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HEINRICH BEGEHR

ITERATIONS OF POMPEIU OPERATORS

ABSTRACT. The Pompeiu operator 7" was extensively used by I. N.
Vekua in his treatment of generalized Cauchy-Riemann systems. In
the case of several complex variables when polydomains are consid-
ered, proper combinations of different T-operators for different com-
ponents of the variable lead to a particular solution of the inhomoge-
neous Cauchy-Riemann system. This is applied to solve explicitely the
Dirichlet problem in the unit polydisc for the inhomogeneous pluri-
harmonic system in the case of two complex variables.
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In his theory of generalized analytic functions, I. N. Vekua has intensively
studied the Pompeiu operator

for different function spaces and different kinds of domains in the complex
plane C, see [11]. Because 0/07% is left-inverse to T as is 9/9z to T, the
complex Laplace operator §?/(0z0%) is left-inverse to TT. The operator
0%/07* is similary related to 7%. Hence, iterations of T and T lead to
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integral operators related to certain differential operators. This is true also
in the case of several variables.

Three different situations will be considered. Arbitrary iterations of T
and T are studied for general plane domains. For the unit disc, the iteration
of Vekua’s operator T is presented. At last, some particular cases in C* are
looked at.

1. ARBITRARY PLANE DOMAINS

The Cauchy—Pompeiu representation formulas

w) = 55 [ w075 + (Twg(e) = p(e) + (Tug)(e), €D,
w(z) = == [ w2 + Twe)(z) = 96) + Twe)(z), =€ D,
210 Jop (—z

for regular plane domains D C C and w € C'(D;C) N C°(D;C) (see,
e.g., [2,5,6,12]) are basic for the following. Here ¢ and ¢ are analytic func-
tions.

Theorem 1. Let D C C be a regular domain. Then any w € C*(D;C) N
CY(D;C) can be represented as

w(z) = ¢(2) + /C wez(¢)dédn, =z € D,
w(z) = p(z) + D) /log|<—z| (Q)dedy, =€ D,

with some analytic functions ¢ and .

Proof. From the Cauchy—Pompeiu formula we get w(z) = ¢1(z) + Twg(z),
wz(2) = @2(2) + (Twzg)(2) with some analytic functions o1 and ¢». Hence
w(z) = 1(2) + Tpa(z ) (T2wff)( z). From the Cauchy-Pompeiu formula-
the equality Zya(2) = p3(2) + T2 (z) follows with an analytic function ;.

Moreover,
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with analytic functions ¢4 and 5. This proves the first formula. Similarly,
from w(z) = ¢1(2) + (Twg)(2) and wz(2) = p2(2) + (T'wg,)(2) with analytic
functions ¢1, p2 we see w(z) = ¢y (z)+(T@)(z)+(TTwZ<)(z). The Cauchy—
Pompeiu formula gives for a primitive ¢o of s in D ¢o(2) = p3(z) +
(T'g2)(z) with some analytic function 3. In order to reformulate

T/ (2 / / dfd" )dfdﬁ,

consider in D, := D\{z: |z — (| < ¢}
~ 1 ~ d¢ 1 1 dédn
log ¢~ o = 5 [ togle <P - f
2mi Jap, -z D. ( — CC—Z
Letting ¢ tend to zero, we get

S L[ e L[ L dedn
loglC— = = 5= [ 1oglC— (P2 -2 =

Thus
TTf(» /f ) log ¢ — =[dédn —
- / R S e (GL R
=i+ 1 [ 1O oglc— 2Pdeay

which proves the second formula. W

The integral operators

Toaf ()= o [ $Z27(0dedn, Toaf(e) = 2 [ toglc —alr(Qagar

were used in [9] (see [2]). Of course T4 1 f differs from

Sf(z) =2 /D 9z, Q) F(¢)dedn

™

only by a complex-valued harmonic function, i.e., by a sum ¢(z) -I-W with
analytic functions ¢ and . Here g is the Green function of D.

In the same manner, one can construct a hierarchy of integral operators
providing integral representation formulas for functions w through their
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higher order derivatives 0™ "w/(82™Jz") up to polyanalytic functions.
These operators are (see [6,7]) for entire m,n,0 < m +n,0 < m? + n?,

Tm,n (Z) = b Kmm(z - C)f(C)dfdﬂ =
((_ 1(_1\—m ~ _ ~\n—1
R [ B HQdgdn o m <,
_ "1\ " _ m—1
e [ = e for n <o
= 1 m— n—
RS A (=0
m—1 n—1
X [log|z ¢ - % — Z ﬂ f(Q)d&dn for 0 < m,n
\ k=1 I1=1
Moreover,
Toof :=f, Tmnf:= % for m,n <0,

see [1]. These integral operators have the following properties for f € L,(D),
1<p.

(1) Tm,nf :Tn,m?-
(2) There exists a constant M such that

T f (1) = T f (22)] < MUl 1 — 22l

with a = 1for 2 < m+n, a = (p—2)/p for m+n =1, for
|z1], |22] < R, 0 < R. M depends only on m, n, p in the case
2<m+n <3alsoon D and for 4 < m + n also on D and R.

(3) For m +n = 0 < m? + n?, the operators T}, ,, are of Calderon—
Zygmund type mapping L,(C), 1 < p, into itself. They have
to be understood as Cauchy principal value integrals and satisfy

| Tmnfllz, ) < MO fllL, -
(4) Ty nf has generalized derivatives for 1 <m +n

9 0

aTm,nf = Tm—Lnf, %Tmmf = Tm,n—lf,
O,
Wmélnf = Tompnif for k+l<m+n.

(5) For feLy(C), we have

Tm,—mTk,—kf = Tm+k7—m—kfa Tm,—mT—m,mf = f

Tm,—m is a unitary operator from Lo(C) into itself, || T, —m fllz.(0)
= || fllo(cy- Tts inverse and adjoint operator is Ty, 1.
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As an example for a Pompeiu kind representation formula of higher order,
the next result can be proven from the classical Pompeiu formula (see [2,11])
by induction.

Theorem 2. If w € C"(D;C), then

DSy kL =0 9"w(Q)
)= i + / 2 dean

(n—1Dn z2—C ¢
with analytic functions @i, 0 <k <n —1.

Proof. For n = 1 this is the classical Cauchy—Pompeiu formula w(z) =
¢o(2) + (To, wg)(2). Assume

Zwk )2+ (To,n 10" 1w(0)/0C")(2)

holds for w € C™ 1(D;C). Then applying this formula to w = ws and
inserting the result in the Cauchy—Pompeiu formula for w, we obtain

w(z) = ¢o(2) +To,

i FL(O)C" + To,nla"w@)/afnl () =

5 {k T1o ke )} + (Ton0™0(C)/5C")(2)

k=0

- j o1(2) + (To.00"w/0T")(2) .
k=0

Here 1, are analytic functions given by

Gu(2)Z 1/ (k+ 1) = i (2) + (Toa Bk ()T )(2). W

For a general higher order Cauchy—Pompeiu formula see [2,6].

2. THE UNIT DISC

Besides the T—operator, Vekua [11] has introduced the T—operator for
the unit disc D. It has the same properties as the T-operator. Additionally
it satisfies ReT f(z) =0 for |z| = 1.

In fact it is uniquely given by the solution to the Schwarz problem
Re w(z) = 0 on |z| = 1 for the inhomogeneous Cauchy-Riemann equa-
tion wy = f in |z| < 1. Its general solution is with arbitrary analytic ¢
given as w = ¢ + T'f. By the Schwarz condition, the analytic function ¢
satisfies Rep = —ReT'f on |z| = 1. The Schwarz formula (see [2,3,4,11])
defines ¢ as

1 -
p(z) = —= /| » 10 — szgdn +ic
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with arbitrary ¢ € R. Hence,
= 1 QO 2f(Q) ,
w(z)=T z::——/ —= + —=Z= | d&dn + ic.
@=Tie) == | lg_z T
From here w(z) = (Slwz)(z) + i Im w(0) follows with
S =5 [
T wm ga [¢-2 ¢ T =€ €
This operator has the following properties (see [2,6]):

(1) For f € L1(D), the function S; f has generalized derivatives (S1f)z
= f and (S1f). = IIf, where II is the operator given by Vekua [11]

ey L Q) 7Q Z
e)=2 /<<1 [(C —p F (1- 25)2] dedn, z€D.

(+2 10 , 1+ TQ)

] déd.

and satisfies ||ﬁ||L2(5) =1.

(2) Sif satisfies homogeneous Schwarz conditions Re S1f = 0 on 0D
and the side condition Im S; f(0) = 0.
(3) Iteration of S; leads for |z| < 1 to

(—1)* k—1
2ﬂk—nL4K1@R&K_Z» %

C+21(0) , 1+ FQ)
(=2 ¢ 1-20 ¢

It satisfies 0S,f/0Z = Sk_1f and is a particular solution to the
Schwarz problem

Stf(2) = Skf(z) =

X

] dédn.

OSif . S f
5ok =fin D, Re 57 =0 on 9D,
Imafd =0, 0<wk<k-—1.
0z" l:=0

For 0 < k < k—1, the z—derivatives " Sy, f /0z" are weakly singular
integrals, while for k = k,

*Spf(z) _ (~1)*k =\ 50
ok x /|¢|<1 l((—2> (€ —2)° *

k=1 T
1 —
P (L) TG ug,
1—2¢ (1—2()?
is a singular integral operator. The Ly—norm of this operator is not
yet known.
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3. PoLyDOMAINS IN C?

A polydomain D™ in C" is the Cartesian product of plane domains Dy,
i.e., D" := Xj_, Dj. If one studies the overdetermined inhomogeneous
Cauchy-Riemann system wz; = fr 1 < k < n, in D" satisfying the com-
patibility conditions fiz = fiz;, 1 < k,I < n, a particular solution is given
by a proper combination of T—operators. Denoting

M) == [ G

for f € Li(Dy), one can see that the general solution to the Cauchy—
Riemann system is

n

w :904_2(_1)1/71 Z T, Tk, , "'Tklfqu...a

v=1 1<ki1<..<k,<n

with an arbitrary analytic function ¢ in D™ (see [3,4,8]). Here the last sum
is taken over all ordered multiindices {k1,ko,...,k,} C {1,2,...,n}. For
n = 2, e.g., w =g + T1f1 + TQfQ — T2T1f1(_2'

Integral representations of this form were given already in [10], see also
8].

As in the plane case, higher order systems can be treated similarly. The
inhomogeneous pluriharmonic system u,,z = fu, 1 < k, | < n, in D",
e.g., satisfying the compatibility conditions frr., = fuz,, fuz = frj=
1 <1i,7,k,1 <n, has a particular solution in the following form. For fixed
[,1 <1 < mn, the general solution to this anti-Cauchy—Riemann system is

n
um =%+ Y (D Y T T fraigy ey, = B
p=1

1<k <...<k,<n

with an analytic function ;. Choosing ; such that this inhomogeneous
Cauchy—Riemann system, 1 < [ < n, satisfies the compatibility conditions
Fi= = Fjz,1 < 3,1 <n, we have

n

w= DTS T T T,

pn,v=1 1<k <...<kpy<n
1<11<...<lpy<n

+y (=t N T, T, -G

v=1 1< <..<l,<n

Because any pluriharmonic function, i.e., any solution to the homogeneous
pluriharmonic system fr; = 0,1 < k, [ < n, is the sum ¢ + ¢ with two
analytic functions ¢, ¢, the general solution for the pluriharmonic system
is then u = ¢ + 1 + ug. Of course ug can be simplified. Here only the case
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n = 2 is studied. For the general case see [4], Chap. 5.3. For n = 2 the
functions 1,12 have to be chosen such that

1 4o G

/¢}122 (2) - (27”)2 /BDl oD, f21(<) Cl -2 C2 — 227
o i@ de

Vou(2) = (2mi)? /BD1 8D PO G-z G —2

A particular solution is

ug = ThT1 f11 + ToTo for + Ti o for + ToTi f1a — T1T1T2f11§2 -
—T2T Tt faoe, — TlT1T2fHC—2 - T,y Jooer +
+ T1T1T2T2f11<2§—2 + Tyipy + Tothy — Ty Totic, -

In [3,4] the following result is proven.

Theorem 3. Let fi11, fi2, fo1, foo satisfy the above mentioned the com-
patibility conditions in D* = {(2122) € C* : |z1] < 1,|22| < 1} and v be
continuous on 9yD? = {(z122) € C* : |z1| = 1, |22| = 1} satisfying

1 21 Z2 zZ1 22 ﬂ @
(2mi)? /BOD2 () [Cl —21 G — 29 + G —2z1 G — 22] G ¢ *
1

2 zr
+—= dé1dmdéadns = 0.
w2 {f121—21C1 1 -2 fn 1-21¢ l—ZCJ S1dm dadip

Then the Dirichlet problem u,,z = fi, 1 < k,l < 2,in D? , u =~ on
0o D? is uniquely solvable by

U(Z) — 1 / (C) 1- |Zl|2 1- |Z2|2 dCl dC2

(27Ti)28 - G =212 [ -2 G G
2
v / Fia(G, 22)log | L ey +
|C1\<1
2
42 / For(e, ) log |2 2| dea, +
|C2\<1 e
1 1 1 Z3
{fm(oﬁ -2 <C2 — 2 * 1 —Z_2C2> *

D2

1 zt !
+f21(<) <C1 -2 + ].—Z_1C1> m

@—a2< o §_>+
G-z 1-Z0

+ fllC_Q(C) IOg 1— Z_1C1
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1 £ ) (2 — 22 2
+ foorr + log |7 ——+| +
F(©) <C1 —a om0 ) Bl-mG
1 C2—Z2 2
+ (()=—=1o —
faa¢ (C)Cl — S
i 110 tog |2 o |22 | Vi aagadn.
116262 1-z1¢; 1-=0

It is easily seen that w satisfies the Dirichlet condition. Also wu,,z =
fi1, U275 = f22 can be verified without difficulties. In order to calculate
Uz,z; and u.,z7, the above condition has to be used.

Solvability conditions are characteristic for boundary value problems in
several complex variables. In general, they fail to be unconditionally solv-
able, see [4,8].
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