)1) —Toq)él) ( )
2
QDE) ) —Toq)éz)
where
v 0 ~7 0
o (2)
N - 0 —1i7+ Vo 0 -z
0 —nVE T 0
mo(=37+ v §) 0 0 7
Consider the combination
DoN,
where D is an invertible operator of the form
Z 0 0 0
2
p_|0 v¥ o o
0 0 I 0
0 0 0 -7
Now consider the operator
v 0 7 0
Ny — 0 (VEAVE STV Y) 0 v
0 —m V' I 0 ’
mo(—17+v §Y) 0 0 I
M=23, ...,

which differs from the composition D o N by a compact operator.
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A system of equations corresponding to Njs has the form
VOhy — ) = wY
(VI 4+ VE ST+ v i)k = VO = wg?,
—71'0V(_21)h2 + 1/)(()1) =,
To(= 3T+ V ()b — Y = P,

(4.2)

where
W) e my(0) (W) B (0)), i=1.2,
FL €M (So) (FLe€B;,(S)), FeHT(S) (FeBr (S)).

Note that the system (4.1) emerged in [6] while studying the mixed prob-
lem in the case M = 2.

We have the following auxiliary proposition which is proved similarly to
that Lemma 6.2 from [6].

Lemma4.1. Let s € R, 1 < p < 00, 1 < r < co. Then the pseudo-
differential operator

1 *
(VO V0 (‘§I+ v é”) L H TN (002) — H; (922)

}B;;.l (692) — B;,r (692)

15 tnvertible for any M =0,1,2,.. ..

Defining #; and hs by the first and the second equations of the system
(4.2), substituting them into the third and the fourth equations of system
(4.2), we obtain a system of pseudodifferential equations on the open man-

ifold Sy
(1) *
“ (¢§2>) - (?)
with unknown 9" and 1{?, where
0= (nx, 7))

Av= (T VDV

Ay = VEVEY £ VE( T v V),

G* = Py VOV VO 5TV ) e,

1 *
F* = Fz — 7To(—§I+ V él))(v(_ll))_l\ljgl)a
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The operator A, can be written in a more simple form
1 *
Ay = (VOO oz vHVED T M2

Consider the operator

_ 0 A _ 7TQA2 A
P=Qe (—I 0) - ( -7 woAl)'
Since the operators mgA;, ¢ = 1,2 (see [6]) are positive definite, we obtain
a strong Garding inequality for the operator P, i.e., we have

Lemma 4.2 (see [6, Lemma 6.3]). For the pseudodifferential operator P
there exists a constant ¢ > 0 such that
Yy ey (5) & T (50),

R6<PX, X>Su Z CHXH%;IM(SD)@ﬁ;M(SD)’

where the symbol (-, ) denotes the duality between the spaces Hé/z(So) &
H, Y2 (So) and F; 2 (S0) @ H,* (S0).

From now on the investigation of the operator P is continued by using a
local rectification of the manifold and by “freezing” the coefficients. There
arises a matrix operator with components of different orders. Therefore it
is convenient first to reduce the orders.

Let P(2’, D) be a pseudodifferential operator with the symbol op(z’,£’)
(& = (&1,...,&n-1)), “frozen” at the point and written in some local coor-
dinate system of the manifold Sp.

Let At be pseudodifferential operators (Bessel potentials) whose symbols
in the local coordinate system have the form

A:I:(gl):gn—liiii|€//|a g/: (g//’gn_l).

Now we reduce the orders, 1.e.,

R(x’,D’):(LO_ g)oP(x/,D)o<L0+ g)

where Ly = diagA 4, L_ = diag7my A_ are n X n matrix operators, 74 is
the operator of restriction onto R;‘;_l, and £ is the continuation operator.
The operators

(b D)

are invertible in the respective spaces [15], [29].
Now we will formulate the statements whose proofs are given in [6,
Lemma 6.7, Theorems 6.8-6.12].
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Lemma4.3. Lel l < p<oo, 1 <r<oo, I/p—1/4<s<1/p+1/4.
Then the operator

R(z', D) : H (R )& ®,)—-E @’ )em (B
(B, (RI_) @By, (1) — By (1) @ By (RF))
15 Fredholm with the zero index.

Tt is worth noticing that PsDO R(z’, D’) is Fredholm in the anisotropic
Bessel potential spaces with the weight

HOHRE_) @ B P (R ) — Hsm DR RE_) @ B DR
forall p e ®Rand £ =0,1,... (see [7]).

Lemmad44. Lel l < p<oo, 1 <r<oo, I/p—1/4<s<1/p+1/4.
Then the operator

Q ﬁI;(SO)@ﬁ];_l(SO)HEI;(SO)@H;—I(SO)
(5,0 (S0) & By (S0) — By, (S0) & B} (S0)
15 tnvertible.

Theorem 4.5. Lel 1 < p< oo, 1 <r <oo, I/p—1/4<s<1/p+1/4,
M =2,3,.... Then the operator

Hy =1 (0) HE (0521) By (0%) B, (0S21)
® @ ® @
™1 (0922) H (99 B (092) B, (09)
Ny _ ©® — [ _ ©® — [
Hp, (So) HE, (50) B} (S0) B3 (S0)
@ @ o @
H = (So) R~ (o) By (S0) By (So)

15 tnvertible.

Theorem 4.6. Lel 1 < p< oo, 1 <r <oo, I/p—1/4<s<1/p+1/4.
Then the operator

= (094) HE (9€1) By (0) B, (091)
© fast © fast
= (092s) H =1 (99, By (0922) B 51 (092)
N : _ ©® — [ _ ©® — [
H, (So) HE, (So) B3 (S0) B (So)
o ® @ ®
Hy = (S0) =1 (S0) By~ (S0) B (S0)

15 tnvertible.
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Theorem 4.7. Lel 8/5 < p < 8/3. Then the mized problem has a unigue
solution in the class Wpl(Q) (in WL, (), provided the condition (1.4) is

p,loc
satisfied at infinity); the solution is given by the formula

ru=VWlg in Q i=1,2
where g;, t = 1,2, are defined from the system (4.1).

Theorem 4.8. Lel 8/5 < p < 8/3, 1 <t < oo, 1 <r<oo, I/t—1/4<
s<1lft+1/4, u € Wpl(Q) (in Wplloc(Q), provided the condition (1.4) is
satisfied at infinity) be a solution of the mized problem. Then:

o If o1 €8 ,(51), 2 €B 71 (S2), we have we BTV (@) (BT (Q));
o o1 €8, (S1), o2 €B7(Sy), we have ue B (@), (B (@),

t,rloc

o if p1eC?(S1), p2 € B % (52), a€]0,1/2), we have ue (| C*(Q).

al<a

Theorem 4.7 implies that a solution of the mixed problem belongs to the
class C'* for arbitrary a < %, provided the problem data are sufficiently
smooth.

The principal homogeneous symbol of the pseudodifferential operator
R(x', D') is written as

roeny _ (G = i€ oay (2", E) (Enor +1|E7])  (Enmr —d€"))T
O'R(l‘ a€ ) — ( _(gn_l —|—i|€//|)I U'Al(l’/,fl) ) ’

where oa,(2',&") and oa,(2',&") are the principal homogeneous symbols
of the pseudodifferential operators A; and A, respectively written in the
given local coordinate system, and 7 is the identity matrix.

Let Ax(z"), k =1,...,2n, be the eigenvalues of the matrix

(or(2,0,41)) 'or(a’,0,—1), (4.3)

where

/ — —
O'R(x/aoa _1) = <0A2(x ’0’ 1) z ) )

7 oa,(x',0,-1)
, _ UA2($/a0a+1) z
or(z',0,+1) = ( T oa,(2',0,41)

The following propositions are valid.

Lemma 4.9 (see [6, Lemma 6.5]). Let By, k= 1,... n, be the eigenvalues
of the matriz O, = 0. (2',0,41). Then B €] —1/2;1/2[ k=1,...,n
and for n = 2 we have Or = by, P41 = —bx, £ = 1,...,1, while for
n=204+1 we have /1 = 0, Br = by, b1 = —bx, k = 1,...,1, where
by >0,...,0,>0.
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Theorem 4.10 (see [6, Theorem 6.6]). Let A\p(2'), k = 1,...,2n, be the
eigenvalues of the matriz (4.3). Then

.1 =28, (2") —
) 7 T 25:(2)’ if k=1,...,n,
k fu—
. 1_26k—n(x/) . =
- — k= 1,...,2 !
? 1+26k—n(x/)’ Zf n+ ) y 4T, T ESOa

where B €] — %; %[ are the eigenvalues of the matrix o, -
0

Note that Theorem 4.10 plays an important role in proving Lemmata
4.3, 4.4 and Theorems 4.5-4.8. Let mq,...,mos be algebraic multiplicities

20
of the eigenvalues A1,..., Ao, D A; = 2n.
ji=1

We introduce the notation
br(a") = (or(2",0,+1)) or(a",0,~1,).
Let
bor(z") = K1 (a"br(2") o K(z"), " € Sy,
be a canonical Jordan form, where K is some non-degenerate matrix func-
tion, det K(z") # 0, " € 05y and K € C®(95).
Asymptotics of the solutions for a strongly elliptic pseudodifferential

equation (see [7]) implies that the solution x = (x1,x2)' of the pseudodif-
ferential equation

R(z', D)y =¥, T eH M (gt
has the following asymptotic expansion:
N ) = K@l 0B, (g logramy KT (@ o (o) +
l Ale')+k
A+
+ Y K@ T B (2 log w1 1) + X (@ 201 y) (44)
k=1

for all sufficiently small z,_1 4 > 0; here ¢y € C™(0Sy) and xam+1 €
ﬁ-vﬂéoo’s-l_MH)’oo (St); exact expansion for ]ngr t) = diag{ngr(t), ngr )},
where ngr (t) is a triangular block-diagonal matrix function defined in [7];
the vector function By (z”,¢) is a polynomial of order v = k(2mg — 1) +
mo — 1, mp = max{my,..., mas} with respect to the variable ¢ with 2n-
dimensional vector coefficients which depend on the variable z, and

Az") = (Ay(x"), Ao(2"));
here
A"y = 6@y, . 8@y, 8Dy, 6@y, j=1,2,

m1-times me-times
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") = ("), 6D = i),
I
agp(z”) = 5 log |Ax(z")], k=1,...,¢

Hence one can write asymptotic expansion for the functions y; and x»
separately. In fact, let

K(") = (E;Eii ﬁiiﬁxi)ﬂ

]

and

K= (@ eo(”) = ("), e (")) T, (4.5)
where K;; ("), 1,j = 1,2, are n X n-matrices; céi)
vector functions. Then

,1=1,2, are n-dimensional

2

LiA (" i
Ni(@" wn ) = D Kig(@)ad 03 BY, (=g log ey, 4)el (2”) +
ji=1
2 M 1iA 1" 3 .
+ 3 K@l T B @ log @i 4) +
j=lk=1
@ a4, i= 1,2, (4.6)

where Bl(clj)(x”,t) is a polynomial of order v = k(2mg — 1) + mp — 1 with
respect to the variable ¢t with n-dimensional vector coefficients which depend
on the variable z”.

Note that the boundary data of the mixed problem are assumed to be

sufficiently smooth, i.e., 1 € Hfooo’s-l_zMH)’oo(Sl), wo € Hfooo’s-l_ZM)’oo(Sz).

Let (g1, g2, gogl), goéz)) be a solution of the system (4.1), i.e.,

N(glag2a gpél)a 805)2)) = q)a
where ® = (q)gl), <I>E)2), —71'0(1)5)1), —woq)éz)). Then
Do N(g1, 92,6, o)) = ¥; (4.7)

here ¥ = (&), V(M —7ip") —7od!).
Adding the expression

g1 0 0 0 0 g1
go 0 _(V(2))2M+1 0 0 g2
T = -1
ML soél) 0 0 0 0 soél)
£/ RV B AN

to the both parts of the system (4.7), we obtain the equality

Noaryr (g1, 92,05, 907) = ¥, (4.8)
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where ¥ = (q)gl)’v(_zl)q)éz) % (2))2M+1 -7 <I>EJ ), -7 <I>(2))
Thus we can obtain ((—L4 )7t 82), él)) which in some local coordinate
system would satisfy the pseudodifferential equation

R D =rI
(x ) (Xz) ’
where F = (L_F}, F5)T and
Fr = —m@f) + m VA (B, )TV el —

_ V(Z)(B(Z) )~ 1(V(_2))2M+1

M +1 42,

1
= mo® = mo (= 57+ v (V) (Vi) e,
Fy e H{posF2Meo gy i =1,2, and

1
Bl = —(VE)MH + V(—Zl)( 37t v (2))'
Consequently, we can obtain the asymptotic expansions (4.6) for the

functions (L+)_1goé ) and go( )
Using the first two equations of the system (4.8), we can define g; and
g2:

=V (1)) 1 (1)+( (1)) 1@(1) (4.9)
ga = ( (23‘)44_1) 1V(2) (2)+( (2) )_1V(_21)<I>82)-|-G, (410)

where G = —(B(ﬁ\)ﬂ_l) 1(V(_21))2M+1g2’ Ge Hfgoo’s-l_zM)’oo (0922).

Expressions (4.9) and (4.10) result in the following representations: the
solutions of the mixed boundary value problems can be expressed by the
potential type functions

riu= VOV T+ Ry, (4.11)
rau = VOB )T VEL)[(-L) T el] + Re, (4.12)

where R; € CM+L(Q,), i =1,2.

Thus, taking into account (4.11), (4.12), invoking the asymptotic expan-
sions of the functions (—L+)_1gog ) and go( ) (see (4.6)) and also that of the
functions represented by the potentials (see [8, Theorems 2.2 and 2.3]), keep-
ing in mind that ®{") € H™ P T 90) () e m M (50,),
we derive the following asymptotics of solutlons of the mixed boundary value
problem under consideration:

2 l(n) ng—1
(e amsvza) = 303 Re{ 30 e [ a0l A

j=1s=1 m=0

x By, (=5 logl(=1) "z 1)) — ) (2", ~1)2 s,l/ffA i(@)=—m

sjm
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xBY,, (~ gk logl(~ >Z+1zs,_1]>]%m<x“>+

Apr

M+2 M42-1

FY N A

9=%11k=0p+m=0

l+p+m+k#0
xB() (x " (1) 1"
skmpj ’ ngs,ﬂ) +UM+1(x ’x”—l’x”)

[s— 1,0}, i=1,2, (4.13)
with the coeflicients dg])m( £1), cijm, dgllzlpj(,jﬂ) € C*(9Sy) and the
remainder u( ) 1 € CMAL(Q;); here

25,41 = —Tn-1 = TnTs +1, Rs,—1 = Tn-1 — LnTs —1,

—T < Argzs 41 < W, Tox1 € CP(05),

{75,11}15(2 are all different roots of the polynomial det A (J,] (z",0)(0, %1, 7))
of multiplicity ns, s=1,...,{(n), in the complex lower half-plane.

In choosing the corresponding branches, we assume here that the equal-
ities (— zsyi1)1/4+Aﬂ'(f”)_m = e”(1/4+Aj(xll)_m)zi/ff_Aj(x”)_m are fulfilled.

ng)mm (2",t) is a polynomial of order vy = vy +p+m, vy = k(2mp —
1) 4+ mo, my = max{ma,...,me}, >, m; = n, with respect to the variable

ji=1
t with vector coefficients depending on the variable z”.

The following relation between the leading (first) coefficients of the asym-
ptotic expansions (4.13) and (4.6) holds (see [8, Theorem 2.3]):

1
d3) (2" +1) = ﬁg%(;p”,o)w 9 (2",0,0,+1)07 (1)(95“ 0,0, 4+1)K;(2"),

sjm
1 5
A (e, =1) = -G OV (00,0, = Doyl (20,0, +1) x
« sz(x//)eiﬂ'(—%—Aj(x”))’

d2) (2" +1) = —%g;f(x“, OV (2”,0,0,+1) x
- |

sgm
xot o, (27,0,0, =K (2"), (4.14)
-3z4v
1 s
diiln( —1) = ggu(l‘", O)V_(l)ym(x”, 0,0,—1) x

x o (z"7,0,0,+1)K 1 (2" )e (A

J=12 s=1,...l(n), m=0,...,n,—1;
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here G,, is the square root from the Gramm determinant, and

v (2”,0,0,£1) =

—-1m

Z'm+1 dns—l—m
= (r—75,41)" (A(J] (2", 0)(0,£1,7))|

Cml(n,—1—m)! drne—1-m

-1

T=Ts,+1

The coefficients ¢;jm(2”) in (4.13) are defined as follows:

el (2",
Capm(2") = ajm(@)bj (2" )ei (@), G =1,2,

c1jm(@") = ajm(@")b;(x")el? (2"
Cél "
where

bi(a") = diag o™ (% G (% +ia(a") },

3 3
"o 1 mif2 | : " me (2 | ¢ 1"
bz(l‘)—dlag{b (4+za1(1‘ )),...,b (4—1—2(11(1‘ ))},
b7 () = by (Dllm, xm,
L \p=k(=1)ptk gp=k
by (t) = { ( ) (p— k)! dir—*
0,

im(t41)

(Tt +1e™=7), k<p,

2mi
k > p,
p=0,....m.—1, r=1,... L

Further,
ajm(z") = diag {aml(/\(lj)), ceey am‘(/\y))}, j=1,2
AL (") = —% — i (") +m, AP = —g —iay (") + m,
m=0,1,...,n, — 1,

1
ar(2") = ~5n log [Ar(z")], r=1,...,¢;

™ (M) = [air Al som,
where
P N —p71m j
-1 p+k 2 l Py 5‘])
_ZZ( ) (71) ki (1 )’ m=0, k<p,
m i ~ (/\gg) 4 1)p-i1
grovy=4 = 08
(-1 by, (A7), m=1,... n,—1, k<p,
0, k> p,
J=1,2; here /\5']) =-1l+m+ /’LS‘])a /'Lg‘l) = _% - Z'Oér(l‘//), /'LS‘Z) = _% -

iop (), r = 1,...,¢ and cél)(x”), céz)(x”) are defined by using the first
coefficients of the asymptotic expansion of the functions (—L+)_1g082) and

gogl), respectively (see (4.5)).
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Remark 4.11. Lemma 4.9 and Theorem 4.10 readily imply that if n =
2 or n = 3, then the eigenvalues Ay, & = 1,...,2n, of the matrix (4.3)
are different; therefore there exists a nondegenerate infinitely differentiable
matrix K such that the matrix by i1s diagonal. Then ngr =17, v =k,
and expansion (4.13) of the solutions of the mixed boundary value problem
can be written in a simple form:

2 1(n) ns—1 ' ;
e o) = 323 R 5 g [0 4

j=1ls=1 m=0
(Z) " 1/4+A'(x”)—m "
_dsjm(x ’_1)25,—1 ! cijm(x )+
M4+2 M+2-1

YD Y gl )

d==%11,k=0p+m=0

I4p+m+k#£0
ngZl;)mpj (2" log 25719)} + ug\?_l_l(x”, Tp_1,Tn),
i = . -1 .
u§\4)+1 e CMTY(Qy), i=1,2, for M > z —min{[s — 1], 0},
where Bg?mpj (2",t) is a polynomial of order vy, = k + p+ m. The coeffi-
cients dg?m(x”, +1) have the same form as in (4.14), and
T + DI (=) + 1)) @)
Cljm(x//) = diag{ ) } Z'm-HCO (l‘//),
/\7‘] +1 r=1
T + )= + )"
Cij(x//) — dlag{ (/’L + ()) ( H + )} im+1cél)(x//)’
Ar] +1 r=1

=12 m=01,...n,—1
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