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Consider the system of di�erential equations
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In this paper, su�cient conditions are given for the oscillation of proper solutions of

the system (1) which make the results contained in [1, 2] more complete.
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then every proper solution of the system (1) is oscillatory.
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Then every proper solution of the system (1) is oscillatory.

Corollary 1. Let (4) be ful�lled and �

i

2]0;+1[ (i = 1; : : : ;m), where

�

i

= lim inf

t!+1

h(�

i

(t))=h(t) (i = 1; : : : ;m): (5)

If, moreover, there exists " > 0 such that for any � 2]0;1]

lim inf

t!+1

h

�1

(t)

Z

t

0

h

2

(s)

m

X

i=1

�

�

i

q

i

(s)ds > �(1� �) + ";

then every proper solution of the system (1) is oscillatory.

Corollary 2. Let (4) be ful�lled, �

i

2]0;+1[, q

i

(t) � q

0

(t) for t 2R

+

(i = 1; : : : ;m),

where q

0

2 L

loc

(R

+

;R

+

), �

i

(i = 1; : : : ;m) are de�ned by (5). Then the condition

lim inf

t!+1

h

�1

(t)

Z

t

0

h

2

(s)q

0

(s)ds > max

n

�(1� �)

�

m

X

i=1

�

�

i

�

�1

: � 2 [0;1]

o

is su�cient for the oscillation of every proper solution of the system (1).
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