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ITERATIONS OF POMPEIU OPERATORS

Abstract. The Pompeiu operator T was extensively used by I. N.

Vekua in his treatment of generalized Cauchy-Riemann systems. In

the case of several complex variables when polydomains are consid-

ered, proper combinations of di�erent T -operators for di�erent com-

ponents of the variable lead to a particular solution of the inhomoge-

neous Cauchy-Riemann system. This is applied to solve explicitely the

Dirichlet problem in the unit polydisc for the inhomogeneous pluri-

harmonic system in the case of two complex variables.

reziume. pompeius T operatori intensiurad gamoiKeneboda i. ve-

kuas mier ganzogadebuli koSi-rimanis sistemebis SesCavlisas. mravali

kompleqsuri cvladis SemTxvevaSi, roca poliareebia ganxiluli, sx-

vadasxva cvladis mimarT sxvadasxva T -operatorebis SesaPeris kombina-

ciebs mivKavarT araerTgvarovani koSi-rimanis sistemis kerZo amonaxsnis

agebamde. es Paqti gamoKenebulia araerTgvarovani pluriHarmoniuli

sistemisaTvis erTeulovan polidiskSi dirixles amocanis cxadi saxis

amosaxsnelad ori kompleqsuri cvladis SemTxvevaSi.

In his theory of generalized analytic functions, I. N. Vekua has intensively

studied the Pompeiu operator

Tf(z) := �

1

�

Z

D

f(�)

d�d�

� � z

; z 2 C ;

and its complex conjugate

Tf(z) := �

1

�

Z

D

f(�)

d�d�

� � z

; z 2 C ;

for di�erent function spaces and di�erent kinds of domains in the complex

plane C , see [11]. Because @=@z is left{inverse to T as is @=@z to T , the

complex Laplace operator @

2

=(@z@z) is left{inverse to TT . The operator

@

2

=@z

2

is similary related to T

2

. Hence, iterations of T and T lead to
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integral operators related to certain di�erential operators. This is true also

in the case of several variables.

Three di�erent situations will be considered. Arbitrary iterations of T

and T are studied for general plane domains. For the unit disc, the iteration

of Vekua's operator

e

T is presented. At last, some particular cases in C

n

are

looked at.

1. Arbitrary Plane Domains

The Cauchy{Pompeiu representation formulas

w(z) =

1

2�i

Z

@D

w(�)

d�

� � z

+ (Tw

�

)(z) = '(z) + (Tw

�

)(z); z 2 D;

w(z) = �

1

2�i

Z

@D

w(�)

d�

� � z

+ (Tw

�

)(z) =  (z) + (Tw

�

)(z); z 2 D;

for regular plane domains D � C and w 2 C

1

(D; C ) \ C

0

(D; C ) (see,

e.g., [2,5,6,12]) are basic for the following. Here ' and  are analytic func-

tions.

Theorem 1. Let D � C be a regular domain. Then any w 2 C

2

(D; C ) \

C

1

(D; C ) can be represented as

w(z) = '(z) + z (z) +

1

�

Z

D

� � z

� � z

w

� �

(�)d�d�; z 2 D;

w(z) = '(z) +  (z)�

2

�

Z

D

log j� � zjw

��

(�)d�d�; z 2 D;

with some analytic functions ' and  .

Proof. From the Cauchy{Pompeiu formula we get w(z) = '

1

(z) + Tw

�

(z),

w

z

(z) = '

2

(z) + (Tw

� �

)(z) with some analytic functions '

1

and '

2

. Hence

w(z) = '

1

(z) + T'

2

(z) + (T

2

w

� �

)(z). From the Cauchy{Pompeiu formula-

the equality z'

2

(z) = '

3

(z) + T'

2

(z) follows with an analytic function '

3

.

Moreover,

T

2

f(z) =

1

�

2

Z

D

f(

e

�)

Z

D

d�d�

(

e

� � �)(� � z)

d

e

�de� =

=

1

�

Z

D

f(

e

�)

e

� � z

1

�

Z

D

�

1

� � z

�

1

� �

e

�

�

d�d�d�de� =

=

1

�

Z

D

"

e

� � z

� � z

�

'

4

(

e

�)� '

4

(z)

e

� � z

#

f(

e

�)

e

�de� =

=

1

�

Z

D

� � z

� � z

f(�)d�d� + '

5

(z)
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with analytic functions '

4

and '

5

. This proves the �rst formula. Similarly,

from w(z) = '

1

(z)+(Tw

�

)(z) and w

z

(z) = '

2

(z)+(Tw

��

)(z) with analytic

functions '

1

, '

2

we see w(z) = '

1

(z)+(T'

2

)(z)+(TTw

��

)(z). The Cauchy{

Pompeiu formula gives for a primitive �

2

of '

2

in D �

2

(z) = '

3

(z) +

(T'

2

)(z) with some analytic function '

3

. In order to reformulate

TTf(z) =

1

�

2

Z

D

f(

e

�)

Z

D

d�d�

(

e

� � �)(� � z)

d

e

�de�;

consider in D

"

:= Dnfz : jz �

e

� j � "g

log j

e

� � zj

2

=

1

2�i

Z

@D

"

log j

e

� � �j

2

d�

� � z

�

1

�

Z

D

"

1

� �

e

�

d�d�

� � z

:

Letting " tend to zero, we get

log j

e

� � zj

2

=

1

2�i

Z

@D

log j

e

� � �j

2

d�

� � z

�

1

�

Z

D

1

� �

e

�

d�d�

� � z

:

Thus

TTf(z) =

1

�

Z

D

f(�) log j� � zj

2

d�d� �

�

1

2�

2

i

Z

D

Z

@D

log j

e

� � �j

2

d�

� � z

f(

e

�)d

e

�de� =

= '

4

(z) +

1

�

Z

D

f(�) log j� � zj

2

d�d�

which proves the second formula. �

The integral operators

T

0;2

f(z) :=

1

�

Z

D

� � z

� � z

f(�)d�d� ; T

1;1

f(z) :=

2

�

Z

D

log j� � zjf(�)d�d�

were used in [9] (see [2]). Of course T

1;1

f di�ers from

Sf(z) := �

2

�

Z

D

g(z; �)f(�)d�d�

only by a complex-valued harmonic function, i.e., by a sum '(z)+ (z) with

analytic functions ' and  . Here g is the Green function of D.

In the same manner, one can construct a hierarchy of integral operators

providing integral representation formulas for functions w through their
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higher order derivatives @

m+n

w=(@z

m

@z

n

) up to polyanalytic functions.

These operators are (see [6,7]) for entire m;n; 0 � m+ n; 0 < m

2

+ n

2

,

T

m;n

f(z) :=

Z

D

K

m;n

(z � �)f(�)d�d� =

=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(�m)!(�1)

�m

(n� 1)!�

Z

D

(z � �)

n�1

(z � �)

�m+1

f(�)d�d� for m � 0;

(�n)!(�1)

�n

(m� 1)!�

Z

D

(z � �)

m�1

(z � �)

�n+1

f(�)d�d� for n � 0;

1

(m� 1)!(n� 1)!�

Z

D

(z � �)

m�1

(z � �)

n�1

�

�

"

log jz � �j

2

�

m�1

X

k=1

1

k

�

n�1

X

l=1

1

l

#

f(�)d�d� for 0 < m;n:

Moreover,

T

0;0

f := f; T

m;n

f :=

@

m+n

f

@z

m

@z

n

for m;n < 0;

see [1]. These integral operators have the following properties for f 2 L

p

(D),

1 < p.

(1) T

m;n

f = T

n;m

f .

(2) There exists a constant M such that

jT

m;n

f(z

1

)� T

m;n

f(z

2

)j �Mkfk

L

p

(D)

jz

1

� z

2

j

�

with � = 1 for 2 < m + n, � = (p � 2)=p for m + n = 1, for

jz

1

j, jz

2

j � R, 0 < R. M depends only on m, n, p in the case

2 � m+ n � 3 also on D and for 4 � m+ n also on D and R.

(3) For m + n = 0 < m

2

+ n

2

, the operators T

m;n

are of Calderon{

Zygmund type mapping L

p

(C ), 1 < p, into itself. They have

to be understood as Cauchy principal value integrals and satisfy

kT

m;n

fk

L

p

(C)

�M(p)kfk

L

p

(C)

.

(4) T

m;n

f has generalized derivatives for 1 � m+ n

@

@z

T

m;n

f = T

m�1;n

f;

@

@z

T

m;n

f = T

m;n�1

f;

@

k+l

T

m;n

f

@z

k

@z

l

= T

m�k;n�l

f for k + l � m+ n:

(5) For f2L

2

(C ), we have

T

m;�m

T

k;�k

f = T

m+k;�m�k

f; T

m;�m

T

�m;m

f = f:

T

m;�m

is a unitary operator from L

2

(C ) into itself, kT

m;�m

fk

L

2

(C)

= kfk

L

2

(C)

. Its inverse and adjoint operator is T

�m;m

.
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As an example for a Pompeiu kind representation formula of higher order,

the next result can be proven from the classical Pompeiu formula (see [2,11])

by induction.

Theorem 2. If w 2 C

n

(D; C ), then

w(z) =

n�1

X

k=0

'

k

(z)z

k

+

1

(n� 1)!�

Z

D

(z � �)

n�1

z � �

@

n

w(�)

@�

n

d�d�

with analytic functions '

k

, 0 � k � n� 1.

Proof. For n = 1 this is the classical Cauchy{Pompeiu formula w(z) =

'

0

(z) + (T

0;1

w

�

)(z). Assume

!(z) =

n�2

X

k=0

e'

k

(z)z

k

+ (T

0;n�1

@

n�1

!(�)=@�

n�1

)(z)

holds for ! 2 C

n�1

(D; C ). Then applying this formula to ! = w

z

and

inserting the result in the Cauchy{Pompeiu formula for w, we obtain

w(z) = '

0

(z) + T

0;1

"

n�2

X

k=0

e'

k

(�)�

k

+ T

0;n�1

@

n

w(�)=@�

n

#

(z) =

= '

0

(z) +

n�2

X

k=0

�

e'

k

(z)

k + 1

z

k+1

+  

k

(z)

�

+ (T

0;n

@

n

w(�)=@�

n

)(z) =

=

n�1

X

k=0

'

k

(z) + (T

0;n

@

n

w=@�

n

)(z) :

Here  

k

are analytic functions given by

e'

k

(z)z

k+1

=(k + 1) =  

k

(z) + (T

0;1

e'

k

(�)�

k

)(z): �

For a general higher order Cauchy{Pompeiu formula see [2,6].

2. The Unit Disc

Besides the T{operator, Vekua [11] has introduced the

e

T{operator for

the unit disc D. It has the same properties as the T{operator. Additionally

it satis�es Re

e

Tf(z) = 0 for jzj = 1.

In fact it is uniquely given by the solution to the Schwarz problem

Re w(z) = 0 on jzj = 1 for the inhomogeneous Cauchy{Riemann equa-

tion w

z

= f in jzj < 1. Its general solution is with arbitrary analytic '

given as w = ' + Tf . By the Schwarz condition, the analytic function '

satis�es Re' = �ReTf on jzj = 1. The Schwarz formula (see [2,3,4,11])

de�nes ' as

'(z) = �

1

�

Z

j�j<1

f(�)

z

1� z�

d�d� + ic
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with arbitrary c 2 R. Hence,

w(z) =

e

Tf(z) := �

1

�

Z

j�j<1

"

f(�)

� � z

+

zf(�)

1� z�

#

d�d� + ic:

From here w(z) = (S

1

w

�

)(z) + i Imw(0) follows with

S

1

f(z) := �

1

2�

Z

j�j<1

"

� + z

� � z

f(�)

�

+

1 + z�

1� z�

f(�)

�

#

d�d�:

This operator has the following properties (see [2,6]):

(1) For f 2 L

1

(D), the function S

1

f has generalized derivatives (S

1

f)

z

= f and (S

1

f)

z

=

e

�f , where

e

� is the operator given by Vekua [11]

as

e

�f(z) := �

1

�

Z

j�j<1

"

f(�)

(� � z)

2

+

f(�)

(1� z�)

2

#

d�d�; z 2 D;

and satis�es k

e

�k

L

2

(D)

= 1.

(2) S

1

f satis�es homogeneous Schwarz conditions Re S

1

f = 0 on @D

and the side condition ImS

1

f(0) = 0.

(3) Iteration of S

1

leads for jzj < 1 to

S

k

1

f(z) = S

k

f(z) :=

(�1)

k

2�(k � 1)!

Z

j�j<1

�

2Re; (� � z)

�

k�1

�

�

"

� + z

� � z

f(�)

�

+

1 + z�

1� z�

f(�)

�

#

d�d�:

It satis�es @S

k

f=@z = S

k�1

f and is a particular solution to the

Schwarz problem

@

k

S

k

f

@z

k

= f in D; Re

@

�

S

k

f

@z

�

= 0 on @D;

Im

@

�

S

k

f

@z

�

�

�

�

z=0

= 0; 0 � � � k � 1:

For 0 � � � k�1, the z{derivatives @

�

S

k

f=@z

�

are weakly singular

integrals, while for � = k,

@

k

S

k

f(z)

@z

k

=

(�1)

k

k

�

Z

j�j<1

"

�

� � z

� � z

�

k�1

f(�)

(� � z)

2

+

+

�

1 + �(� � z)

1� z�

�

k�1

f(�)

(1� z�)

2

#

d�d�

is a singular integral operator. The L

2

{norm of this operator is not

yet known.
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3. Polydomains in C

n

A polydomain D

n

in C

n

is the Cartesian product of plane domains D

k

,

i.e., D

n

:=

X

n

k=1

D

k

. If one studies the overdetermined inhomogeneous

Cauchy{Riemann system w

z

k

= f

k

1 � k � n, in D

n

satisfying the com-

patibility conditions f

kz

l

= f

l z

k

; 1 � k; l � n, a particular solution is given

by a proper combination of T{operators. Denoting

T

k

f(z

k

) = �

1

�

Z

D

k

f(�

k

)

d�

k

d�

k

�

k

� z

k

for f 2 L

1

(D

k

), one can see that the general solution to the Cauchy{

Riemann system is

w = '+

n

X

�=1

(�1)

��1

X

1�k

1

<:::<k

�

�n

T

k

�

T

k

��1

: : : T

k

1

f

k

1

�

k

2

:::�

k

�

with an arbitrary analytic function ' in D

n

(see [3,4,8]). Here the last sum

is taken over all ordered multiindices fk

1

; k

2

; : : : ; k

�

g � f1; 2; : : : ; ng. For

n = 2, e.g., w = '+ T

1

f

1

+ T

2

f

2

� T

2

T

1

f

1�

2

.

Integral representations of this form were given already in [10], see also

[8].

As in the plane case, higher order systems can be treated similarly. The

inhomogeneous pluriharmonic system u

z

k

z

l

= f

kl

, 1 � k, l � n, in D

n

,

e.g., satisfying the compatibility conditions f

klz

i

= f

ilz

k

, f

kl z

j

= f

kjz

l

,

1 � i; j; k; l � n, has a particular solution in the following form. For �xed

l; 1 � l � n, the general solution to this anti{Cauchy{Riemann system is

u

z

l

=  

l

+

n

X

�=1

(�1)

��1

X

1�k

1

<:::<k

�

�n

T

k

�

: : : T

k

1

f

k

1

l�

k

2

:::�

k

�

=: F

l

with an analytic function  

l

. Choosing  

l

such that this inhomogeneous

Cauchy{Riemann system, 1 � l � n, satis�es the compatibility conditions

F

lz

j

= F

jz

l

, 1 � j, l � n, we have

u

0

=

n

X

�;�=1

(�1)

�+�

X

1�k

1

<:::<k

�

�n

1�l

1

<:::<l

�

�n

T

l

�

: : : T

l

1

T

k

�

: : : T

k

1

f

k

1

l

1

�

k

2

:::�

k

�

�

l

2

:::�

l

�

+

+

n

X

�=1

(�1)

��1

X

1�l

1

<:::<l

�

�n

T

l

�

: : : T

l

1

 

l

1

�

l

2

: : : �

l

�

:

Because any pluriharmonic function, i.e., any solution to the homogeneous

pluriharmonic system f

kl

= 0; 1 � k, l � n, is the sum ' +  with two

analytic functions ';  , the general solution for the pluriharmonic system

is then u = '+  + u

0

. Of course u

0

can be simpli�ed. Here only the case
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n = 2 is studied. For the general case see [4], Chap. 5.3. For n = 2 the

functions  

1

;  

2

have to be chosen such that

 

1z

2

(z) =

1

(2�i)

2

Z

@D

1

Z

@D

2

f

21

(�)

d�

1

�

1

� z

1

d�

2

�

2

� z

2

;

 

2z

1

(z) =

1

(2�i)

2

Z

@D

1

Z

@D

2

f

12

(�)

d�

1

�

1

� z

1

d�

2

�

2

� z

2

:

A particular solution is

u

0

= T

1

T

1

f

11

+ T

2

T

2

f

22

+ T

1

T

2

f

21

+ T

2

T

1

f

12

� T

1

T

1

T

2

f

11�

2

�

� T

2

T

2

T

1

f

22�

1

� T

1

T

1

T

2

f

11�

2

� T

2

T

2

T

1

f

22�

1

+

+ T

1

T

1

T

2

T

2

f

11�

2

�

2

+ T

1

 

1

+ T

2

 

2

� T

1

T

2

 

1�

2

:

In [3,4] the following result is proven.

Theorem 3. Let f

11

, f

12

, f

21

, f

22

satisfy the above mentioned the com-

patibility conditions in D

2

= f(z

1

z

2

) 2 C

2

: jz

1

j < 1; jz

2

j < 1g and 
 be

continuous on @

0

D

2

= f(z

1

z

2

) 2 C

2

: jz

1

j = 1; jz

2

j = 1g satisfying

1

(2�i)

2

Z

@

0
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It is easily seen that u satis�es the Dirichlet condition. Also u

z

1

z

1

=

f

11

; u

z

2

z

2

= f

22

can be veri�ed without di�culties. In order to calculate

u

z

1

z

2

and u

z

2

z

1

, the above condition has to be used.

Solvability conditions are characteristic for boundary value problems in

several complex variables. In general, they fail to be unconditionally solv-

able, see [4,8].
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