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Consider the linear system
Dz = A(t)z, z€R"™ t>0, D =d/dt, (14)

where A(t) is an n X n matrix of real-valued continuous and bounded functions of the
real variable ¢ on the non-negative half-line. We say that

i) A(t) is a right Lappo-Danilevskil matrix (A € LDy (s)) if there exists s, s > 0, such
that for all t > s

t ¢
A(t)/ A(u)du:/ A(u)duA(t); (2)

it) A(t) is a left Lappo-Danilevskil matrix (A € LD;(s)) if there exists s, s > 0, such
that (2) is fulfilled for all 0 < ¢ < s;

i3i) A(t) is a bilateral Lappo-Danilevskif matrix (A € LDy(s)) if there exists s, s > 0,
such that (2) is fulfilled for all ¢ > 0.

The corresponding systems (14) are called right, left or bilateral Lappo-Danilevskif
systems (cf. [1, p. 117]). In this paper we present some results on the distribution of the
Lappo-Danilevskil systems among linear systems.

Let p(A, B) = sup;sg ||A(t) — B(t)||, where ||.|| be an arbitrary matrix norm, and let
LD, = |J LD:(s), LD; = |J LDy(s), LDy = |J LDy(s). Let, for simplicity, n = 2.

s>0 s>0 s>0

Theorem 1. Among linear differential systems there is a linear system (14) such
that for some ¢ > 0 the system (1a4q) is neither a bilateral nor a right Lappo-Danilevskit
system for any matriz Q such that p(A, A+ Q) < e.

Theorem 2. Among linear differential systems there is a linear system (14) such
that for any s > 0 there exists € > 0 such that the matriz A+ Q & LD(s) for any matriz
Q such that p(A, A+ Q) <e.

To prove these theorems it is sufficient to consider the matrix A(t) = (a;;(t)), i,j =
1,2, where a11(t) = sinln (¢t + 1), a12(t) = 1, a21(t) = exp (—t), a22(t) = cosln (¢t + 1).
(Let the symbol [.,.] be used to indicate the Lie brackets, and let [.,.];; be (i, j)-element
of the matrix [-].) We have

t t t
[A(t)+Q(t),/ (A(w) + Q(u))du] = [A(t),/ A(u)du] +[A(t),/ Q(u)du] +

t t
1o, / Aw)du] +[Q(0), / Qu)du].
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It is easy to verify that if p(A, A+ Q) < &, then for all ¢t > 0, s > 0, and for all sufficiently
small € we have:

t t

\[A(t)y/ Q(u)duli1| < delt — s, \[A(t)y/ Q(u)duli2| < delt — s/,
St St

\[Q(t),/ A(u)du]in] < 4elt — s, \[Q(t),/ A(u)du]iz| < 4elt — 5],

I[Q(t)y/ Q(u)duli1| < deft — s, \[Q(t),/ Q(u)duli2| < deft — s|.

Therefore, V¢t > 0,s > 0 we have

t t
Fia(t, ) = |[A(t) + Q(t),/ (A(u) + Q(u))duli2| > I[A(t),/ A(u)duliz| — 12¢]t — 5.

Set tp = exp(w/2+2knw) — 1, k € N. It follows that Fia(tg,s) > |ty — s — (s +
1)cosIn (s 4+ 1)| — 12¢|ty, — s|. It is easy to see that for sufficiently large k£ we have
Fia(tg,s) > 0,s0 Fia(t,s) Z0. Thus A+ Q ¢ LD, and A+ Q & LDy.

Similarly one can show that

t
Fua(t,s) = [[A(t) + Q(t),/ (A(u) + Q(u))du]i1| >

> |exp (—s) —exp (—t) — (t — s)exp (—t)| — 12|t — s|.

Since F11(0,8) > |exp(—s) — 1+ s| — 12es and |exp (—s) — 1+ s| > 0 for all s > 0, we
see that Fi1(t,s) Z0,1i.e., A+ Q & LD;(s).

Theorem 3. For any Lappo-Danilevskii system (14)and for any e there exists a
system (1g) such that p(A, B) < e but (1) is not a Lappo-Danilevskit system.

Indeed, if a12 and a21 are constant, then we can set bi2(t) = a12(t) + aa12(t) + ¢(t),
b21(t) = a21(t) + B + ¢(t), where ¢ is a continuous function, 0 < a < ¢, 0 < 8 <
e, and bll(t) = a11(t), b22(t) = a22(t). If we choose a and 3 such that aj2 — a21 +
aaiz — B # 0 (the existence of such a and j is obvious), then one can show that B ¢
{LD, ULDT U LD;}. If a1 # const or a2 Z const, then we set bi2(t) = a + a12(t),
where 0 < a < e, and b;;(t) = a5 (t) forall 4,5 = 1,2, (4,5) # (1,2), or ba1 (t) = B+a21(t),
where 0 < 8 < &, and b;j(t) = a;;(t) for all 4,5 = 1,2, (i,7) # (2, 1), respectively. For
both these cases one can show that B & {LD, U LD, U LD;}.

Theorem 4. Let A; € LDa(s;), t € N, a € {b,r}, and p(A,A;) — 0 as i — +o0.
If there exists M such that s; < M < +oo for all i € N, then A is a bilateral or right
Lappo-Danilevskii matriz.

Indeed, since the sequence (s;) is bounded, there exists a subsequence (s;; ) such
that s;,, — s > 0 as ¢y — +00. Without loss of generality, s; — s as i — +00. So

for the corresponding values of ¢ we have [Ai(t),f: A;(u)du] = [Ai(t),f:v A;(u)du] +
[A;(t), :i A;(u)du] = [Ai(t), :i A;(u)du]. Since A; is uniformly bounded on [0, +oo[,
we have [A;(t), :i A;(u)du] — 0 as ¢ — 4o00. On the other hand, the sequence A;
is uniformly convergent on the non-negative half-line Therefore [Ai(t),f; A;i(u)du] —
[A(t),f: A(u)du] as i — 4o00. So for the corresponding values of ¢ we have [A(t),
f; A(u)du] =0, i.e., A is a bilateral or right Lappo-Danilevskil matrix.

Similarly one can prove

Theorem 5. Let A; € LD;(s;), i € N, and p(A,A;) — 0 as i — +oo. If there ezist

my, M such that 0 < m < s; < M < 400 for all i € N, then A is a left Lappo-Danilevskit
matric.
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Theorem 6. There ezxists a sequence A;, A; € LDy(s;), i € N, p(A, Ag;) = 0 and
8i — 400 as i — 400, such that A ¢ LD,.

To prove this statement, it is sufficient to consider a sequence Ay (t) = a;jx(t), i,J
1,2, such that aj1x(t) = ager(t) = g(t)with g continuous and bounded, and asy (t) =
exp (—t), a1z = fi (1), where

f = (1 —exp(—t))exp(-t), 0<t<k,
(1 —exp (—k))exp (—t), t>k.
Theorem 7. There ezxists a sequence A;, A; € LDi(s;), it € N, p(A, As;) — 0 and
si — 40 as i — +o0, such that A ¢ LD;.
To prove this statement, it is sufficient to consider a sequence Ay (t) = a;jx(t), i,j =
1,2, such that aj1x(t) = a2k (t) = g(t) with g continuous and bounded, asiy(t) =
exp (—t), 1ok = fi (1), where

o= exp(=k~! —1)), 0<t<kT!,
B exp (—2t), >k~

Theorem 8. Let A; € LDy(s;), it € N. If p(A, As;) — 0 as i — +oo, then A is a
bilateral Lappo-Danilevskii matriz.

Theorem 9. Let A; € LDi(s;), i € N. If there exists m such that 0 < m < s; for all
i €N, then A is a left Lappo-Danilevskit matriz.

The proofs of Theorem 8 and Theorem 9 are based on the following lemmas.

Lemma 1. Let continuous scalar functions f and g satisfy f(t )ft (u)du = g(t) x

f: f(u)du for some s > 0 and for all t, t €]b, ¢[C [0, +o0l. Iff w)du # 0 for allt, t €

1b, ¢[, then there exists a number \ such that fs flu)du = /\f u)du and f(t) = Ag(t)
vV te b, cl
Let Z(g;s) = {t > 0] f w)du = 0}, N(g;s) = {t € Z(g;s5)|g(t) # 0}. Denote by
R(g; s) the subset of Z(g;s )\N(g, s) with the following property: Vio € R(g;s) Vd > 0
Jts, to < ts < to + 0, ts & Z(g;s). Denote by L(g;s) the subset of Z(g;s)\N(g;s) with
the following property: Vto € L(g;s) V4, 0 < & < to, ts, to — < t5 < to, ts & Z(g; ).
Lemma 2. Let continuous scalar functions f and g satisfy f(t )f: g(u)du =g(t) x

f:f( du, for some s > 0 and for allt > 0. Then N(g;s UR g; s UL 9;8) C Z(f;s).
Lemma 3. Let a sequence of continuous scalar functions (g;) uniformly over [0, 400
converge to a function g. Then for any o €]0,+00[, g(o) # 0, there exist positive € and
v such that for all i > v the inequalities g;(t) # 0, g(t) # 0 hold for allt € [0 —e,0 +¢].
Lemma 4. Let sequences of continuous scalar functions (g;) (fi) uniformly over
[0, +00] converge to functions g and f respectively If for any © € N there is s; such that

for all t > 0 we have f;(t )f: gi(u)du = g;(t f fi(u)du, then there exists s > 0 such
that the equality f(t) f w)du = g(t f f(u)du holds for all t > 0.
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