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1. In the present paper the use will be made of the following notation:

3
r = (x1,22,23), y = (y1,¥y2,y3) are points in R?; le—yl = (3 (ﬂﬁk_yk)z)l/z

is the distance between the points x and y; Dy C R? is a finite domain
bounded by closed surfaces Sy, Si,..., Sy of the class La(a), 0 < @ < 1
[1] (note that Sy encloses all the remaining domains S, while the latter
do not enclose each other, S; NSy = @ for i # k, i,k = 0,m); the finite
domain bounded by the surface Si(k = T, m) will be denoted by Dy; Dy =

Dou( U $), Di=DpuUSe, k=Tm.

If u=(u1,...,uy) and v = (vy,...,v,) are real vectors, then wv is their
n n
scalar product: uv = > ugpvy; [u] = (D ui)/?. Multiplication of matrices
F=1 k=1
is performed according to the rule: a row by a column; if A = [|4i;||nxn
is a matrix of dimension n x n, then |A|? = 2 AZ;. Every vector u =
i,j=1
(t1,...,up) is considered to be a one-column n x l-matrix: u = ||w;||nx1;

by Ay = ||Ajk||§l:1 it will be denoted the k-th column vector of the matrix A.

The vector u(z) = (ug,(z),...,uy(x)) is said to be regular in Dy, if
u; € CYDR)NCHDy), i=T1n.

The system of homogeneous oscillatory differential equations of the coup-
le-stress elasticity theory for a homogeneous isotropic centrally symmetric
medium is of the form [1]

(g + a)Au+ (A + p — o) grad div u + 2arotw + po?u = 0, ]
(v+ B)Aw + (e + v — B) grad divw + 2a rot u — daw + Io?w = 0, S

where A is the three-dimensional Laplace operator, u(z) = (uy, ug, uz) is

the displacement vector, w(z) = (wy, w2, ws) is the rotation vector, p =

const > 0 is the density of the medium, I = const > 0 is the moment

of inertia, o is the oscillation frequency, and A, p, «a, v, 3, ¢ are elastic

constants satisfying 41 > 0,3A+2u >0, a>0,v>0,3s4+2r >0, 3> 0.
Introduce the matrix differential operator

M(l)(ﬁx M(Z)(ﬁx)
M(?’)(@x) M(4)(61‘)

M®B0x) = | M (02)||,, 5 k=T.%

M = M(02) = 500 =)

2

8 »890]» ’

MM (02) = (n+ )6 A+ A+ p — )

Mi(],z)(ﬁx) (3) (0x) QQZEUk 7,

62
6%’ 61‘]' ’

M (0) = 6i;[(v + B)A — 4a] + (¢ + v — )
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where 6;; and ¢;;; are respectively the Kronecker and Levi-Civita symbols.
Then the system (1) written in the matrix vector form looks as follows:

M(0x)v(x) + ra’v(z) = 0, (2)
where v(2) = (u(x), w(x)) = (u1, uz, us, w1, wa, w3) = (v1,v2,...,06); ¥ is a
diagonal 6 x 6-matrix: r = ||r;;||sxe; note that r;; = 0 for i £ j, r;; = p for

t=1,2,3and r;; = I for : = 4,5,6.
Rewrite the equation (2) as

M(dx)v(x) + o25(z) = 0, (3)

where M = FTIMPTL U =P, 7 = || /Fijllexe-
Denote by T'(0x,n(x)) the stress operator of the couple-stress elasticity
which is a matrix differential operator of dimension 6 x 6:
_ Tz, n(x)) TP (dx,n(x))
O = ”T”(ax’"(””'M‘HT<3><ax,n<x>> (02, n(z))

bl

T(k) 6l‘ 71 = ||T'(jk)(6x,n(x))”3x3, k :m;

" o ’
T (0, n(2)) = Ani(2) 5 (= )i (@) g (ot )8 o
T(Z)(ax n — _QO[ZEZ]knk s ﬂgS)(al‘, n(l‘)) = 0;

1 . 1 v O .9

(82, n(x)) = eny(z) 52 + (v — B)nj () 90, (v + B)éij on(z)’

where n(z) is an arbitrary unit vector at the point « (if € Sg, k = 0,m,
then n(z) is the outer (with respect to Dg) normal to Sj, at z).

The domains Dy (k = O,—mo) are assumed to be filled with homogeneous
isotropic elastic media with constants Ag, pig, ag, vk, 5, €, and the remaining
domains Dy (k = mg + 1, m) are assumed to be empty inclusions. If in the
operators M and T' 1nstead of A p, «, v, 3, ¢ there appear Ag, ug, g, Vi,

Ok, € then we will write M and T respectively.
Introduce the notation

t(2) = li k=0 “(2) = li k=1,mo.
vt (z) pyolim v(x), ,m, v (2) Dyai v(x), , Mg
The notation (T(9z,n(2))v(z))* has a similar meaning.

2. The matrix of fundamental solutions of the homogeneous oscillation
equation (2) has the form [1]

F(l)(x —y,07%) F(z)(x —y,07%)
1= .09 = [Tt = 0.0 o= ot - 0] Teas Yo

bl
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where

IO —y,0%) = |17 = 0.0") |5 € =T%

|r
T (e —y,0%) =D (bgjee + e

4 92 )eiker "
p— Qupdx;’ v
F(z.)(x—y 02):F(‘°’.>(x—y ZZEeEk 0 ek
kT kAT u+a61p1 " ow,
@ ) 4 92 eiker
Ly - = OpjVe + b —5— )
kj (l‘ Yy, o ) ;( ki + al‘kal‘]) ,
ef 2 2 4
I 5 B PR VR
T ar(p )W kD) T Ampe TR T
—1)?(02 — k2) (830 + S4c Sne O
Pye = ( 4)7TE61+ V)(])C(z — kz) ), 66 = —747(10-2 — 40[) + k_z, Z(Se = 0,
3 4 € e=1
4
(=1)°(83¢ + b4c)
£ = ; e =0, r=lr—yl
e e
here
5 _ po? o2 — Io? — da B2 — po? 2 _ Io? — da
1 /,L—|—Oz’ 2 V+6 3 1 A—|—2/,L’ 2 €—|—21/ 3
k2 and k7 satisfy
42

2,32 _ 2 2 2 22 _ 2 2
k3 +ki=o0i+05+ k3 - ki =07y -03,

(n+a)(v+5)’

and for large frequencies they assume the following asymptotic values [6]:

2 IO.Z
k=20 2= : 5
3 /,L+O[ 4 V+ﬁ ()

Since in the sequel we will be concerned with the asymptotics under large

frequencies ¢%, we assume that k3 and k3 are defined by means of (5) and,
moreover,

Io? 5 Io?

2
= —  ki= .
2T+ P e4w (6)

Let 3¢9 be an arbitraryly fixed real positive number and s > 3 be an
arbitrary number. If in (4) we substitute o = ¢3¢ and take into account (5)
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and (6), then we get

Orj em 1 ]
T (e — oy —5e2) = .
b (@ =y, =) In(uta) v dmpi? Gurd; r ’
2a0
T (e — oy —22) = T® (g — . —5e2) =
k](x y,—x") k](l‘ Yy, =) 471-%2(p(1/—|—6)—1(u+0z))><
3 § e = —¢
Y "
p:l
Orj e 1 0 T -
T (e — y, —32) = .
ky(x Y, =) dr(B+v) r +47TI%2 Oz Ox; r ’

where ¢ = (A+2u)p~t, e2 = (p+a)p™t, 3 = (e+20)7L, 2 = (v+ )L

For the sake of convenience, in what follows the use will be made of the
equation (3). The matrix of fundamental solutions for the equation (3) is
[(z —y,0%) = FT(x — y,o?)7, and under the substitution o = iz it follows
from (7) that

~ ; 3 1 8?7 T —eT e

T, oy POk €

b (@ =y =) dr(p+ o) r + Amse? Oz Ox; r

_ 2a/pl y
= T2+ 9) — T o)

fg)(l‘ -y, —%2) = fgc?;)(x -y, —%2)

2 O e = —e
X ZEkjpE 7, (8)
p=1
~ log; Py 1 92 e —e
F(%) a2y — J
b (&= 9, =) dr(B+v) r + Amse® QzpOx; r

Denote by ¢y the largest number among ¢y, ¢3, ¢3, ca. Let 6 < ﬁ be an

arbitrary positive number, and let a = % — 6 > 0. Then we have

—axr

e <k :e—e_(i_a)ur’ i—a>0; k:m.
r r Ck
Moreover,
—asr g —axr (e 1
1)i(6_e<ck ) ):6_2,6<% ) (_1__%r)5_r;
6l‘]’ r r C 61‘]'
82 e—axr L—a);ﬂ‘ e—axr —(L—a);ﬂ' 3
_Z e ¢ 34 2
6xk8xj( r e ) r3 © [( + Cr et
1, 2) dr Or ( 1 ar
R Y SR A PR
+c%% " Jx; Oxy, + Ck ) Ohi Oxy
3) the functions (%r)”e_(i_a)m, 0,1,2,... are bounded in the inter-

val 3 € [0, +00).



13
From this and the equation (8), we obtain the estimates

T (o — —? const _ .
gqxgﬁxjgxk ) < rn+1e YT+t k=n; n=012..(9)
1023023

pg=13; e=1,

e

3. Let z, y € Dy, k = 0,mp and let I, be the distance from the point
y to the boundary of Dy. Denote py(x) = max{r,{,}, and introduce an
auxiliary matrix

rm

Py ()

% nik

[z —y,—3) = [1— (1— ) ]F(aj—y,—%z). (10)
Denote by B(y, [, ) the sphere of radius {, with the center at the point y

and let ¢(y,{y) be its boundary. It is easy to see that (1 — p,’;—?x))” vanishes

together with its derivatives up to the (n — 1)-th order inclusive, when
the point € B(y,l,) tends to a point of the boundary ¢(y,l,). For « €
Di\B(y, 1), we have

P n rm n
1—{1———] =1 and lim 1—(1- =1
( p;”(x)) ]B(y,ly)ax—»zec(y,ly)[ ( p;”(x)) ]

% k
Thus Iz — y,—3?) = I(x — y,—»?) for v € Dy\B(y,l,), while the
%

function T' and its derivatives up to the (n — 1)-th order inclusive remain
continuous when crossing the boundary e(y, ).

~

k
Represent the function I' as follows:

k

(x —y, —%2) =T(x -y, —%2)(n7°m/p;n(x) + ).

)

~

%
It can be easily seen that for x = y the function I' and its derivatives
up to the (m — 2)-th order inclusive are continuous, and for x € B(y, {, ) we
have by virtue of (9) the estimates

~

%
O*Tpy(x — y, —3?) const -e~**"

Ot Ok - I

pg=16 i+j+k=s m>s+1

Pl (11)

4. Calculate the limit

k k

hm[f(l‘—y’—%z)—f(l‘—y’—%z)], l’,yEDk, kIOam0~

r—y
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Taking into account the expansion

e 1 1 > n %2 %3 2 +
= 4+ —7r——7
r rooc o 2l 31c3 ’
we obtaln
— =T Zor 2 2
e c2 e ©°2 Mg — X o — Ay
1 — =
) r r Cco 2'6% " +
e_;:_zT e c 1 1 1 1
0 (- )
) — o AG TSt e T e
%3( 1 n 1 ) 24
3led 313
. 92 e H —e % :%Z(L_L) 8%r
6l‘kal‘] r 2!6% 2!6% 6l‘kal‘]
N 3( 1 1 ) 5?2
oA 2y Y
) 266% 66? 6l‘kal‘]”
o“r
4 = 264
) 6l‘k6x] ki
k x
5) lim [T (2 — y, —22) — T (z — y, —52)] =0,
T—y
k x
6) lim [[®)(z -y, —5%) = [®)(z — y, —523)] = 0.
T—y
The above relations result in
k k
tim (F)(e =)~ 92 = =) =
_ o= o - %>pz/2( L L,
_471_(”]6 +ak>3/2 Pq 197 (/\k 4 2/%)3/2 (ﬂk _|_ak)3/2 g =
_ G —)py” (st ) (12)
1271_ (Ak+2/'tk)3/2 (/ik+04k)3/2 pg>»
k k
tim [F0(6 =)~ T80 = =) =
_Ga—ap” 2

- é =13 (1
127 ((€k+2yk)3/2 + (Vk+6k)3/2) pgs D4 .3 ( 3)

5. Our further investigation will deal with the second boundary-contact
problem, when stresses are prescribed on the boundary. Investigation of
other problems is similar.

Green’s tensor of the second basic boundary-contact problem for the
k

operator M(@x) — E3¢ (E is the unit matrix of dimension 6 x 6) will be
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k
defined as a 6 x 6-matrix G(z,y, —32) = G(x,y, —34), 2 € Dy, y € D(D =
:QDO) satisfying
WYz e Dp,Vye D,z #y:

L k k
M(0x)G(x,y, —33) — 322Gz, y, —»3) =0, k =0, mo;

0 k
29)Vz €Sk, YyeD:  (GH(z,y,—3) = G (z,y, —33),

2 0 k k

(T(@z, n(z))G(z,y, —%g))+ = (T(@z, n(z))G(z,y, —%g))_, k=1, mg;

3) Vze€ Sy, Vye D: (T(@z,n(z))G(z,y,—%g))+:0, k=0, mo+1,...,m;
4) Ve € Dy, Yy € D:

k k k
G($aya _%g) = F($ - Y _%g) - g($aya _%g)a k = Oamo;

here z(x, y, —»2) is the regular in Dy solution of the following problem:

k
1)Ve € D, Vy € D: Mz(a:, Yy, — ) — %gz(x, y,—»3) =0, k =0, mo;
2)Vz € Sy, Yy € D: 3"’(,2, Yy, — ) — 5‘(,2, Y, —3) =
k

[

=T(z —y,—3d) — f(z -y, —3);

(T(@Z, n(z))&(z, Y _%g))-l' - (T(@Z, n(z))(z(z’ Y _%g))_ =

= T(@z, n(z))f(z, Y, —%3) — T(@z, n(z))f(z, Y, —%3), k=1, mg;

3)Vz € S, Yy € D: (f(@z, n(2))g(z, v, —%3))+ =

V] V]
= T(@z, n(z))f(z —y,—#2), k=0,mo+1,...,m,
where T' = 71771,
The solvability of this problem is proved in [1], and thus we have the exis-
tence of G(x,y, —33). Asis known [1], G(z,y, —37) possesses the symmetry
property of the kind

G(l’,y,_%g) = GT(yaxa_%g)a (14)

where the symbol 7" denotes the transposition of a matrix. Moreover, the
following estimates are valid [2]:

V($ay) EDk‘ XDk‘ : GP‘](x’ya_%g):O(|x_y|_l)a

— Gpy(r,y,—5) = O(|lz — y|7?), (15)
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6. Let u(x) = 5(1‘) and v(z) = 5(1‘), x € Dy, be arbitrary six-component
(regular) vectors of the class C1(Dy) N C?(Dy), k = 0,mg. Then the fol-
lowing Green’s formulas are valid [1]:

Mo k 3
Mu+E de = | ot (Tu)td
kZ_O/Dk[v u—l— (vu)]x /Suv(u) s+
3
+ Z / Tu +ds—|—2/ 5—@5)—]ds; (16)
k=mqo+1
[}
kMk—kMkd:/ O+TO+—O+TO+CZ
kZ:O/Dk(vuuv)x Su[v(u) u(v)]s—l—
+ i / [°+(9T“&)+_&+(9T”%)+]ds+
k=mo+1 Sk

k

], b b (ri s S fard - an

koo k 3

LI 3N+ 2p 2 61;] ou; dv;  Ov;

FE = L _
(v,%) 3 ]Z_: dz; Oz; + 2 Z [&ej + Ox;

PN, KNI, Y A ) PR S, )
36” Z 61‘2] [% 81‘? B 352']' Z_: ﬁ] +
p=1 p_l

dvj  Ov; oy Oy
+% .Zzzl [8;]2 N 8;]» + QZEPNUP]:'?’] [3—2,] - 8u + 225pyzup+3] +

; X3
— ? J p=1

k k
36—1—21/ Z 6vl+3 6u]+3 i v ZS: [aUH_g i 81}]’+3 _

Jx;  Ox; 2 Ox; Ox;

t,j=1 t,j=1

—%(SZ']' ZS: 6Up+3] [65i+3 i 6u]+3 _ %6” ZS: 6up+3]
p=

Ox; Ox; Jx,

p=1

1
3 . k . . .
o 3 [ - G e - ]

(18)

k k
It follows from (18) that E(f}, 5) = E(k v) and E(v v) > 0.

For a regular in Dy (k = 0, mg) vector u(z), the following general integral
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representation is valid [1]:

Ve D) = =3 [Tl = =) Mo o) do +
—1—/5 [f] (z— Y, —%2) (T(@z, n(z))u(z))+ —

—0 (2)T(02, ()T (2 — y, =) dos, j=T,6. (19)

7. To determine the asymptotic behaviour of eigenfunctions and eigen-
values by T. Carleman’s method, it is necessary to estimate the regular
part of Green’s tensor g(z,y, —3?) as s — co. To this end, we consider the
functional

u—mD kﬁu 202 de — &"'iznzg'z— —?)d, s —
U= [ TG a2 [ 02T o
-2 Z / +T 9z, n( ))Fj(z—y,—%z)dzs—

k=mqo+1
- D &"’g z,mn(z fov'z— —)d,s —
22/[ T(0, n(:)5(z =y, —*)d,
e B k
—u~T(0z,n(2))T;(z —y, —%2)]d25, (20)

where j = 1,6 is a fixed number and y is an arbitrary fixed point in Dy, k =
0, mg. We define the functional L in the class of regular in Dy (k = 0,1my)
vector functions satisfying the following conditions:
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0 k
1) Vz € Si: &"’(z) — 5_(,2) =Tj(z —y,—3?) = Tj(z —y, —5?),
2 k 20 L34
=TTj(z —y,—»*) = TTj(2 —y,—3*), k=T1,mg;

2)Vz € Sy: (T&(z))-l_ =TTj(z—y,—»*), k=0,my+1,...,m.
Theorem 1. The functional L takes its minimal value for u=g;(z,y,—s?).
Proof. Let u be an arbitrary vector from the domain of definition of the

functional L, and let v = uw — g;. Then, taking into account (18), we find

from (20) that

2 L T Eook
ORI EOED Y RN R Y SESSCR AL
k=0 Dx
0 0

—2 [ (646 + i DIT G =y —s)ds -

_Qi/

k=mqo+1 S

[

[(0F(2) + 97 (NTTy(= =y, =) dus —

Mo o0 kk
—22/ [(0F + g)TT; — (v™ +¢7)TT;]ds =
k=1 5%
i kg ok kg ok Eokok o ks kk ko
= Z [E(v,v)—i—?E(v,gj) + E(gj,9;) + > (v° + 2vg; —I—g]»)]dx—
k=0 Dy,

o 0 o 0 o 0
[ adted [ adted [ adted
—2/ v ds — 2/ g7 TTds —2 > vt ds —
So So k=mo+1 7 %

mo 00 mo 00 k k

[ adted [ attd k_ ~~

-2 > / gFIT;ds—2) / (vFTT; — v~ TT;ds —
k=mo+1 5k k=175%

mo 00 kk Mo
_2§ :/ (E;rTrj—gj TrdeZL[gj]JrE / [E(v,0)+5"v |de+
k=175 k=0 D

o k 22
+22/ [E(v’i,ﬁj)+%25§j]dx—2/ ST ds —
k=0"Dx

So
n 22 2o 00 . kX
= / %+Trjds—22/ (vtTT; —v~TT)ds.  (21)
k=mo+1 7 5k k=1 5%
Using Green’s formula (16) for v = u — ¢g; and u = g;, also taking
k 0 00

into consideration that ]szj = %25]', TEJ = Tf] for z € Sy (k = 0,mp +
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0 k o0 kk
1,...,m) and 9+ (2) = o= (2), (T4;)* = (Tg;)~ = TT; —TT,; for z € Sy, (k =

1, mg), we obtain

Mo k 22
S [ (bbb = [ 5T+
k=0 Dx o

o0 kk
+ Z / ST, ds—l—Z/ (3+TT; — o= TT;)ds. (22)

k=mq+1

Owing to (22), we find from (21) that
Llgj] +Z/ —|—%v]d1‘>L[g]] n

Theorem 2. For the function g;;(y,y — %), the estimate
|gjj(y, Y — %2) —g;i(y,y— %§)| < const /l;"'é, yeD, §>0, (23)
15 valid.
Proof. Writing the formula (19) for uj(z) = g;;(z,y, —»*) and f](x —
y, —3?) = Gj(x,y,—»?) and taking into account the boundary and con-

tact conditions for g and G, we obtain

0 p& 2
Vy S Dk : gjj(ya y’_%ZI < G}I—(Zaya_%2)T(azan(z))rj(zaya_%2)d25+
o o
+ Z G+ (2,9, =" )VT(0., ()T (2 — g, =" )dos +
k=mq+1
0 k kEk

+Z/S [(éﬁfj _ é;%%j) _ (%j(féjﬁ CTH(TG))ds.  (24)

Using the formula (16) for © = v, we can write (20) as follows:

mao k o
u| = — 5l‘~l‘5 —%U x &+Z~&Z+5
L[u] kz%/mmwmm <>]d+/50 (2)(T2))+ds +
+k %D:H/ ut Tu +ds—2/5 +Tr ds—2k ;H/ wtTT ds +

mo k mo kk
+3 / (o (Tt — b (T ds 2 / [+ — S~ TT]ds. (25)
k=1 Sk k=1 Sk

From (25), for u(z)=g;(z, y—»*)=Tj(xz—y, —3?)—G(x, y, —»?) we obtain

0 00 m o 00
L[gj]z/s ;7T ds—/ GF TF ds+ Y. /S 0,77, ds —
¢ k=mo+1
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m

0o 22 200 0o 22
- > GjTrjds—Q/ [;1T ds+2 [ GFTT;ds—
E=mo+1 " Ok So So
” [ 5 ” 0o 20
= /rorjderQ > GITT;ds +
k=mo+1 Sk k=mo+1 Sk
o 2 20 k kR 2 %o k ok o 29 g RE
+ /[(FJTFJ_FJTFJ)_(FJTGJ
k=1 Sk

—T5TG)) — (G4IT; — G;TTy) +

o 2o P BE o 000 Kk EE o 20 g kE
+(GjTGj—GjTGj)]ds—22/ [(L;70; =011 ) — (G T —GyTT ) |ds=
k=15

2 90 0o 20 " 2 09
:—/ rorjder/ GITTds— > /rorjder
o o k=mo+1" %%
m o, 22 o o 20 gk kR
+ > / GjTrjderZ/ [(GFTT;—G,TT;)—
k=mo+1 7 5k k=1 5%
9 90 Ekk oo, kky
—(Ly1T; =0;TT)— (0 TG =T TGy )| ds. (26)
By virtue of (26), we find from (24) that
2 00 " 200
gjj(y,y—%Z):L[gj]+/ [;17;ds + Z /FjTFde—I—
So k=mqo+1 Sk

mo oo oo ko kE
+Z/ (T;TT; — T;TT;ds. (27)
k=175

~

k
The vector I'(z — y, —»?) defined by (8) belongs to the domain of defi-
nition of the functional L, and since g¢;(z, y, —3?) gives a minimum to the

functional L, it becomes evident that L[g;] < L[fj]. Then from (27) we get

[} 0 0 m [} 0 0
955 (y,y — »°) < L[] + / U TTds + Y / L;TTds +
So k=mo+1 7 5%
mo 0 00 k kk
_|_

/ (fjff] — fjffj)dﬁ?, y € Dy.
Sk

B
I
—

By virtue of properties of f, (25) yields

o 00
L[f]] = — f](ﬁf] — %2f]')d5 — / fjffjds —
B(y,ly) So
m 2900 o o 09 g kk
- > T;7T;ds — Z/ (L;TT; — T;TT;)ds. (29)
k=mo+17 %% k=175
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Bearing (29) in mind, from (28) we obtain

gjj(y,y—%z)g—/ fj(ij—%zfj)ds, yE€ Dy, k=0,mg. (30)
B(y,ly)

Taking into account the estimates (11), we have

|f”(x -, —%2)| < const ~ly_1;

T — o) < o2 T T o OB 2y < COL,
ly ly 13
—~—n 9 const L
|MF]($_ya_% )|§ l3 ) Zaj:1a6; yEDka kIOam0~
y

From this and (30) it follows that

const 4 const const

955 (y,y = ") < —— - 37l < < S (31)
Y Y Y

where § > 0 is an arbitrary number.
Estimate g;;(y,y — »?) from below. To this end, we introduce the fol-
lowing notation:

Mo

k
Q[u]:Z/ (E(ﬁ,ikt)—l—%zﬁz) x, Z/ u u —I—%Oﬁz)dx,
k=07 Dx Dy
22 m 02
R[u]:/ &"'Tfj(z—y,—%z)dzs—l— Z / &"'Tfj(z—y,—%z)dzs—l—
So k=mo+1
kk

-I-Z/ +TF (z —y, —5%) —5_Tfj(z—y,—%2)]dzs.

Since »Z < 52, we have Qo[u] < Q[u]. Then
L[g;] =min L[u] = min(Q[u] — 2R[u]) > min(Qo[u] — 2R[u]).

Let the vector function ¢(#,y) give a minimum to the functional N[u] =
Qo[u] — 2R[u]. Then ¢(z, y) will be a regular in Dy, solution of the following
problem:

k
Yo € Dy, Yye D : M(@x)gko(x,y)—%gg]é(x,y) =0, k=0,mg
0 k
VZESka VyEDZQOD-F(Zay)_ZZ_(Zay):f(’z_ya_%z)_f(’z_ya_%z);
0 k 2.9 kE

(Tg(z,y)" - (Ts@(z, ) =TT(z —y, =) =TT (2 — y,—5?), k=T, mg;

V]
Vze Sy, Yye D : (Tgoo(z,y))-l_:T (z —y, =), k=0,mo+1,...,m;
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Writing the formula (19) for ¢, where ' = G, we obtain

o 9.2
¢($ay) = / G‘;—(Za$a_%g)TF](Z_ ya_%z)dzs—i_
So

m 0 220
+ Z G}"(z,a:—%S)Tfj(z—y,—%z)dzs—l—
k=mo+1 Sk
o o 22
—I-Z/ [G}"(z,x—%g)TFj(z—y,—%z)—
k=1 Sk
i Bk

-G (z,2 — %g)ffj (z —y, —%2)] d,s —

_Z/S (z =z, =) TGy (z,y — 25t —

k kg

—Tj(z — 2, =) (TGy(z,y,—x2))]d. 5. (32)

Using (9), (15) and the theorem on composition of kernels [3], we obtain
from (32) that

— const
V(x,y) € Dk X Dk : |g0(x,y)| S T—’ rxy = |l‘— y|a k = Oamo' (33)

ry

On the other hand,

[

Llg;] > Qoly] — 2R[p] > —2R[p] = —2/5 P (2, y)TT (2 — y, —s")ds —

-2 Z / (z,9) TF i(z—y,—s?)d,s —

k=mqo+1
o o 22 & kk
-2 Z/ [gp"'(z, NTT (2 —y, —3*)—p~ (2, y)TFj(z—y,—%z)] dys.(34)
k=1 Sk

Taking now into account that

const const

Toy Ty
kE 9 const const const
|TFJ(Z_y’_%)|§ 2 T 5 .2-6 = 35 .2-68" >0,
r rl r oy
2y 2y’ 2Y y T2y

from (34) we get
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Owing to the representation (27), we readily obtain the estimate

9 const

) > T (35)

YyeD: gjily,y—

From (31) and (35) it follows (23). W

8. Consider the second boundary-contact eigenvalue problem which is
formulated as follows: find in Dy (k = 0,77g) a regular six-component vector

w(z) = 5}(1‘), z € Dy, k = 0,mg, which is a non-trivial solution of the

equation
k

Ve € Dy : ]\7(61‘)5}—1—75}(@:0, k=0,my,

and satisfies the contact and boundary conditions

Ve Syt wh(z)=w (2), (Tw(z)t = (Tw(z)", k=T,mo,

and .
VzeSp: (Twk)t =0, k=0,mo+1,...,m,
respectively.

Denote this problem by [I7. In the way described in [1], we can show
that the problem /17 is equivalent to a system of integral equations, namely

w(z) = (7 + ) /D G,y — )uly)dy. (36)

By virtue of (14) and (15), the equation (36) is an integral one with a
symmetric kernel of the class Ly(D). This implies that there exists a count-
able system of eigenvalues (7, + 32)5%, and the corresponding orthonor-

malized in D system of eigenvectors [w(™)(z)]2%, = [{Z( )(J:)]Zo:l, x € Dy,
k = 0,mg of the equation (36). This in its turn means that (y,)52; and
[w(™)(2)]5%, are respectively eigenvalues and eigenvectors of the problem
I135. Tt is known [1] that all 7, > 0. Moreover, the system [w(™(2)]5L, is
complete in La2(D) [4]. The regularity of the eigenvectors follows from the
properties of the solid potential [1].

9. In deriving asymptotic formulas, a Tauber-type theorem due to Hardy

and Littlewood [5] is of importance.

Theorem 3. If a non-decreasing function ®(t) is Stieltjes summable, and
the asymptotic representation

./+w dd(t) P

o (w+d) ™

holds as x — oo, where the constants [, m and p satisfy 0 <m <1, p#0,
then

P-T())

T —m

B(t) ~
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Here I' is the Euler function.

From the expansion of the kernel in terms of the eigenvectors, we find
that

> w(” xw(”) Y
Gla,y =) = Glay, =) Z (v +%2 )(y +(%3) 7

where z,y € Dy, (k = (O,mo)), and the symbol "% in (37) denotes the
matrix product of a column vector by a row vector (dyadic product):

wM(@) x wM(y) = [[u (@) (y)llexs, ik =T8.
Passing in (37) to limit as « — y, we obtain

Z (y)] = lim [fjj(x —y, —x?) —

'yn+%2 Y(yn +35) @y

n:l
k
—Ljj(x—y,—s)] = 955w,y — %) — 955 (v, y — )], (38)
$ayEDka kIOamO; j:m

From (12) and (13) we have

k k
xlgll[rjj($_y’ —%2)—F]']'(l‘—y, _%8)] = (320 — 2) By (j), k=16, j=1,6,
' (39)
where
1 3/2
_F 1 2 s
B(j) = By =5 [(Ak‘ﬁuk)aﬂ + (Nk+ak)3/2]’ i=123
ko 2
_ I 1 .
Br = 12k77 [(€k+2Vk)3/2 + (Vk+ﬁk)3/2]’ j=456

Taking into consideration (23) and (39), we obtain from (38) that

5 LW B)

, 40
(Yn + 22)(yn + #2) s+ 30 (10)

n:l

yEDka kIOamOa J:R

Consider the function

[wi(y)] ,
q)j(t):Zﬁ, y€ Dy, k=0,my j=1,6.
Yn <t "

It can be easily seen that

()
()]?
/0 t+%2 Z 'yn+%0 (yn + #?)
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By (40) we have

gt 2 x
whence, according to Theorem 3, we get

(), \12 (4)
; BT(1 ;
(1) = Z [w; (y)l ~ k (3) 312 gBl(cy)t?)/z. (42)
<t Tn + %O F(g)r(g) iy
Obviously,

' ) .
gs:t[w;nxy)]Z _ /0 (€ +52) Ay (6) = (€ +52)250)]| _/0 3,(6) de,
Taking into account (42), we get

(n)y, \12 2 6),3/2
Z[w]» (v)] N3_7TBk]t/,

Tu <t

y€e Dy, k 1,6.

OamOa .7

Summing these relations with respect to 7, we conclude that

- p ) 2 pz/z 1 2 3/2
Wi + 432 (43
PIPIATIES = e ) @

ZZW R [( 1 2

+ ] .t3/2’ 44
V<t j=4 671'2 £k —|—21/k)3/2 (vk _|_5k)3/2 (44)
yEDk, kIO,mo.

Thus the relations (43) and (44) provide us with the asymptotic distri-
bution of the eigenvector functions.

10. Taking into consideratrion (39), it follows from (38) that

0 w(n 2
(=) S ()]

1 2
o = 3(x — 30)(By + Br) +
(9n + 59)(9n + 5%)
n=1 n

6
k
7 1055wy —2) — 455 (yw. —7). (45)
j=1

Denote

6

By, ) = 30 — 50) (B + Be) + > 9wy, —23) — 455 (v, v, =)
j=1

Then (45) implies

Wy, %)2 :i (™) ()] Z [w(™(y

46
=y + 2g)( 'yn+%2 = 'yn+%0 (46)
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According to Bessel’s inequality, we have

(n
Zw /|ny %0|dy,xEDk (47)

n=1 7”""%02_

Taking into account estimates (15), from (47) we deduce the existence
and the uniform boundedness in Dj, (k=0 mo) of the sum of the series

w(”
Z 7n + %0

n=1

2

From this and the inequality (46) we find that

Yy € Dy(k =0,mq) : [¥(y, )| < const (5 — 32). (48)

Integrating (46) over the domain D, we find in view of the orthonormality
of the vectors [w(™)(#)]5%, in D that

n=1

[ty = =) S e a9)

n=1

/Dd)(y,%)dy:/D?)(%—%o)(BkJer dy+/ [Zﬁ: (955 (v, 9, —55) —

Mo 9
0550y, —%) | dy = 352 — 520) S (B + Biymes Dy +
k=0
6
3 [ st =) = 0350 = (50)
ji=1
By virtue of (50), from (49) we get
e 1 3 &u1 o
— Br + Bp)mes Dy, =
L T A T e 2B )
1 6
= mZ/D 9759, 9, =) — 455 (9, y, =) dy. (51)
0 ji=1

Denote by (Dy ), the part of the domain Dy (k = 0, myg) the distance from
the points of which to the boundary D is less than 5, and set D, = :QDO(Dk)n~
Then -

/ (955 (. y, —245) — 455 (. y, —*)] dy z/ (9 (v, y, —55) —
D D\

n

g3 (v =) dy + /D Uy, )y — /D 35 — 50)(By + By)dy.

n
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This and (51) imply that

3 3 mué é D
— + mes <
‘Z '}/n+%0 Yn _1_%2) %+%0k20( k k) k| >
’ d‘ ‘/ I 2 N
—%0‘/ Vly, )dy Z 953 (y, v, —55)
—gii — 37 d‘ ‘/ B B d‘ 52
955 (Y, y, —*)| dy P k + Br)dy (52)

The following estimates are valid:

‘/ (By + Bi)d 5 i (B + Bi)d
r+ By y‘z ‘ / r+ By y‘é
Dy 7+ 70l =5 (),
Bi+B
<3( k + Bi)

= ot
const 9

‘/ (y, » dy‘ < ———x
- %0 -
const 1

6
2: 2
_%8] 1‘/ ng]] vY — ) g]](yaya %)] y_%z_%g 775 (55)

>+ g

const 9 (53)

— 32)n=const 7, (54)

The validity of (53) is obvious. The inequalities (54) and (55) hold by
virtue of (48) and (23), respectively. It should be noted that the constants
n (53), (54) and (55) do not depend on s and y.

Consider the function

1

Tu <t

We can easily see that

=S oF
0 t+%2 (Yn + 52) 'yn+%2)

Owing to (53), (54) and (55), from (52) we obtain for 5 = ﬁ that

mo 1 2
o 3Z(Bk—|—Bk)HleSDk
| ~ (56)
0

T+ 32 o
By Theorem 3, we have

mo 1 2
6 Z (Bk + Bk) mes Dy,
k=0

B(t) ~ 2, (57)

T
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Denote N(¢) = > 1. Then for the number of the eigenvalues not greater
Tu <t
than ¢, we obtain

v = [ (€4 D) = (€ + (6| — / e de.

mo 1 2
which with regard for (56) yields N(#) ~ % S (Bid-By) mes Dyt3/2 or finally
k=0

1 & 3/2 1 2
Nt~ — D
(t) 672 kzzomes k [pk ((/\k 2 ) + (i +ak>3/2) +

2
137 372
k ((Ek + 2u)3/2 + (vi + ﬁk)?’/z)]

Thus the results of the present paper can be formulated as the following

Theorem 4. The asymptotic distribution of the eigenvector functions and
the eigenvalues of the basic boundary-contact oscillatory problems of the
couple-stress elasticity is given by the formulas (43), (44) and (58).

(58)
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