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ON THE ENUMERABLE SET OF DIFFERENT CHARACTERISTIC
SETS OF SOLUTIONS OF A PFAFFIAN LINEAR SYSTEM

(Reported on June 22, 1998)

Consider the Pfaffian linear system
dx/dt; = Ai(t)t, =€ R™, t=(t1,t2) € RY, (1)

with bounded continuously differentiable matrices A;(t) and A2 (t) satisfying the follow-
ing condition of complete integrability:

DAL(t)/0ta + A1(t)Ax(t) = 0A2(t)/0t1 + A2(t)AL(t), tE€ R%.
It is well known [1, p. 34] that the ordinary linear system dz/dt = A(t)z, z € R™,

t e R}H with bounded piecewise continuous coefficients has no more than n different
characteristic exponents. Let A[z] = A € R? be a characteristic vector [2 — 4] of a

nontrivial solution z: R?i- — R™\{0} of (1) defined by

Le(N) = Tm [infla(®)]] = (0, 0)/lt] = 0, La(A - ce1) >0, ¥e >0, i=1,2.

For the characteristic set Ay = U A[z] of this solution which is the most natural analog of
Lyapunov’s characteristic exponent of a one variable vector-function, the essential initial
problem about possible number of different * characteristic sets Ay of all nontrivial solu-
tions z of (1) remained open. Note also that the set { P} of different lower characteristic
sets P, = |Jp[z] of all nontrivial solutions x of (1) composed of lower characteristic
vectors [5, 6] p[z] = p € R? defined by

L(p) = lim [mlle(®)] — O/ =0, lo(p+ee;) <0, V>0, i=1,2,
t— o0
is nonenumerable and, moreover, the set of the lower characteristic vectors U Py of (1)
z#0
has a positive planar Lebesgue measure [5, 6].
It holds the following
Theorem. For any sequence C' = {¢m,} of pairwise noncollinear vectors there is
a complete integrable two-dimensional system (1) with bounded infinitely differentiable
coefficients such that all of its solutions z(t, ¢m ), m € N, have pairwise different character-
istic sets A(m) with a positive linear Lebesgue measure, If z(t) is a solution of (1) linearly
independent with any of z(t,¢m ), cm € C, then its characteristic set Az = Lim A(m)
m—» 00

also has a positive measure.
1. Construction of the required system. The preliminary notes. To an

enumerable set C C R?\{0} of the vectors c¢m = (ck,,cl ) € R? assign the enumerable
set @ = {am} C R of different numbers am = —c2,/cl, € € (—o00,0), the ratios of the
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components of the vector ¢y, Without loss of generality it can be assumed that first
components c of ¢, are nonzero.

In the closed first quarter R% of the plane R? we will build the required Pfaffian
system by constructing its fundamental (lower-triangular and infinitely differentiable)
system of solutions X (t) = ((w;(t))] with z12(t) =0 for t € R3.

On the interval (—oo,00) define two infinitely differentiable functions [7, p. 54]

07 if n S (_0077]1]7
eor(mn1,m2) =4 exp{—(n—m)"2exp[—(n—m2)"%]}, if 1€ (n,m2),
17 if n S [772700)7

. L ifn & (m,m2),
8“("’"“"2){ L expl—(n = m)~2(n = m)~2), ifn € (m.m),

where —oo < m1 < m2 < +00 are used for constructing of elements of the matrix X (t).
With the help of the numbers pp = 0, go = ¢ € (0,1/8), and q;, = 1 — 2 ¥ p;, =
qr —27'"F, k € N, define the sectors: the closed ones Sy = {t € Ri tpp <to/t1 < g}
with k& > 0, the open ones s, = {t € R_2+_ 1 qr—1 < < ta/t1 < pi} with natural k£ > 1, and
the also sector so = {t € R?i- 10 <ti/tx <e}.
2. The construction of the diagonal elements of the fundamental system.
In R% define the positive function za(t) by

Vet -I—tg/\[— Et% \4/%/8 eo1 tz/tl,() &‘) t € So,

Inza(t) = VeEts + t1/VE — (V/et: — /12 /)2 eo1(t1/t2;0,€), tE€ so,
2¢/t1ta, t e R? \SOUSO E

Put the function z; : R?i- — [1,400) be equal to z2: 1) on a closed sector § C R2,
which is bounded by the bisectrix t2 = t1 and the positive coordinate semiaxis t; = 0;
2) on all sectors Sg, k > 0. In order to define this function on the remaining sectors s,
k € N, we consider the numbers r; > ery_q, 7o = 1, k € N, satisfying

ri > (14 |ag| + |ak4+1]) exp 3(qx —pr)72, kEN; 71> (14 ]|ai|)exp3e?
In the sector s; we will define z1(t) by
Inzy(t) = 2vtata{l + eor([tll/re; 1,3/2)[e11 (t2/t1; qr—1,Px) — 1}, t € s,k € N.

Note that by definition of the function eg1(n;n1,72) on the whole axis (—oo,+00) we
have

Inzy(t) = 2vtitaers(ta/t1;qr—1,Pk), tE sk, and |[[t]| > 3ry/2.

3. The construction of the off-diagonal elements of the fundamental sys-
tem. Due to [5, 6], define the off-diagonal element z2:(t) of a constructed two-di-
mesional linear Pfaffian system with bounded infinitely differentiable coefficients and
two-dimensional time by the equality z21(t) = z2(t)F(t), t € R?H where the infinitely
differentiable function F(t) is defined by

0, if ted,
Ft) = aieor (||t]|/rk;1/2,1), if tesg, k€N,
Oék601(||t||/7"ky 1/2,1) + eo1 (t2/t1; P qk) [tk +1 €01 ([|¢]] x
k+1, 1/2,1) — ageor (|tll/rx;1/2,1), ap =0, ift € Sg,k>0.

The infinite differentiability of the functions z1(t) > 1, z2(t) > 1, and F(¢) on Ri follows
from the same property of the functions eo1(¢t2/t1;pk,qr) for & > 0, eor (||t||/rr;1/2,1)
for k > 1, and e11(t2/t1;qx—1,px) for k € N.
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4. The boundedness of coefficient matrices

- Oz (t)
OX(t) 1 O 0 ’
Ai(t) = X~(t) = i , i=1,2
i(t) o, (t) ifﬁii agt(:) ) a%ztgt)

of the constructed two-dimensional system (1) is proved by the following statement:
Lemma. For all m € N and any (ni1,n2) with the lengths < 1/2 there are the
estimates

(m—m) eor(mmi,m2) < [\/m/2eexp(nz —m) 2™, n € (n1,m2),
(m2 —m) "™ exp[—(n2 —n) 7] < (\/m/2e)™, n € (m,n2).

It is evident, that the infinite differentiability of the matrices A;(¢) in Ri_ follows from
the same property of the nonsingular lower-triangular matrix X (t). Similarly, the infinite
differentiability of the fundamental solutions system X(t) ensures the feasibility of the
complete integrability conditions (2) for the constructed two-dimensional system (1).

5. The construction of the characteristic set of solutions. First for the
characteristic set Az, of the solution z(t,l2) = (0,z2(t)) of system (1) we obtain the
representation Az, = A = {(A1,1/X1) € R?i- : A\ € [V£,1/+/€]}. Then for the solution
z(t,cm) we establish the relations

2 (t, em)|| = 21 (£) = |o(t)| 722 2/ 1im—1Pm) = (1), € s, |[H] > Brm/2;
max{z1(t), |oax — amlz2()} < ||zt em)|| <
<+ |ag — am|)za(t), t € sp, ||t >3rr/2,k # my;
L <zt em)ll/z2(t) < 1+ |k — am| + g1 — ok, t € Sky [t > rh41, k>0

le(t,em)ll = /1 + aZ22(t), t€S.

Hence in view of the equality klim r;l In(1 + |ag| + |@k+1]) = 0, true by the choice of
— 00

the numbers ry, and the uniform in ¢ € s tending of e11(t2/t1;qx—1,Pr) as k — oo,
it follows that the characteristic set A(m) of z(t,cm) coincides with the characteristic
set of the function py,(t), which is equal to x2(t) outside the sector S,,, m € N. By
nontrivial reasonings it established then, that the vector A2(n) € R? with the components
X2(n) = =@, (n), A1(n) = pm(n) — nel,(n) for any n € [e,1/¢] is a characteristic vector
of the function pm(t), where the function pm(n) = 2/Me11(n; ¢m—1,pm) is infinitely
differentiable and convex up.

Thus we have the representation A(m) = {\(n) € R? : n € [¢,1/¢]}. The curve
A(m) coincides with the hyperbola A at A1 € [y, \/Gm=1]|J[y/Pm, 1/+E] and is located
below this hiperbola at A1 € (\/@m—1,+/Pm)- In particular, for n = nm = (¢m-1 +
Pm)/2 we obtain the point A(nm) € A(m) with the coordinates A1(nm) = /fm (1 —
e "), X2(mm) = (1 — e~ ™) /\/Tim, where ¥m = 16(pm — ¢m—1)"* and their product
M (Mm)A2(nm) < 1. Obviously, A(l) # A(m) # A for any I,m € N, | # m, and
Lim A(m) = A. It is not dificult to prove also the equality Ay = A for a solution z(t)

m— 0o
linearly independent with any of z(t,¢m), m € N, of the system (1).

The construction of the characteristic sets of all solutions of (1) is completed.

Remark. Obviously, from the constructed two-dimensional system (1) it may be pos-
sible to obtain an n-dimensional completely integrable system (1) with bounded infinitely
differentiable coefficients in Ri, which have enumerable number of dofferent character-
istic sets of the solutions.

Problem. It ought be to clarified, whether the set {A;} of different characteristic
sets Az of solutions x : R?i- — R™ of a Pfaffian system (1) is finite or enumerable.
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