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S. CHELKAK, A. KOSHELEV, AND L. OGANESYAN

REGULAR SOLUTIONS OF THE NAVIER-STOKES SYSTEM

ABSTRACT. The problem of existence of regular (continuous, Holder—
continuous) solutions for nonstationary Navier—Stokes systems is one
of the important topics in modern mathematical physics. This prob-
lem is closely connected with two main issues: the uniqueness and
the possibility to apply the methods for numerical analysis and prac-
tical computations. We consider here mainly the multidimensional
nonstationary problem for finite (not necessarily small) time.
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1. EXISTENCE OF REGULAR SOLUTIONS AND SOME ESTIMATES

Let © be a bounded domain in R™ with 9Q € C":#). Consider in Q =
(0, T) x Q the Navier—Stokes system

u —vAu+u® Dyu + Vp + f(t,2) =0, (1.1)
divu =0 1.2)

with initial and boundary conditions
U’|t:0 =0, u|(0,‘r)x89 =0, (1.3)

where Dy, denotes the differentiation with respect to xy,
u(t,z) = {uD(t,2),... . ul"™(t,2)}
is the unknown velocity vector function, v = const > 0, f(¢, ) denotes the

vector of external forces, p is the pressure which is normed by the equality
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J pdx =0, and the summation runs as usual over repeated indices 1 and k

Q
from 1 to m.
It is known (E. Hopf [3]) that if f € £2(Q), then the weak solution of

(1.1)—(1.3) belongs to L2{(0, T); Wél)(ﬂ)} and satisfies the equality

/ [—u v +vDyuDgv — u(k)DkUu] dxdt +
Q

+/uvdz‘ T-{—/fvda:dt:O, (1.4)
t=
Q Q

where v is an arbitrary smooth function meeting the conditions (1.2) and
(1.3).

Up to now for the multidimensional case the theorems of uniqueness and
existence are proved simultaneously for different functional classes (see, e.g.,
Ladyzhenskaya [6]).

We will consider in this paper the so—called regular (or strong) solutions
of u(x,t) of (1.1)—(1.3) which should be Hélder—continuous both in z and ¢.
It is assumed that the functions u(x,t) which are given on ) possess at least
the second derivatives with respect to x and the first derivative with respect
to t which belongs to some normed functional (strong) space X. Assume
also that Vp € X.

We will use the following notations

D'uD'v=DyuDyv, D?uD"v=DyuDyv, |D"ul>=D"uD"u, (=1,2,
|Dul*=|D"uf” + [ul?, |D*ul*=|D?ul® + |Dul?, |lull*=||D*u]; + [Jull3.
Suppose that X satisfies the following conditions:

1. X C L2{(0, T); WiV()}.
2. sgp lu(t,z)] < Colu| + C||lu||z, -

3. For any f € X, the solution of the linear Stokes problem

u—l/Au-l-Vp:f,divu:O,u|t:0:u|(0T)Xm:0 (1.5)

satisfies the inequalities
lullx < Cx|Ifllx + C(1Dullz, + [Ipllcs), (1.6)
IVpllx < O fllx + CUIDulle, + [Iplla), (1.7)

where Cx , c§§) and C' are some positive constants.

Example. X = £,(Q) with p > m + 1. The inequality (1.6) (for any
p > 1) was proved by V. Solonnikov [8] but the constant C'x has an implicit
form.
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In order to make the results explicit and sometimes sharp we took (see
A. Koshelev [5]) the space Hé}f) (Q) with the norm

Jull1,2:0 = { sup / [| u |2 + |D2u|2] |z — zo|adzdt} (1.8)
Q

To€

with @ =2 —m — 27 (0 < v < 1). In this case X = L3 (@) and the norm
is determined by the formula

1
2
lJu|la = { sup /|u|2 |z —x0|ada:dt} . (1.9)

zoEQ
Q

The inequalities (1.6), (1.7) are an analytic basis for some existence and
uniqueness theorems which were proved in [5]. They follow from analogous
estimates in weighted spaces. Let v > 0 be sufficiently small and the ball
B = {z : |x — zo| < ¢} contained in B. In [5] we proved the following
estimates for the solutions of the problem (1.5)

2,12 a m (m — 2)? 3
/|DU| |$—.’L"0| dﬂ?dtfm{[l_{_ﬁ_‘_o(v) +1 %
-2
X <1 + ’ITL_)/ |f|2 |$ _ .’L'0|ad.’L'dt + Cr/ |f|2d$dt,
m+1
Qo Qo
[ 1901z ~ ol < (1.10)
Qo
—92)2
S {1 + (77,;7_1) + 0(7)] / |17 |2 — mo|*dadt + 0/ |f|2dadt,
Qo Qo

where Qo = Q@ N [(0, T) x B]. Taking sup over all zy € Q, we come to (1.6)
and (1.7) with

Cr,.. = — {[1+M+0(7)} +1}% <1+m_i> (1.11)

w2 m—1 m +
and

(m —2)

4+ 0(). (1.12)

op) =1+

By the way, the constant (1.12) is sharp.
We consider the existence of Hélder—continuous in both x and ¢ solutions
of (1.1) — (1.3) using the following iterative process

€ Upy1 VAU 11 +EVDpr = —vAu,—e[— v Au,+ u%k)Dkun+f], (1.13)
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where ¢ = const € (0,1] and all u,, satisfy the conditions (1.2) and (1.3).
Of course, the initial iteration must be smooth enough. The equations
(1.13) can also be written in the weak form. It was proved (S. Chelkak, A.
Koshelev [2], see also A. Koshelev [5]) the following

Theorem 1. Let f € £24(Q), « =2—m—2v, v € (0,1) and the quantitiy
v~ 7R, where

R =A% 112, @) + Cllf Iz » (1.14)

be sufficiently small (A2 ,,, o and C are some positive constants). Then
the problem (1.1)—(1.3) has a wnique solution (u*,p*), which belongs to

C09(Q) with some § > 0. This solution satisfies the inequality
lu*lloes @) < M,

where M is determied by v~ °R. For sufficiently small v=°R, the con-
stant M can be calculated explicitly. Here C(%9(Q) is the space of Hélder—
continuous both in x and t functions.

Remark that the constant A2 in (1.14) is given explicitly for the given
a and m. The corresponding expressions are given in [5] and [2]. The
constant C in (1.14) is given implicitly and we do not even have an explicit
bound for it. The expression v~ 7R is called a strong Reynolds number for
the problem (1.1) — (1.3). Then the theorem states that for small strong
Reynolds numbers the problem has a Holder—continuous solution. It is of
course very interesting to find out how the regular properties depend on R.
Clearly, for this reason we need some numerical experiments and consider
such functions f (¢, z) when the first term the principal one of the right—hand
side of (1.14). Remark that we consider only Hélder—continuous solutions,
not obligatorily the classical ones.

2. AXIALLY SYMMETRIC NAVIER-STOKES PROBLEMS

There is no example of the problem when a H&lder—continuous solution
looses its regular properties or becomes nonunique. Therefore, we need
to consider such a problem where some irregularity can be expected. It
is known that for the Taylor example (J. Taylor [9], K.Kirchgéssner [4],
V.Yudovich [10]), the flow can bifurcate. The domain @ consists for this
case of two coaxial cylinders which rotate in opposite directions. This was a
reason to consider such kind of a domain and later on to investigate the class
of suitable right—-hand sides in (1.1). We are not familiar with any algorithm
which would allow to find the weak solution of the problem for a general
domain (. Therefore it was decided to find an algorithm for the domain
of the Taylor example and to apply the method of finite elements. For the
basic elements, bicubical Birkhoff elements were taken. The method was
offered and described by L. Oganesyan [7]. In this section we will follow [7].



37

Let (r,z,¢) be the cylindrical coordinates. We consider the system of
Navier-Stokes in a ring & = {(r,z) : 7« < r < r*,0 < z < z*}. Denote

@ =%, u = 2% « = %% Then the stationary problem (1.1)—(1.2) will

take the form

1l+uu'+wu’—%:—p’+l/(u”+u” “71—7%)-%]‘1,
- uw' +ww’ = —p (W +w” +5) 4 o,

bt b+ = (0 = =) 4 f
Liru) + %(wr)’ =0,

r

(2.1)

where @ = ué, + wé, + ve,. Along with (2.1), we consider the boundary
conditions
=0, v| =w'rt. (2.2)

u|t:0:u0, u,w|r:r*:u,w| =WyTy, U|

r=r* T="s r=r*

For z we take the periodic conditions: u, v, w, p are periodic along the z-
axis with the period z*. Note that we can choose the conditions of the first
boundary value problem also. We assume also that the mean flow along the
z-axis is equal to zero. If we consider the flow function ¢, which satisfies
the conditions u = 14", w = —1¢', we come to much simpler relations. It
is clear that ¢» = Cy for r = r, and ¢ = Cs for r = r*. The zero flow along
the z-axis gives you that ¢y = Cy = C'. We can suppose that C' = 0. For
the stationary problem, the flow function 1 satisfies the following integral
identity

/ : {% A (B} -2 +v Ay A<I>} drdz= / (L&'~ f8')drdz, (2.3)
Q

Q

where {1, ®}=1’®' —¢)'®’ is the Poisson brackets and A_t)=1)" +r(¢71)’.

The identity (2.3) leads to a fourth order partial differential equation
and this is the main difficulty of our problem. The function v satisfies the
following integral identity

*

/[—¢ oV +v (rv'V’ +r’V + i)] drdz — l//rv'V
r r
)

Zx

' dz:/f3Vrdrdz
’ Q

which leads to a second order differential equation. It is known that this
problem can be solved numerically by simple methods.

It is clear that the problem to find ¢ is a nonlinear one. It can be
solved by applying some iterative method. We will consider only the Stokes
problem, i.e. the problem

/%I/ A A _®drdz = /(f1<1>’ — fo®')drdz. (2.4)

Q Q
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A linear operator with constant coefficients which is spectrally equivalent
to the operator under consideration should be applied. It is known that on

the functions, which belong to H2(2) such an operator is A2. This leads to
an iterative process

/Ai/}nH A ®dxdz = /Az/)n A ddxdz —

v 1
—e[3 [ 5 @+ 020,) (028 + 2020) dods -

w

_W/% (f10.® — /50, ®) dadz], (2.5)

where n = 0,1,..., %9 =0,z =r?/4and w = {(z,2) 1 7. <z < 2%, 0 <
z < z*} is the image of Q in (z,z). Here € > 0 is the iterative parameter.
The function 9, needs to satisfy the boundary conditions.

On each step of the iterative process (2.5) we have to solve a variational
problem

[, Au A ®dzdz = (F, ),

_ Ou

u|x:m* = u|x:m* = 9z = Du

r=z*
u(z,z) is periodic along z with the period z*,

where (-, -) is a scalar product corresponding to the right-hand side of (2.5).
Now we consider only (2.6), which is the basic issue of our algorithm. To
solve (2.6), we apply the method of finite elements. These elements must

belong to ]?1'2(2) (w). The bicubical Birkhoff elements satisfy this condition.
Therefore we seek the approximate solution of the following form

k=M-—2,
I=N—1
u= [urior () 1(2) +PriOk (x) @1 (2) + qrior (2)01(2) + bk (2)0;(2)]
k=1,1=0
k 2(|t) = 1)* +3(|t] — 1), [t] <1,
= R t) =
or(z) = p(X), @(t) {0, > 1,
k
k T 2 T k. | hg, X >0,
XZ{zh’;k < Oi(x) =0(X){ " K
e TS TR hi-1, X <0,

6(t) = sign(t) {gt' S :z: ° i

)

where hy = 41 — Xp, To = T < 21 < 22 < -+ < xpr = x* are the knots
for the coordinate x and zp = 0 < 21 < 20 < -+ < zy = 2z* are the knots
for the coordinate z. For the functions ¢;(z) and 6;(z), the steps hj and
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hx—1 should be replaced by §; and d;—1, where §; = z;41 — 2z;. At the same
time, the net for z outside of [0, z*] should be expanded periodically from
the segment [0, z*].

Taking in (2.6) a suitable test function ®, we come, as usual, to a linear
system for the coefficients wg; , pri, qki, Tk - This system is written in [7].
The structure of this system is very complicated. It is practically impossible
to solve this system by direct methods even for rather small numbers M
and N. So it leads to the problem of solving this system by means of an
iterative method. Write this system in the form AU = F. The matrix A is
positively determined. Denote G = (Uz)mn — Pmns Omn = (Uz)mn — Cmn,
Cmn = Tmn — (qgg)mn - (pz)mn + ('U/xz)mna where g, U, (and further uz,
uyz) means the ordinary finite differences of the first and second order,
respectively. In [7] it is shown that the quadratic form corresponding to
the matrix A is equivalent (uniformly with respect to h,, and d,) to the
following quadratic form

5 (i 42 2t (2 + 22 0+ B ]+
e mYn T 2Z mYn (S% h%n zZ/mn hm mn

n:o 82
+P, [hman (—m n h—g) (bs)2,, + ==

2
6n m

hZ, 52
+Pshp by <5—’2” + h—g> c%,m} (2.7)

with the parameters P = P, = P3 = 1. The form will not loose the equiv-
alence if we take arbitrary positive numbers for P;. This equivalence gives
a sufficiently simple iterative process for the problem (2.6): the structure of
the form (2.7) splits the problem in four problems for u,mn, Gmn, bmn and
Cmn, respectively. Thus the problem (2.6) can be solved with the help of
the following iterative procedure:

MCE =) = sFl(zs?) (2.8)

— the problem for u,,, with the operator Aju = %(huﬁ)ﬁ + %(61425)25 ;

As(E

—a) = eFRy(0) (2.9)
— the problem for a,,, with the operator Asa = ((Z—j + 2—2) az) + #a;

As(D = h) = eRy(0) (2.10)

— the problem for b,,,, with the operator Azb = ((g‘—j + Z—z) bz) + J%b;
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the problem for ¢,,,:

h2 62 s+1 s 'i
(5—2 + ﬁ> ( 2 —c) = e Fy (D). (2.11)

Here F; are the corresponding right-hand sides which can be calculated with
the help of the problem (2.6). It is worth—while to mention that the problem
(2.8) corresponds to a fourth order differential equation and the problem
(2.9) and (2.10) correspond to the second order differential equations. The
problem (2.11) is a system of linear algebraic equations with a diagonal
matrix. It is evident that the equations (2.8)—(2.11) should be accompanied
by the corresponding boundary conditions.

It should be stated that the method converges like a geometric progres-
sion after the parameter € was appropriately choosen. Note that this method
is a quasioptimal with respect to the number of arithmetical operations.
This method was realised and a numerical program was tested in the work
of S. Chelkak, G. Konovalov and L. Oganesyan [1].

For the nonstationary Stokes system, the function ) satisfies the following
integral identity

/th¢+wxwxﬂdmzt/ma—ﬁywm%(um
Q Q
0
where 7 = 5 5 .Let tp = kr, k=0,1,..., ¢k:¢|t:tk. To find
1, we can apply the Krank-Nickolson scheme
drdz
[ ovon v @ +vavia o) TE
Q
_ / 7, - fg‘ttk_lcp'] drdz, (2.13)
a 2

(1, +1r_1) and f© is the Steklov average of the function

DN | =

where 9 =

f(@).

On each step in time the approximate value of ¢}, can be found with the
help of our algorithm in the spline form Wy. If the functions f; and f are
sufficiently smooth, then the estimate

drd drd drd
|||Rk|||_max/R2” Z/|A R+|”Z<c +/R”Z

tk,<TQ

holds, where Ry = ¥y — v, and ¥y is a bicubical spline for 1. If 9 is also
drd
sufficiently smooth, then /Rg ree < Oh*|ao]|? and therefore the Krank-
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Nickolson scheme has the accuracy O(h?) + O(7?) with respect of the norm
]Il

Note that in the process of finding the solution of (2.13) it is worth—while
to change a little the iteration operation in (2.13). Such a change can make
the convergency of the iterative process better.
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